/* * drivers/net/wireless/mwl8k.c * Driver for Marvell TOPDOG 802.11 Wireless cards * * Copyright (C) 2008-2009 Marvell Semiconductor Inc. * * This file is licensed under the terms of the GNU General Public * License version 2. This program is licensed "as is" without any * warranty of any kind, whether express or implied. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MWL8K_DESC "Marvell TOPDOG(R) 802.11 Wireless Network Driver" #define MWL8K_NAME KBUILD_MODNAME #define MWL8K_VERSION "0.11" /* Register definitions */ #define MWL8K_HIU_GEN_PTR 0x00000c10 #define MWL8K_MODE_STA 0x0000005a #define MWL8K_MODE_AP 0x000000a5 #define MWL8K_HIU_INT_CODE 0x00000c14 #define MWL8K_FWSTA_READY 0xf0f1f2f4 #define MWL8K_FWAP_READY 0xf1f2f4a5 #define MWL8K_INT_CODE_CMD_FINISHED 0x00000005 #define MWL8K_HIU_SCRATCH 0x00000c40 /* Host->device communications */ #define MWL8K_HIU_H2A_INTERRUPT_EVENTS 0x00000c18 #define MWL8K_HIU_H2A_INTERRUPT_STATUS 0x00000c1c #define MWL8K_HIU_H2A_INTERRUPT_MASK 0x00000c20 #define MWL8K_HIU_H2A_INTERRUPT_CLEAR_SEL 0x00000c24 #define MWL8K_HIU_H2A_INTERRUPT_STATUS_MASK 0x00000c28 #define MWL8K_H2A_INT_DUMMY (1 << 20) #define MWL8K_H2A_INT_RESET (1 << 15) #define MWL8K_H2A_INT_DOORBELL (1 << 1) #define MWL8K_H2A_INT_PPA_READY (1 << 0) /* Device->host communications */ #define MWL8K_HIU_A2H_INTERRUPT_EVENTS 0x00000c2c #define MWL8K_HIU_A2H_INTERRUPT_STATUS 0x00000c30 #define MWL8K_HIU_A2H_INTERRUPT_MASK 0x00000c34 #define MWL8K_HIU_A2H_INTERRUPT_CLEAR_SEL 0x00000c38 #define MWL8K_HIU_A2H_INTERRUPT_STATUS_MASK 0x00000c3c #define MWL8K_A2H_INT_DUMMY (1 << 20) #define MWL8K_A2H_INT_CHNL_SWITCHED (1 << 11) #define MWL8K_A2H_INT_QUEUE_EMPTY (1 << 10) #define MWL8K_A2H_INT_RADAR_DETECT (1 << 7) #define MWL8K_A2H_INT_RADIO_ON (1 << 6) #define MWL8K_A2H_INT_RADIO_OFF (1 << 5) #define MWL8K_A2H_INT_MAC_EVENT (1 << 3) #define MWL8K_A2H_INT_OPC_DONE (1 << 2) #define MWL8K_A2H_INT_RX_READY (1 << 1) #define MWL8K_A2H_INT_TX_DONE (1 << 0) #define MWL8K_A2H_EVENTS (MWL8K_A2H_INT_DUMMY | \ MWL8K_A2H_INT_CHNL_SWITCHED | \ MWL8K_A2H_INT_QUEUE_EMPTY | \ MWL8K_A2H_INT_RADAR_DETECT | \ MWL8K_A2H_INT_RADIO_ON | \ MWL8K_A2H_INT_RADIO_OFF | \ MWL8K_A2H_INT_MAC_EVENT | \ MWL8K_A2H_INT_OPC_DONE | \ MWL8K_A2H_INT_RX_READY | \ MWL8K_A2H_INT_TX_DONE) #define MWL8K_RX_QUEUES 1 #define MWL8K_TX_QUEUES 4 struct rxd_ops { int rxd_size; void (*rxd_init)(void *rxd, dma_addr_t next_dma_addr); void (*rxd_refill)(void *rxd, dma_addr_t addr, int len); int (*rxd_process)(void *rxd, struct ieee80211_rx_status *status, __le16 *qos); }; struct mwl8k_device_info { char *part_name; char *helper_image; char *fw_image; struct rxd_ops *ap_rxd_ops; }; struct mwl8k_rx_queue { int rxd_count; /* hw receives here */ int head; /* refill descs here */ int tail; void *rxd; dma_addr_t rxd_dma; struct { struct sk_buff *skb; DECLARE_PCI_UNMAP_ADDR(dma) } *buf; }; struct mwl8k_tx_queue { /* hw transmits here */ int head; /* sw appends here */ int tail; struct ieee80211_tx_queue_stats stats; struct mwl8k_tx_desc *txd; dma_addr_t txd_dma; struct sk_buff **skb; }; struct mwl8k_priv { struct ieee80211_hw *hw; struct pci_dev *pdev; struct mwl8k_device_info *device_info; void __iomem *sram; void __iomem *regs; /* firmware */ struct firmware *fw_helper; struct firmware *fw_ucode; /* hardware/firmware parameters */ bool ap_fw; struct rxd_ops *rxd_ops; /* firmware access */ struct mutex fw_mutex; struct task_struct *fw_mutex_owner; int fw_mutex_depth; struct completion *hostcmd_wait; /* lock held over TX and TX reap */ spinlock_t tx_lock; /* TX quiesce completion, protected by fw_mutex and tx_lock */ struct completion *tx_wait; struct ieee80211_vif *vif; struct ieee80211_channel *current_channel; /* power management status cookie from firmware */ u32 *cookie; dma_addr_t cookie_dma; u16 num_mcaddrs; u8 hw_rev; u32 fw_rev; /* * Running count of TX packets in flight, to avoid * iterating over the transmit rings each time. */ int pending_tx_pkts; struct mwl8k_rx_queue rxq[MWL8K_RX_QUEUES]; struct mwl8k_tx_queue txq[MWL8K_TX_QUEUES]; /* PHY parameters */ struct ieee80211_supported_band band; struct ieee80211_channel channels[14]; struct ieee80211_rate rates[14]; bool radio_on; bool radio_short_preamble; bool sniffer_enabled; bool wmm_enabled; /* XXX need to convert this to handle multiple interfaces */ bool capture_beacon; u8 capture_bssid[ETH_ALEN]; struct sk_buff *beacon_skb; /* * This FJ worker has to be global as it is scheduled from the * RX handler. At this point we don't know which interface it * belongs to until the list of bssids waiting to complete join * is checked. */ struct work_struct finalize_join_worker; /* Tasklet to reclaim TX descriptors and buffers after tx */ struct tasklet_struct tx_reclaim_task; }; /* Per interface specific private data */ struct mwl8k_vif { /* Local MAC address. */ u8 mac_addr[ETH_ALEN]; /* BSSID of AP. */ u8 bssid[ETH_ALEN]; /* Index into station database. Returned by UPDATE_STADB. */ u8 peer_id; /* Non AMPDU sequence number assigned by driver */ u16 seqno; }; #define MWL8K_VIF(_vif) ((struct mwl8k_vif *)&((_vif)->drv_priv)) static const struct ieee80211_channel mwl8k_channels[] = { { .center_freq = 2412, .hw_value = 1, }, { .center_freq = 2417, .hw_value = 2, }, { .center_freq = 2422, .hw_value = 3, }, { .center_freq = 2427, .hw_value = 4, }, { .center_freq = 2432, .hw_value = 5, }, { .center_freq = 2437, .hw_value = 6, }, { .center_freq = 2442, .hw_value = 7, }, { .center_freq = 2447, .hw_value = 8, }, { .center_freq = 2452, .hw_value = 9, }, { .center_freq = 2457, .hw_value = 10, }, { .center_freq = 2462, .hw_value = 11, }, { .center_freq = 2467, .hw_value = 12, }, { .center_freq = 2472, .hw_value = 13, }, { .center_freq = 2484, .hw_value = 14, }, }; static const struct ieee80211_rate mwl8k_rates[] = { { .bitrate = 10, .hw_value = 2, }, { .bitrate = 20, .hw_value = 4, }, { .bitrate = 55, .hw_value = 11, }, { .bitrate = 110, .hw_value = 22, }, { .bitrate = 220, .hw_value = 44, }, { .bitrate = 60, .hw_value = 12, }, { .bitrate = 90, .hw_value = 18, }, { .bitrate = 120, .hw_value = 24, }, { .bitrate = 180, .hw_value = 36, }, { .bitrate = 240, .hw_value = 48, }, { .bitrate = 360, .hw_value = 72, }, { .bitrate = 480, .hw_value = 96, }, { .bitrate = 540, .hw_value = 108, }, { .bitrate = 720, .hw_value = 144, }, }; static const u8 mwl8k_rateids[12] = { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108, }; /* Set or get info from Firmware */ #define MWL8K_CMD_SET 0x0001 #define MWL8K_CMD_GET 0x0000 /* Firmware command codes */ #define MWL8K_CMD_CODE_DNLD 0x0001 #define MWL8K_CMD_GET_HW_SPEC 0x0003 #define MWL8K_CMD_SET_HW_SPEC 0x0004 #define MWL8K_CMD_MAC_MULTICAST_ADR 0x0010 #define MWL8K_CMD_GET_STAT 0x0014 #define MWL8K_CMD_RADIO_CONTROL 0x001c #define MWL8K_CMD_RF_TX_POWER 0x001e #define MWL8K_CMD_RF_ANTENNA 0x0020 #define MWL8K_CMD_SET_PRE_SCAN 0x0107 #define MWL8K_CMD_SET_POST_SCAN 0x0108 #define MWL8K_CMD_SET_RF_CHANNEL 0x010a #define MWL8K_CMD_SET_AID 0x010d #define MWL8K_CMD_SET_RATE 0x0110 #define MWL8K_CMD_SET_FINALIZE_JOIN 0x0111 #define MWL8K_CMD_RTS_THRESHOLD 0x0113 #define MWL8K_CMD_SET_SLOT 0x0114 #define MWL8K_CMD_SET_EDCA_PARAMS 0x0115 #define MWL8K_CMD_SET_WMM_MODE 0x0123 #define MWL8K_CMD_MIMO_CONFIG 0x0125 #define MWL8K_CMD_USE_FIXED_RATE 0x0126 #define MWL8K_CMD_ENABLE_SNIFFER 0x0150 #define MWL8K_CMD_SET_MAC_ADDR 0x0202 #define MWL8K_CMD_SET_RATEADAPT_MODE 0x0203 #define MWL8K_CMD_UPDATE_STADB 0x1123 static const char *mwl8k_cmd_name(u16 cmd, char *buf, int bufsize) { #define MWL8K_CMDNAME(x) case MWL8K_CMD_##x: do {\ snprintf(buf, bufsize, "%s", #x);\ return buf;\ } while (0) switch (cmd & ~0x8000) { MWL8K_CMDNAME(CODE_DNLD); MWL8K_CMDNAME(GET_HW_SPEC); MWL8K_CMDNAME(SET_HW_SPEC); MWL8K_CMDNAME(MAC_MULTICAST_ADR); MWL8K_CMDNAME(GET_STAT); MWL8K_CMDNAME(RADIO_CONTROL); MWL8K_CMDNAME(RF_TX_POWER); MWL8K_CMDNAME(RF_ANTENNA); MWL8K_CMDNAME(SET_PRE_SCAN); MWL8K_CMDNAME(SET_POST_SCAN); MWL8K_CMDNAME(SET_RF_CHANNEL); MWL8K_CMDNAME(SET_AID); MWL8K_CMDNAME(SET_RATE); MWL8K_CMDNAME(SET_FINALIZE_JOIN); MWL8K_CMDNAME(RTS_THRESHOLD); MWL8K_CMDNAME(SET_SLOT); MWL8K_CMDNAME(SET_EDCA_PARAMS); MWL8K_CMDNAME(SET_WMM_MODE); MWL8K_CMDNAME(MIMO_CONFIG); MWL8K_CMDNAME(USE_FIXED_RATE); MWL8K_CMDNAME(ENABLE_SNIFFER); MWL8K_CMDNAME(SET_MAC_ADDR); MWL8K_CMDNAME(SET_RATEADAPT_MODE); MWL8K_CMDNAME(UPDATE_STADB); default: snprintf(buf, bufsize, "0x%x", cmd); } #undef MWL8K_CMDNAME return buf; } /* Hardware and firmware reset */ static void mwl8k_hw_reset(struct mwl8k_priv *priv) { iowrite32(MWL8K_H2A_INT_RESET, priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS); iowrite32(MWL8K_H2A_INT_RESET, priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS); msleep(20); } /* Release fw image */ static void mwl8k_release_fw(struct firmware **fw) { if (*fw == NULL) return; release_firmware(*fw); *fw = NULL; } static void mwl8k_release_firmware(struct mwl8k_priv *priv) { mwl8k_release_fw(&priv->fw_ucode); mwl8k_release_fw(&priv->fw_helper); } /* Request fw image */ static int mwl8k_request_fw(struct mwl8k_priv *priv, const char *fname, struct firmware **fw) { /* release current image */ if (*fw != NULL) mwl8k_release_fw(fw); return request_firmware((const struct firmware **)fw, fname, &priv->pdev->dev); } static int mwl8k_request_firmware(struct mwl8k_priv *priv) { struct mwl8k_device_info *di = priv->device_info; int rc; if (di->helper_image != NULL) { rc = mwl8k_request_fw(priv, di->helper_image, &priv->fw_helper); if (rc) { printk(KERN_ERR "%s: Error requesting helper " "firmware file %s\n", pci_name(priv->pdev), di->helper_image); return rc; } } rc = mwl8k_request_fw(priv, di->fw_image, &priv->fw_ucode); if (rc) { printk(KERN_ERR "%s: Error requesting firmware file %s\n", pci_name(priv->pdev), di->fw_image); mwl8k_release_fw(&priv->fw_helper); return rc; } return 0; } MODULE_FIRMWARE("mwl8k/helper_8687.fw"); MODULE_FIRMWARE("mwl8k/fmimage_8687.fw"); struct mwl8k_cmd_pkt { __le16 code; __le16 length; __le16 seq_num; __le16 result; char payload[0]; } __attribute__((packed)); /* * Firmware loading. */ static int mwl8k_send_fw_load_cmd(struct mwl8k_priv *priv, void *data, int length) { void __iomem *regs = priv->regs; dma_addr_t dma_addr; int loops; dma_addr = pci_map_single(priv->pdev, data, length, PCI_DMA_TODEVICE); if (pci_dma_mapping_error(priv->pdev, dma_addr)) return -ENOMEM; iowrite32(dma_addr, regs + MWL8K_HIU_GEN_PTR); iowrite32(0, regs + MWL8K_HIU_INT_CODE); iowrite32(MWL8K_H2A_INT_DOORBELL, regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS); iowrite32(MWL8K_H2A_INT_DUMMY, regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS); loops = 1000; do { u32 int_code; int_code = ioread32(regs + MWL8K_HIU_INT_CODE); if (int_code == MWL8K_INT_CODE_CMD_FINISHED) { iowrite32(0, regs + MWL8K_HIU_INT_CODE); break; } cond_resched(); udelay(1); } while (--loops); pci_unmap_single(priv->pdev, dma_addr, length, PCI_DMA_TODEVICE); return loops ? 