/* * Copyright 2012-16 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dce_clocks.h" #include "dm_services.h" #include "reg_helper.h" #include "fixed31_32.h" #include "bios_parser_interface.h" #include "dc.h" #include "dmcu.h" #ifdef CONFIG_X86 #include "dcn_calcs.h" #endif #include "core_types.h" #include "dc_types.h" #include "dal_asic_id.h" #define TO_DCE_CLOCKS(clocks)\ container_of(clocks, struct dce_dccg, base) #define REG(reg) \ (clk_dce->regs->reg) #undef FN #define FN(reg_name, field_name) \ clk_dce->clk_shift->field_name, clk_dce->clk_mask->field_name #define CTX \ clk_dce->base.ctx #define DC_LOGGER \ clk->ctx->logger /* Max clock values for each state indexed by "enum clocks_state": */ static const struct state_dependent_clocks dce80_max_clks_by_state[] = { /* ClocksStateInvalid - should not be used */ { .display_clk_khz = 0, .pixel_clk_khz = 0 }, /* ClocksStateUltraLow - not expected to be used for DCE 8.0 */ { .display_clk_khz = 0, .pixel_clk_khz = 0 }, /* ClocksStateLow */ { .display_clk_khz = 352000, .pixel_clk_khz = 330000}, /* ClocksStateNominal */ { .display_clk_khz = 600000, .pixel_clk_khz = 400000 }, /* ClocksStatePerformance */ { .display_clk_khz = 600000, .pixel_clk_khz = 400000 } }; static const struct state_dependent_clocks dce110_max_clks_by_state[] = { /*ClocksStateInvalid - should not be used*/ { .display_clk_khz = 0, .pixel_clk_khz = 0 }, /*ClocksStateUltraLow - currently by HW design team not supposed to be used*/ { .display_clk_khz = 352000, .pixel_clk_khz = 330000 }, /*ClocksStateLow*/ { .display_clk_khz = 352000, .pixel_clk_khz = 330000 }, /*ClocksStateNominal*/ { .display_clk_khz = 467000, .pixel_clk_khz = 400000 }, /*ClocksStatePerformance*/ { .display_clk_khz = 643000, .pixel_clk_khz = 400000 } }; static const struct state_dependent_clocks dce112_max_clks_by_state[] = { /*ClocksStateInvalid - should not be used*/ { .display_clk_khz = 0, .pixel_clk_khz = 0 }, /*ClocksStateUltraLow - currently by HW design team not supposed to be used*/ { .display_clk_khz = 389189, .pixel_clk_khz = 346672 }, /*ClocksStateLow*/ { .display_clk_khz = 459000, .pixel_clk_khz = 400000 }, /*ClocksStateNominal*/ { .display_clk_khz = 667000, .pixel_clk_khz = 600000 }, /*ClocksStatePerformance*/ { .display_clk_khz = 1132000, .pixel_clk_khz = 600000 } }; static const struct state_dependent_clocks dce120_max_clks_by_state[] = { /*ClocksStateInvalid - should not be used*/ { .display_clk_khz = 0, .pixel_clk_khz = 0 }, /*ClocksStateUltraLow - currently by HW design team not supposed to be used*/ { .display_clk_khz = 0, .pixel_clk_khz = 0 }, /*ClocksStateLow*/ { .display_clk_khz = 460000, .pixel_clk_khz = 400000 }, /*ClocksStateNominal*/ { .display_clk_khz = 670000, .pixel_clk_khz = 600000 }, /*ClocksStatePerformance*/ { .display_clk_khz = 1133000, .pixel_clk_khz = 600000 } }; /* Starting DID for each range */ enum dentist_base_divider_id { DENTIST_BASE_DID_1 = 0x08, DENTIST_BASE_DID_2 = 0x40, DENTIST_BASE_DID_3 = 0x60, DENTIST_MAX_DID = 0x80 }; /* Starting point and step size for each divider range.