/* * Copyright (c) 2010 Broadcom Corporation * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sdio_host.h" #include "sdio_chip.h" #define DCMD_RESP_TIMEOUT 2000 /* In milli second */ #ifdef DEBUG #define BRCMF_TRAP_INFO_SIZE 80 #define CBUF_LEN (128) /* Device console log buffer state */ #define CONSOLE_BUFFER_MAX 2024 struct rte_log_le { __le32 buf; /* Can't be pointer on (64-bit) hosts */ __le32 buf_size; __le32 idx; char *_buf_compat; /* Redundant pointer for backward compat. */ }; struct rte_console { /* Virtual UART * When there is no UART (e.g. Quickturn), * the host should write a complete * input line directly into cbuf and then write * the length into vcons_in. * This may also be used when there is a real UART * (at risk of conflicting with * the real UART). vcons_out is currently unused. */ uint vcons_in; uint vcons_out; /* Output (logging) buffer * Console output is written to a ring buffer log_buf at index log_idx. * The host may read the output when it sees log_idx advance. * Output will be lost if the output wraps around faster than the host * polls. */ struct rte_log_le log_le; /* Console input line buffer * Characters are read one at a time into cbuf * until is received, then * the buffer is processed as a command line. * Also used for virtual UART. */ uint cbuf_idx; char cbuf[CBUF_LEN]; }; #endif /* DEBUG */ #include #include "dhd_bus.h" #include "dhd_dbg.h" #include "tracepoint.h" #define TXQLEN 2048 /* bulk tx queue length */ #define TXHI (TXQLEN - 256) /* turn on flow control above TXHI */ #define TXLOW (TXHI - 256) /* turn off flow control below TXLOW */ #define PRIOMASK 7 #define TXRETRIES 2 /* # of retries for tx frames */ #define BRCMF_RXBOUND 50 /* Default for max rx frames in one scheduling */ #define BRCMF_TXBOUND 20 /* Default for max tx frames in one scheduling */ #define BRCMF_TXMINMAX 1 /* Max tx frames if rx still pending */ #define MEMBLOCK 2048 /* Block size used for downloading of dongle image */ #define MAX_DATA_BUF (32 * 1024) /* Must be large enough to hold biggest possible glom */ #define BRCMF_FIRSTREAD (1 << 6) /* SBSDIO_DEVICE_CTL */ /* 1: device will assert busy signal when receiving CMD53 */ #define SBSDIO_DEVCTL_SETBUSY 0x01 /* 1: assertion of sdio interrupt is synchronous to the sdio clock */ #define SBSDIO_DEVCTL_SPI_INTR_SYNC 0x02 /* 1: mask all interrupts to host except the chipActive (rev 8) */ #define SBSDIO_DEVCTL_CA_INT_ONLY 0x04 /* 1: isolate internal sdio signals, put external pads in tri-state; requires * sdio bus power cycle to clear (rev 9) */ #define SBSDIO_DEVCTL_PADS_ISO 0x08 /* Force SD->SB reset mapping (rev 11) */ #define SBSDIO_DEVCTL_SB_RST_CTL 0x30 /* Determined by CoreControl bit */ #define SBSDIO_DEVCTL_RST_CORECTL 0x00 /* Force backplane reset */ #define SBSDIO_DEVCTL_RST_BPRESET 0x10 /* Force no backplane reset */ #define SBSDIO_DEVCTL_RST_NOBPRESET 0x20 /* direct(mapped) cis space */ /* MAPPED common CIS address */ #define SBSDIO_CIS_BASE_COMMON 0x1000 /* maximum bytes in one CIS */ #define SBSDIO_CIS_SIZE_LIMIT 0x200 /* cis offset addr is < 17 bits */ #define SBSDIO_CIS_OFT_ADDR_MASK 0x1FFFF /* manfid tuple length, include tuple, link bytes */ #define SBSDIO_CIS_MANFID_TUPLE_LEN 6 /* intstatus */ #define I_SMB_SW0 (1 << 0) /* To SB Mail S/W interrupt 0 */ #define I_SMB_SW1 (1 << 1) /* To SB Mail S/W interrupt 1 */ #define I_SMB_SW2 (1 << 2) /* To SB Mail S/W interrupt 2 */ #define I_SMB_SW3 (1 << 3) /* To SB Mail S/W interrupt 3 */ #define I_SMB_SW_MASK 0x0000000f /* To SB Mail S/W interrupts mask */ #define I_SMB_SW_SHIFT 0 /* To SB Mail S/W interrupts shift */ #define I_HMB_SW0 (1 << 4) /* To Host Mail S/W interrupt 0 */ #define I_HMB_SW1 (1 << 5) /* To Host Mail S/W interrupt 1 */ #define I_HMB_SW2 (1 << 6) /* To Host Mail S/W interrupt 2 */ #define I_HMB_SW3 (1 << 7) /* To Host Mail S/W interrupt 3 */ #define I_HMB_SW_MASK 0x000000f0 /* To Host Mail S/W interrupts mask */ #define I_HMB_SW_SHIFT 4 /* To Host Mail S/W interrupts shift */ #define I_WR_OOSYNC (1 << 8) /* Write Frame Out Of Sync */ #define I_RD_OOSYNC (1 << 9) /* Read Frame Out Of Sync */ #define I_PC (1 << 10) /* descriptor error */ #define I_PD (1 << 11) /* data error */ #define I_DE (1 << 12) /* Descriptor protocol Error */ #define I_RU (1 << 13) /* Receive descriptor Underflow */ #define I_RO (1 << 14) /* Receive fifo Overflow */ #define I_XU (1 << 15) /* Transmit fifo Underflow */ #define I_RI (1 << 16) /* Receive Interrupt */ #define I_BUSPWR (1 << 17) /* SDIO Bus Power Change (rev 9) */ #define I_XMTDATA_AVAIL (1 << 23) /* bits in fifo */ #define I_XI (1 << 24) /* Transmit Interrupt */ #define I_RF_TERM (1 << 25) /* Read Frame Terminate */ #define I_WF_TERM (1 << 26) /* Write Frame Terminate */ #define I_PCMCIA_XU (1 << 27) /* PCMCIA Transmit FIFO Underflow */ #define I_SBINT (1 << 28) /* sbintstatus Interrupt */ #define I_CHIPACTIVE (1 << 29) /* chip from doze to active state */ #define I_SRESET (1 << 30) /* CCCR RES interrupt */ #define I_IOE2 (1U << 31) /* CCCR IOE2 Bit Changed */ #define I_ERRORS (I_PC | I_PD | I_DE | I_RU | I_RO | I_XU) #define I_DMA (I_RI | I_XI | I_ERRORS) /* corecontrol */ #define CC_CISRDY (1 << 0) /* CIS Ready */ #define CC_BPRESEN (1 << 1) /* CCCR RES signal */ #define CC_F2RDY (1 << 2) /* set CCCR IOR2 bit */ #define CC_CLRPADSISO (1 << 