// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. * Copyright (C) 2019-2021 Linaro Ltd. */ #include #include #include #include #include #include #include #include "ipa.h" #include "ipa_reg.h" #include "ipa_data.h" #include "ipa_cmd.h" #include "ipa_mem.h" #include "ipa_table.h" #include "gsi_trans.h" /* "Canary" value placed between memory regions to detect overflow */ #define IPA_MEM_CANARY_VAL cpu_to_le32(0xdeadbeef) /* SMEM host id representing the modem. */ #define QCOM_SMEM_HOST_MODEM 1 /* Add an immediate command to a transaction that zeroes a memory region */ static void ipa_mem_zero_region_add(struct gsi_trans *trans, const struct ipa_mem *mem) { struct ipa *ipa = container_of(trans->gsi, struct ipa, gsi); dma_addr_t addr = ipa->zero_addr; if (!mem->size) return; ipa_cmd_dma_shared_mem_add(trans, mem->offset, mem->size, addr, true); } /** * ipa_mem_setup() - Set up IPA AP and modem shared memory areas * @ipa: IPA pointer * * Set up the shared memory regions in IPA local memory. This involves * zero-filling memory regions, and in the case of header memory, telling * the IPA where it's located. * * This function performs the initial setup of this memory. If the modem * crashes, its regions are re-zeroed in ipa_mem_zero_modem(). * * The AP informs the modem where its portions of memory are located * in a QMI exchange that occurs at modem startup. * * There is no need for a matching ipa_mem_teardown() function. * * Return: 0 if successful, or a negative error code */ int ipa_mem_setup(struct ipa *ipa) { dma_addr_t addr = ipa->zero_addr; struct gsi_trans *trans; u32 offset; u16 size; u32 val; /* Get a transaction to define the header memory region and to zero * the processing context and modem memory regions. */ trans = ipa_cmd_trans_alloc(ipa, 4); if (!trans) { dev_err(&ipa->pdev->dev, "no transaction for memory setup\n"); return -EBUSY; } /* Initialize IPA-local header memory. The modem and AP header * regions are contiguous, and initialized together. */ offset = ipa->mem[IPA_MEM_MODEM_HEADER].offset; size = ipa->mem[IPA_MEM_MODEM_HEADER].size; size += ipa->mem[IPA_MEM_AP_HEADER].size; ipa_cmd_hdr_init_local_add(trans, offset, size, addr); ipa_mem_zero_region_add(trans, &ipa->mem[IPA_MEM_MODEM_PROC_CTX]); ipa_mem_zero_region_add(trans, &ipa->mem[IPA_MEM_AP_PROC_CTX]); ipa_mem_zero_region_add(trans, &ipa->mem[IPA_MEM_MODEM]); gsi_trans_commit_wait(trans); /* Tell the hardware where the processing context area is located */ offset = ipa->mem_offset + ipa->mem[IPA_MEM_MODEM_PROC_CTX].offset; val = proc_cntxt_base_addr_encoded(ipa->version, offset); iowrite32(val, ipa->reg_virt + IPA_REG_LOCAL_PKT_PROC_CNTXT_OFFSET); return 0; } static bool ipa_mem_valid_one(struct ipa *ipa, const struct ipa_mem *mem) { struct device *dev = &ipa->pdev->dev; enum ipa_mem_id mem_id = mem->id; u16 size_multiple; /* Other than modem memory, sizes must be a multiple of 8 */ size_multiple = mem_id == IPA_MEM_MODEM ? 