0 : -ETIMEDOUT; } static int mwl8k_load_fw_image(struct mwl8k_priv *priv, const u8 *data, size_t length) { struct mwl8k_cmd_pkt *cmd; int done; int rc = 0; cmd = kmalloc(sizeof(*cmd) + 256, GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->code = cpu_to_le16(MWL8K_CMD_CODE_DNLD); cmd->seq_num = 0; cmd->result = 0; done = 0; while (length) { int block_size = length > 256 ? 256 : length; memcpy(cmd->payload, data + done, block_size); cmd->length = cpu_to_le16(block_size); rc = mwl8k_send_fw_load_cmd(priv, cmd, sizeof(*cmd) + block_size); if (rc) break; done += block_size; length -= block_size; } if (!rc) { cmd->length = 0; rc = mwl8k_send_fw_load_cmd(priv, cmd, sizeof(*cmd)); } kfree(cmd); return rc; } static int mwl8k_feed_fw_image(struct mwl8k_priv *priv, const u8 *data, size_t length) { unsigned char *buffer; int may_continue, rc = 0; u32 done, prev_block_size; buffer = kmalloc(1024, GFP_KERNEL); if (buffer == NULL) return -ENOMEM; done = 0; prev_block_size = 0; may_continue = 1000; while (may_continue > 0) { u32 block_size; block_size = ioread32(priv->regs + MWL8K_HIU_SCRATCH); if (block_size & 1) { block_size &= ~1; may_continue--; } else { done += prev_block_size; length -= prev_block_size; } if (block_size > 1024 || block_size > length) { rc = -EOVERFLOW; break; } if (length == 0) { rc = 0; break; } if (block_size == 0) { rc = -EPROTO; may_continue--; udelay(1); continue; } prev_block_size = block_size; memcpy(buffer, data + done, block_size); rc = mwl8k_send_fw_load_cmd(priv, buffer, block_size); if (rc) break; } if (!rc && length != 0) rc = -EREMOTEIO; kfree(buffer); return rc; } static int mwl8k_load_firmware(struct ieee80211_hw *hw) { struct mwl8k_priv *priv = hw->priv; struct firmware *fw = priv->fw_ucode; int rc; int loops; if (!memcmp(fw->data, "\x01\x00\x00\x00", 4)) { struct firmware *helper = priv->fw_helper; if (helper == NULL) { printk(KERN_ERR "%s: helper image needed but none " "given\n", pci_name(priv->pdev)); return -EINVAL; } rc = mwl8k_load_fw_image(priv, helper->data, helper->size); if (rc) { printk(KERN_ERR "%s: unable to load firmware " "helper image\n", pci_name(priv->pdev)); return rc; } msleep(5); rc = mwl8k_feed_fw_image(priv, fw->data, fw->size); } else { rc = mwl8k_load_fw_image(priv, fw->data, fw->size); } if (rc) { printk(KERN_ERR "%s: unable to load firmware image\n", pci_name(priv->pdev)); return rc; } iowrite32(MWL8K_MODE_STA, priv->regs + MWL8K_HIU_GEN_PTR); loops = 500000; do { u32 ready_code; ready_code = ioread32(priv->regs + MWL8K_HIU_INT_CODE); if (ready_code == MWL8K_FWAP_READY) { priv->ap_fw = 1; break; } else if (ready_code == MWL8K_FWSTA_READY) { priv->ap_fw = 0; break; } cond_resched(); udelay(1); } while (--loops); return loops ? 0 : -ETIMEDOUT; } /* * Defines shared between transmission and reception. */ /* HT control fields for firmware */ struct ewc_ht_info { __le16 control1; __le16 control2; __le16 control3; } __attribute__((packed)); /* Firmware Station database operations */ #define MWL8K_STA_DB_ADD_ENTRY 0 #define MWL8K_STA_DB_MODIFY_ENTRY 1 #define MWL8K_STA_DB_DEL_ENTRY 2 #define MWL8K_STA_DB_FLUSH 3 /* Peer Entry flags - used to define the type of the peer node */ #define MWL8K_PEER_TYPE_ACCESSPOINT 2 struct peer_capability_info { /* Peer type - AP vs. STA. */ __u8 peer_type; /* Basic 802.11 capabilities from assoc resp. */ __le16 basic_caps; /* Set if peer supports 802.11n high throughput (HT). */ __u8 ht_support; /* Valid if HT is supported. */ __le16 ht_caps; __u8 extended_ht_caps; struct ewc_ht_info ewc_info; /* Legacy rate table. Intersection of our rates and peer rates. */ __u8 legacy_rates[12]; /* HT rate table. Intersection of our rates and peer rates. */ __u8 ht_rates[16]; __u8 pad[16]; /* If set, interoperability mode, no proprietary extensions. */ __u8 interop; __u8 pad2; __u8 station_id; __le16 amsdu_enabled; } __attribute__((packed)); /* DMA header used by firmware and hardware. */ struct mwl8k_dma_data { __le16 fwlen; struct ieee80211_hdr wh; char data[0]; } __attribute__((packed)); /* Routines to add/remove DMA header from skb. */ static inline void mwl8k_remove_dma_header(struct sk_buff *skb, __le16 qos) { struct mwl8k_dma_data *tr; int hdrlen; tr = (struct mwl8k_dma_data *)skb->data; hdrlen = ieee80211_hdrlen(tr->wh.frame_control); if (hdrlen != sizeof(tr->wh)) { if (ieee80211_is_data_qos(tr->wh.frame_control)) { memmove(tr->data - hdrlen, &tr->wh, hdrlen - 2); *((__le16 *)(tr->data - 2)) = qos; } else { memmove(tr->data - hdrlen, &tr->wh, hdrlen); } } if (hdrlen != sizeof(*tr)) skb_pull(skb, sizeof(*tr) - hdrlen); } static inline void mwl8k_add_dma_header(struct sk_buff *skb) { struct ieee80211_hdr *wh; int hdrlen; struct mwl8k_dma_data *tr; /* * Add a firmware DMA header; the firmware requires that we * present a 2-byte payload length followed by a 4-address * header (without QoS field), followed (optionally) by any * WEP/ExtIV header (but only filled in for CCMP). */ wh = (struct ieee80211_hdr *)skb->data; hdrlen = ieee80211_hdrlen(wh->frame_control); if (hdrlen != sizeof(*tr)) skb_push(skb, sizeof(*tr) - hdrlen); if (ieee80211_is_data_qos(wh->frame_control)) hdrlen -= 2; tr = (struct mwl8k_dma_data *)skb->data; if (wh != &tr->wh) memmove(&tr->wh, wh, hdrlen); if (hdrlen != sizeof(tr->wh)) memset(((void *)&tr->wh) + hdrlen, 0, sizeof(tr->wh) - hdrlen); /* * Firmware length is the length of the fully formed "802.11 * payload". That is, everything except for the 802.11 header. * This includes all crypto material including the MIC. */ tr->fwlen = cpu_to_le16(skb->len - sizeof(*tr)); } /* * Packet reception for 88w8366 AP firmware. */ struct mwl8k_rxd_8366_ap { __le16 pkt_len; __u8 sq2; __u8 rate; __le32 pkt_phys_addr; __le32 next_rxd_phys_addr; __le16 qos_control; __le16 htsig2; __le32 hw_rssi_info; __le32 hw_noise_floor_info; __u8 noise_floor; __u8 pad0[3]; __u8 rssi; __u8 rx_status; __u8 channel; __u8 rx_ctrl; } __attribute__((packed)); #define MWL8K_8366_AP_RATE_INFO_MCS_FORMAT 0x80 #define MWL8K_8366_AP_RATE_INFO_40MHZ 0x40 #define MWL8K_8366_AP_RATE_INFO_RATEID(x) ((x) & 0x3f) #define MWL8K_8366_AP_RX_CTRL_OWNED_BY_HOST 0x80 static void mwl8k_rxd_8366_ap_init(void *_rxd, dma_addr_t next_dma_addr) { struct mwl8k_rxd_8366_ap *rxd = _rxd; rxd->next_rxd_phys_addr = cpu_to_le32(next_dma_addr); rxd->rx_ctrl = MWL8K_8366_AP_RX_CTRL_OWNED_BY_HOST; } static void mwl8k_rxd_8366_ap_refill(void *_rxd, dma_addr_t addr, int len) { struct mwl8k_rxd_8366_ap *rxd = _rxd; rxd->pkt_len = cpu_to_le16(len); rxd->pkt_phys_addr = cpu_to_le32(addr); wmb(); rxd->rx_ctrl = 0; } static int mwl8k_rxd_8366_ap_process(void *_rxd, struct ieee80211_rx_status *status, __le16 *qos) { struct mwl8k_rxd_8366_ap *rxd = _rxd; if (!(rxd->rx_ctrl & MWL8K_8366_AP_RX_CTRL_OWNED_BY_HOST)) return -1; rmb(); memset(status, 0, sizeof(*status)); status->signal = -rxd->rssi; status->noise = -rxd->noise_floor; if (rxd->rate & MWL8K_8366_AP_RATE_INFO_MCS_FORMAT) { status->flag |= RX_FLAG_HT; if (rxd->rate & MWL8K_8366_AP_RATE_INFO_40MHZ) status->flag |= RX_FLAG_40MHZ; status->rate_idx = MWL8K_8366_AP_RATE_INFO_RATEID(rxd->rate); } else { int i; for (i = 0; i < ARRAY_SIZE(mwl8k_rates); i++) { if (mwl8k_rates[i].hw_value == rxd->rate) { status->rate_idx = i; break; } } } status->band = IEEE80211_BAND_2GHZ; status->freq = ieee80211_channel_to_frequency(rxd->channel); *qos = rxd->qos_control; return le16_to_cpu(rxd->pkt_len); } static struct rxd_ops rxd_8366_ap_ops = { .rxd_size = sizeof(struct mwl8k_rxd_8366_ap), .rxd_init = mwl8k_rxd_8366_ap_init, .rxd_refill = mwl8k_rxd_8366_ap_refill, .rxd_process = mwl8k_rxd_8366_ap_process, }; /* * Packet reception for STA firmware. */ struct mwl8k_rxd_sta { __le16 pkt_len; __u8 link_quality; __u8 noise_level; __le32 pkt_phys_addr; __le32 next_rxd_phys_addr; __le16 qos_control; __le16 rate_info; __le32 pad0[4]; __u8 rssi; __u8 channel; __le16 pad1; __u8 rx_ctrl; __u8 rx_status; __u8 pad2[2]; } __attribute__((packed)); #define MWL8K_STA_RATE_INFO_SHORTPRE 0x8000 #define MWL8K_STA_RATE_INFO_ANTSELECT(x) (((x) >> 11) & 0x3) #define MWL8K_STA_RATE_INFO_RATEID(x) (((x) >> 3) & 0x3f) #define MWL8K_STA_RATE_INFO_40MHZ 0x0004 #define MWL8K_STA_RATE_INFO_SHORTGI 0x0002 #define MWL8K_STA_RATE_INFO_MCS_FORMAT 0x0001 #define MWL8K_STA_RX_CTRL_OWNED_BY_HOST 0x02 static void mwl8k_rxd_sta_init(void *_rxd, dma_addr_t next_dma_addr) { struct mwl8k_rxd_sta *rxd = _rxd; rxd->next_rxd_phys_addr = cpu_to_le32(next_dma_addr); rxd->rx_ctrl = MWL8K_STA_RX_CTRL_OWNED_BY_HOST; } static void mwl8k_rxd_sta_refill(void *_rxd, dma_addr_t addr, int len) { struct mwl8k_rxd_sta *rxd = _rxd; rxd->pkt_len = cpu_to_le16(len); rxd->pkt_phys_addr = cpu_to_le32(addr); wmb(); rxd->rx_ctrl = 0; } static int mwl8k_rxd_sta_process(void *_rxd, struct ieee80211_rx_status *status, __le16 *qos) { struct mwl8k_rxd_sta *rxd = _rxd; u16 rate_info; if (!