3) /* clear SDIO pads isolation */ #define CC_XMTDATAAVAIL_MODE (1 << 4) #define CC_XMTDATAAVAIL_CTRL (1 << 5) /* SDA_FRAMECTRL */ #define SFC_RF_TERM (1 << 0) /* Read Frame Terminate */ #define SFC_WF_TERM (1 << 1) /* Write Frame Terminate */ #define SFC_CRC4WOOS (1 << 2) /* CRC error for write out of sync */ #define SFC_ABORTALL (1 << 3) /* Abort all in-progress frames */ /* HW frame tag */ #define SDPCM_FRAMETAG_LEN 4 /* 2 bytes len, 2 bytes check val */ /* Total length of frame header for dongle protocol */ #define SDPCM_HDRLEN (SDPCM_FRAMETAG_LEN + SDPCM_SWHEADER_LEN) #define SDPCM_RESERVE (SDPCM_HDRLEN + BRCMF_SDALIGN) /* * Software allocation of To SB Mailbox resources */ /* tosbmailbox bits corresponding to intstatus bits */ #define SMB_NAK (1 << 0) /* Frame NAK */ #define SMB_INT_ACK (1 << 1) /* Host Interrupt ACK */ #define SMB_USE_OOB (1 << 2) /* Use OOB Wakeup */ #define SMB_DEV_INT (1 << 3) /* Miscellaneous Interrupt */ /* tosbmailboxdata */ #define SMB_DATA_VERSION_SHIFT 16 /* host protocol version */ /* * Software allocation of To Host Mailbox resources */ /* intstatus bits */ #define I_HMB_FC_STATE I_HMB_SW0 /* Flow Control State */ #define I_HMB_FC_CHANGE I_HMB_SW1 /* Flow Control State Changed */ #define I_HMB_FRAME_IND I_HMB_SW2 /* Frame Indication */ #define I_HMB_HOST_INT I_HMB_SW3 /* Miscellaneous Interrupt */ /* tohostmailboxdata */ #define HMB_DATA_NAKHANDLED 1 /* retransmit NAK'd frame */ #define HMB_DATA_DEVREADY 2 /* talk to host after enable */ #define HMB_DATA_FC 4 /* per prio flowcontrol update flag */ #define HMB_DATA_FWREADY 8 /* fw ready for protocol activity */ #define HMB_DATA_FCDATA_MASK 0xff000000 #define HMB_DATA_FCDATA_SHIFT 24 #define HMB_DATA_VERSION_MASK 0x00ff0000 #define HMB_DATA_VERSION_SHIFT 16 /* * Software-defined protocol header */ /* Current protocol version */ #define SDPCM_PROT_VERSION 4 /* SW frame header */ #define SDPCM_PACKET_SEQUENCE(p) (((u8 *)p)[0] & 0xff) #define SDPCM_CHANNEL_MASK 0x00000f00 #define SDPCM_CHANNEL_SHIFT 8 #define SDPCM_PACKET_CHANNEL(p) (((u8 *)p)[1] & 0x0f) #define SDPCM_NEXTLEN_OFFSET 2 /* Data Offset from SOF (HW Tag, SW Tag, Pad) */ #define SDPCM_DOFFSET_OFFSET 3 /* Data Offset */ #define SDPCM_DOFFSET_VALUE(p) (((u8 *)p)[SDPCM_DOFFSET_OFFSET] & 0xff) #define SDPCM_DOFFSET_MASK 0xff000000 #define SDPCM_DOFFSET_SHIFT 24 #define SDPCM_FCMASK_OFFSET 4 /* Flow control */ #define SDPCM_FCMASK_VALUE(p) (((u8 *)p)[SDPCM_FCMASK_OFFSET] & 0xff) #define SDPCM_WINDOW_OFFSET 5 /* Credit based fc */ #define SDPCM_WINDOW_VALUE(p) (((u8 *)p)[SDPCM_WINDOW_OFFSET] & 0xff) #define SDPCM_SWHEADER_LEN 8 /* SW header is 64 bits */ /* logical channel numbers */ #define SDPCM_CONTROL_CHANNEL 0 /* Control channel Id */ #define SDPCM_EVENT_CHANNEL 1 /* Asyc Event Indication Channel Id */ #define SDPCM_DATA_CHANNEL 2 /* Data Xmit/Recv Channel Id */ #define SDPCM_GLOM_CHANNEL 3 /* For coalesced packets */ #define SDPCM_TEST_CHANNEL 15 /* Reserved for test/debug packets */ #define SDPCM_SEQUENCE_WRAP 256 /* wrap-around val for 8bit frame seq */ #define SDPCM_GLOMDESC(p) (((u8 *)p)[1] & 0x80) /* * Shared structure between dongle and the host. * The structure contains pointers to trap or assert information. */ #define SDPCM_SHARED_VERSION 0x0003 #define SDPCM_SHARED_VERSION_MASK 0x00FF #define SDPCM_SHARED_ASSERT_BUILT 0x0100 #define SDPCM_SHARED_ASSERT 0x0200 #define SDPCM_SHARED_TRAP 0x0400 /* Space for header read, limit for data packets */ #define MAX_HDR_READ (1 << 6) #define MAX_RX_DATASZ 2048 /* Maximum milliseconds to wait for F2 to come up */ #define BRCMF_WAIT_F2RDY 3000 /* Bump up limit on waiting for HT to account for first startup; * if the image is doing a CRC calculation before programming the PMU * for HT availability, it could take a couple hundred ms more, so * max out at a 1 second (1000000us). */ #undef PMU_MAX_TRANSITION_DLY #define PMU_MAX_TRANSITION_DLY 1000000 /* Value for ChipClockCSR during initial setup */ #define BRCMF_INIT_CLKCTL1 (SBSDIO_FORCE_HW_CLKREQ_OFF | \ SBSDIO_ALP_AVAIL_REQ) /* Flags for SDH calls */ #define F2SYNC (SDIO_REQ_4BYTE | SDIO_REQ_FIXED) #define BRCMF_SDIO_FW_NAME "brcm/brcmfmac-sdio.bin" #define BRCMF_SDIO_NV_NAME "brcm/brcmfmac-sdio.txt" MODULE_FIRMWARE(BRCMF_SDIO_FW_NAME); MODULE_FIRMWARE(BRCMF_SDIO_NV_NAME); #define BRCMF_IDLE_IMMEDIATE (-1) /* Enter idle immediately */ #define BRCMF_IDLE_ACTIVE 0 /* Do not request any SD clock change * when idle */ #define BRCMF_IDLE_INTERVAL 1 #define KSO_WAIT_US 50 #define MAX_KSO_ATTEMPTS (PMU_MAX_TRANSITION_DLY/KSO_WAIT_US) /* * Conversion of 802.1D priority to precedence level */ static uint prio2prec(u32 prio) { return (prio == PRIO_8021D_NONE || prio == PRIO_8021D_BE) ? (prio^2) : prio; } #ifdef DEBUG /* Device console log buffer state */ struct brcmf_console { uint count; /* Poll interval msec counter */ uint log_addr; /* Log struct address (fixed) */ struct rte_log_le log_le; /* Log struct (host copy) */ uint bufsize; /* Size of log buffer */ u8 *buf; /* Log buffer (host copy) */ uint last; /* Last buffer read index */ }; struct brcmf_trap_info { __le32 type; __le32 epc; __le32 cpsr; __le32 spsr; __le32 r0; /* a1 */ __le32 r1; /* a2 */ __le32 r2; /* a3 */ __le32 r3; /* a4 */ __le32 r4; /* v1 */ __le32 r5; /* v2 */ __le32 r6; /* v3 */ __le32 r7; /* v4 */ __le32 r8; /* v5 */ __le32 