*/ enum dentist_divider_range { DENTIST_DIVIDER_RANGE_1_START = 8, /* 2.00 */ DENTIST_DIVIDER_RANGE_1_STEP = 1, /* 0.25 */ DENTIST_DIVIDER_RANGE_2_START = 64, /* 16.00 */ DENTIST_DIVIDER_RANGE_2_STEP = 2, /* 0.50 */ DENTIST_DIVIDER_RANGE_3_START = 128, /* 32.00 */ DENTIST_DIVIDER_RANGE_3_STEP = 4, /* 1.00 */ DENTIST_DIVIDER_RANGE_SCALE_FACTOR = 4 }; static int dentist_get_divider_from_did(int did) { if (did < DENTIST_BASE_DID_1) did = DENTIST_BASE_DID_1; if (did > DENTIST_MAX_DID) did = DENTIST_MAX_DID; if (did < DENTIST_BASE_DID_2) { return DENTIST_DIVIDER_RANGE_1_START + DENTIST_DIVIDER_RANGE_1_STEP * (did - DENTIST_BASE_DID_1); } else if (did < DENTIST_BASE_DID_3) { return DENTIST_DIVIDER_RANGE_2_START + DENTIST_DIVIDER_RANGE_2_STEP * (did - DENTIST_BASE_DID_2); } else { return DENTIST_DIVIDER_RANGE_3_START + DENTIST_DIVIDER_RANGE_3_STEP * (did - DENTIST_BASE_DID_3); } } /* SW will adjust DP REF Clock average value for all purposes * (DP DTO / DP Audio DTO and DP GTC) if clock is spread for all cases: -if SS enabled on DP Ref clock and HW de-spreading enabled with SW calculations for DS_INCR/DS_MODULO (this is planned to be default case) -if SS enabled on DP Ref clock and HW de-spreading enabled with HW calculations (not planned to be used, but average clock should still be valid) -if SS enabled on DP Ref clock and HW de-spreading disabled (should not be case with CIK) then SW should program all rates generated according to average value (case as with previous ASICs) */ static int dccg_adjust_dp_ref_freq_for_ss(struct dce_dccg *clk_dce, int dp_ref_clk_khz) { if (clk_dce->ss_on_dprefclk && clk_dce->dprefclk_ss_divider != 0) { struct fixed31_32 ss_percentage = dc_fixpt_div_int( dc_fixpt_from_fraction(clk_dce->dprefclk_ss_percentage, clk_dce->dprefclk_ss_divider), 200); struct fixed31_32 adj_dp_ref_clk_khz; ss_percentage = dc_fixpt_sub(dc_fixpt_one, ss_percentage); adj_dp_ref_clk_khz = dc_fixpt_mul_int(ss_percentage, dp_ref_clk_khz); dp_ref_clk_khz = dc_fixpt_floor(adj_dp_ref_clk_khz); } return dp_ref_clk_khz; } static int dce_get_dp_ref_freq_khz(struct dccg *clk) { struct dce_dccg *clk_dce = TO_DCE_CLOCKS(clk); int dprefclk_wdivider; int dprefclk_src_sel; int dp_ref_clk_khz = 600000; int target_div; /* ASSERT DP Reference Clock source is from DFS*/ REG_GET(DPREFCLK_CNTL, DPREFCLK_SRC_SEL, &dprefclk_src_sel); ASSERT(dprefclk_src_sel == 0); /* Read the mmDENTIST_DISPCLK_CNTL to get the currently * programmed DID DENTIST_DPREFCLK_WDIVIDER*/ REG_GET(DENTIST_DISPCLK_CNTL, DENTIST_DPREFCLK_WDIVIDER, &dprefclk_wdivider); /* Convert DENTIST_DPREFCLK_WDIVIDERto actual divider*/ target_div = dentist_get_divider_from_did(dprefclk_wdivider); /* Calculate the current DFS clock, in kHz.*/ dp_ref_clk_khz = (DENTIST_DIVIDER_RANGE_SCALE_FACTOR * clk_dce->dentist_vco_freq_khz) / target_div; return dccg_adjust_dp_ref_freq_for_ss(clk_dce, dp_ref_clk_khz); } static int dce12_get_dp_ref_freq_khz(struct dccg *clk) { struct dce_dccg *clk_dce = TO_DCE_CLOCKS(clk); return dccg_adjust_dp_ref_freq_for_ss(clk_dce, 600000); } static enum dm_pp_clocks_state dce_get_required_clocks_state( struct dccg *clk, struct dc_clocks *req_clocks) { struct dce_dccg *clk_dce = TO_DCE_CLOCKS(clk); int i; enum dm_pp_clocks_state low_req_clk; /* Iterate from highest