4 : 8; if (mem->size % size_multiple) dev_err(dev, "region %u size not a multiple of %u bytes\n", mem_id, size_multiple); else if (mem->offset % 8) dev_err(dev, "region %u offset not 8-byte aligned\n", mem_id); else if (mem->offset < mem->canary_count * sizeof(__le32)) dev_err(dev, "region %u offset too small for %hu canaries\n", mem_id, mem->canary_count); else if (mem->offset + mem->size > ipa->mem_size) dev_err(dev, "region %u ends beyond memory limit (0x%08x)\n", mem_id, ipa->mem_size); else if (mem_id == IPA_MEM_END_MARKER && mem->size) dev_err(dev, "non-zero end marker region size\n"); else return true; return false; } /* Verify each defined memory region is valid. */ static bool ipa_mem_valid(struct ipa *ipa) { struct device *dev = &ipa->pdev->dev; enum ipa_mem_id mem_id; for (mem_id = 0; mem_id < ipa->mem_count; mem_id++) { const struct ipa_mem *mem = &ipa->mem[mem_id]; /* Defined regions have non-zero size and/or canary count */ if (mem->size || mem->canary_count) { if (ipa_mem_valid_one(ipa, mem)) continue; return false; } /* It's harmless, but warn if an offset is provided */ if (mem->offset) dev_warn(dev, "empty region %u has non-zero offset\n", mem_id); } return true; } /** * ipa_mem_config() - Configure IPA shared memory * @ipa: IPA pointer * * Return: 0 if successful, or a negative error code */ int ipa_mem_config(struct ipa *ipa) { struct device *dev = &ipa->pdev->dev; enum ipa_mem_id mem_id; dma_addr_t addr; u32 mem_size; void *virt; u32 val; /* Check the advertised location and size of the shared memory area */ val = ioread32(ipa->reg_virt + IPA_REG_SHARED_MEM_SIZE_OFFSET); /* The fields in the register are in 8 byte units */ ipa->mem_offset = 8 * u32_get_bits(val, SHARED_MEM_BADDR_FMASK); /* Make sure the end is within the region's mapped space */ mem_size = 8 * u32_get_bits(val, SHARED_MEM_SIZE_FMASK); /* If the sizes don't match, issue a warning */ if (ipa->mem_offset + mem_size < ipa->mem_size) { dev_warn(dev, "limiting IPA memory size to 0x%08x\n", mem_size); ipa->mem_size = mem_size; } else if (ipa->mem_offset + mem_size > ipa->mem_size) { dev_dbg(dev, "ignoring larger reported memory size: 0x%08x\n", mem_size); } /* Prealloc DMA memory for zeroing regions */ virt = dma_alloc_coherent(dev, IPA_MEM_MAX, &addr, GFP_KERNEL); if (!virt) return -ENOMEM; ipa->zero_addr = addr; ipa->zero_virt = virt; ipa->zero_size = IPA_MEM_MAX; /* Make sure all defined memory regions are valid */ if (!ipa_mem_valid(ipa)) goto err_dma_free; /* For each region, write "canary" values in the space prior to * the region's base address if indicated. */ for (mem_id = 0; mem_id < ipa->mem_count; mem_id++) { const struct ipa_mem *mem = &ipa->mem[mem_id]; u16 canary_count; __le32 *canary; /* Skip over undefined regions */ if (!mem->offset && !mem->size) continue; canary_count = mem->canary_count; if (!canary_count) continue; /* Write canary values in the space before the region */ canary = ipa->mem_virt + ipa->mem_offset + mem->offset; do *--canary = IPA_MEM_CANARY_VAL; while (--canary_count); } /* Make sure filter and route table memory regions are valid */ if (!ipa_table_valid(ipa)) goto err_dma_free; /* Validate memory-related properties relevant to immediate commands */ if (!ipa_cmd_data_valid(ipa)) goto err_dma_free; /* Verify the microcontroller ring alignment (0 is OK too) */ if (ipa->mem[IPA_MEM_UC_EVENT_RING].offset % 1024) { dev_err(dev, "microcontroller ring not 1024-byte aligned\n"); goto err_dma_free; } return 0; err_dma_free: dma_free_coherent(dev, IPA_MEM_MAX, ipa->zero_virt, ipa->zero_addr); return -EINVAL; } /* Inverse of ipa_mem_config() */ void ipa_mem_deconfig(struct ipa *ipa) { struct device *dev = &ipa->pdev->dev; dma_free_coherent(dev, ipa->zero_size, ipa->zero_virt, ipa->zero_addr); ipa->zero_size = 0; ipa->zero_virt = NULL; ipa->zero_addr = 0; } /** * ipa_mem_zero_modem() - Zero IPA-local memory regions owned by the modem * @ipa: IPA pointer * * Zero regions of