r9; /* sb/v6 */ __le32 r10; /* sl/v7 */ __le32 r11; /* fp/v8 */ __le32 r12; /* ip */ __le32 r13; /* sp */ __le32 r14; /* lr */ __le32 pc; /* r15 */ }; #endif /* DEBUG */ struct sdpcm_shared { u32 flags; u32 trap_addr; u32 assert_exp_addr; u32 assert_file_addr; u32 assert_line; u32 console_addr; /* Address of struct rte_console */ u32 msgtrace_addr; u8 tag[32]; u32 brpt_addr; }; struct sdpcm_shared_le { __le32 flags; __le32 trap_addr; __le32 assert_exp_addr; __le32 assert_file_addr; __le32 assert_line; __le32 console_addr; /* Address of struct rte_console */ __le32 msgtrace_addr; u8 tag[32]; __le32 brpt_addr; }; /* SDIO read frame info */ struct brcmf_sdio_read { u8 seq_num; u8 channel; u16 len; u16 len_left; u16 len_nxtfrm; u8 dat_offset; }; /* misc chip info needed by some of the routines */ /* Private data for SDIO bus interaction */ struct brcmf_sdio { struct brcmf_sdio_dev *sdiodev; /* sdio device handler */ struct chip_info *ci; /* Chip info struct */ char *vars; /* Variables (from CIS and/or other) */ uint varsz; /* Size of variables buffer */ u32 ramsize; /* Size of RAM in SOCRAM (bytes) */ u32 hostintmask; /* Copy of Host Interrupt Mask */ atomic_t intstatus; /* Intstatus bits (events) pending */ atomic_t fcstate; /* State of dongle flow-control */ uint blocksize; /* Block size of SDIO transfers */ uint roundup; /* Max roundup limit */ struct pktq txq; /* Queue length used for flow-control */ u8 flowcontrol; /* per prio flow control bitmask */ u8 tx_seq; /* Transmit sequence number (next) */ u8 tx_max; /* Maximum transmit sequence allowed */ u8 hdrbuf[MAX_HDR_READ + BRCMF_SDALIGN]; u8 *rxhdr; /* Header of current rx frame (in hdrbuf) */ u8 rx_seq; /* Receive sequence number (expected) */ struct brcmf_sdio_read cur_read; /* info of current read frame */ bool rxskip; /* Skip receive (awaiting NAK ACK) */ bool rxpending; /* Data frame pending in dongle */ uint rxbound; /* Rx frames to read before resched */ uint txbound; /* Tx frames to send before resched */ uint txminmax; struct sk_buff *glomd; /* Packet containing glomming descriptor */ struct sk_buff_head glom; /* Packet list for glommed superframe */ uint glomerr; /* Glom packet read errors */ u8 *rxbuf; /* Buffer for receiving control packets */ uint rxblen; /* Allocated length of rxbuf */ u8 *rxctl; /* Aligned pointer into rxbuf */ u8 *rxctl_orig; /* pointer for freeing rxctl */ u8 *databuf; /* Buffer for receiving big glom packet */ u8 *dataptr; /* Aligned pointer into databuf */ uint rxlen; /* Length of valid data in buffer */ spinlock_t rxctl_lock; /* protection lock for ctrl frame resources */ u8 sdpcm_ver; /* Bus protocol reported by dongle */ bool intr; /* Use interrupts */ bool poll; /* Use polling */ atomic_t ipend; /* Device interrupt is pending */ uint spurious; /* Count of spurious interrupts */ uint pollrate; /* Ticks between device polls */ uint polltick; /* Tick counter */ #ifdef DEBUG uint console_interval; struct brcmf_console console; /* Console output polling support */ uint console_addr; /* Console address from shared struct */ #endif /* DEBUG */ uint clkstate; /* State of sd and backplane clock(s) */ bool activity; /* Activity flag for clock down */ s32 idletime; /* Control for activity timeout */ s32 idlecount; /* Activity timeout counter */ s32 idleclock; /* How to set bus driver when idle */ s32 sd_rxchain; bool use_rxchain; /* If brcmf should use PKT chains */ bool rxflow_mode; /* Rx flow control mode */ bool rxflow; /* Is rx flow control on */ bool alp_only; /* Don't use HT clock (ALP only) */ u8 *ctrl_frame_buf; u32 ctrl_frame_len; bool ctrl_frame_stat; spinlock_t txqlock; wait_queue_head_t ctrl_wait; wait_queue_head_t dcmd_resp_wait; struct timer_list timer; struct completion watchdog_wait; struct task_struct *watchdog_tsk; bool wd_timer_valid; uint save_ms; struct workqueue_struct *brcmf_wq; struct work_struct datawork; struct list_head dpc_tsklst; spinlock_t dpc_tl_lock; const struct firmware *firmware; u32 fw_ptr; bool txoff; /* Transmit flow-controlled */ struct brcmf_sdio_count sdcnt; bool sr_enabled; /* SaveRestore enabled */ bool sleeping; /* SDIO bus sleeping */ }; /* clkstate */ #define CLK_NONE 0 #define CLK_SDONLY 1 #define CLK_PENDING 2 #define CLK_AVAIL 3 #ifdef DEBUG static int qcount[NUMPRIO]; static int tx_packets[NUMPRIO]; #endif /* DEBUG */ #define SDIO_DRIVE_STRENGTH 6 /* in milliamps */ #define RETRYCHAN(chan) ((chan) == SDPCM_EVENT_CHANNEL) /* Retry count for register access failures */ static const uint retry_limit = 2; /* Limit on rounding up frames */ static const uint max_roundup = 512; #define ALIGNMENT 4 enum brcmf_sdio_frmtype { BRCMF_SDIO_FT_NORMAL, BRCMF_SDIO_FT_SUPER, BRCMF_SDIO_FT_SUB, }; static void pkt_align(struct sk_buff *p, int len, int align) { uint datalign; datalign = (unsigned long)(p->data); datalign = roundup(datalign, (align)) - datalign; if (datalign) skb_pull(p, datalign); __skb_trim(p, len); } /* To check if there's window offered */ static bool data_ok(struct brcmf_sdio *bus) { return (u8)(bus->tx_max - bus->tx_seq) != 0 && ((u8)(bus->tx_max - bus->tx_seq) & 0x80) == 0; } /* * Reads a register in the SDIO hardware block. This block occupies a series of * adresses on the 32 bit backplane bus. */ static int r_sdreg32(struct brcmf_sdio *bus, u32 *regvar, u32 offset) { u8 idx = brcmf_sdio_chip_getinfidx(bus->ci, BCMA_CORE_SDIO_DEV); int ret; *regvar = brcmf_sdio_regrl(bus->sdiodev, bus->ci->c_inf[idx].base + offset, &ret); return ret; } static int w_sdreg32(struct brcmf_sdio *bus, u32 regval, u32 reg_offset) { u8 idx = brcmf_sdio_chip_getinfidx(bus->ci, BCMA_CORE_SDIO_DEV); int ret; brcmf_sdio_regwl(bus->sdiodev, bus->ci->c_inf[idx].base + reg_offset, regval, &ret); return ret; } static int brcmf_sdbrcm_kso_control(struct brcmf_sdio *bus, bool on) { u8 wr_val = 0, rd_val, cmp_val, bmask; int err = 0; int try_cnt = 0; brcmf_dbg(TRACE, "Enter\n"); wr_val = (on << SBSDIO_FUNC1_SLEEPCSR_KSO_SHIFT); /* 1st KSO write goes to AOS wake up core if device is asleep */ brcmf_sdio_regwb(bus->sdiodev, SBSDIO_FUNC1_SLEEPCSR, wr_val, &err); if (err) { brcmf_err("SDIO_AOS KSO write error: %d\n", err); return err; } if (on) { /* device WAKEUP through KSO: * write bit 0 & read back until * both bits 0 (kso bit) & 1 (dev on status) are set */ cmp_val = SBSDIO_FUNC1_SLEEPCSR_KSO_MASK | SBSDIO_FUNC1_SLEEPCSR_DEVON_MASK; bmask = cmp_val; usleep_range(2000, 3000); } else { /* Put device to sleep, turn off KSO */ cmp_val = 0; /* only check for bit0, bit1(dev on status) may not * get cleared right away */ bmask = SBSDIO_FUNC1_SLEEPCSR_KSO_MASK; } do { /* reliable KSO bit set/clr: * the sdiod sleep write access is synced to PMU 32khz clk * just one write attempt may fail, * read it back until it matches written value */ rd_val = brcmf_sdio_regrb(bus->sdiodev, SBSDIO_FUNC1_SLEEPCSR, &err); if (((rd_val & bmask) == cmp_val) && !err) break; brcmf_dbg(SDIO, "KSO wr/rd retry:%d (max: %d) ERR:%x\n", try_cnt, MAX_KSO_ATTEMPTS, err); udelay(KSO_WAIT_US); brcmf_sdio_regwb(bus->sdiodev, SBSDIO_FUNC1_SLEEPCSR, wr_val, &err); } while (try_cnt++ < MAX_KSO_ATTEMPTS); return err; } #define PKT_AVAILABLE() (intstatus & I_HMB_FRAME_IND) #define HOSTINTMASK (I_HMB_SW_MASK | I_CHIPACTIVE) /* Turn backplane clock on or off */ static int brcmf_sdbrcm_htclk(struct brcmf_sdio *bus, bool on, bool pendok) { int err; u8 clkctl, clkreq, devctl; unsigned long timeout; brcmf_dbg(SDIO, "Enter\n"); clkctl = 0; if (bus->sr_enabled) { bus->clkstate = (on ? CLK_AVAIL : CLK_SDONLY); return 0; } if (on) { /* Request HT Avail */ clkreq = bus->alp_only ? SBSDIO_ALP_AVAIL_REQ : SBSDIO_HT_AVAIL_REQ; brcmf_sdio_regwb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, clkreq, &err); if (err) { brcmf_err("HT Avail request error: %d\n", err); return -EBADE; } /* Check current status */ clkctl = brcmf_sdio_regrb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, &err); if (err) { brcmf_err("HT Avail read error: %d\n", err); return -EBADE; } /* Go to pending and await interrupt if appropriate */ if (!SBSDIO_CLKAV(clkctl, bus->alp_only) && pendok) { /* Allow only clock-available interrupt */ devctl = brcmf_sdio_regrb(bus->sdiodev, SBSDIO_DEVICE_CTL, &err); if (err) { brcmf_err("Devctl error setting CA: %d\n", err); return -EBADE; } devctl |= SBSDIO_DEVCTL_CA_INT_ONLY; brcmf_sdio_regwb(bus->sdiodev, SBSDIO_DEVICE_CTL, devctl, &err); brcmf_dbg(SDIO, "CLKCTL: set PENDING\n"); bus->clkstate = CLK_PENDING; return 0; } else if (bus->clkstate == CLK_PENDING) { /* Cancel CA-only interrupt filter */ devctl = brcmf_sdio_regrb(bus->sdiodev, SBSDIO_DEVICE_CTL, &err); devctl &= ~SBSDIO_DEVCTL_CA_INT_ONLY; brcmf_sdio_regwb(bus->sdiodev, SBSDIO_DEVICE_CTL, devctl, &err); } /* Otherwise, wait here (polling) for HT Avail */ timeout = jiffies + msecs_to_jiffies(PMU_MAX_TRANSITION_DLY/1000); while (!SBSDIO_CLKAV(clkctl, bus->alp_only)) { clkctl = brcmf_sdio_regrb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, &err); if (time_after(jiffies, timeout)) break; else usleep_range(5000, 10000); } if (err) { brcmf_err("HT Avail request error: %d\n", err); return -EBADE; } if (!SBSDIO_CLKAV(clkctl, bus->alp_only)) { brcmf_err("HT Avail timeout (%d): clkctl 0x%02x\n", PMU_MAX_TRANSITION_DLY, clkctl); return -EBADE; } /* Mark clock available */ bus->clkstate = CLK_AVAIL; brcmf_dbg(SDIO, "CLKCTL: turned ON\n"); #if defined(DEBUG) if (!bus->alp_only) { if (SBSDIO_ALPONLY(clkctl)) brcmf_err("HT Clock should be on\n"); } #endif /* defined (DEBUG) */ bus->activity = true; } else { clkreq = 0; if (bus->clkstate == CLK_PENDING) { /* Cancel CA-only interrupt filter */ devctl = brcmf_sdio_regrb(bus->sdiodev, SBSDIO_DEVICE_CTL, &err); devctl &= ~SBSDIO_DEVCTL_CA_INT_ONLY; brcmf_sdio_regwb(bus->sdiodev, SBSDIO_DEVICE_CTL, devctl, &err); } bus->clkstate = CLK_SDONLY; brcmf_sdio_regwb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, clkreq, &err); brcmf_dbg(SDIO, "CLKCTL: turned OFF\n"); if (err) { brcmf_err("Failed access turning clock off: %d\n", err); return -EBADE; } } return 0; } /* Change idle/active SD state */ static int brcmf_sdbrcm_sdclk(struct brcmf_sdio *bus, bool on) { brcmf_dbg(SDIO, "Enter\n"); if (on) bus->clkstate = CLK_SDONLY; else bus->clkstate = CLK_NONE; return 0; } /* Transition SD and backplane clock readiness */ static int brcmf_sdbrcm_clkctl(struct brcmf_sdio *bus, uint target, bool pendok) { #ifdef DEBUG uint oldstate = bus->clkstate; #endif /* DEBUG */ brcmf_dbg(SDIO, "Enter\n"); /* Early exit if we're already there */ if (bus->clkstate == target) { if (target == CLK_AVAIL) { brcmf_sdbrcm_wd_timer(bus, BRCMF_WD_POLL_MS); bus->activity = true; } return 0; } switch (target) { case