supported to lowest valid state, and update * lowest RequiredState with the lowest state that satisfies * all required clocks */ for (i = clk->max_clks_state; i >= DM_PP_CLOCKS_STATE_ULTRA_LOW; i--) if (req_clocks->dispclk_khz > clk_dce->max_clks_by_state[i].display_clk_khz || req_clocks->phyclk_khz > clk_dce->max_clks_by_state[i].pixel_clk_khz) break; low_req_clk = i + 1; if (low_req_clk > clk->max_clks_state) { /* set max clock state for high phyclock, invalid on exceeding display clock */ if (clk_dce->max_clks_by_state[clk->max_clks_state].display_clk_khz < req_clocks->dispclk_khz) low_req_clk = DM_PP_CLOCKS_STATE_INVALID; else low_req_clk = clk->max_clks_state; } return low_req_clk; } static int dce_set_clock( struct dccg *clk, int requested_clk_khz) { struct dce_dccg *clk_dce = TO_DCE_CLOCKS(clk); struct bp_pixel_clock_parameters pxl_clk_params = { 0 }; struct dc_bios *bp = clk->ctx->dc_bios; int actual_clock = requested_clk_khz; /* Make sure requested clock isn't lower than minimum threshold*/ if (requested_clk_khz > 0) requested_clk_khz = max(requested_clk_khz, clk_dce->dentist_vco_freq_khz / 64); /* Prepare to program display clock*/ pxl_clk_params.target_pixel_clock = requested_clk_khz; pxl_clk_params.pll_id = CLOCK_SOURCE_ID_DFS; bp->funcs->program_display_engine_pll(bp, &pxl_clk_params); if (clk_dce->dfs_bypass_enabled) { /* Cache the fixed display clock*/ clk_dce->dfs_bypass_disp_clk = pxl_clk_params.dfs_bypass_display_clock; actual_clock = pxl_clk_params.dfs_bypass_display_clock; } /* from power down, we need mark the clock state as ClocksStateNominal * from HWReset, so when resume we will call pplib voltage regulator.*/ if (requested_clk_khz == 0) clk->cur_min_clks_state = DM_PP_CLOCKS_STATE_NOMINAL; return actual_clock; } static int dce_psr_set_clock( struct dccg *clk, int requested_clk_khz) { struct dce_dccg *clk_dce = TO_DCE_CLOCKS(clk); struct dc_context *ctx = clk_dce->base.ctx; struct dc *core_dc = ctx->dc; struct dmcu *dmcu = core_dc->res_pool->dmcu; int actual_clk_khz = requested_clk_khz; actual_clk_khz = dce_set_clock(clk, requested_clk_khz); dmcu->funcs->set_psr_wait_loop(dmcu, actual_clk_khz / 1000 / 7); return actual_clk_khz; } static int dce112_set_clock( struct dccg *clk, int requested_clk_khz) { struct dce_dccg *clk_dce = TO_DCE_CLOCKS(clk); struct bp_set_dce_clock_parameters dce_clk_params; struct dc_bios *bp = clk->ctx->dc_bios; struct dc *core_dc = clk->ctx->dc; struct dmcu *dmcu = core_dc->res_pool->dmcu; int actual_clock = requested_clk_khz; /* Prepare to program display clock*/ memset(&dce_clk_params, 0, sizeof(dce_clk_params)); /* Make sure requested clock isn't lower than minimum threshold*/ if (requested_clk_khz > 0) requested_clk_khz = max(requested_clk_khz, clk_dce->dentist_vco_freq_khz / 62); dce_clk_params.target_clock_frequency = requested_clk_khz; dce_clk_params.pll_id = CLOCK_SOURCE_ID_DFS; dce_clk_params.clock_type = DCECLOCK_TYPE_DISPLAY_CLOCK; bp->funcs->set_dce_clock(bp, &dce_clk_params); actual_clock = dce_clk_params.target_clock_frequency; /* from power down, we need mark the clock state as ClocksStateNominal * from HWReset, so when resume we will call pplib voltage regulator.