IPA-local memory used by the modem. These are configured * (and initially zeroed) by ipa_mem_setup(), but if the modem crashes and * restarts via SSR we need to re-initialize them. A QMI message tells the * modem where to find regions of IPA local memory it needs to know about * (these included). */ int ipa_mem_zero_modem(struct ipa *ipa) { struct gsi_trans *trans; /* Get a transaction to zero the modem memory, modem header, * and modem processing context regions. */ trans = ipa_cmd_trans_alloc(ipa, 3); if (!trans) { dev_err(&ipa->pdev->dev, "no transaction to zero modem memory\n"); return -EBUSY; } ipa_mem_zero_region_add(trans, &ipa->mem[IPA_MEM_MODEM_HEADER]); ipa_mem_zero_region_add(trans, &ipa->mem[IPA_MEM_MODEM_PROC_CTX]); ipa_mem_zero_region_add(trans, &ipa->mem[IPA_MEM_MODEM]); gsi_trans_commit_wait(trans); return 0; } /** * ipa_imem_init() - Initialize IMEM memory used by the IPA * @ipa: IPA pointer * @addr: Physical address of the IPA region in IMEM * @size: Size (bytes) of the IPA region in IMEM * * IMEM is a block of shared memory separate from system DRAM, and * a portion of this memory is available for the IPA to use. The * modem accesses this memory directly, but the IPA accesses it * via the IOMMU, using the AP's credentials. * * If this region exists (size > 0) we map it for read/write access * through the IOMMU using the IPA device. * * Note: @addr and @size are not guaranteed to be page-aligned. */ static int ipa_imem_init(struct ipa *ipa, unsigned long addr, size_t size) { struct device *dev = &ipa->pdev->dev; struct iommu_domain *domain; unsigned long iova; phys_addr_t phys; int ret; if (!size) return 0; /* IMEM memory not used */ domain = iommu_get_domain_for_dev(dev); if (!domain) { dev_err(dev, "no IOMMU domain found for IMEM\n"); return -EINVAL; } /* Align the address down and the size up to page boundaries */ phys = addr & PAGE_MASK; size = PAGE_ALIGN(size + addr - phys); iova = phys; /* We just want a direct mapping */ ret = iommu_map(domain, iova, phys, size, IOMMU_READ | IOMMU_WRITE); if (ret) return ret; ipa->imem_iova = iova; ipa->imem_size = size; return 0; } static void ipa_imem_exit(struct ipa *ipa) { struct iommu_domain *domain; struct device *dev; if (!ipa->imem_size) return; dev = &ipa->pdev->dev; domain = iommu_get_domain_for_dev(dev); if (domain) { size_t size; size = iommu_unmap(domain, ipa->imem_iova, ipa->imem_size); if (size != ipa->imem_size) dev_warn(dev, "unmapped %zu IMEM bytes, expected %zu\n", size, ipa->imem_size); } else { dev_err(dev, "couldn't get IPA IOMMU domain for IMEM\n"); } ipa->imem_size = 0; ipa->imem_iova = 0; } /** * ipa_smem_init() - Initialize SMEM memory used by the IPA * @ipa: IPA pointer * @item: Item ID of SMEM memory * @size: Size (bytes) of SMEM memory region * * SMEM is a managed block of shared DRAM, from which numbered "items" * can be allocated. One item is designated for use by the IPA. * * The modem accesses SMEM memory directly, but the IPA accesses it * via the IOMMU, using the AP's credentials. * * If size provided is non-zero, we allocate it and map it for * access through the IOMMU. * * Note: @size and the item address are is not guaranteed to be page-aligned. */ static int ipa_smem_init(struct ipa *ipa, u32 item, size_t size) { struct device *dev = &ipa->pdev->dev; struct iommu_domain *domain; unsigned long iova; phys_addr_t phys; phys_addr_t addr; size_t actual; void *virt; int ret; if (!size) return 0; /* SMEM