// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2015, 2017 Oracle. All rights reserved. * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. */ /* Lightweight memory registration using Fast Registration Work * Requests (FRWR). * * FRWR features ordered asynchronous registration and invalidation * of arbitrarily-sized memory regions. This is the fastest and safest * but most complex memory registration mode. */ /* Normal operation * * A Memory Region is prepared for RDMA Read or Write using a FAST_REG * Work Request (frwr_map). When the RDMA operation is finished, this * Memory Region is invalidated using a LOCAL_INV Work Request * (frwr_unmap_async and frwr_unmap_sync). * * Typically FAST_REG Work Requests are not signaled, and neither are * RDMA Send Work Requests (with the exception of signaling occasionally * to prevent provider work queue overflows). This greatly reduces HCA * interrupt workload. */ /* Transport recovery * * frwr_map and frwr_unmap_* cannot run at the same time the transport * connect worker is running. The connect worker holds the transport * send lock, just as ->send_request does. This prevents frwr_map and * the connect worker from running concurrently. When a connection is * closed, the Receive completion queue is drained before the allowing * the connect worker to get control. This prevents frwr_unmap and the * connect worker from running concurrently. * * When the underlying transport disconnects, MRs that are in flight * are flushed and are likely unusable. Thus all MRs are destroyed. * New MRs are created on demand. */ #include #include "xprt_rdma.h" #include #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) # define RPCDBG_FACILITY RPCDBG_TRANS #endif static void frwr_cid_init(struct rpcrdma_ep *ep, struct rpcrdma_mr *mr) { struct rpc_rdma_cid *cid = &mr->mr_cid; cid->ci_queue_id = ep->re_attr.send_cq->res.id; cid->ci_completion_id = mr->frwr.fr_mr->res.id; } static void frwr_mr_unmap(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr) { if (mr->mr_device) { trace_xprtrdma_mr_unmap(mr); ib_dma_unmap_sg(mr->mr_device, mr->mr_sg, mr->mr_nents, mr->mr_dir); mr->mr_device = NULL; } } /** * frwr_mr_release - Destroy one MR * @mr: MR allocated by frwr_mr_init * */ void frwr_mr_release(struct rpcrdma_mr *mr) { int rc; frwr_mr_unmap(mr->mr_xprt, mr); rc = ib_dereg_mr(mr->frwr.fr_mr); if (rc) trace_xprtrdma_frwr_dereg(mr, rc); kfree(mr->mr_sg); kfree(mr); } static void frwr_mr_put(struct rpcrdma_mr *mr) { frwr_mr_unmap(mr->mr_xprt, mr); /* The MR is returned to the req's MR free list instead * of to the xprt's MR free list. No spinlock is needed. */ rpcrdma_mr_push(mr, &mr->mr_req->rl_free_mrs); } /* frwr_reset - Place MRs back on the free list * @req: request to reset * * Used after a failed marshal. For FRWR, this means the MRs * don't have to be fully released and recreated. * * NB: This is safe only as long as none of @req's MRs are * involved with an ongoing asynchronous FAST_REG or LOCAL_INV * Work Request. */ void frwr_reset(struct rpcrdma_req *req) { struct rpcrdma_mr *mr; while ((mr = rpcrdma_mr_pop(&req->rl_registered))) frwr_mr_put(mr); } /** * frwr_mr_init - Initialize one MR * @r_xprt: controlling transport instance * @mr: generic MR to prepare for FRWR * * Returns zero if successful. Otherwise a negative errno * is returned. */ int frwr_mr_init(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr) { struct rpcrdma_ep *ep = r_xprt->rx_ep; unsigned int depth = ep->re_max_fr_depth; struct scatterlist *sg; struct ib_mr *frmr; int rc; frmr = ib_alloc_mr(ep->re_pd, ep->re_mrtype, depth); if (IS_ERR(frmr)) goto out_mr_err; sg = kmalloc_array(depth, sizeof(*sg), GFP_NOFS); if (!sg) goto out_list_err; mr->mr_xprt = r_xprt; mr->frwr.fr_mr = frmr; mr->mr_device = NULL; INIT_LIST_HEAD(&mr->mr_list); init_completion(&mr->mr_linv_done); frwr_cid_init(ep, mr); sg_init_table(sg, depth); mr->mr_sg = sg; return 0; out_mr_err: rc = PTR_ERR(frmr); trace_xprtrdma_frwr_alloc(mr, rc); return rc; out_list_err: ib_dereg_mr(frmr); return -ENOMEM; } /** * frwr_query_device - Prepare a transport for use with FRWR * @ep: endpoint to fill in * @device: RDMA device to query * * On success, sets: * ep->re_attr * ep->re_max_requests * ep->re_max_rdma_segs * ep->re_max_fr_depth * ep->re_mrtype * * Return values: * On success, returns zero. * %-EINVAL - the device does not support FRWR memory registration * %-ENOMEM - the device is not sufficiently capable for NFS/RDMA */ int frwr_query_device(struct rpcrdma_ep *ep, const struct ib_device *device) { const struct ib_device_attr *attrs = &device->attrs; int max_qp_wr, depth, delta; unsigned int max_sge; if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) || attrs->max_fast_reg_page_list_len == 0) { pr_err("rpcrdma: 'frwr' mode is not supported by device %s\n", device->name); return -EINVAL; } max_sge = min_t(unsigned int, attrs->max_send_sge, RPCRDMA_MAX_SEND_SGES); if (max_sge < RPCRDMA_MIN_SEND_SGES) { pr_err("rpcrdma: HCA provides only %u send SGEs\n", max_sge); return -ENOMEM; } ep->re_attr.cap.max_send_sge = max_sge; ep->re_attr.cap.max_recv_sge = 1; ep->re_mrtype = IB_MR_TYPE_MEM_REG; if (attrs->device_cap_flags & IB_DEVICE_SG_GAPS_REG) ep->re_mrtype = IB_MR_TYPE_SG_GAPS; /* Quirk: Some devices advertise a large max_fast_reg_page_list_len * capability, but perform optimally when the MRs are not larger * than a page. */ if (attrs->max_sge_rd > RPCRDMA_MAX_HDR_SEGS) ep->re_max_fr_depth = attrs->max_sge_rd; else ep->re_max_fr_depth = attrs->max_fast_reg_page_list_len; if (ep->re_max_fr_depth > RPCRDMA_MAX_DATA_SEGS) ep->re_max_fr_depth = RPCRDMA_MAX_DATA_SEGS; /* Add room for frwr register and invalidate WRs. * 1. FRWR reg WR for head * 2. FRWR invalidate WR for head * 3. N FRWR reg WRs for pagelist * 4. N FRWR invalidate WRs for pagelist * 5. FRWR reg WR for tail * 6. FRWR invalidate WR for tail * 7. The RDMA_SEND WR */ depth = 7; /* Calculate N if the device max FRWR depth is smaller than * RPCRDMA_MAX_DATA_SEGS. */ if (ep->re_max_fr_depth < RPCRDMA_MAX_DATA_SEGS) { delta = RPCRDMA_MAX_DATA_SEGS - ep->re_max_fr_depth; do { depth += 2; /* FRWR reg + invalidate */ delta -= ep->re_max_fr_depth; } while (delta > 0); } max_qp_wr = attrs->max_qp_wr; max_qp_wr -= RPCRDMA_BACKWARD_WRS; max_qp_wr -= 1; if (max_qp_wr < RPCRDMA_MIN_SLOT_TABLE) return -ENOMEM; if (ep->re_max_requests > max_qp_wr) ep->re_max_requests = max_qp_wr; ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth; if (ep->re_attr.cap.max_send_wr > max_qp_wr) { ep->re_max_requests = max_qp_wr / depth; if (!ep->re_max_requests) return -ENOMEM; ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth; } ep->re_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS; ep->re_attr.cap.max_send_wr += 1; /* for ib_drain_sq */ ep->re_attr.cap.max_recv_wr = ep->re_max_requests; ep->re_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS; ep->re_attr.cap.max_recv_wr += RPCRDMA_MAX_RECV_BATCH; ep->re_attr.cap.max_recv_wr += 1; /* for ib_drain_rq */ ep->re_max_rdma_segs = DIV_ROUND_UP(RPCRDMA_MAX_DATA_SEGS, ep->re_max_fr_depth); /* Reply chunks require segments for head and tail buffers */ ep->re_max_rdma_segs += 2; if (ep->re_max_rdma_segs > RPCRDMA_MAX_HDR_SEGS) ep->re_max_rdma_segs = RPCRDMA_MAX_HDR_SEGS; /* Ensure the underlying device is capable of conveying the * largest r/wsize NFS will ask for. This guarantees that * failing over from one RDMA device to another will not * break NFS I/O. */ if ((ep->re_max_rdma_segs * ep->re_max_fr_depth) < RPCRDMA_MAX_SEGS) return -ENOMEM; return 0; } /** * frwr_map - Register a memory region * @r_xprt: controlling transport * @seg: memory region co-ordinates * @nsegs: number of segments remaining * @writing: true when RDMA Write will be used * @xid: XID of RPC using the registered memory * @mr: MR to fill in * * Prepare a REG_MR Work Request to register a memory region * for remote access via RDMA READ or RDMA WRITE. * * Returns the next segment or a negative errno pointer. * On success, @mr is filled in. */ struct rpcrdma_mr_seg *frwr_map(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg, int nsegs, bool writing, __be32 xid, struct rpcrdma_mr *mr) { struct rpcrdma_ep *ep = r_xprt->rx_ep; struct ib_reg_wr *reg_wr; int i, n, dma_nents; struct ib_mr *ibmr; u8 key; if (nsegs > ep->re_max_fr_depth) nsegs = ep->re_max_fr_depth; for (i = 0; i < nsegs;) { sg_set_page(&mr->mr_sg[i], seg->mr_page, seg->mr_len, seg->mr_offset); ++seg; ++i; if (ep->re_mrtype == IB_MR_TYPE_SG_GAPS) continue; if ((i < nsegs && seg->mr_offset) || offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len)) break; } mr->mr_dir = rpcrdma_data_dir(writing); mr->mr_nents = i; dma_nents = ib_dma_map_sg(ep->re_id->device, mr->mr_sg, mr->mr_nents, mr->mr_dir); if (!dma_nents) goto out_dmamap_err; mr->mr_device = ep->re_id->device; ibmr = mr->frwr.fr_mr; n = ib_map_mr_sg(ibmr, mr->mr_sg, dma_nents, NULL, PAGE_SIZE); if (n != dma_nents) goto out_mapmr_err; ibmr->iova &= 0x00000000ffffffff; ibmr->iova |= ((u64)be32_to_cpu(xid)) << 32; key = (u8)(ibmr->rkey & 0x000000FF); ib_update_fast_reg_key(ibmr, ++key); reg_wr = &mr->frwr.fr_regwr; reg_wr->mr = ibmr; reg_wr->key = ibmr->rkey; reg_wr->access = writing ? IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE : IB_ACCESS_REMOTE_READ; mr->mr_handle = ibmr->rkey; mr->mr_length = ibmr->length; mr->mr_offset = ibmr->iova; trace_xprtrdma_mr_map(mr); return seg; out_dmamap_err: trace_xprtrdma_frwr_sgerr(mr, i); return ERR_PTR(-EIO); out_mapmr_err: trace_xprtrdma_frwr_maperr(mr, n); return ERR_PTR(-EIO); } /** * frwr_wc_fastreg - Invoked by RDMA provider for a flushed FastReg WC * @cq: completion queue * @wc: WCE for a completed FastReg WR * * Each flushed MR gets destroyed after the QP has drained. */ static void frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc) { struct ib_cqe *cqe = wc->wr_cqe; struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe); /* WARNING: Only wr_cqe and status are reliable at this point */ trace_xprtrdma_wc_fastreg(wc, &mr->mr_cid); rpcrdma_flush_disconnect(cq->cq_context, wc); } /** * frwr_send - post Send WRs containing the RPC Call message * @r_xprt: controlling transport instance * @req: prepared RPC Call * * For FRWR, chain any FastReg WRs to the Send WR. Only a * single ib_post_send call is needed to register memory * and then post the Send WR. * * Returns the return code from ib_post_send. * * Caller must hold the transport send lock to ensure that the * pointers to the transport's rdma_cm_id and QP are stable. */ int frwr_send(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) { struct ib_send_wr *post_wr, *send_wr = &req->rl_wr; struct rpcrdma_ep *ep = r_xprt->rx_ep; struct rpcrdma_mr *mr; unsigned int num_wrs; num_wrs = 1; post_wr = send_wr; list_for_each_entry(mr, &req->rl_registered, mr_list) { struct rpcrdma_frwr *frwr; trace_xprtrdma_mr_fastreg(mr); frwr = &mr->frwr; mr->mr_cqe.done = frwr_wc_fastreg; frwr->fr_regwr.wr.next = post_wr; frwr->fr_regwr.wr.wr_cqe = &mr->mr_cqe; frwr->fr_regwr.wr.num_sge = 0; frwr->fr_regwr.wr.opcode = IB_WR_REG_MR; frwr->fr_regwr.wr.send_flags = 0; post_wr = &frwr->fr_regwr.wr; ++num_wrs; } if ((kref_read(&req->rl_kref) > 1) || num_wrs > ep->re_send_count) { send_wr->send_flags |= IB_SEND_SIGNALED; ep->re_send_count = min_t(unsigned int, ep->re_send_batch, num_wrs - ep->re_send_count); } else { send_wr->send_flags &= ~IB_SEND_SIGNALED; ep->re_send_count -= num_wrs; } trace_xprtrdma_post_send(req); return ib_post_send(ep->re_id->qp, post_wr, NULL); } /** * frwr_reminv - handle a remotely invalidated mr on the @mrs list * @rep: Received reply * @mrs: list of MRs to check * */ void frwr_reminv(struct rpcrdma_rep *rep, struct list_head *mrs) { struct rpcrdma_mr *mr; list_for_each_entry(mr, mrs, mr_list) if (mr->mr_handle == rep->rr_inv_rkey) { list_del_init(&mr->mr_list); trace_xprtrdma_mr_reminv(mr); frwr_mr_put(mr); break; /* only one invalidated MR per RPC */ } } static void frwr_mr_done(struct ib_wc *wc, struct rpcrdma_mr *mr) { if (likely(wc->status == IB_WC_SUCCESS)) frwr_mr_put(mr); } /** * frwr_wc_localinv - Invoked by RDMA provider for a LOCAL_INV WC * @cq: completion queue * @wc: WCE for a completed LocalInv WR * */ static void frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc) { struct ib_cqe *cqe = wc->wr_cqe; struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe); /* WARNING: Only wr_cqe and status are reliable at this point */ trace_xprtrdma_wc_li(wc, &mr->mr_cid); frwr_mr_done(wc, mr); rpcrdma_flush_disconnect(cq->cq_context, wc); } /** * frwr_wc_localinv_wake - Invoked by RDMA provider for a LOCAL_INV WC * @cq: completion queue * @wc: WCE for a completed LocalInv WR * * Awaken anyone waiting for an MR to finish being fenced. */ static void frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc) { struct ib_cqe *cqe = wc->wr_cqe; struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe); /* WARNING: Only wr_cqe and status are reliable at this point */ trace_xprtrdma_wc_li_wake(wc, &mr->mr_cid); frwr_mr_done(wc, mr); complete(&mr->mr_linv_done); rpcrdma_flush_disconnect(cq->cq_context, wc); } /** * frwr_unmap_sync - invalidate memory regions that were registered for @req * @r_xprt: controlling transport instance * @req: rpcrdma_req with a non-empty list of MRs to process * * Sleeps until it is safe for the host CPU to access the previously mapped * memory regions. This guarantees that registered MRs are properly fenced * from the server before the RPC consumer accesses the data in them. It * also ensures proper Send flow control: waking the next RPC waits until * this RPC has relinquished all its Send Queue entries. */ void frwr_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) { struct ib_send_wr *first, **prev, *last; struct rpcrdma_ep *ep = r_xprt->rx_ep; const struct ib_send_wr *bad_wr; struct rpcrdma_frwr *frwr; struct rpcrdma_mr *mr; int rc; /* ORDER: Invalidate all of the MRs first * * Chain the LOCAL_INV Work Requests and post them with * a single ib_post_send() call. */ frwr = NULL; prev = &first; while ((mr = rpcrdma_mr_pop(&req->rl_registered))) { trace_xprtrdma_mr_localinv(mr); r_xprt->rx_stats.local_inv_needed++; frwr = &mr->frwr; last = &frwr->fr_invwr; last->next = NULL; last->wr_cqe = &mr->mr_cqe; last->sg_list = NULL; last->num_sge = 0; last->opcode = IB_WR_LOCAL_INV; last->send_flags = IB_SEND_SIGNALED; last->ex.invalidate_rkey = mr->mr_handle; last->wr_cqe->done = frwr_wc_localinv; *prev = last; prev = &last->next; } /* Strong send queue ordering guarantees that when the * last WR in the chain completes, all WRs in the chain * are complete. */ last->wr_cqe->done = frwr_wc_localinv_wake; reinit_completion(&mr->mr_linv_done); /* Transport disconnect drains the receive CQ before it * replaces the QP. The RPC reply handler won't call us * unless re_id->qp is a valid pointer. */ bad_wr = NULL; rc = ib_post_send(ep->re_id->qp, first, &bad_wr); /* The final LOCAL_INV WR in the chain is supposed to * do the wake. If it was never posted, the wake will * not happen, so don't wait in that case. */ if (bad_wr != first) wait_for_completion(&mr->mr_linv_done); if (!rc) return; /* On error, the MRs get destroyed once the QP has drained. */ trace_xprtrdma_post_linv_err(req, rc); } /** * frwr_wc_localinv_done - Invoked by RDMA provider for a signaled LOCAL_INV WC * @cq: completion queue * @wc: WCE for a completed LocalInv WR * */ static void frwr_wc_localinv_done(struct ib_cq *cq, struct ib_wc *wc) { struct ib_cqe *cqe = wc->wr_cqe; struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe); struct rpcrdma_rep *rep; /* WARNING: Only wr_cqe and status are reliable at this point */ trace_xprtrdma_wc_li_done(wc, &mr->mr_cid); /* Ensure that @rep is generated before the MR is released */ rep = mr->mr_req->rl_reply; smp_rmb(); if (wc->status != IB_WC_SUCCESS) { if (rep) rpcrdma_unpin_rqst(rep); rpcrdma_flush_disconnect(cq->cq_context, wc); return; } frwr_mr_put(mr); rpcrdma_complete_rqst(rep); } /** * frwr_unmap_async - invalidate memory regions that were registered for @req * @r_xprt: controlling transport instance * @req: rpcrdma_req with a non-empty list of MRs to process * * This guarantees that registered MRs are properly fenced from the * server before the RPC consumer accesses the data in them. It also * ensures proper Send flow control: waking the next RPC waits until * this RPC has relinquished all its Send Queue entries. */ void frwr_unmap_async(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) { struct ib_send_wr *first, *last, **prev; struct rpcrdma_ep *ep = r_xprt->rx_ep; struct rpcrdma_frwr *frwr; struct rpcrdma_mr *mr; int rc; /* Chain the LOCAL_INV Work Requests and post them with * a single ib_post_send() call. */ frwr = NULL; prev = &first; while ((mr = rpcrdma_mr_pop(&req->rl_registered))) { trace_xprtrdma_mr_localinv(mr); r_xprt->rx_stats.local_inv_needed++; frwr = &mr->frwr; last = &frwr->fr_invwr; last->next = NULL; last->wr_cqe = &mr->mr_cqe; last->sg_list = NULL; last->num_sge = 0; last->opcode = IB_WR_LOCAL_INV; last->send_flags = IB_SEND_SIGNALED; last->ex.invalidate_rkey = mr->mr_handle; last->wr_cqe->done = frwr_wc_localinv; *prev = last; prev = &last->next; } /* Strong send queue ordering guarantees that when the * last WR in the chain completes, all WRs in the chain * are complete. The last completion will wake up the * RPC waiter. */ last->wr_cqe->done = frwr_wc_localinv_done; /* Transport disconnect drains the receive CQ before it * replaces the QP. The RPC reply handler won't call us * unless re_id->qp is a valid pointer. */ rc = ib_post_send(ep->re_id->qp, first, NULL); if (!rc) return; /* On error, the MRs get destroyed once the QP has drained. */ trace_xprtrdma_post_linv_err(req, rc); /* The final LOCAL_INV WR in the chain is supposed to * do the wake. If it was never posted, the wake does * not happen. Unpin the rqst in preparation for its * retransmission. */ rpcrdma_unpin_rqst(req->rl_reply); }