*/ if (requested_clk_khz == 0) clk->cur_min_clks_state = DM_PP_CLOCKS_STATE_NOMINAL; /*Program DP ref Clock*/ /*VBIOS will determine DPREFCLK frequency, so we don't set it*/ dce_clk_params.target_clock_frequency = 0; dce_clk_params.clock_type = DCECLOCK_TYPE_DPREFCLK; if (!ASICREV_IS_VEGA20_P(clk->ctx->asic_id.hw_internal_rev)) dce_clk_params.flags.USE_GENLOCK_AS_SOURCE_FOR_DPREFCLK = (dce_clk_params.pll_id == CLOCK_SOURCE_COMBO_DISPLAY_PLL0); else dce_clk_params.flags.USE_GENLOCK_AS_SOURCE_FOR_DPREFCLK = false; bp->funcs->set_dce_clock(bp, &dce_clk_params); if (!IS_FPGA_MAXIMUS_DC(core_dc->ctx->dce_environment)) { if (clk_dce->dfs_bypass_disp_clk != actual_clock) dmcu->funcs->set_psr_wait_loop(dmcu, actual_clock / 1000 / 7); } clk_dce->dfs_bypass_disp_clk = actual_clock; return actual_clock; } static void dce_clock_read_integrated_info(struct dce_dccg *clk_dce) { struct dc_debug_options *debug = &clk_dce->base.ctx->dc->debug; struct dc_bios *bp = clk_dce->base.ctx->dc_bios; struct integrated_info info = { { { 0 } } }; struct dc_firmware_info fw_info = { { 0 } }; int i; if (bp->integrated_info) info = *bp->integrated_info; clk_dce->dentist_vco_freq_khz = info.dentist_vco_freq; if (clk_dce->dentist_vco_freq_khz == 0) { bp->funcs->get_firmware_info(bp, &fw_info); clk_dce->dentist_vco_freq_khz = fw_info.smu_gpu_pll_output_freq; if (clk_dce->dentist_vco_freq_khz == 0) clk_dce->dentist_vco_freq_khz = 3600000; } /*update the maximum display clock for each power state*/ for (i = 0; i < NUMBER_OF_DISP_CLK_VOLTAGE; ++i) { enum dm_pp_clocks_state clk_state = DM_PP_CLOCKS_STATE_INVALID; switch (i) { case 0: clk_state = DM_PP_CLOCKS_STATE_ULTRA_LOW; break; case 1: clk_state = DM_PP_CLOCKS_STATE_LOW; break; case 2: clk_state = DM_PP_CLOCKS_STATE_NOMINAL; break; case 3: clk_state = DM_PP_CLOCKS_STATE_PERFORMANCE; break; default: clk_state = DM_PP_CLOCKS_STATE_INVALID; break; } /*Do not allow bad VBIOS/SBIOS to override with invalid values, * check for > 100MHz*/ if (info.disp_clk_voltage[i].max_supported_clk >= 100000) clk_dce->max_clks_by_state[clk_state].display_clk_khz = info.disp_clk_voltage[i].max_supported_clk; } if (!debug->disable_dfs_bypass && bp->integrated_info) if (bp->integrated_info->gpu_cap_info & DFS_BYPASS_ENABLE) clk_dce->dfs_bypass_enabled = true; } static void dce_clock_read_ss_info(struct dce_dccg *clk_dce) { struct dc_bios *bp = clk_dce->base.ctx->dc_bios; int ss_info_num = bp->funcs->get_ss_entry_number( bp, AS_SIGNAL_TYPE_GPU_PLL); if (ss_info_num) { struct spread_spectrum_info info = { { 0 } }; enum bp_result result = bp->funcs->get_spread_spectrum_info( bp, AS_SIGNAL_TYPE_GPU_PLL, 0, &info); /* Based on VBIOS, VBIOS will keep entry for GPU PLL SS * even if SS not enabled and in that case * SSInfo.spreadSpectrumPercentage !=0 would be sign * that SS is enabled */ if (result == BP_RESULT_OK && info.spread_spectrum_percentage != 0) { clk_dce->ss_on_dprefclk = true; clk_dce->dprefclk_ss_divider = info.spread_percentage_divider; if (info.type.CENTER_MODE == 0) { /* TODO: Currently for DP Reference clock we * need only SS percentage for * downspread */ clk_dce->dprefclk_ss_percentage = info.spread_spectrum_percentage; } return; } result = bp->funcs->get_spread_spectrum_info( bp, AS_SIGNAL_TYPE_DISPLAY_PORT, 0, &info); /* Based on VBIOS, VBIOS will keep entry for DPREFCLK SS * even if SS not enabled and in that case * SSInfo.spreadSpectrumPercentage !