memory not used */ /* SMEM is memory shared between the AP and another system entity * (in this case, the modem). An allocation from SMEM is persistent * until the AP reboots; there is no way to free an allocated SMEM * region. Allocation only reserves the space; to use it you need * to "get" a pointer it (this implies no reference counting). * The item might have already been allocated, in which case we * use it unless the size isn't what we expect. */ ret = qcom_smem_alloc(QCOM_SMEM_HOST_MODEM, item, size); if (ret && ret != -EEXIST) { dev_err(dev, "error %d allocating size %zu SMEM item %u\n", ret, size, item); return ret; } /* Now get the address of the SMEM memory region */ virt = qcom_smem_get(QCOM_SMEM_HOST_MODEM, item, &actual); if (IS_ERR(virt)) { ret = PTR_ERR(virt); dev_err(dev, "error %d getting SMEM item %u\n", ret, item); return ret; } /* In case the region was already allocated, verify the size */ if (ret && actual != size) { dev_err(dev, "SMEM item %u has size %zu, expected %zu\n", item, actual, size); return -EINVAL; } domain = iommu_get_domain_for_dev(dev); if (!domain) { dev_err(dev, "no IOMMU domain found for SMEM\n"); return -EINVAL; } /* Align the address down and the size up to a page boundary */ addr = qcom_smem_virt_to_phys(virt) & PAGE_MASK; phys = addr & PAGE_MASK; size = PAGE_ALIGN(size + addr - phys); iova = phys; /* We just want a direct mapping */ ret = iommu_map(domain, iova, phys, size, IOMMU_READ | IOMMU_WRITE); if (ret) return ret; ipa->smem_iova = iova; ipa->smem_size = size; return 0; } static void ipa_smem_exit(struct ipa *ipa) { struct device *dev = &ipa->pdev->dev; struct iommu_domain *domain; domain = iommu_get_domain_for_dev(dev); if (domain) { size_t size; size = iommu_unmap(domain, ipa->smem_iova, ipa->smem_size); if (size != ipa->smem_size) dev_warn(dev, "unmapped %zu SMEM bytes, expected %zu\n", size, ipa->smem_size); } else { dev_err(dev, "couldn't get IPA IOMMU domain for SMEM\n"); } ipa->smem_size = 0; ipa->smem_iova = 0; } /* Perform memory region-related initialization */ int ipa_mem_init(struct ipa *ipa, const struct ipa_mem_data *mem_data) { struct device *dev = &ipa->pdev->dev; struct resource *res; int ret; if (mem_data->local_count > IPA_MEM_COUNT) { dev_err(dev, "to many memory regions (%u > %u)\n", mem_data->local_count, IPA_MEM_COUNT); return -EINVAL; } ret = dma_set_mask_and_coherent(&ipa->pdev->dev, DMA_BIT_MASK(64)); if (ret) { dev_err(dev, "error %d setting DMA mask\n", ret); return ret; } res = platform_get_resource_byname(ipa->pdev, IORESOURCE_MEM, "ipa-shared"); if (!res) { dev_err(dev, "DT error getting \"ipa-shared\" memory property\n"); return -ENODEV; } ipa->mem_virt = memremap(res->start, resource_size(res), MEMREMAP_WC); if (!ipa->mem_virt) { dev_err(dev, "unable to remap \"ipa-shared\" memory\n"); return -ENOMEM; } ipa->mem_addr = res->start; ipa->mem_size = resource_size(res); /* The ipa->mem[] array is indexed by enum ipa_mem_id values */ ipa->mem_count = mem_data->local_count; ipa->mem = mem_data->local; ret = ipa_imem_init(ipa, mem_data->imem_addr, mem_data->imem_size); if (ret) goto err_unmap; ret = ipa_smem_init(ipa, mem_data->smem_id, mem_data->smem_size); if (ret) goto err_imem_exit; return 0; err_imem_exit: ipa_imem_exit(ipa); err_unmap: memunmap(ipa->mem_virt); return ret; } /* Inverse of ipa_mem_init() */ void ipa_mem_exit(struct ipa *ipa) { ipa_smem_exit(ipa); ipa_imem_exit(ipa); memunmap(ipa->mem_virt); }