(rxd->rx_ctrl & MWL8K_STA_RX_CTRL_OWNED_BY_HOST)) return -1; rmb(); rate_info = le16_to_cpu(rxd->rate_info); memset(status, 0, sizeof(*status)); status->signal = -rxd->rssi; status->noise = -rxd->noise_level; status->antenna = MWL8K_STA_RATE_INFO_ANTSELECT(rate_info); status->rate_idx = MWL8K_STA_RATE_INFO_RATEID(rate_info); if (rate_info & MWL8K_STA_RATE_INFO_SHORTPRE) status->flag |= RX_FLAG_SHORTPRE; if (rate_info & MWL8K_STA_RATE_INFO_40MHZ) status->flag |= RX_FLAG_40MHZ; if (rate_info & MWL8K_STA_RATE_INFO_SHORTGI) status->flag |= RX_FLAG_SHORT_GI; if (rate_info & MWL8K_STA_RATE_INFO_MCS_FORMAT) status->flag |= RX_FLAG_HT; status->band = IEEE80211_BAND_2GHZ; status->freq = ieee80211_channel_to_frequency(rxd->channel); *qos = rxd->qos_control; return le16_to_cpu(rxd->pkt_len); } static struct rxd_ops rxd_sta_ops = { .rxd_size = sizeof(struct mwl8k_rxd_sta), .rxd_init = mwl8k_rxd_sta_init, .rxd_refill = mwl8k_rxd_sta_refill, .rxd_process = mwl8k_rxd_sta_process, }; #define MWL8K_RX_DESCS 256 #define MWL8K_RX_MAXSZ 3800 static int mwl8k_rxq_init(struct ieee80211_hw *hw, int index) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_rx_queue *rxq = priv->rxq + index; int size; int i; rxq->rxd_count = 0; rxq->head = 0; rxq->tail = 0; size = MWL8K_RX_DESCS * priv->rxd_ops->rxd_size; rxq->rxd = pci_alloc_consistent(priv->pdev, size, &rxq->rxd_dma); if (rxq->rxd == NULL) { printk(KERN_ERR "%s: failed to alloc RX descriptors\n", wiphy_name(hw->wiphy)); return -ENOMEM; } memset(rxq->rxd, 0, size); rxq->buf = kmalloc(MWL8K_RX_DESCS * sizeof(*rxq->buf), GFP_KERNEL); if (rxq->buf == NULL) { printk(KERN_ERR "%s: failed to alloc RX skbuff list\n", wiphy_name(hw->wiphy)); pci_free_consistent(priv->pdev, size, rxq->rxd, rxq->rxd_dma); return -ENOMEM; } memset(rxq->buf, 0, MWL8K_RX_DESCS * sizeof(*rxq->buf)); for (i = 0; i < MWL8K_RX_DESCS; i++) { int desc_size; void *rxd; int nexti; dma_addr_t next_dma_addr; desc_size = priv->rxd_ops->rxd_size; rxd = rxq->rxd + (i * priv->rxd_ops->rxd_size); nexti = i + 1; if (nexti == MWL8K_RX_DESCS) nexti = 0; next_dma_addr = rxq->rxd_dma + (nexti * desc_size); priv->rxd_ops->rxd_init(rxd, next_dma_addr); } return 0; } static int rxq_refill(struct ieee80211_hw *hw, int index, int limit) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_rx_queue *rxq = priv->rxq + index; int refilled; refilled = 0; while (rxq->rxd_count < MWL8K_RX_DESCS && limit--) { struct sk_buff *skb; dma_addr_t addr; int rx; void *rxd; skb = dev_alloc_skb(MWL8K_RX_MAXSZ); if (skb == NULL) break; addr = pci_map_single(priv->pdev, skb->data, MWL8K_RX_MAXSZ, DMA_FROM_DEVICE); rxq->rxd_count++; rx = rxq->tail++; if (rxq->tail == MWL8K_RX_DESCS) rxq->tail = 0; rxq->buf[rx].skb = skb; pci_unmap_addr_set(&rxq->buf[rx], dma, addr); rxd = rxq->rxd + (rx * priv->rxd_ops->rxd_size); priv->rxd_ops->rxd_refill(rxd, addr, MWL8K_RX_MAXSZ); refilled++; } return refilled; } /* Must be called only when the card's reception is completely halted */ static void mwl8k_rxq_deinit(struct ieee80211_hw *hw, int index) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_rx_queue *rxq = priv->rxq + index; int i; for (i = 0; i < MWL8K_RX_DESCS; i++) { if (rxq->buf[i].skb != NULL) { pci_unmap_single(priv->pdev, pci_unmap_addr(&rxq->buf[i], dma), MWL8K_RX_MAXSZ, PCI_DMA_FROMDEVICE); pci_unmap_addr_set(&rxq->buf[i], dma, 0); kfree_skb(rxq->buf[i].skb); rxq->buf[i].skb = NULL; } } kfree(rxq->buf); rxq->buf = NULL; pci_free_consistent(priv->pdev, MWL8K_RX_DESCS * priv->rxd_ops->rxd_size, rxq->rxd, rxq->rxd_dma); rxq->rxd = NULL; } /* * Scan a list of BSSIDs to process for finalize join. * Allows for extension to process multiple BSSIDs. */ static inline int mwl8k_capture_bssid(struct mwl8k_priv *priv, struct ieee80211_hdr *wh) { return priv->capture_beacon && ieee80211_is_beacon(wh->frame_control) && !compare_ether_addr(wh->addr3, priv->capture_bssid); } static inline void mwl8k_save_beacon(struct ieee80211_hw *hw, struct sk_buff *skb) { struct mwl8k_priv *priv = hw->priv; priv->capture_beacon = false; memset(priv->capture_bssid, 0, ETH_ALEN); /* * Use GFP_ATOMIC as rxq_process is called from * the primary interrupt handler, memory allocation call * must not sleep. */ priv->beacon_skb = skb_copy(skb, GFP_ATOMIC); if (priv->beacon_skb != NULL) ieee80211_queue_work(hw, &priv->finalize_join_worker); } static int rxq_process(struct ieee80211_hw *hw, int index, int limit) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_rx_queue *rxq = priv->rxq + index; int processed; processed = 0; while (rxq->rxd_count && limit--) { struct sk_buff *skb; void *rxd; int pkt_len; struct ieee80211_rx_status status; __le16 qos; skb = rxq->buf[rxq->head].skb; if (skb == NULL) break; rxd = rxq->rxd + (rxq->head * priv->rxd_ops->rxd_size); pkt_len = priv->rxd_ops->rxd_process(rxd, &status, &qos); if (pkt_len < 0) break; rxq->buf[rxq->head].skb = NULL; pci_unmap_single(priv->pdev, pci_unmap_addr(&rxq->buf[rxq->head], dma), MWL8K_RX_MAXSZ, PCI_DMA_FROMDEVICE); pci_unmap_addr_set(&rxq->buf[rxq->head], dma, 0); rxq->head++; if (rxq->head == MWL8K_RX_DESCS) rxq->head = 0; rxq->rxd_count--; skb_put(skb, pkt_len); mwl8k_remove_dma_header(skb, qos); /* * Check for a pending join operation. Save a * copy of the beacon and schedule a tasklet to * send a FINALIZE_JOIN command to the firmware. */ if (mwl8k_capture_bssid(priv, (void *)skb->data)) mwl8k_save_beacon(hw, skb); memcpy(IEEE80211_SKB_RXCB(skb), &status, sizeof(status)); ieee80211_rx_irqsafe(hw, skb); processed++; } return processed; } /* * Packet transmission. */ #define MWL8K_TXD_STATUS_OK 0x00000001 #define MWL8K_TXD_STATUS_OK_RETRY 0x00000002 #define MWL8K_TXD_STATUS_OK_MORE_RETRY 0x00000004 #define MWL8K_TXD_STATUS_MULTICAST_TX 0x00000008 #define MWL8K_TXD_STATUS_FW_OWNED 0x80000000 #define MWL8K_QOS_QLEN_UNSPEC 0xff00 #define MWL8K_QOS_ACK_POLICY_MASK 0x0060 #define MWL8K_QOS_ACK_POLICY_NORMAL 0x0000 #define MWL8K_QOS_ACK_POLICY_BLOCKACK 0x0060 #define MWL8K_QOS_EOSP 0x0010 struct mwl8k_tx_desc { __le32 status; __u8 data_rate; __u8 tx_priority; __le16 qos_control; __le32 pkt_phys_addr; __le16 pkt_len; __u8 dest_MAC_addr[ETH_ALEN]; __le32 next_txd_phys_addr; __le32 reserved; __le16 rate_info; __u8 peer_id; __u8 tx_frag_cnt; } __attribute__((packed)); #define MWL8K_TX_DESCS 128 static int mwl8k_txq_init(struct ieee80211_hw *hw, int index) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_tx_queue *txq = priv->txq + index; int size; int i; memset(&txq->stats, 0, sizeof(struct ieee80211_tx_queue_stats)); txq->stats.limit = MWL8K_TX_DESCS; txq->head = 0; txq->tail = 0; size = MWL8K_TX_DESCS * sizeof(struct mwl8k_tx_desc); txq->txd = pci_alloc_consistent(priv->pdev, size, &txq->txd_dma); if (txq->txd == NULL) { printk(KERN_ERR "%s: failed to alloc TX descriptors\n", wiphy_name(hw->wiphy)); return -ENOMEM; } memset(txq->txd, 0, size); txq->skb = kmalloc(MWL8K_TX_DESCS * sizeof(*txq->skb), GFP_KERNEL); if (txq->skb == NULL) { printk(KERN_ERR "%s: failed to alloc TX skbuff list\n", wiphy_name(hw->wiphy)); pci_free_consistent(priv->pdev, size, txq->txd, txq->txd_dma); return -ENOMEM; } memset(txq->skb, 0, MWL8K_TX_DESCS * sizeof(*txq->skb)); for (i = 0; i < MWL8K_TX_DESCS; i++) { struct mwl8k_tx_desc *tx_desc; int nexti; tx_desc = txq->txd + i; nexti = (i + 1) % MWL8K_TX_DESCS; tx_desc->status = 0; tx_desc->next_txd_phys_addr = cpu_to_le32(txq->txd_dma + nexti * sizeof(*tx_desc)); } return 0; } static inline void mwl8k_tx_start(struct mwl8k_priv *priv) { iowrite32(MWL8K_H2A_INT_PPA_READY, priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS); iowrite32(MWL8K_H2A_INT_DUMMY, priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS); ioread32(priv->regs + MWL8K_HIU_INT_CODE); } static void mwl8k_dump_tx_rings(struct ieee80211_hw *hw) { struct mwl8k_priv *priv = hw->priv; int i; for (i = 0; i < MWL8K_TX_QUEUES; i++) { struct mwl8k_tx_queue *txq = priv->txq + i; int fw_owned = 0; int drv_owned = 0; int unused = 0; int desc; for (desc = 0; desc < MWL8K_TX_DESCS; desc++) { struct mwl8k_tx_desc *tx_desc = txq->txd + desc; u32 status; status = le32_to_cpu(tx_desc->status); if (status & MWL8K_TXD_STATUS_FW_OWNED) fw_owned++; else drv_owned++; if (tx_desc->pkt_len == 0) unused++; } printk(KERN_ERR "%s: txq[%d] len=%d head=%d tail=%d " "fw_owned=%d drv_owned=%d unused=%d\n", wiphy_name(hw->wiphy), i, txq->stats.len, txq->head, txq->tail, fw_owned, drv_owned, unused); } } /* * Must be called with priv->fw_mutex held and tx queues stopped. */ #define MWL8K_TX_WAIT_TIMEOUT_MS 1000 static int mwl8k_tx_wait_empty(struct ieee80211_hw *hw) { struct mwl8k_priv *priv = hw->priv; DECLARE_COMPLETION_ONSTACK(tx_wait); int retry; int rc; might_sleep(); /* * The TX queues are stopped at this point, so this test * doesn't need to take ->tx_lock. */ if (!priv->pending_tx_pkts) return 0; retry = 0; rc = 0; spin_lock_bh(&priv->tx_lock); priv->tx_wait = &tx_wait; while (!rc) { int oldcount; unsigned long timeout; oldcount = priv->pending_tx_pkts; spin_unlock_bh(&priv->tx_lock); timeout = wait_for_completion_timeout(&tx_wait, msecs_to_jiffies(MWL8K_TX_WAIT_TIMEOUT_MS)); spin_lock_bh(&priv->tx_lock); if (timeout) { WARN_ON(priv->pending_tx_pkts); if (retry) { printk(KERN_NOTICE "%s: tx rings drained\n", wiphy_name(hw->wiphy)); } break; } if (priv->pending_tx_pkts < oldcount) { printk(KERN_NOTICE "%s: waiting for tx rings " "to drain (%d -> %d pkts)\n", wiphy_name(hw->wiphy), oldcount, priv->pending_tx_pkts); retry = 1; continue; } priv->tx_wait = NULL; printk(KERN_ERR "%s: tx rings stuck for %d ms\n", wiphy_name(hw->wiphy), MWL8K_TX_WAIT_TIMEOUT_MS); mwl8k_dump_tx_rings(hw); rc = -ETIMEDOUT; } spin_unlock_bh(&priv->tx_lock); return