=0 would be sign * that SS is enabled */ if (result == BP_RESULT_OK && info.spread_spectrum_percentage != 0) { clk_dce->ss_on_dprefclk = true; clk_dce->dprefclk_ss_divider = info.spread_percentage_divider; if (info.type.CENTER_MODE == 0) { /* Currently for DP Reference clock we * need only SS percentage for * downspread */ clk_dce->dprefclk_ss_percentage = info.spread_spectrum_percentage; } } } } static inline bool should_set_clock(bool safe_to_lower, int calc_clk, int cur_clk) { return ((safe_to_lower && calc_clk < cur_clk) || calc_clk > cur_clk); } static void dce12_update_clocks(struct dccg *dccg, struct dc_clocks *new_clocks, bool safe_to_lower) { struct dm_pp_clock_for_voltage_req clock_voltage_req = {0}; if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, dccg->clks.dispclk_khz)) { clock_voltage_req.clk_type = DM_PP_CLOCK_TYPE_DISPLAY_CLK; clock_voltage_req.clocks_in_khz = new_clocks->dispclk_khz; new_clocks->dispclk_khz = dccg->funcs->set_dispclk(dccg, new_clocks->dispclk_khz); dccg->clks.dispclk_khz = new_clocks->dispclk_khz; dm_pp_apply_clock_for_voltage_request(dccg->ctx, &clock_voltage_req); } if (should_set_clock(safe_to_lower, new_clocks->phyclk_khz, dccg->clks.phyclk_khz)) { clock_voltage_req.clk_type = DM_PP_CLOCK_TYPE_DISPLAYPHYCLK; clock_voltage_req.clocks_in_khz = new_clocks->phyclk_khz; dccg->clks.phyclk_khz = new_clocks->phyclk_khz; dm_pp_apply_clock_for_voltage_request(dccg->ctx, &clock_voltage_req); } } #ifdef CONFIG_X86 static int dcn1_determine_dppclk_threshold(struct dccg *dccg, struct dc_clocks *new_clocks) { bool request_dpp_div = new_clocks->dispclk_khz > new_clocks->dppclk_khz; bool dispclk_increase = new_clocks->dispclk_khz > dccg->clks.dispclk_khz; int disp_clk_threshold = new_clocks->max_supported_dppclk_khz; bool cur_dpp_div = dccg->clks.dispclk_khz > dccg->clks.dppclk_khz; /* increase clock, looking for div is 0 for current, request div is 1*/ if (dispclk_increase) { /* already divided by 2, no need to reach target clk with 2 steps*/ if (cur_dpp_div) return new_clocks->dispclk_khz; /* request disp clk is lower than maximum supported dpp clk, * no need to reach target clk with two steps. */ if (new_clocks->dispclk_khz <= disp_clk_threshold) return new_clocks->dispclk_khz; /* target dpp clk not request divided by 2, still within threshold */ if (!request_dpp_div) return new_clocks->dispclk_khz; } else { /* decrease clock, looking for current dppclk divided by 2, * request dppclk not divided by 2. */ /* current dpp clk not divided by 2, no need to ramp*/ if (!cur_dpp_div) return new_clocks->dispclk_khz; /* current disp clk is lower than current maximum dpp clk, * no need to ramp */ if (dccg->clks.dispclk_khz <= disp_clk_threshold) return new_clocks->dispclk_khz; /* request dpp clk need to be divided by 2 */ if (request_dpp_div) return new_clocks->dispclk_khz; } return disp_clk_threshold; } static void dcn1_ramp_up_dispclk_with_dpp(struct