CLK_AVAIL: /* Make sure SD clock is available */ if (bus->clkstate == CLK_NONE) brcmf_sdbrcm_sdclk(bus, true); /* Now request HT Avail on the backplane */ brcmf_sdbrcm_htclk(bus, true, pendok); brcmf_sdbrcm_wd_timer(bus, BRCMF_WD_POLL_MS); bus->activity = true; break; case CLK_SDONLY: /* Remove HT request, or bring up SD clock */ if (bus->clkstate == CLK_NONE) brcmf_sdbrcm_sdclk(bus, true); else if (bus->clkstate == CLK_AVAIL) brcmf_sdbrcm_htclk(bus, false, false); else brcmf_err("request for %d -> %d\n", bus->clkstate, target); brcmf_sdbrcm_wd_timer(bus, BRCMF_WD_POLL_MS); break; case CLK_NONE: /* Make sure to remove HT request */ if (bus->clkstate == CLK_AVAIL) brcmf_sdbrcm_htclk(bus, false, false); /* Now remove the SD clock */ brcmf_sdbrcm_sdclk(bus, false); brcmf_sdbrcm_wd_timer(bus, 0); break; } #ifdef DEBUG brcmf_dbg(SDIO, "%d -> %d\n", oldstate, bus->clkstate); #endif /* DEBUG */ return 0; } static int brcmf_sdbrcm_bus_sleep(struct brcmf_sdio *bus, bool sleep, bool pendok) { int err = 0; brcmf_dbg(TRACE, "Enter\n"); brcmf_dbg(SDIO, "request %s currently %s\n", (sleep ? "SLEEP" : "WAKE"), (bus->sleeping ? "SLEEP" : "WAKE")); /* If SR is enabled control bus state with KSO */ if (bus->sr_enabled) { /* Done if we're already in the requested state */ if (sleep == bus->sleeping) goto end; /* Going to sleep */ if (sleep) { /* Don't sleep if something is pending */ if (atomic_read(&bus->intstatus) || atomic_read(&bus->ipend) > 0 || (!atomic_read(&bus->fcstate) && brcmu_pktq_mlen(&bus->txq, ~bus->flowcontrol) && data_ok(bus))) return -EBUSY; err = brcmf_sdbrcm_kso_control(bus, false); /* disable watchdog */ if (!err) brcmf_sdbrcm_wd_timer(bus, 0); } else { bus->idlecount = 0; err = brcmf_sdbrcm_kso_control(bus, true); } if (!err) { /* Change state */ bus->sleeping = sleep; brcmf_dbg(SDIO, "new state %s\n", (sleep ? "SLEEP" : "WAKE")); } else { brcmf_err("error while changing bus sleep state %d\n", err); return err; } } end: /* control clocks */ if (sleep) { if (!bus->sr_enabled) brcmf_sdbrcm_clkctl(bus, CLK_NONE, pendok); } else { brcmf_sdbrcm_clkctl(bus, CLK_AVAIL, pendok); } return err; } static u32 brcmf_sdbrcm_hostmail(struct brcmf_sdio *bus) { u32 intstatus = 0; u32 hmb_data; u8 fcbits; int ret; brcmf_dbg(SDIO, "Enter\n"); /* Read mailbox data and ack that we did so */ ret = r_sdreg32(bus, &hmb_data, offsetof(struct sdpcmd_regs, tohostmailboxdata)); if (ret == 0) w_sdreg32(bus, SMB_INT_ACK, offsetof(struct sdpcmd_regs, tosbmailbox)); bus->sdcnt.f1regdata += 2; /* Dongle recomposed rx frames, accept them again */ if (hmb_data & HMB_DATA_NAKHANDLED) { brcmf_dbg(SDIO, "Dongle reports NAK handled, expect rtx of %d\n", bus->rx_seq); if (!bus->rxskip) brcmf_err("unexpected NAKHANDLED!\n"); bus->rxskip = false; intstatus |= I_HMB_FRAME_IND; } /* * DEVREADY does not occur with gSPI. */ if (hmb_data & (HMB_DATA_DEVREADY | HMB_DATA_FWREADY)) { bus->sdpcm_ver = (hmb_data & HMB_DATA_VERSION_MASK) >> HMB_DATA_VERSION_SHIFT; if (bus->sdpcm_ver != SDPCM_PROT_VERSION) brcmf_err("Version mismatch, dongle reports %d, " "expecting %d\n", bus->sdpcm_ver, SDPCM_PROT_VERSION); else brcmf_dbg(SDIO, "Dongle ready, protocol version %d\n", bus->sdpcm_ver); } /* * Flow Control has been moved into the RX headers and this out of band * method isn't used any more. * remaining backward compatible with older dongles. */ if (hmb_data & HMB_DATA_FC) { fcbits = (hmb_data & HMB_DATA_FCDATA_MASK) >> HMB_DATA_FCDATA_SHIFT; if (fcbits & ~bus->flowcontrol) bus->sdcnt.fc_xoff++; if (bus->flowcontrol & ~fcbits) bus->sdcnt.fc_xon++; bus->sdcnt.fc_rcvd++; bus->flowcontrol = fcbits; } /* Shouldn't be any others */ if (hmb_data & ~(HMB_DATA_DEVREADY | HMB_DATA_NAKHANDLED | HMB_DATA_FC | HMB_DATA_FWREADY | HMB_DATA_FCDATA_MASK | HMB_DATA_VERSION_MASK)) brcmf_err("Unknown mailbox data content: 0x%02x\n", hmb_data); return intstatus; } static void brcmf_sdbrcm_rxfail(struct brcmf_sdio *bus, bool abort, bool rtx) { uint retries = 0; u16 lastrbc; u8 hi, lo; int err; brcmf_err("%sterminate frame%s\n", abort ? "abort command, " : "", rtx ? ", send NAK" : ""); if (abort) brcmf_sdcard_abort(bus->sdiodev, SDIO_FUNC_2); brcmf_sdio_regwb(bus->sdiodev, SBSDIO_FUNC1_FRAMECTRL, SFC_RF_TERM, &err); bus->sdcnt.f1regdata++; /* Wait until the packet has been flushed (device/FIFO stable) */ for (lastrbc = retries = 0xffff; retries > 0; retries--) { hi = brcmf_sdio_regrb(bus->sdiodev, SBSDIO_FUNC1_RFRAMEBCHI, &err); lo = brcmf_sdio_regrb(bus->sdiodev, SBSDIO_FUNC1_RFRAMEBCLO, &err); bus->sdcnt.f1regdata += 2; if ((hi == 0) && (lo == 0)) break; if ((hi > (lastrbc >> 8)) && (lo > (lastrbc & 0x00ff))) { brcmf_err("count growing: last 0x%04x now 0x%04x\n", lastrbc, (hi << 8) + lo); } lastrbc = (hi << 8) + lo; } if (!retries) brcmf_err("count never zeroed: last 0x%04x\n", lastrbc); else brcmf_dbg(SDIO, "flush took %d iterations\n", 0xffff - retries); if (rtx) { bus->sdcnt.rxrtx++; err = w_sdreg32(bus, SMB_NAK, offsetof(struct sdpcmd_regs, tosbmailbox)); bus->sdcnt.f1regdata++; if (err == 0) bus->rxskip = true; } /* Clear partial in any case */ bus->cur_read.len = 0; /* If we can't reach the device, signal failure */ if (err) bus->sdiodev->bus_if->state = BRCMF_BUS_DOWN; } /* copy a buffer into a pkt buffer chain */ static uint brcmf_sdbrcm_glom_from_buf(struct brcmf_sdio *bus, uint