rc; } #define MWL8K_TXD_SUCCESS(status) \ ((status) & (MWL8K_TXD_STATUS_OK | \ MWL8K_TXD_STATUS_OK_RETRY | \ MWL8K_TXD_STATUS_OK_MORE_RETRY)) static void mwl8k_txq_reclaim(struct ieee80211_hw *hw, int index, int force) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_tx_queue *txq = priv->txq + index; int wake = 0; while (txq->stats.len > 0) { int tx; struct mwl8k_tx_desc *tx_desc; unsigned long addr; int size; struct sk_buff *skb; struct ieee80211_tx_info *info; u32 status; tx = txq->head; tx_desc = txq->txd + tx; status = le32_to_cpu(tx_desc->status); if (status & MWL8K_TXD_STATUS_FW_OWNED) { if (!force) break; tx_desc->status &= ~cpu_to_le32(MWL8K_TXD_STATUS_FW_OWNED); } txq->head = (tx + 1) % MWL8K_TX_DESCS; BUG_ON(txq->stats.len == 0); txq->stats.len--; priv->pending_tx_pkts--; addr = le32_to_cpu(tx_desc->pkt_phys_addr); size = le16_to_cpu(tx_desc->pkt_len); skb = txq->skb[tx]; txq->skb[tx] = NULL; BUG_ON(skb == NULL); pci_unmap_single(priv->pdev, addr, size, PCI_DMA_TODEVICE); mwl8k_remove_dma_header(skb, tx_desc->qos_control); /* Mark descriptor as unused */ tx_desc->pkt_phys_addr = 0; tx_desc->pkt_len = 0; info = IEEE80211_SKB_CB(skb); ieee80211_tx_info_clear_status(info); if (MWL8K_TXD_SUCCESS(status)) info->flags |= IEEE80211_TX_STAT_ACK; ieee80211_tx_status_irqsafe(hw, skb); wake = 1; } if (wake && priv->radio_on && !mutex_is_locked(&priv->fw_mutex)) ieee80211_wake_queue(hw, index); } /* must be called only when the card's transmit is completely halted */ static void mwl8k_txq_deinit(struct ieee80211_hw *hw, int index) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_tx_queue *txq = priv->txq + index; mwl8k_txq_reclaim(hw, index, 1); kfree(txq->skb); txq->skb = NULL; pci_free_consistent(priv->pdev, MWL8K_TX_DESCS * sizeof(struct mwl8k_tx_desc), txq->txd, txq->txd_dma); txq->txd = NULL; } static int mwl8k_txq_xmit(struct ieee80211_hw *hw, int index, struct sk_buff *skb) { struct mwl8k_priv *priv = hw->priv; struct ieee80211_tx_info *tx_info; struct mwl8k_vif *mwl8k_vif; struct ieee80211_hdr *wh; struct mwl8k_tx_queue *txq; struct mwl8k_tx_desc *tx; dma_addr_t dma; u32 txstatus; u8 txdatarate; u16 qos; wh = (struct ieee80211_hdr *)skb->data; if (ieee80211_is_data_qos(wh->frame_control)) qos = le16_to_cpu(*((__le16 *)ieee80211_get_qos_ctl(wh))); else qos = 0; mwl8k_add_dma_header(skb); wh = &((struct mwl8k_dma_data *)skb->data)->wh; tx_info = IEEE80211_SKB_CB(skb); mwl8k_vif = MWL8K_VIF(tx_info->control.vif); if (tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { u16 seqno = mwl8k_vif->seqno; wh->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); wh->seq_ctrl |= cpu_to_le16(seqno << 4); mwl8k_vif->seqno = seqno++ % 4096; } /* Setup firmware control bit fields for each frame type. */ txstatus = 0; txdatarate = 0; if (ieee80211_is_mgmt(wh->frame_control) || ieee80211_is_ctl(wh->frame_control)) { txdatarate = 0; qos |= MWL8K_QOS_QLEN_UNSPEC | MWL8K_QOS_EOSP; } else if (ieee80211_is_data(wh->frame_control)) { txdatarate = 1; if (is_multicast_ether_addr(wh->addr1)) txstatus |= MWL8K_TXD_STATUS_MULTICAST_TX; qos &= ~MWL8K_QOS_ACK_POLICY_MASK; if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) qos |= MWL8K_QOS_ACK_POLICY_BLOCKACK; else qos |= MWL8K_QOS_ACK_POLICY_NORMAL; } dma = pci_map_single(priv->pdev, skb->data, skb->len, PCI_DMA_TODEVICE); if (pci_dma_mapping_error(priv->pdev, dma)) { printk(KERN_DEBUG "%s: failed to dma map skb, " "dropping TX frame.\n", wiphy_name(hw->wiphy)); dev_kfree_skb(skb); return NETDEV_TX_OK; } spin_lock_bh(&priv->tx_lock); txq = priv->txq + index; BUG_ON(txq->skb[txq->tail] != NULL); txq->skb[txq->tail] = skb; tx = txq->txd + txq->tail; tx->data_rate = txdatarate; tx->tx_priority = index; tx->qos_control = cpu_to_le16(qos); tx->pkt_phys_addr = cpu_to_le32(dma); tx->pkt_len = cpu_to_le16(skb->len); tx->rate_info = 0; tx->peer_id = mwl8k_vif->peer_id; wmb(); tx->status = cpu_to_le32(MWL8K_TXD_STATUS_FW_OWNED | txstatus); txq->stats.count++; txq->stats.len++; priv->pending_tx_pkts++; txq->tail++; if (txq->tail == MWL8K_TX_DESCS) txq->tail = 0; if (txq->head == txq->tail) ieee80211_stop_queue(hw, index); mwl8k_tx_start(priv); spin_unlock_bh(&priv->tx_lock); return NETDEV_TX_OK; } /* * Firmware access. * * We have the following requirements for issuing firmware commands: * - Some commands require that the packet transmit path is idle when * the command is issued. (For simplicity, we'll just quiesce the * transmit path for every command.) * - There are certain sequences of commands that need to be issued to * the hardware sequentially, with no other intervening commands. * * This leads to an implementation of a "firmware lock" as a mutex that * can be taken recursively, and which is taken by both the low-level * command submission function (mwl8k_post_cmd) as well as any users of * that function that require issuing of an atomic sequence of commands, * and quiesces the transmit path whenever it's taken. */ static int mwl8k_fw_lock(struct ieee80211_hw *hw) { struct mwl8k_priv *priv = hw->priv; if (priv->fw_mutex_owner != current) { int rc; mutex_lock(&priv->fw_mutex); ieee80211_stop_queues(hw); rc = mwl8k_tx_wait_empty(hw); if (rc) { ieee80211_wake_queues(hw); mutex_unlock(&priv->fw_mutex); return rc; } priv->fw_mutex_owner = current; } priv->fw_mutex_depth++; return 0; } static void mwl8k_fw_unlock(struct ieee80211_hw *hw) { struct mwl8k_priv *priv = hw->priv; if (!--priv->fw_mutex_depth) { ieee80211_wake_queues(hw); priv->fw_mutex_owner = NULL; mutex_unlock(&priv->fw_mutex); } } /* * Command processing. */ /* Timeout firmware commands after 10s */ #define MWL8K_CMD_TIMEOUT_MS 10000 static int mwl8k_post_cmd(struct ieee80211_hw *hw, struct mwl8k_cmd_pkt *cmd) { DECLARE_COMPLETION_ONSTACK(cmd_wait); struct mwl8k_priv *priv = hw->priv; void __iomem *regs = priv->regs; dma_addr_t dma_addr; unsigned int dma_size; int rc; unsigned long timeout = 0; u8 buf[32]; cmd->result = 0xffff; dma_size = le16_to_cpu(cmd->length); dma_addr = pci_map_single(priv->pdev, cmd, dma_size, PCI_DMA_BIDIRECTIONAL); if (pci_dma_mapping_error(priv->pdev, dma_addr)) return -ENOMEM; rc = mwl8k_fw_lock(hw); if (rc) { pci_unmap_single(priv->pdev, dma_addr, dma_size, PCI_DMA_BIDIRECTIONAL); return rc; } priv->hostcmd_wait = &cmd_wait; iowrite32(dma_addr, regs + MWL8K_HIU_GEN_PTR); iowrite32(MWL8K_H2A_INT_DOORBELL, regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS); iowrite32(MWL8K_H2A_INT_DUMMY, regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS); timeout = wait_for_completion_timeout(&cmd_wait, msecs_to_jiffies(MWL8K_CMD_TIMEOUT_MS)); priv->hostcmd_wait = NULL; mwl8k_fw_unlock(hw); pci_unmap_single(priv->pdev, dma_addr, dma_size, PCI_DMA_BIDIRECTIONAL); if (!timeout) { printk(KERN_ERR "%s: Command %s timeout after %u ms\n", wiphy_name(hw->wiphy), mwl8k_cmd_name(cmd->code, buf, sizeof(buf)), MWL8K_CMD_TIMEOUT_MS); rc = -ETIMEDOUT; } else { int ms; ms = MWL8K_CMD_TIMEOUT_MS - jiffies_to_msecs(timeout); rc = cmd->result ? -EINVAL : 0; if (rc) printk(KERN_ERR "%s: Command %s error 0x%x\n", wiphy_name(hw->wiphy), mwl8k_cmd_name(cmd->code, buf, sizeof(buf)), le16_to_cpu(cmd->result)); else if (ms > 2000) printk(KERN_NOTICE "%s: Command %s took %d ms\n", wiphy_name(hw->wiphy), mwl8k_cmd_name(cmd->code, buf, sizeof(buf)), ms); } return rc; } /* * CMD_GET_HW_SPEC (STA version). */ struct mwl8k_cmd_get_hw_spec_sta { struct mwl8k_cmd_pkt header; __u8 hw_rev; __u8 host_interface; __le16 num_mcaddrs; __u8 perm_addr[ETH_ALEN]; __le16 region_code; __le32 fw_rev; __le32 ps_cookie; __le32 caps; __u8 mcs_bitmap[16]; __le32 rx_queue_ptr; __le32 num_tx_queues; __le32 tx_queue_ptrs[MWL8K_TX_QUEUES]; __le32 caps2; __le32 num_tx_desc_per_queue; __le32 total_rxd; } __attribute__((packed)); static int mwl8k_cmd_get_hw_spec_sta(struct ieee80211_hw *hw) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_cmd_get_hw_spec_sta *cmd; int rc; int i; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_GET_HW_SPEC); cmd->header.length = cpu_to_le16(sizeof(*cmd)); memset(cmd->perm_addr, 0xff, sizeof(cmd->perm_addr)); cmd->ps_cookie = cpu_to_le32(priv->cookie_dma); cmd->rx_queue_ptr = cpu_to_le32(priv->rxq[0].rxd_dma); cmd->num_tx_queues = cpu_to_le32(MWL8K_TX_QUEUES); for (i = 0; i < MWL8K_TX_QUEUES; i++) cmd->tx_queue_ptrs[i] = cpu_to_le32(priv->txq[i].txd_dma); cmd->num_tx_desc_per_queue = cpu_to_le32(MWL8K_TX_DESCS); cmd->total_rxd = cpu_to_le32(MWL8K_RX_DESCS); rc = mwl8k_post_cmd(hw, &cmd->header); if (!rc) { SET_IEEE80211_PERM_ADDR(hw, cmd->perm_addr); priv->num_mcaddrs = le16_to_cpu(cmd->num_mcaddrs); priv->fw_rev = le32_to_cpu(cmd->fw_rev); priv->hw_rev = cmd->hw_rev; } kfree(cmd); return rc; } /* * CMD_GET_HW_SPEC (AP version). */ struct mwl8k_cmd_get_hw_spec_ap { struct mwl8k_cmd_pkt header; __u8 hw_rev; __u8 host_interface; __le16 num_wcb; __le16 num_mcaddrs; __u8 perm_addr[ETH_ALEN]; __le16 region_code; __le16 num_antenna; __le32 fw_rev; __le32 wcbbase0; __le32 rxwrptr; __le32 rxrdptr; __le32 ps_cookie; __le32 wcbbase1; __le32 wcbbase2; __le32 wcbbase3; } __attribute__((packed)); static int mwl8k_cmd_get_hw_spec_ap(struct ieee80211_hw *hw) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_cmd_get_hw_spec_ap *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_GET_HW_SPEC); cmd->header.length = cpu_to_le16(sizeof(*cmd)); memset(cmd->perm_addr, 0xff, sizeof(cmd->perm_addr)); cmd->ps_cookie = cpu_to_le32(priv->cookie_dma); rc = mwl8k_post_cmd(hw, &cmd->header); if (!rc) { int off; SET_IEEE80211_PERM_ADDR(hw, cmd->perm_addr); priv->num_mcaddrs = le16_to_cpu(cmd->num_mcaddrs); priv->fw_rev = le32_to_cpu(cmd->fw_rev); priv->hw_rev = cmd->hw_rev; off = le32_to_cpu(cmd->wcbbase0) & 0xffff; iowrite32(cpu_to_le32(priv->txq[0].txd_dma), priv->sram + off); off = le32_to_cpu(cmd->rxwrptr) & 