dccg *dccg, struct dc_clocks *new_clocks) { struct dc *dc = dccg->ctx->dc; int dispclk_to_dpp_threshold = dcn1_determine_dppclk_threshold(dccg, new_clocks); bool request_dpp_div = new_clocks->dispclk_khz > new_clocks->dppclk_khz; int i; /* set disp clk to dpp clk threshold */ dccg->funcs->set_dispclk(dccg, dispclk_to_dpp_threshold); /* update request dpp clk division option */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i]; if (!pipe_ctx->plane_state) continue; pipe_ctx->plane_res.dpp->funcs->dpp_dppclk_control( pipe_ctx->plane_res.dpp, request_dpp_div, true); } /* If target clk not same as dppclk threshold, set to target clock */ if (dispclk_to_dpp_threshold != new_clocks->dispclk_khz) dccg->funcs->set_dispclk(dccg, new_clocks->dispclk_khz); dccg->clks.dispclk_khz = new_clocks->dispclk_khz; dccg->clks.dppclk_khz = new_clocks->dppclk_khz; dccg->clks.max_supported_dppclk_khz = new_clocks->max_supported_dppclk_khz; } static void dcn1_update_clocks(struct dccg *dccg, struct dc_clocks *new_clocks, bool safe_to_lower) { struct dc *dc = dccg->ctx->dc; struct pp_smu_display_requirement_rv *smu_req_cur = &dc->res_pool->pp_smu_req; struct pp_smu_display_requirement_rv smu_req = *smu_req_cur; struct pp_smu_funcs_rv *pp_smu = dc->res_pool->pp_smu; struct dm_pp_clock_for_voltage_req clock_voltage_req = {0}; bool send_request_to_increase = false; bool send_request_to_lower = false; if (new_clocks->phyclk_khz) smu_req.display_count = 1; else smu_req.display_count = 0; if (new_clocks->dispclk_khz > dccg->clks.dispclk_khz || new_clocks->phyclk_khz > dccg->clks.phyclk_khz || new_clocks->fclk_khz > dccg->clks.fclk_khz || new_clocks->dcfclk_khz > dccg->clks.dcfclk_khz) send_request_to_increase = true; if (should_set_clock(safe_to_lower, new_clocks->phyclk_khz, dccg->clks.phyclk_khz)) { dccg->clks.phyclk_khz = new_clocks->phyclk_khz; send_request_to_lower = true; } if (should_set_clock(safe_to_lower, new_clocks->fclk_khz, dccg->clks.fclk_khz)) { dccg->clks.fclk_khz = new_clocks->fclk_khz; clock_voltage_req.clk_type = DM_PP_CLOCK_TYPE_FCLK; clock_voltage_req.clocks_in_khz = new_clocks->fclk_khz; smu_req.hard_min_fclk_khz = new_clocks->fclk_khz; dm_pp_apply_clock_for_voltage_request(dccg->ctx, &clock_voltage_req); send_request_to_lower = true; } if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, dccg->clks.dcfclk_khz)) { dccg->clks.dcfclk_khz = new_clocks->dcfclk_khz; smu_req.hard_min_dcefclk_khz = new_clocks->dcfclk_khz; send_request_to_lower = true; } if (should_set_clock(safe_to_lower, new_clocks->dcfclk_deep_sleep_khz, dccg->clks.dcfclk_deep_sleep_khz)) { dccg->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz; smu_req.min_deep_sleep_dcefclk_mhz = new_clocks->dcfclk_deep_sleep_khz; send_request_to_lower = true; } /* make sure dcf clk is before dpp clk to * make sure we have enough voltage to run dpp clk */ if (send_request_to_increase) { /*use dcfclk to request voltage*/ clock_voltage_req.clk_type = DM_PP_CLOCK_TYPE_DCFCLK; clock_voltage_req.clocks_in_khz = dcn_find_dcfclk_suits_all(dc, new_clocks); dm_pp_apply_clock_for_voltage_request(dccg->ctx, &clock_voltage_req); if (pp_smu->set_display_requirement) pp_smu->set_display_requirement(&pp_smu->pp_smu, &smu_req); } /* dcn1 dppclk is tied to dispclk */ /* program dispclk on = as a w/a for sleep resume clock ramping issues */ if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, dccg->clks.dispclk_khz) || new_clocks->dispclk_khz == dccg->clks.dispclk_khz) { dcn1_ramp_up_dispclk_with_dpp(dccg, new_clocks); dccg->clks.dispclk_khz = new_clocks->dispclk_khz; send_request_to_lower = true; } if (!send_request_to_increase && send_request_to_lower) { /*use dcfclk to request voltage*/ clock_voltage_req.clk_type = DM_PP_CLOCK_TYPE_DCFCLK; clock_voltage_req.clocks_in_khz = dcn_find_dcfclk_suits_all(dc, new_clocks); dm_pp_apply_clock_for_voltage_request(dccg->ctx, &clock_voltage_req); if (pp_smu->set_display_requirement) pp_smu->set_display_requirement(&pp_smu->pp_smu, &smu_req); } *smu_req_cur = smu_req; } #endif static void dce_update_clocks(struct dccg *dccg, struct dc_clocks *new_clocks, bool safe_to_lower) { struct dm_pp_power_level_change_request level_change_req; level_change_req.power_level = dce_get_required_clocks_state(dccg, new_clocks); /* get max clock state from PPLIB */ if ((level_change_req.power_level < dccg->cur_min_clks_state && safe_to_lower) || level_change_req.power_level > dccg->cur_min_clks_state) { if (dm_pp_apply_power_level_change_request(dccg->ctx, &level_change_req)) dccg->cur_min_clks_state = level_change_req.power_level; } if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, dccg->clks.dispclk_khz)) { new_clocks->dispclk_khz = dccg->funcs->set_dispclk(dccg, new_clocks->dispclk_khz); dccg->clks.dispclk_khz = new_clocks->dispclk_khz; } } #ifdef CONFIG_X86 static const struct display_clock_funcs dcn1_funcs = { .get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz, .set_dispclk = dce112_set_clock, .update_clocks = dcn1_update_clocks }; #endif static const struct display_clock_funcs dce120_funcs = { .get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz, .set_dispclk = dce112_set_clock, .update_clocks = dce12_update_clocks }; static const struct display_clock_funcs dce112_funcs = { .get_dp_ref_clk_frequency = dce_get_dp_ref_freq_khz, .set_dispclk = dce112_set_clock, .update_clocks = dce_update_clocks }; static const struct display_clock_funcs dce110_funcs = { .get_dp_ref_clk_frequency = dce_get_dp_ref_freq_khz, .set_dispclk = dce_psr_set_clock, .update_clocks = dce_update_clocks }; static const struct display_clock_funcs dce_funcs = { .get_dp_ref_clk_frequency = dce_get_dp_ref_freq_khz, .set_dispclk = dce_set_clock, .update_clocks = dce_update_clocks }; static void dce_dccg_construct( struct dce_dccg *clk_dce, struct dc_context *ctx, const struct dccg_registers *regs, const struct dccg_shift *clk_shift, const struct dccg_mask *clk_mask) { struct dccg *base = &clk_dce->base; base->ctx = ctx; base->funcs = &dce_funcs; clk_dce->regs = regs; clk_dce->clk_shift = clk_shift; clk_dce->clk_mask = clk_mask; clk_dce->dfs_bypass_disp_clk = 0; clk_dce->dprefclk_ss_percentage = 0; clk_dce->dprefclk_ss_divider = 1000; clk_dce->ss_on_dprefclk = false; base->max_clks_state = DM_PP_CLOCKS_STATE_NOMINAL; base->cur_min_clks_state = DM_PP_CLOCKS_STATE_INVALID; dce_clock_read_integrated_info(clk_dce); dce_clock_read_ss_info(clk_dce); } struct dccg *dce_dccg_create( struct dc_context *ctx, const struct dccg_registers *regs, const struct dccg_shift *clk_shift, const struct dccg_mask *clk_mask) { struct dce_dccg *clk_dce = kzalloc(sizeof(*clk_dce), GFP_KERNEL); if (clk_dce == NULL) { BREAK_TO_DEBUGGER(); return NULL; } memcpy(clk_dce->max_clks_by_state, dce80_max_clks_by_state, sizeof(dce80_max_clks_by_state)); dce_dccg_construct( clk_dce, ctx, regs, clk_shift, clk_mask); return &clk_dce->base; } struct dccg *dce110_dccg_create( struct dc_context *ctx, const struct dccg_registers *regs, const struct dccg_shift *clk_shift, const struct dccg_mask *clk_mask) { struct dce_dccg *clk_dce = kzalloc(sizeof(*clk_dce), GFP_KERNEL); if (clk_dce == NULL) { BREAK_TO_DEBUGGER(); return NULL; } memcpy(clk_dce->max_clks_by_state, dce110_max_clks_by_state, sizeof(dce110_max_clks_by_state)); dce_dccg_construct( clk_dce, ctx, regs, clk_shift, clk_mask); clk_dce->base.funcs = &dce110_funcs; return &clk_dce->base; } struct dccg *dce112_dccg_create( struct dc_context *ctx, const struct dccg_registers *regs, const struct dccg_shift *clk_shift, const struct dccg_mask *clk_mask) { struct dce_dccg *clk_dce = kzalloc(sizeof(*clk_dce), GFP_KERNEL); if (clk_dce == NULL) { BREAK_TO_DEBUGGER(); return NULL; } memcpy(clk_dce->max_clks_by_state, dce112_max_clks_by_state, sizeof(dce112_max_clks_by_state)); dce_dccg_construct( clk_dce, ctx, regs, clk_shift, clk_mask); clk_dce->base.funcs = &dce112_funcs; return &clk_dce->base; } struct dccg *dce120_dccg_create(struct dc_context *ctx) { struct dce_dccg *clk_dce = kzalloc(sizeof(*clk_dce), GFP_KERNEL); if (clk_dce == NULL) { BREAK_TO_DEBUGGER(); return NULL; } memcpy(clk_dce->max_clks_by_state, dce120_max_clks_by_state, sizeof(dce120_max_clks_by_state)); dce_dccg_construct( clk_dce, ctx, NULL, NULL, NULL); clk_dce->base.funcs = &dce120_funcs; return &clk_dce->base; } #ifdef CONFIG_X86 struct dccg *dcn1_dccg_create(struct dc_context *ctx) { struct dc_debug_options *debug = &ctx->dc->debug; struct dc_bios *bp = ctx->dc_bios; struct dc_firmware_info fw_info = { { 0 } }; struct dce_dccg *clk_dce = kzalloc(sizeof(*clk_dce), GFP_KERNEL); if (clk_dce == NULL) { BREAK_TO_DEBUGGER(); return NULL; } clk_dce->base.ctx = ctx; clk_dce->base.funcs = &dcn1_funcs; clk_dce->dfs_bypass_disp_clk = 0; clk_dce->dprefclk_ss_percentage = 0; clk_dce->dprefclk_ss_divider = 1000; clk_dce->ss_on_dprefclk = false; if (bp->integrated_info) clk_dce->dentist_vco_freq_khz = bp->integrated_info->dentist_vco_freq; if (clk_dce->dentist_vco_freq_khz == 0) { bp->funcs->get_firmware_info(bp, &fw_info); clk_dce->dentist_vco_freq_khz = fw_info.smu_gpu_pll_output_freq; if (clk_dce->dentist_vco_freq_khz == 0) clk_dce->dentist_vco_freq_khz = 3600000; } if (!debug->disable_dfs_bypass && bp->integrated_info) if (bp->integrated_info->gpu_cap_info & DFS_BYPASS_ENABLE) clk_dce->dfs_bypass_enabled = true; dce_clock_read_ss_info(clk_dce); return &clk_dce->base; } #endif void dce_dccg_destroy(struct dccg **dccg) { struct dce_dccg *clk_dce = TO_DCE_CLOCKS(*dccg); kfree(clk_dce); *dccg = NULL; }