len) { uint n, ret = 0; struct sk_buff *p; u8 *buf; buf = bus->dataptr; /* copy the data */ skb_queue_walk(&bus->glom, p) { n = min_t(uint, p->len, len); memcpy(p->data, buf, n); buf += n; len -= n; ret += n; if (!len) break; } return ret; } /* return total length of buffer chain */ static uint brcmf_sdbrcm_glom_len(struct brcmf_sdio *bus) { struct sk_buff *p; uint total; total = 0; skb_queue_walk(&bus->glom, p) total += p->len; return total; } static void brcmf_sdbrcm_free_glom(struct brcmf_sdio *bus) { struct sk_buff *cur, *next; skb_queue_walk_safe(&bus->glom, cur, next) { skb_unlink(cur, &bus->glom); brcmu_pkt_buf_free_skb(cur); } } static int brcmf_sdio_hdparser(struct brcmf_sdio *bus, u8 *header, struct brcmf_sdio_read *rd, enum brcmf_sdio_frmtype type) { u16 len, checksum; u8 rx_seq, fc, tx_seq_max; /* * 4 bytes hardware header (frame tag) * Byte 0~1: Frame length * Byte 2~3: Checksum, bit-wise inverse of frame length */ len = get_unaligned_le16(header); checksum = get_unaligned_le16(header + sizeof(u16)); /* All zero means no more to read */ if (!(len | checksum)) { bus->rxpending = false; return -ENODATA; } if ((u16)(~(len ^ checksum))) { brcmf_err("HW header checksum error\n"); bus->sdcnt.rx_badhdr++; brcmf_sdbrcm_rxfail(bus, false, false); return -EIO; } if (len < SDPCM_HDRLEN) { brcmf_err("HW header length error\n"); return -EPROTO; } if (type == BRCMF_SDIO_FT_SUPER && (roundup(len, bus->blocksize) != rd->len)) { brcmf_err("HW superframe header length error\n"); return -EPROTO; } if (type == BRCMF_SDIO_FT_SUB && len > rd->len) { brcmf_err("HW subframe header length error\n"); return -EPROTO; } rd->len = len; /* * 8 bytes hardware header * Byte 0: Rx sequence number * Byte 1: 4 MSB Channel number, 4 LSB arbitrary flag * Byte 2: Length of next data frame * Byte 3: Data offset * Byte 4: Flow control bits * Byte 5: Maximum Sequence number allow for Tx * Byte 6~7: Reserved */ if (type == BRCMF_SDIO_FT_SUPER && SDPCM_GLOMDESC(&header[SDPCM_FRAMETAG_LEN])) { brcmf_err("Glom descriptor found in superframe head\n"); rd->len = 0; return -EINVAL; } rx_seq = SDPCM_PACKET_SEQUENCE(&header[SDPCM_FRAMETAG_LEN]); rd->channel = SDPCM_PACKET_CHANNEL(&header[SDPCM_FRAMETAG_LEN]); if (len > MAX_RX_DATASZ && rd->channel != SDPCM_CONTROL_CHANNEL && type != BRCMF_SDIO_FT_SUPER) { brcmf_err("HW header length too long\n"); bus->sdcnt.rx_toolong++; brcmf_sdbrcm_rxfail(bus, false, false); rd->len = 0; return -EPROTO; } if (type == BRCMF_SDIO_FT_SUPER && rd->channel != SDPCM_GLOM_CHANNEL) { brcmf_err("Wrong channel for superframe\n"); rd->len = 0; return -EINVAL; } if (type == BRCMF_SDIO_FT_SUB && rd->channel != SDPCM_DATA_CHANNEL && rd->channel != SDPCM_EVENT_CHANNEL) { brcmf_err("Wrong channel for subframe\n"); rd->len = 0; return -EINVAL; } rd->dat_offset = SDPCM_DOFFSET_VALUE(&header[SDPCM_FRAMETAG_LEN]); if (rd->dat_offset < SDPCM_HDRLEN || rd->dat_offset > rd->len) { brcmf_err("seq %d: bad data offset\n", rx_seq); bus->sdcnt.rx_badhdr++; brcmf_sdbrcm_rxfail(bus, false, false); rd->len = 0; return -ENXIO; } if (rd->seq_num != rx_seq) { brcmf_err("seq %d: sequence number error, expect %d\n", rx_seq, rd->seq_num); bus->sdcnt.rx_badseq++; rd->seq_num = rx_seq; } /* no need to check the reset for subframe */ if (type == BRCMF_SDIO_FT_SUB) return 0; rd->len_nxtfrm = header[SDPCM_FRAMETAG_LEN + SDPCM_NEXTLEN_OFFSET]; if (rd->len_nxtfrm << 4 > MAX_RX_DATASZ) { /* only warm for NON glom packet */ if (rd->channel != SDPCM_GLOM_CHANNEL) brcmf_err("seq %d: next length error\n", rx_seq); rd->len_nxtfrm = 0; } fc = SDPCM_FCMASK_VALUE(&header[SDPCM_FRAMETAG_LEN]); if (bus->flowcontrol != fc) { if (~bus->flowcontrol & fc) bus->sdcnt.fc_xoff++; if (bus->flowcontrol & ~fc) bus->sdcnt.fc_xon++; bus->sdcnt.fc_rcvd++; bus->flowcontrol = fc; } tx_seq_max = SDPCM_WINDOW_VALUE(&header[SDPCM_FRAMETAG_LEN]); if ((u8)(tx_seq_max - bus->tx_seq) > 0x40) { brcmf_err("seq %d: max tx seq number error\n", rx_seq); tx_seq_max = bus->tx_seq + 2; } bus->tx_max = tx_seq_max; return 0; } static u8 brcmf_sdbrcm_rxglom(struct brcmf_sdio *bus, u8 rxseq) { u16 dlen, totlen; u8 *dptr, num = 0; u16 sublen; struct sk_buff *pfirst, *pnext; int errcode; u8 doff, sfdoff; bool usechain = bus->use_rxchain; struct brcmf_sdio_read rd_new; /* If packets, issue read(s) and send up packet chain */ /* Return sequence numbers consumed? */ brcmf_dbg(SDIO, "start: glomd %p glom %p\n", bus->glomd, skb_peek(&bus->glom)); /* If there's a descriptor, generate the packet chain */ if (bus->glomd) { pfirst = pnext = NULL; dlen = (u16) (bus->glomd->len); dptr = bus->glomd->data; if (!dlen || (dlen & 1)) { brcmf_err("bad glomd len(%d), ignore descriptor\n", dlen); dlen = 0; } for (totlen = num = 0; dlen; num++) { /* Get (and move past) next length */ sublen = get_unaligned_le16(dptr); dlen -= sizeof(u16); dptr += sizeof(u16); if ((sublen < SDPCM_HDRLEN) || ((num == 0) && (sublen < (2 * SDPCM_HDRLEN)))) { brcmf_err("descriptor len %d bad: %d\n", num, sublen); pnext = NULL; break; } if (sublen % BRCMF_SDALIGN) { brcmf_err("sublen %d not multiple of %d\n", sublen, BRCMF_SDALIGN); usechain = false; } totlen += sublen; /* For last frame, adjust read len so total is a block multiple */ if (!dlen) { sublen += (roundup(totlen, bus->blocksize) - totlen); totlen = roundup(totlen, bus->blocksize); } /* Allocate/chain