0xffff; iowrite32(cpu_to_le32(priv->rxq[0].rxd_dma), priv->sram + off); off = le32_to_cpu(cmd->rxrdptr) & 0xffff; iowrite32(cpu_to_le32(priv->rxq[0].rxd_dma), priv->sram + off); off = le32_to_cpu(cmd->wcbbase1) & 0xffff; iowrite32(cpu_to_le32(priv->txq[1].txd_dma), priv->sram + off); off = le32_to_cpu(cmd->wcbbase2) & 0xffff; iowrite32(cpu_to_le32(priv->txq[2].txd_dma), priv->sram + off); off = le32_to_cpu(cmd->wcbbase3) & 0xffff; iowrite32(cpu_to_le32(priv->txq[3].txd_dma), priv->sram + off); } kfree(cmd); return rc; } /* * CMD_SET_HW_SPEC. */ struct mwl8k_cmd_set_hw_spec { struct mwl8k_cmd_pkt header; __u8 hw_rev; __u8 host_interface; __le16 num_mcaddrs; __u8 perm_addr[ETH_ALEN]; __le16 region_code; __le32 fw_rev; __le32 ps_cookie; __le32 caps; __le32 rx_queue_ptr; __le32 num_tx_queues; __le32 tx_queue_ptrs[MWL8K_TX_QUEUES]; __le32 flags; __le32 num_tx_desc_per_queue; __le32 total_rxd; } __attribute__((packed)); #define MWL8K_SET_HW_SPEC_FLAG_HOST_DECR_MGMT 0x00000080 static int mwl8k_cmd_set_hw_spec(struct ieee80211_hw *hw) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_cmd_set_hw_spec *cmd; int rc; int i; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_HW_SPEC); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->ps_cookie = cpu_to_le32(priv->cookie_dma); cmd->rx_queue_ptr = cpu_to_le32(priv->rxq[0].rxd_dma); cmd->num_tx_queues = cpu_to_le32(MWL8K_TX_QUEUES); for (i = 0; i < MWL8K_TX_QUEUES; i++) cmd->tx_queue_ptrs[i] = cpu_to_le32(priv->txq[i].txd_dma); cmd->flags = cpu_to_le32(MWL8K_SET_HW_SPEC_FLAG_HOST_DECR_MGMT); cmd->num_tx_desc_per_queue = cpu_to_le32(MWL8K_TX_DESCS); cmd->total_rxd = cpu_to_le32(MWL8K_RX_DESCS); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_MAC_MULTICAST_ADR. */ struct mwl8k_cmd_mac_multicast_adr { struct mwl8k_cmd_pkt header; __le16 action; __le16 numaddr; __u8 addr[0][ETH_ALEN]; }; #define MWL8K_ENABLE_RX_DIRECTED 0x0001 #define MWL8K_ENABLE_RX_MULTICAST 0x0002 #define MWL8K_ENABLE_RX_ALL_MULTICAST 0x0004 #define MWL8K_ENABLE_RX_BROADCAST 0x0008 static struct mwl8k_cmd_pkt * __mwl8k_cmd_mac_multicast_adr(struct ieee80211_hw *hw, int allmulti, int mc_count, struct dev_addr_list *mclist) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_cmd_mac_multicast_adr *cmd; int size; if (allmulti || mc_count > priv->num_mcaddrs) { allmulti = 1; mc_count = 0; } size = sizeof(*cmd) + mc_count * ETH_ALEN; cmd = kzalloc(size, GFP_ATOMIC); if (cmd == NULL) return NULL; cmd->header.code = cpu_to_le16(MWL8K_CMD_MAC_MULTICAST_ADR); cmd->header.length = cpu_to_le16(size); cmd->action = cpu_to_le16(MWL8K_ENABLE_RX_DIRECTED | MWL8K_ENABLE_RX_BROADCAST); if (allmulti) { cmd->action |= cpu_to_le16(MWL8K_ENABLE_RX_ALL_MULTICAST); } else if (mc_count) { int i; cmd->action |= cpu_to_le16(MWL8K_ENABLE_RX_MULTICAST); cmd->numaddr = cpu_to_le16(mc_count); for (i = 0; i < mc_count && mclist; i++) { if (mclist->da_addrlen != ETH_ALEN) { kfree(cmd); return NULL; } memcpy(cmd->addr[i], mclist->da_addr, ETH_ALEN); mclist = mclist->next; } } return &cmd->header; } /* * CMD_GET_STAT. */ struct mwl8k_cmd_get_stat { struct mwl8k_cmd_pkt header; __le32 stats[64]; } __attribute__((packed)); #define MWL8K_STAT_ACK_FAILURE 9 #define MWL8K_STAT_RTS_FAILURE 12 #define MWL8K_STAT_FCS_ERROR 24 #define MWL8K_STAT_RTS_SUCCESS 11 static int mwl8k_cmd_get_stat(struct ieee80211_hw *hw, struct ieee80211_low_level_stats *stats) { struct mwl8k_cmd_get_stat *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_GET_STAT); cmd->header.length = cpu_to_le16(sizeof(*cmd)); rc = mwl8k_post_cmd(hw, &cmd->header); if (!rc) { stats->dot11ACKFailureCount = le32_to_cpu(cmd->stats[MWL8K_STAT_ACK_FAILURE]); stats->dot11RTSFailureCount = le32_to_cpu(cmd->stats[MWL8K_STAT_RTS_FAILURE]); stats->dot11FCSErrorCount = le32_to_cpu(cmd->stats[MWL8K_STAT_FCS_ERROR]); stats->dot11RTSSuccessCount = le32_to_cpu(cmd->stats[MWL8K_STAT_RTS_SUCCESS]); } kfree(cmd); return rc; } /* * CMD_RADIO_CONTROL. */ struct mwl8k_cmd_radio_control { struct mwl8k_cmd_pkt header; __le16 action; __le16 control; __le16 radio_on; } __attribute__((packed)); static int mwl8k_cmd_radio_control(struct ieee80211_hw *hw, bool enable, bool force) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_cmd_radio_control *cmd; int rc; if (enable == priv->radio_on && !force) return 0; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_RADIO_CONTROL); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->action = cpu_to_le16(MWL8K_CMD_SET); cmd->control = cpu_to_le16(priv->radio_short_preamble ? 3 : 1); cmd->radio_on = cpu_to_le16(enable ? 0x0001 : 0x0000); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); if (!rc) priv->radio_on = enable; return rc; } static int mwl8k_cmd_radio_disable(struct ieee80211_hw *hw) { return mwl8k_cmd_radio_control(hw, 0, 0); } static int mwl8k_cmd_radio_enable(struct ieee80211_hw *hw) { return mwl8k_cmd_radio_control(hw, 1, 0); } static int mwl8k_set_radio_preamble(struct ieee80211_hw *hw, bool short_preamble) { struct mwl8k_priv *priv = hw->priv; priv->radio_short_preamble = short_preamble; return mwl8k_cmd_radio_control(hw, 1, 1); } /* * CMD_RF_TX_POWER. */ #define MWL8K_TX_POWER_LEVEL_TOTAL 8 struct mwl8k_cmd_rf_tx_power { struct mwl8k_cmd_pkt header; __le16 action; __le16 support_level; __le16 current_level; __le16 reserved; __le16 power_level_list[MWL8K_TX_POWER_LEVEL_TOTAL]; } __attribute__((packed)); static int mwl8k_cmd_rf_tx_power(struct ieee80211_hw *hw, int dBm) { struct mwl8k_cmd_rf_tx_power *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_RF_TX_POWER); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->action = cpu_to_le16(MWL8K_CMD_SET); cmd->support_level = cpu_to_le16(dBm); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_RF_ANTENNA. */ struct mwl8k_cmd_rf_antenna { struct mwl8k_cmd_pkt header; __le16 antenna; __le16 mode; } __attribute__((packed)); #define MWL8K_RF_ANTENNA_RX 1 #define MWL8K_RF_ANTENNA_TX 2 static int mwl8k_cmd_rf_antenna(struct ieee80211_hw *hw, int antenna, int mask) { struct mwl8k_cmd_rf_antenna *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_RF_ANTENNA); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->antenna = cpu_to_le16(antenna); cmd->mode = cpu_to_le16(mask); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_SET_PRE_SCAN. */ struct mwl8k_cmd_set_pre_scan { struct mwl8k_cmd_pkt header; } __attribute__((packed)); static int mwl8k_cmd_set_pre_scan(struct ieee80211_hw *hw) { struct mwl8k_cmd_set_pre_scan *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_PRE_SCAN); cmd->header.length = cpu_to_le16(sizeof(*cmd)); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_SET_POST_SCAN. */ struct mwl8k_cmd_set_post_scan { struct mwl8k_cmd_pkt header; __le32 isibss; __u8 bssid[ETH_ALEN]; } __attribute__((packed)); static int mwl8k_cmd_set_post_scan(struct ieee80211_hw *hw, __u8 *mac) { struct mwl8k_cmd_set_post_scan *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_POST_SCAN); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->isibss = 0; memcpy(cmd->bssid, mac, ETH_ALEN); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_SET_RF_CHANNEL. */ struct mwl8k_cmd_set_rf_channel { struct mwl8k_cmd_pkt header; __le16 action; __u8 current_channel; __le32 channel_flags; } __attribute__((packed)); static int mwl8k_cmd_set_rf_channel(struct ieee80211_hw *hw, struct ieee80211_channel *channel) { struct mwl8k_cmd_set_rf_channel *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_RF_CHANNEL); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->action = cpu_to_le16(MWL8K_CMD_SET); cmd->current_channel = channel->hw_value; if (channel->band == IEEE80211_BAND_2GHZ) cmd->channel_flags = cpu_to_le32(0x00000081); else cmd->channel_flags = cpu_to_le32(0x00000000); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_SET_AID. */ #define MWL8K_FRAME_PROT_DISABLED 0x00 #define MWL8K_FRAME_PROT_11G 0x07 #define MWL8K_FRAME_PROT_11N_HT_40MHZ_ONLY 0x02 #define MWL8K_FRAME_PROT_11N_HT_ALL 0x06 struct mwl8k_cmd_update_set_aid { struct mwl8k_cmd_pkt header; __le16 aid; /* AP's MAC address (BSSID) */ __u8 bssid[ETH_ALEN]; __le16 protection_mode; __u8 supp_rates[14]; } __attribute__((packed)); static int mwl8k_cmd_set_aid(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mwl8k_vif *mv_vif = MWL8K_VIF(vif); struct mwl8k_cmd_update_set_aid *cmd; u16 prot_mode; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_AID); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->aid = cpu_to_le16(vif->bss_conf.aid); memcpy(cmd->bssid, mv_vif->bssid, ETH_ALEN); if (vif->bss_conf.use_cts_prot) { prot_mode = MWL8K_FRAME_PROT_11G; } else { switch (vif->bss_conf.ht_operation_mode & IEEE80211_HT_OP_MODE_PROTECTION) { case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ: prot_mode = MWL8K_FRAME_PROT_11N_HT_40MHZ_ONLY; break; case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED: prot_mode = MWL8K_FRAME_PROT_11N_HT_ALL; break; default: prot_mode = MWL8K_FRAME_PROT_DISABLED; break; } } cmd->protection_mode = cpu_to_le16(prot_mode); memcpy(cmd->supp_rates, mwl8k_rateids, sizeof(mwl8k_rateids)); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_SET_RATE. */ struct mwl8k_cmd_set_rate { struct mwl8k_cmd_pkt header; __u8 legacy_rates[14]; /* Bitmap for supported MCS codes. */ __u8 mcs_set[16]; __u8 reserved[16]; } __attribute__((packed)); static int mwl8k_cmd_set_rate(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mwl8k_cmd_set_rate *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_RATE); cmd->header.length = cpu_to_le16(sizeof(*cmd)); memcpy(cmd->legacy_rates, mwl8k_rateids, sizeof(mwl8k_rateids)); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_FINALIZE_JOIN. */ #define MWL8K_FJ_BEACON_MAXLEN 128 struct mwl8k_cmd_finalize_join { struct mwl8k_cmd_pkt header; __le32 sleep_interval; /* Number of beacon