packet for next subframe */ pnext = brcmu_pkt_buf_get_skb(sublen + BRCMF_SDALIGN); if (pnext == NULL) { brcmf_err("bcm_pkt_buf_get_skb failed, num %d len %d\n", num, sublen); break; } skb_queue_tail(&bus->glom, pnext); /* Adhere to start alignment requirements */ pkt_align(pnext, sublen, BRCMF_SDALIGN); } /* If all allocations succeeded, save packet chain in bus structure */ if (pnext) { brcmf_dbg(GLOM, "allocated %d-byte packet chain for %d subframes\n", totlen, num); if (BRCMF_GLOM_ON() && bus->cur_read.len && totlen != bus->cur_read.len) { brcmf_dbg(GLOM, "glomdesc mismatch: nextlen %d glomdesc %d rxseq %d\n", bus->cur_read.len, totlen, rxseq); } pfirst = pnext = NULL; } else { brcmf_sdbrcm_free_glom(bus); num = 0; } /* Done with descriptor packet */ brcmu_pkt_buf_free_skb(bus->glomd); bus->glomd = NULL; bus->cur_read.len = 0; } /* Ok -- either we just generated a packet chain, or had one from before */ if (!skb_queue_empty(&bus->glom)) { if (BRCMF_GLOM_ON()) { brcmf_dbg(GLOM, "try superframe read, packet chain:\n"); skb_queue_walk(&bus->glom, pnext) { brcmf_dbg(GLOM, " %p: %p len 0x%04x (%d)\n", pnext, (u8 *) (pnext->data), pnext->len, pnext->len); } } pfirst = skb_peek(&bus->glom); dlen = (u16) brcmf_sdbrcm_glom_len(bus); /* Do an SDIO read for the superframe. Configurable iovar to * read directly into the chained packet, or allocate a large * packet and and copy into the chain. */ sdio_claim_host(bus->sdiodev->func[1]); if (usechain) { errcode = brcmf_sdcard_recv_chain(bus->sdiodev, bus->sdiodev->sbwad, SDIO_FUNC_2, F2SYNC, &bus->glom); } else if (bus->dataptr) { errcode = brcmf_sdcard_recv_buf(bus->sdiodev, bus->sdiodev->sbwad, SDIO_FUNC_2, F2SYNC, bus->dataptr, dlen); sublen = (u16) brcmf_sdbrcm_glom_from_buf(bus, dlen); if (sublen != dlen) { brcmf_err("FAILED TO COPY, dlen %d sublen %d\n", dlen, sublen); errcode = -1; } pnext = NULL; } else { brcmf_err("COULDN'T ALLOC %d-BYTE GLOM, FORCE FAILURE\n", dlen); errcode = -1; } sdio_release_host(bus->sdiodev->func[1]); bus->sdcnt.f2rxdata++; /* On failure, kill the superframe, allow a couple retries */ if (errcode < 0) { brcmf_err("glom read of %d bytes failed: %d\n", dlen, errcode); sdio_claim_host(bus->sdiodev->func[1]); if (bus->glomerr++ < 3) { brcmf_sdbrcm_rxfail(bus, true, true); } else { bus->glomerr = 0; brcmf_sdbrcm_rxfail(bus, true, false); bus->sdcnt.rxglomfail++; brcmf_sdbrcm_free_glom(bus); } sdio_release_host(bus->sdiodev->func[1]); return 0; } brcmf_dbg_hex_dump(BRCMF_GLOM_ON(), pfirst->data, min_t(int, pfirst->len, 48), "SUPERFRAME:\n"); rd_new.seq_num = rxseq; rd_new.len = dlen; sdio_claim_host(bus->sdiodev->func[1]); errcode = brcmf_sdio_hdparser(bus, pfirst->data, &rd_new, BRCMF_SDIO_FT_SUPER); sdio_release_host(bus->sdiodev->func[1]); bus->cur_read.len = rd_new.len_nxtfrm << 4; /* Remove superframe header, remember offset */ skb_pull(pfirst, rd_new.dat_offset); sfdoff = rd_new.dat_offset; num = 0; /* Validate all the subframe headers */ skb_queue_walk(&bus->glom, pnext) { /* leave when invalid subframe is found */ if (errcode) break; rd_new.len = pnext->len; rd_new.seq_num = rxseq++; sdio_claim_host(bus->sdiodev->func[1]); errcode = brcmf_sdio_hdparser(bus, pnext->data, &rd_new, BRCMF_SDIO_FT_SUB); sdio_release_host(bus->sdiodev->func[1]); brcmf_dbg_hex_dump(BRCMF_GLOM_ON(), pnext->data, 32, "subframe:\n"); num++; } if (errcode) { /* Terminate frame on error, request a couple retries */ sdio_claim_host(bus->sdiodev->func[1]); if (bus->glomerr++ < 3) { /* Restore superframe header space */ skb_push(pfirst, sfdoff); brcmf_sdbrcm_rxfail(bus, true, true); } else { bus->glomerr = 0; brcmf_sdbrcm_rxfail(bus, true, false); bus->sdcnt.rxglomfail++; brcmf_sdbrcm_free_glom(bus); } sdio_release_host(bus->sdiodev->func[1]); bus->cur_read.len = 0; return 0; } /* Basic SD framing looks ok - process each packet (header) */ skb_queue_walk_safe(&bus->glom, pfirst, pnext) { dptr = (u8 *) (pfirst->data); sublen = get_unaligned_le16(dptr); doff = SDPCM_DOFFSET_VALUE(&dptr[SDPCM_FRAMETAG_LEN]); brcmf_dbg_hex_dump(BRCMF_BYTES_ON() && BRCMF_DATA_ON(), dptr, pfirst->len, "Rx Subframe Data:\n"); __skb_trim(pfirst, sublen); skb_pull(pfirst, doff); if (pfirst->len == 0) { skb_unlink(pfirst, &bus->glom); brcmu_pkt_buf_free_skb(pfirst); continue; } brcmf_dbg_hex_dump(BRCMF_GLOM_ON(), pfirst->data, min_t(int, pfirst->len, 32), "subframe %d to stack, %p (%p/%d) nxt/lnk %p/%p\n", bus->glom.qlen, pfirst, pfirst->data, pfirst->len, pfirst->next, pfirst->prev); } /* sent any remaining packets up */ if (bus->glom.qlen) brcmf_rx_frames(bus->sdiodev->dev, &bus->glom); bus->sdcnt.rxglomframes++; bus->sdcnt.rxglompkts += bus->glom.qlen; } return num; } static int brcmf_sdbrcm_dcmd_resp_wait(struct brcmf_sdio *bus, uint *condition, bool *pending) { DECLARE_WAITQUEUE(wait, current); int timeout = msecs_to_jiffies(DCMD_RESP_TIMEOUT); /* Wait until control frame is available */ add_wait_queue(&bus->dcmd_resp_wait, &wait); set_current_state(TASK_INTERRUPTIBLE); while (!