periods to sleep */ __u8 beacon_data[MWL8K_FJ_BEACON_MAXLEN]; } __attribute__((packed)); static int mwl8k_cmd_finalize_join(struct ieee80211_hw *hw, void *frame, int framelen, int dtim) { struct mwl8k_cmd_finalize_join *cmd; struct ieee80211_mgmt *payload = frame; int payload_len; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_FINALIZE_JOIN); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->sleep_interval = cpu_to_le32(dtim ? dtim : 1); payload_len = framelen - ieee80211_hdrlen(payload->frame_control); if (payload_len < 0) payload_len = 0; else if (payload_len > MWL8K_FJ_BEACON_MAXLEN) payload_len = MWL8K_FJ_BEACON_MAXLEN; memcpy(cmd->beacon_data, &payload->u.beacon, payload_len); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_SET_RTS_THRESHOLD. */ struct mwl8k_cmd_set_rts_threshold { struct mwl8k_cmd_pkt header; __le16 action; __le16 threshold; } __attribute__((packed)); static int mwl8k_cmd_set_rts_threshold(struct ieee80211_hw *hw, u16 action, u16 threshold) { struct mwl8k_cmd_set_rts_threshold *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_RTS_THRESHOLD); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->action = cpu_to_le16(action); cmd->threshold = cpu_to_le16(threshold); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_SET_SLOT. */ struct mwl8k_cmd_set_slot { struct mwl8k_cmd_pkt header; __le16 action; __u8 short_slot; } __attribute__((packed)); static int mwl8k_cmd_set_slot(struct ieee80211_hw *hw, bool short_slot_time) { struct mwl8k_cmd_set_slot *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_SLOT); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->action = cpu_to_le16(MWL8K_CMD_SET); cmd->short_slot = short_slot_time; rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_SET_EDCA_PARAMS. */ struct mwl8k_cmd_set_edca_params { struct mwl8k_cmd_pkt header; /* See MWL8K_SET_EDCA_XXX below */ __le16 action; /* TX opportunity in units of 32 us */ __le16 txop; union { struct { /* Log exponent of max contention period: 0...15 */ __le32 log_cw_max; /* Log exponent of min contention period: 0...15 */ __le32 log_cw_min; /* Adaptive interframe spacing in units of 32us */ __u8 aifs; /* TX queue to configure */ __u8 txq; } ap; struct { /* Log exponent of max contention period: 0...15 */ __u8 log_cw_max; /* Log exponent of min contention period: 0...15 */ __u8 log_cw_min; /* Adaptive interframe spacing in units of 32us */ __u8 aifs; /* TX queue to configure */ __u8 txq; } sta; }; } __attribute__((packed)); #define MWL8K_SET_EDCA_CW 0x01 #define MWL8K_SET_EDCA_TXOP 0x02 #define MWL8K_SET_EDCA_AIFS 0x04 #define MWL8K_SET_EDCA_ALL (MWL8K_SET_EDCA_CW | \ MWL8K_SET_EDCA_TXOP | \ MWL8K_SET_EDCA_AIFS) static int mwl8k_cmd_set_edca_params(struct ieee80211_hw *hw, __u8 qnum, __u16 cw_min, __u16 cw_max, __u8 aifs, __u16 txop) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_cmd_set_edca_params *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; /* * Queues 0 (BE) and 1 (BK) are swapped in hardware for * this call. */ qnum ^= !(qnum >> 1); cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_EDCA_PARAMS); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->action = cpu_to_le16(MWL8K_SET_EDCA_ALL); cmd->txop = cpu_to_le16(txop); if (priv->ap_fw) { cmd->ap.log_cw_max = cpu_to_le32(ilog2(cw_max + 1)); cmd->ap.log_cw_min = cpu_to_le32(ilog2(cw_min + 1)); cmd->ap.aifs = aifs; cmd->ap.txq = qnum; } else { cmd->sta.log_cw_max = (u8)ilog2(cw_max + 1); cmd->sta.log_cw_min = (u8)ilog2(cw_min + 1); cmd->sta.aifs = aifs; cmd->sta.txq = qnum; } rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_SET_WMM_MODE. */ struct mwl8k_cmd_set_wmm_mode { struct mwl8k_cmd_pkt header; __le16 action; } __attribute__((packed)); static int mwl8k_cmd_set_wmm_mode(struct ieee80211_hw *hw, bool enable) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_cmd_set_wmm_mode *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_WMM_MODE); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->action = cpu_to_le16(!!enable); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); if (!rc) priv->wmm_enabled = enable; return rc; } /* * CMD_MIMO_CONFIG. */ struct mwl8k_cmd_mimo_config { struct mwl8k_cmd_pkt header; __le32 action; __u8 rx_antenna_map; __u8 tx_antenna_map; } __attribute__((packed)); static int mwl8k_cmd_mimo_config(struct ieee80211_hw *hw, __u8 rx, __u8 tx) { struct mwl8k_cmd_mimo_config *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_MIMO_CONFIG); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->action = cpu_to_le32((u32)MWL8K_CMD_SET); cmd->rx_antenna_map = rx; cmd->tx_antenna_map = tx; rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_USE_FIXED_RATE. */ #define MWL8K_RATE_TABLE_SIZE 8 #define MWL8K_UCAST_RATE 0 #define MWL8K_USE_AUTO_RATE 0x0002 struct mwl8k_rate_entry { /* Set to 1 if HT rate, 0 if legacy. */ __le32 is_ht_rate; /* Set to 1 to use retry_count field. */ __le32 enable_retry; /* Specified legacy rate or MCS. */ __le32 rate; /* Number of allowed retries. */ __le32 retry_count; } __attribute__((packed)); struct mwl8k_rate_table { /* 1 to allow specified rate and below */ __le32 allow_rate_drop; __le32 num_rates; struct mwl8k_rate_entry rate_entry[MWL8K_RATE_TABLE_SIZE]; } __attribute__((packed)); struct mwl8k_cmd_use_fixed_rate { struct mwl8k_cmd_pkt header; __le32 action; struct mwl8k_rate_table rate_table; /* Unicast, Broadcast or Multicast */ __le32 rate_type; __le32 reserved1; __le32 reserved2; } __attribute__((packed)); static int mwl8k_cmd_use_fixed_rate(struct ieee80211_hw *hw, u32 action, u32 rate_type, struct mwl8k_rate_table *rate_table) { struct mwl8k_cmd_use_fixed_rate *cmd; int count; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_USE_FIXED_RATE); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->action = cpu_to_le32(action); cmd->rate_type = cpu_to_le32(rate_type); if (rate_table != NULL) { /* * Copy over each field manually so that endian * conversion can be done. */ cmd->rate_table.allow_rate_drop = cpu_to_le32(rate_table->allow_rate_drop); cmd->rate_table.num_rates = cpu_to_le32(rate_table->num_rates); for (count = 0; count < rate_table->num_rates; count++) { struct mwl8k_rate_entry *dst = &cmd->rate_table.rate_entry[count]; struct mwl8k_rate_entry *src = &rate_table->rate_entry[count]; dst->is_ht_rate = cpu_to_le32(src->is_ht_rate); dst->enable_retry = cpu_to_le32(src->enable_retry); dst->rate = cpu_to_le32(src->rate); dst->retry_count = cpu_to_le32(src->retry_count); } } rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_ENABLE_SNIFFER. */ struct mwl8k_cmd_enable_sniffer { struct mwl8k_cmd_pkt header; __le32 action; } __attribute__((packed)); static int mwl8k_cmd_enable_sniffer(struct ieee80211_hw *hw, bool enable) { struct mwl8k_cmd_enable_sniffer *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_ENABLE_SNIFFER); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->action = cpu_to_le32(!!enable); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_SET_MAC_ADDR. */ struct mwl8k_cmd_set_mac_addr { struct mwl8k_cmd_pkt header; union { struct { __le16 mac_type; __u8 mac_addr[ETH_ALEN]; } mbss; __u8 mac_addr[ETH_ALEN]; }; } __attribute__((packed)); static int mwl8k_cmd_set_mac_addr(struct ieee80211_hw *hw, u8 *mac) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_cmd_set_mac_addr *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_MAC_ADDR); cmd->header.length = cpu_to_le16(sizeof(*cmd)); if (priv->ap_fw) { cmd->mbss.mac_type = 0; memcpy(cmd->mbss.mac_addr, mac, ETH_ALEN); } else { memcpy(cmd->mac_addr, mac, ETH_ALEN); } rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_SET_RATEADAPT_MODE. */ struct mwl8k_cmd_set_rate_adapt_mode { struct mwl8k_cmd_pkt header; __le16 action; __le16 mode; } __attribute__((packed)); static int mwl8k_cmd_set_rateadapt_mode(struct ieee80211_hw *hw, __u16 mode) { struct mwl8k_cmd_set_rate_adapt_mode *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_RATEADAPT_MODE); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->action = cpu_to_le16(MWL8K_CMD_SET); cmd->mode = cpu_to_le16(mode); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_UPDATE_STADB. */ struct mwl8k_cmd_update_stadb { struct mwl8k_cmd_pkt header; /* See STADB_ACTION_TYPE */ __le32 action; /* Peer MAC address */ __u8 peer_addr[ETH_ALEN]; __le32 reserved; /* Peer info - valid during add/update. */ struct peer_capability_info peer_info; } __attribute__((packed)); static int mwl8k_cmd_update_stadb(struct ieee80211_hw *hw, struct ieee80211_vif *vif, __u32 action) { struct mwl8k_vif *mv_vif = MWL8K_VIF(vif); struct mwl8k_cmd_update_stadb *cmd; struct peer_capability_info *peer_info; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_UPDATE_STADB); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->action = cpu_to_le32(action); peer_info = &cmd->peer_info; memcpy(cmd->peer_addr, mv_vif->bssid, ETH_ALEN); switch (action) { case MWL8K_STA_DB_ADD_ENTRY: case MWL8K_STA_DB_MODIFY_ENTRY: /* Build peer_info block */ peer_info->peer_type = MWL8K_PEER_TYPE_ACCESSPOINT; peer_info->basic_caps = cpu_to_le16(vif->bss_conf.assoc_capability); memcpy(peer_info->legacy_rates, mwl8k_rateids, sizeof(mwl8k_rateids)); peer_info->interop = 1; peer_info->amsdu_enabled = 0; rc = mwl8k_post_cmd(hw, &cmd->header); if (rc == 0) mv_vif->peer_id = peer_info->station_id; break; case MWL8K_STA_DB_DEL_ENTRY: case MWL8K_STA_DB_FLUSH: default: rc = mwl8k_post_cmd(hw, &cmd->header); if (rc == 0) mv_vif->peer_id = 0; break; } kfree(cmd); return rc; } /* * Interrupt handling. */ static irqreturn_t mwl8k_interrupt(int irq, void *dev_id) { struct ieee80211_hw *hw = dev_id; struct mwl8k_priv *priv = hw->priv; u32 status; status = ioread32(priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS); iowrite32(~status, priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS); if (!status) return IRQ_NONE; if (status & MWL8K_A2H_INT_TX_DONE) tasklet_schedule(&priv->tx_reclaim_task); if (status & MWL8K_A2H_INT_RX_READY) { while (rxq_process(hw, 0, 1)) rxq_refill(hw, 0, 1); } if (status & MWL8K_A2H_INT_OPC_DONE) { if (priv->hostcmd_wait != NULL) complete(priv->hostcmd_wait); } if (status & MWL8K_A2H_INT_QUEUE_EMPTY) { if (!mutex_is_locked(&priv->fw_mutex) && priv->radio_on && priv->pending_tx_pkts) mwl8k_tx_start(priv); } return IRQ_HANDLED; } /* * Core driver operations. */ static int mwl8k_tx(struct ieee80211_hw *hw, struct sk_buff *skb) { struct mwl8k_priv *priv = hw->priv; int index = skb_get_queue_mapping(skb); int rc; if (priv->current_channel == NULL) { printk(KERN_DEBUG "%s: dropped TX frame since radio " "disabled\n", wiphy_name(hw->wiphy)); dev_kfree_skb(skb); return NETDEV_TX_OK; } rc = mwl8k_txq_xmit(hw, index, skb); return rc; } static int mwl8k_start(struct ieee80211_hw *hw) { struct mwl8k_priv *priv = hw->priv; int rc; rc = request_irq(priv->pdev->irq, mwl8k_interrupt, IRQF_SHARED, MWL8K_NAME, hw); if (rc) { printk(KERN_ERR "%s: failed to register IRQ handler\n", wiphy_name(hw->wiphy)); return -EIO; } /* Enable tx reclaim tasklet */ tasklet_enable(&priv->tx_reclaim_task); /* Enable interrupts */ iowrite32(MWL8K_A2H_EVENTS, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK); rc = mwl8k_fw_lock(hw); if (!rc) { rc = mwl8k_cmd_radio_enable(hw); if (!priv->ap_fw) { if (!rc) rc = mwl8k_cmd_enable_sniffer(hw, 0); if (!rc) rc = mwl8k_cmd_set_pre_scan(hw); if (!rc) rc = mwl8k_cmd_set_post_scan(hw, "\x00\x00\x00\x00\x00\x00"); } if (!rc) rc = mwl8k_cmd_set_rateadapt_mode(hw, 0); if (!rc) rc = mwl8k_cmd_set_wmm_mode(hw, 0); mwl8k_fw_unlock(hw); } if (rc) { iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK); free_irq(priv->pdev->irq, hw); tasklet_disable(&priv->tx_reclaim_task); } return rc; } static void mwl8k_stop(struct ieee80211_hw *hw) { struct mwl8k_priv *priv = hw->priv; int i; mwl8k_cmd_radio_disable(hw); ieee80211_stop_queues(hw); /* Disable interrupts */ iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK); free_irq(priv->pdev->irq, hw); /* Stop finalize join worker */ cancel_work_sync(&priv->finalize_join_worker); if (priv->beacon_skb != NULL) dev_kfree_skb(priv->beacon_skb); /* Stop tx reclaim tasklet */ tasklet_disable(&priv->tx_reclaim_task); /* Return all skbs to mac80211 */ for (i = 0; i < MWL8K_TX_QUEUES; i++) mwl8k_txq_reclaim(hw, i, 1); } static int mwl8k_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_vif *mwl8k_vif; /* * We only support one active interface at a time. */ if (priv->vif != NULL) return -EBUSY; /* * We only support managed interfaces for now. */ if (vif->type != NL80211_IFTYPE_STATION) return -EINVAL; /* * Reject interface creation if sniffer mode is active, as * STA operation is mutually exclusive with hardware sniffer * mode. */ if (priv->sniffer_enabled) { printk(KERN_INFO "%s: unable to create STA " "interface due to sniffer mode being enabled\n", wiphy_name(hw->wiphy)); return -EINVAL; } /* Clean out driver private area */ mwl8k_vif = MWL8K_VIF(vif); memset(mwl8k_vif, 0, sizeof(*mwl8k_vif)); /* Set and save the mac address */ mwl8k_cmd_set_mac_addr(hw, vif->addr); memcpy(mwl8k_vif->mac_addr, vif->addr, ETH_ALEN); /* Set Initial sequence number to zero */ mwl8k_vif->seqno = 0; priv->vif = vif; priv->current_channel = NULL; return 0; } static void mwl8k_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mwl8k_priv *priv = hw->priv; if (priv->vif == NULL) return; mwl8k_cmd_set_mac_addr(hw, "\x00\x00\x00\x00\x00\x00"); priv->vif = NULL; } static int mwl8k_config(struct ieee80211_hw *hw, u32 changed) { struct ieee80211_conf *conf = &hw->conf; struct mwl8k_priv *priv = hw->priv; int rc; if (conf->flags & IEEE80211_CONF_IDLE) { mwl8k_cmd_radio_disable(hw); priv->current_channel = NULL; return 0; } rc = mwl8k_fw_lock(hw); if (rc) return rc; rc = mwl8k_cmd_radio_enable(hw); if (rc) goto out; rc = mwl8k_cmd_set_rf_channel(hw, conf->channel); if (rc) goto out; priv->current_channel = conf->channel; if (conf->power_level > 18) conf->power_level = 18; rc = mwl8k_cmd_rf_tx_power(hw, conf->power_level); if (rc) goto out; if (priv->ap_fw) { rc = mwl8k_cmd_rf_antenna(hw, MWL8K_RF_ANTENNA_RX, 0x7); if (!rc) rc = mwl8k_cmd_rf_antenna(hw, MWL8K_RF_ANTENNA_TX, 0x7); } else { rc = mwl8k_cmd_mimo_config(hw, 0x7, 0x7); } out: mwl8k_fw_unlock(hw); return rc; } static void mwl8k_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *info, u32 changed) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_vif *mwl8k_vif = MWL8K_VIF(vif); int rc; if ((changed & BSS_CHANGED_ASSOC) == 0) return; priv->capture_beacon = false; rc = mwl8k_fw_lock(hw); if (rc) return; if (vif->bss_conf.assoc) { memcpy(mwl8k_vif->bssid, vif->bss_conf.bssid, ETH_ALEN); /* Install rates */ rc = mwl8k_cmd_set_rate(hw, vif); if (rc) goto out; /* Turn on rate adaptation */ rc = mwl8k_cmd_use_fixed_rate(hw, MWL8K_USE_AUTO_RATE, MWL8K_UCAST_RATE, NULL); if (rc) goto out; /* Set radio preamble */ rc = mwl8k_set_radio_preamble(hw, vif->bss_conf.use_short_preamble); if (rc) goto out; /* Set slot time */ rc = mwl8k_cmd_set_slot(hw, vif->bss_conf.use_short_slot); if (rc) goto out; /* Update peer rate info */ rc = mwl8k_cmd_update_stadb(hw, vif, MWL8K_STA_DB_MODIFY_ENTRY); if (rc) goto out; /* Set AID */ rc = mwl8k_cmd_set_aid(hw, vif); if (rc) goto out; /* * Finalize the join. Tell rx handler to process * next beacon from our BSSID. */ memcpy(priv->capture_bssid, mwl8k_vif->bssid, ETH_ALEN); priv->capture_beacon = true; } else { rc = mwl8k_cmd_update_stadb(hw, vif, MWL8K_STA_DB_DEL_ENTRY); memset(mwl8k_vif->bssid, 0, ETH_ALEN); } out: mwl8k_fw_unlock(hw); } static u64 mwl8k_prepare_multicast(struct ieee80211_hw *hw, int mc_count, struct dev_addr_list *mclist) { struct mwl8k_cmd_pkt *cmd; /* * Synthesize and return a command packet that programs the * hardware multicast address filter. At this point we don't * know whether FIF_ALLMULTI is being requested, but if it is, * we'll end up throwing this packet away and creating a new * one in mwl8k_configure_filter(). */ cmd = __mwl8k_cmd_mac_multicast_adr(hw, 0, mc_count, mclist); return (unsigned long)cmd; } static int mwl8k_configure_filter_sniffer(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *total_flags) { struct mwl8k_priv *priv = hw->priv; /* * Hardware sniffer mode is mutually exclusive with STA * operation, so refuse to enable sniffer mode if a STA * interface is active. */ if (priv->vif != NULL) { if (net_ratelimit()) printk(KERN_INFO "%s: not enabling sniffer " "mode because STA interface is active\n", wiphy_name(hw->wiphy)); return 0; } if (!priv->sniffer_enabled) { if (mwl8k_cmd_enable_sniffer(hw, 1)) return 0; priv->sniffer_enabled = true; } *total_flags &= FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_BCN_PRBRESP_PROMISC | FIF_CONTROL | FIF_OTHER_BSS; return 1; } static void mwl8k_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *total_flags, u64 multicast) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_cmd_pkt *cmd = (void *)(unsigned long)multicast; /* * AP firmware doesn't allow fine-grained control over * the receive filter. */ if (priv->ap_fw) { *total_flags &= FIF_ALLMULTI | FIF_BCN_PRBRESP_PROMISC; kfree(cmd); return; } /* * Enable hardware sniffer mode if FIF_CONTROL or * FIF_OTHER_BSS is requested. */ if (*total_flags & (FIF_CONTROL | FIF_OTHER_BSS) && mwl8k_configure_filter_sniffer(hw, changed_flags, total_flags)) { kfree(cmd); return; } /* Clear unsupported feature flags */ *total_flags &= FIF_ALLMULTI | FIF_BCN_PRBRESP_PROMISC; if (mwl8k_fw_lock(hw)) return; if (priv->sniffer_enabled) { mwl8k_cmd_enable_sniffer(hw, 0); priv->sniffer_enabled = false; } if (changed_flags & FIF_BCN_PRBRESP_PROMISC) { if (*total_flags & FIF_BCN_PRBRESP_PROMISC) { /* * Disable the BSS filter. */ mwl8k_cmd_set_pre_scan(hw); } else { u8 *bssid; /* * Enable the BSS filter. * * If there is an active STA interface, use that * interface's BSSID, otherwise use a dummy one * (where the OUI part needs to be nonzero for * the BSSID to be accepted by POST_SCAN). */ bssid = "\x01\x00\x00\x00\x00\x00"; if (priv->vif != NULL) bssid = MWL8K_VIF(priv->vif)->bssid; mwl8k_cmd_set_post_scan(hw, bssid); } } /* * If FIF_ALLMULTI is being requested, throw away the command * packet that ->prepare_multicast() built and replace it with * a command packet that enables reception of all multicast * packets. */ if (*total_flags & FIF_ALLMULTI) { kfree(cmd); cmd = __mwl8k_cmd_mac_multicast_adr(hw, 1, 0, NULL); } if (cmd != NULL) { mwl8k_post_cmd(hw, cmd); kfree(cmd); } mwl8k_fw_unlock(hw); } static int mwl8k_set_rts_threshold(struct ieee80211_hw *hw, u32 value) { return mwl8k_cmd_set_rts_threshold(hw, MWL8K_CMD_SET, value); } static int mwl8k_conf_tx(struct ieee80211_hw *hw, u16 queue, const struct ieee80211_tx_queue_params *params) { struct mwl8k_priv *priv = hw->priv; int rc; rc = mwl8k_fw_lock(hw); if (!rc) { if (!priv->wmm_enabled) rc = mwl8k_cmd_set_wmm_mode(hw, 1); if (!rc) rc = mwl8k_cmd_set_edca_params(hw, queue, params->cw_min, params->cw_max, params->aifs, params->txop); mwl8k_fw_unlock(hw); } return rc; } static int mwl8k_get_tx_stats(struct ieee80211_hw *hw, struct ieee80211_tx_queue_stats *stats) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_tx_queue *txq; int index; spin_lock_bh(&priv->tx_lock); for (index = 0; index < MWL8K_TX_QUEUES; index++) { txq = priv->txq + index; memcpy(&stats[index], &txq->stats, sizeof(struct ieee80211_tx_queue_stats)); } spin_unlock_bh(&priv->tx_lock); return 0; } static int mwl8k_get_stats(struct ieee80211_hw *hw, struct ieee80211_low_level_stats *stats) { return mwl8k_cmd_get_stat(hw, stats); } static const struct ieee80211_ops mwl8k_ops = { .tx = mwl8k_tx, .start = mwl8k_start, .stop = mwl8k_stop, .add_interface = mwl8k_add_interface, .remove_interface = mwl8k_remove_interface, .config = mwl8k_config, .bss_info_changed = mwl8k_bss_info_changed, .prepare_multicast = mwl8k_prepare_multicast, .configure_filter = mwl8k_configure_filter, .set_rts_threshold = mwl8k_set_rts_threshold, .conf_tx = mwl8k_conf_tx, .get_tx_stats = mwl8k_get_tx_stats, .get_stats = mwl8k_get_stats, }; static void mwl8k_tx_reclaim_handler(unsigned long data) { int i; struct ieee80211_hw *hw = (struct ieee80211_hw *) data; struct mwl8k_priv *priv = hw->priv; spin_lock_bh(&priv->tx_lock); for (i = 0; i < MWL8K_TX_QUEUES; i++) mwl8k_txq_reclaim(hw, i, 0); if (priv->tx_wait != NULL && !priv->pending_tx_pkts) { complete(priv->tx_wait); priv->tx_wait = NULL; } spin_unlock_bh(&priv->tx_lock); } static void mwl8k_finalize_join_worker(struct work_struct *work) { struct mwl8k_priv *priv = container_of(work, struct mwl8k_priv, finalize_join_worker); struct sk_buff *skb = priv->beacon_skb; mwl8k_cmd_finalize_join(priv->hw, skb->data, skb->len, priv->vif->bss_conf.dtim_period); dev_kfree_skb(skb); priv->beacon_skb = NULL; } enum { MWL8687 = 0, MWL8366, }; static struct mwl8k_device_info mwl8k_info_tbl[] __devinitdata = { [MWL8687] = { .part_name = "88w8687", .helper_image = "mwl8k/helper_8687.fw", .fw_image = "mwl8k/fmimage_8687.fw", }, [MWL8366] = { .part_name = "88w8366", .helper_image = "mwl8k/helper_8366.fw", .fw_image = "mwl8k/fmimage_8366.fw", .ap_rxd_ops = &rxd_8366_ap_ops, }, }; static DEFINE_PCI_DEVICE_TABLE(mwl8k_pci_id_table) = { { PCI_VDEVICE(MARVELL, 0x2a2b), .driver_data = MWL8687, }, { PCI_VDEVICE(MARVELL, 0x2a30), .driver_data = MWL8687, }, { PCI_VDEVICE(MARVELL, 0x2a40), .driver_data = MWL8366, }, { }, }; MODULE_DEVICE_TABLE(pci, mwl8k_pci_id_table); static int __devinit mwl8k_probe(struct pci_dev *pdev, const struct pci_device_id *id) { static int printed_version = 0; struct ieee80211_hw *hw; struct mwl8k_priv *priv; int rc; int i; if (!printed_version) { printk(KERN_INFO "%s version %s\n", MWL8K_DESC, MWL8K_VERSION); printed_version = 1; } rc = pci_enable_device(pdev); if (rc) { printk(KERN_ERR "%s: Cannot enable new PCI device\n", MWL8K_NAME); return rc; } rc = pci_request_regions(pdev, MWL8K_NAME); if (rc) { printk(KERN_ERR "%s: Cannot obtain PCI resources\n", MWL8K_NAME); goto err_disable_device; } pci_set_master(pdev); hw = ieee80211_alloc_hw(sizeof(*priv), &mwl8k_ops); if (hw == NULL) { printk(KERN_ERR "%s: ieee80211 alloc failed\n", MWL8K_NAME); rc = -ENOMEM; goto err_free_reg; } SET_IEEE80211_DEV(hw, &pdev->dev); pci_set_drvdata(pdev, hw); priv = hw->priv; priv->hw = hw; priv->pdev = pdev; priv->device_info = &mwl8k_info_tbl[id->driver_data]; priv->sram = pci_iomap(pdev, 0, 0x10000); if (priv->sram == NULL) { printk(KERN_ERR "%s: Cannot map device SRAM\n", wiphy_name(hw->wiphy)); goto err_iounmap; } /* * If BAR0 is a 32 bit BAR, the register BAR will be BAR1. * If BAR0 is a 64 bit BAR, the register BAR will be BAR2. */ priv->regs = pci_iomap(pdev, 1, 0x10000); if (priv->regs == NULL) { priv->regs = pci_iomap(pdev, 2, 0x10000); if (priv->regs == NULL) { printk(KERN_ERR "%s: Cannot map device registers\n", wiphy_name(hw->wiphy)); goto err_iounmap; } } /* Reset firmware and hardware */ mwl8k_hw_reset(priv); /* Ask userland hotplug daemon for the device firmware */ rc = mwl8k_request_firmware(priv); if (rc) { printk(KERN_ERR "%s: Firmware files not found\n", wiphy_name(hw->wiphy)); goto err_stop_firmware; } /* Load firmware into hardware */ rc = mwl8k_load_firmware(hw); if (rc) { printk(KERN_ERR "%s: Cannot start firmware\n", wiphy_name(hw->wiphy)); goto err_stop_firmware; } /* Reclaim memory once firmware is successfully loaded */ mwl8k_release_firmware(priv); if (priv->ap_fw) { priv->rxd_ops = priv->device_info->ap_rxd_ops; if (priv->rxd_ops == NULL) { printk(KERN_ERR "%s: Driver does not have AP " "firmware image support for this hardware\n", wiphy_name(hw->wiphy)); goto err_stop_firmware; } } else { priv->rxd_ops = &rxd_sta_ops; } priv->sniffer_enabled = false; priv->wmm_enabled = false; priv->pending_tx_pkts = 0; memcpy(priv->channels, mwl8k_channels, sizeof(mwl8k_channels)); priv->band.band = IEEE80211_BAND_2GHZ; priv->band.channels = priv->channels; priv->band.n_channels = ARRAY_SIZE(mwl8k_channels); priv->band.bitrates = priv->rates; priv->band.n_bitrates = ARRAY_SIZE(mwl8k_rates); hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &priv->band; BUILD_BUG_ON(sizeof(priv->rates) != sizeof(mwl8k_rates)); memcpy(priv->rates, mwl8k_rates, sizeof(mwl8k_rates)); /* * Extra headroom is the size of the required DMA header * minus the size of the smallest 802.11 frame (CTS frame). */ hw->extra_tx_headroom = sizeof(struct mwl8k_dma_data) - sizeof(struct ieee80211_cts); hw->channel_change_time = 10; hw->queues = MWL8K_TX_QUEUES; /* Set rssi and noise values to dBm */ hw->flags |= IEEE80211_HW_SIGNAL_DBM | IEEE80211_HW_NOISE_DBM; hw->vif_data_size = sizeof(struct mwl8k_vif); priv->vif = NULL; /* Set default radio state and preamble */ priv->radio_on = 0; priv->radio_short_preamble = 0; /* Finalize join worker */ INIT_WORK(&priv->finalize_join_worker, mwl8k_finalize_join_worker); /* TX reclaim tasklet */ tasklet_init(&priv->tx_reclaim_task, mwl8k_tx_reclaim_handler, (unsigned long)hw); tasklet_disable(&priv->tx_reclaim_task); /* Power management cookie */ priv->cookie = pci_alloc_consistent(priv->pdev, 4, &priv->cookie_dma); if (priv->cookie == NULL) goto err_stop_firmware; rc = mwl8k_rxq_init(hw, 0); if (rc) goto err_free_cookie; rxq_refill(hw, 0, INT_MAX); mutex_init(&priv->fw_mutex); priv->fw_mutex_owner = NULL; priv->fw_mutex_depth = 0; priv->hostcmd_wait = NULL; spin_lock_init(&priv->tx_lock); priv->tx_wait = NULL; for (i = 0; i < MWL8K_TX_QUEUES; i++) { rc = mwl8k_txq_init(hw, i); if (rc) goto err_free_queues; } iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS); iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK); iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_CLEAR_SEL); iowrite32(0xffffffff, priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS_MASK); rc = request_irq(priv->pdev->irq, mwl8k_interrupt, IRQF_SHARED, MWL8K_NAME, hw); if (rc) { printk(KERN_ERR "%s: failed to register IRQ handler\n", wiphy_name(hw->wiphy)); goto err_free_queues; } /* * Temporarily enable interrupts. Initial firmware host * commands use interrupts and avoids polling. Disable * interrupts when done. */ iowrite32(MWL8K_A2H_EVENTS, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK); /* Get config data, mac addrs etc */ if (priv->ap_fw) { rc = mwl8k_cmd_get_hw_spec_ap(hw); if (!rc) rc = mwl8k_cmd_set_hw_spec(hw); } else { rc = mwl8k_cmd_get_hw_spec_sta(hw); hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION); } if (rc) { printk(KERN_ERR "%s: Cannot initialise firmware\n", wiphy_name(hw->wiphy)); goto err_free_irq; } /* Turn radio off */ rc = mwl8k_cmd_radio_disable(hw); if (rc) { printk(KERN_ERR "%s: Cannot disable\n", wiphy_name(hw->wiphy)); goto err_free_irq; } /* Clear MAC address */ rc = mwl8k_cmd_set_mac_addr(hw, "\x00\x00\x00\x00\x00\x00"); if (rc) { printk(KERN_ERR "%s: Cannot clear MAC address\n", wiphy_name(hw->wiphy)); goto err_free_irq; } /* Disable interrupts */ iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK); free_irq(priv->pdev->irq, hw); rc = ieee80211_register_hw(hw); if (rc) { printk(KERN_ERR "%s: Cannot register device\n", wiphy_name(hw->wiphy)); goto err_free_queues; } printk(KERN_INFO "%s: %s v%d, %pM, %s firmware %u.%u.%u.%u\n", wiphy_name(hw->wiphy), priv->device_info->part_name, priv->hw_rev, hw->wiphy->perm_addr, priv->ap_fw ? "AP" : "STA", (priv->fw_rev >> 24) & 0xff, (priv->fw_rev >> 16) & 0xff, (priv->fw_rev >> 8) & 0xff, priv->fw_rev & 0xff); return 0; err_free_irq: iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK); free_irq(priv->pdev->irq, hw); err_free_queues: for (i = 0; i < MWL8K_TX_QUEUES; i++) mwl8k_txq_deinit(hw, i); mwl8k_rxq_deinit(hw, 0); err_free_cookie: if (priv->cookie != NULL) pci_free_consistent(priv->pdev, 4, priv->cookie, priv->cookie_dma); err_stop_firmware: mwl8k_hw_reset(priv); mwl8k_release_firmware(priv); err_iounmap: if (priv->regs != NULL) pci_iounmap(pdev, priv->regs); if (priv->sram != NULL) pci_iounmap(pdev, priv->sram); pci_set_drvdata(pdev, NULL); ieee80211_free_hw(hw); err_free_reg: pci_release_regions(pdev); err_disable_device: pci_disable_device(pdev); return rc; } static void __devexit mwl8k_shutdown(struct pci_dev *pdev) { printk(KERN_ERR "===>%s(%u)\n", __func__, __LINE__); } static void __devexit mwl8k_remove(struct pci_dev *pdev) { struct ieee80211_hw *hw = pci_get_drvdata(pdev); struct mwl8k_priv *priv; int i; if (hw == NULL) return; priv = hw->priv; ieee80211_stop_queues(hw); ieee80211_unregister_hw(hw); /* Remove tx reclaim tasklet */ tasklet_kill(&priv->tx_reclaim_task); /* Stop hardware */ mwl8k_hw_reset(priv); /* Return all skbs to mac80211 */ for (i = 0; i < MWL8K_TX_QUEUES; i++) mwl8k_txq_reclaim(hw, i, 1); for (i = 0; i < MWL8K_TX_QUEUES; i++) mwl8k_txq_deinit(hw, i); mwl8k_rxq_deinit(hw, 0); pci_free_consistent(priv->pdev, 4, priv->cookie, priv->cookie_dma); pci_iounmap(pdev, priv->regs); pci_iounmap(pdev, priv->sram); pci_set_drvdata(pdev, NULL); ieee80211_free_hw(hw); pci_release_regions(pdev); pci_disable_device(pdev); } static struct pci_driver mwl8k_driver = { .name = MWL8K_NAME, .id_table = mwl8k_pci_id_table, .probe = mwl8k_probe, .remove = __devexit_p(mwl8k_remove), .shutdown = __devexit_p(mwl8k_shutdown), }; static int __init mwl8k_init(void) { return pci_register_driver(&mwl8k_driver); } static void __exit mwl8k_exit(void) { pci_unregister_driver(&mwl8k_driver); } module_init(mwl8k_init); module_exit(mwl8k_exit); MODULE_DESCRIPTION(MWL8K_DESC); MODULE_VERSION(MWL8K_VERSION); MODULE_AUTHOR("Lennert Buytenhek "); MODULE_LICENSE("GPL");