(*condition) && (!signal_pending(current) && timeout)) timeout = schedule_timeout(timeout); if (signal_pending(current)) *pending = true; set_current_state(TASK_RUNNING); remove_wait_queue(&bus->dcmd_resp_wait, &wait); return timeout; } static int brcmf_sdbrcm_dcmd_resp_wake(struct brcmf_sdio *bus) { if (waitqueue_active(&bus->dcmd_resp_wait)) wake_up_interruptible(&bus->dcmd_resp_wait); return 0; } static void brcmf_sdbrcm_read_control(struct brcmf_sdio *bus, u8 *hdr, uint len, uint doff) { uint rdlen, pad; u8 *buf = NULL, *rbuf; int sdret; brcmf_dbg(TRACE, "Enter\n"); if (bus->rxblen) buf = vzalloc(bus->rxblen); if (!buf) goto done; rbuf = bus->rxbuf; pad = ((unsigned long)rbuf % BRCMF_SDALIGN); if (pad) rbuf += (BRCMF_SDALIGN - pad); /* Copy the already-read portion over */ memcpy(buf, hdr, BRCMF_FIRSTREAD); if (len <= BRCMF_FIRSTREAD) goto gotpkt; /* Raise rdlen to next SDIO block to avoid tail command */ rdlen = len - BRCMF_FIRSTREAD; if (bus->roundup && bus->blocksize && (rdlen > bus->blocksize)) { pad = bus->blocksize - (rdlen % bus->blocksize); if ((pad <= bus->roundup) && (pad < bus->blocksize) && ((len + pad) < bus->sdiodev->bus_if->maxctl)) rdlen += pad; } else if (rdlen % BRCMF_SDALIGN) { rdlen += BRCMF_SDALIGN - (rdlen % BRCMF_SDALIGN); } /* Satisfy length-alignment requirements */ if (rdlen & (ALIGNMENT - 1)) rdlen = roundup(rdlen, ALIGNMENT); /* Drop if the read is too big or it exceeds our maximum */ if ((rdlen + BRCMF_FIRSTREAD) > bus->sdiodev->bus_if->maxctl) { brcmf_err("%d-byte control read exceeds %d-byte buffer\n", rdlen, bus->sdiodev->bus_if->maxctl); brcmf_sdbrcm_rxfail(bus, false, false); goto done; } if ((len - doff) > bus->sdiodev->bus_if->maxctl) { brcmf_err("%d-byte ctl frame (%d-byte ctl data) exceeds %d-byte limit\n", len, len - doff, bus->sdiodev->bus_if->maxctl); bus->sdcnt.rx_toolong++; brcmf_sdbrcm_rxfail(bus, false, false); goto done; } /* Read remain of frame body */ sdret = brcmf_sdcard_recv_buf(bus->sdiodev, bus->sdiodev->sbwad, SDIO_FUNC_2, F2SYNC, rbuf, rdlen); bus->sdcnt.f2rxdata++; /* Control frame failures need retransmission */ if (sdret < 0) { brcmf_err("read %d control bytes failed: %d\n", rdlen, sdret); bus->sdcnt.rxc_errors++; brcmf_sdbrcm_rxfail(bus, true, true); goto done; } else memcpy(buf + BRCMF_FIRSTREAD, rbuf, rdlen); gotpkt: brcmf_dbg_hex_dump(BRCMF_BYTES_ON() && BRCMF_CTL_ON(), buf, len, "RxCtrl:\n"); /* Point to valid data and indicate its length */ spin_lock_bh(&bus->rxctl_lock); if (bus->rxctl) { brcmf_err("last control frame is being processed.\n"); spin_unlock_bh(&bus->rxctl_lock); vfree(buf); goto done; } bus->rxctl = buf + doff; bus->rxctl_orig = buf; bus->rxlen = len - doff; spin_unlock_bh(&bus->rxctl_lock); done: /* Awake any waiters */ brcmf_sdbrcm_dcmd_resp_wake(bus); } /* Pad read to blocksize for efficiency */ static void brcmf_pad(struct brcmf_sdio *bus, u16 *pad, u16 *rdlen) { if (bus->roundup && bus->blocksize && *rdlen > bus->blocksize) { *pad = bus->blocksize - (*rdlen % bus->blocksize); if (*pad <= bus->roundup && *pad < bus->blocksize && *rdlen + *pad + BRCMF_FIRSTREAD < MAX_RX_DATASZ) *rdlen += *pad; } else if (*rdlen % BRCMF_SDALIGN) { *rdlen += BRCMF_SDALIGN - (*rdlen % BRCMF_SDALIGN); } } static uint brcmf_sdio_readframes(struct brcmf_sdio *bus, uint maxframes) { struct sk_buff *pkt; /* Packet for event or data frames */ struct sk_buff_head pktlist; /* needed for bus interface */ u16 pad; /* Number of pad bytes to read */ uint rxleft = 0; /* Remaining number of frames allowed */ int ret; /* Return code from calls */ uint rxcount = 0; /* Total frames read */ struct brcmf_sdio_read *rd = &bus->cur_read, rd_new; u8 head_read = 0; brcmf_dbg(TRACE, "Enter\n"); /* Not finished unless we encounter no more frames indication */ bus->rxpending = true; for (rd->seq_num = bus->rx_seq, rxleft = maxframes; !bus->rxskip && rxleft && bus->sdiodev->bus_if->state != BRCMF_BUS_DOWN; rd->seq_num++, rxleft--) { /* Handle glomming separately */ if (bus->glomd || !skb_queue_empty(&bus->glom)) { u8 cnt; brcmf_dbg(GLOM, "calling rxglom: glomd %p, glom %p\n", bus->glomd, skb_peek(&bus->glom)); cnt = brcmf_sdbrcm_rxglom(bus, rd->seq_num); brcmf_dbg(GLOM, "rxglom returned %d\n", cnt); rd->seq_num += cnt - 1; rxleft = (rxleft > cnt) ? (rxleft - cnt) : 1; continue; } rd->len_left = rd->len; /* read header first for unknow frame length */ sdio_claim_host(bus->sdiodev->func[1]); if (!rd->len) { ret = brcmf_sdcard_recv_buf(bus->sdiodev, bus->sdiodev->sbwad, SDIO_FUNC_2, F2SYNC, bus->rxhdr, BRCMF_FIRSTREAD); bus->sdcnt.f2rxhdrs++; if (ret < 0) { brcmf_err("RXHEADER FAILED: %d\n", ret); bus->sdcnt.rx_hdrfail++; brcmf_sdbrcm_rxfail(bus, true, true); sdio_release_host(bus->sdiodev->func[1]); continue; } brcmf_dbg_hex_dump(BRCMF_BYTES_ON() || BRCMF_HDRS_ON(), bus->rxhdr, SDPCM_HDRLEN, "RxHdr:\n"); if (brcmf_sdio_hdparser(bus, bus->rxhdr, rd, BRCMF_SDIO_FT_NORMAL)) { sdio_release_host(bus->sdiodev->func[1]); if (!bus->rxpending) break; else continue; } if (rd->channel == SDPCM_CONTROL_CHANNEL) { brcmf_sdbrcm_read_control(bus, bus->rxhdr, rd->len, rd->dat_offset); /* prepare the descriptor for the next read */ rd->len = rd->len_nxtfrm << 4; rd->len_nxtfrm = 0; /* treat all packet as event if we don't know */ rd->channel = SDPCM_EVENT_CHANNEL; sdio_release_host(bus->sdiodev->func[1]); continue; } rd->len_left = rd->len > BRCMF_FIRSTREAD ? rd->len - BRCMF_FIRSTREAD : 0; head_read = BRCMF_FIRSTREAD; } brcmf_pad(bus, &pad, &rd->len_left); pkt = brcmu_pkt_buf_get_skb(rd->len_left + head_read + BRCMF_SDALIGN); if (!pkt) { /* Give up on data, request rtx of events */ brcmf_err("brcmu_pkt_buf_get_skb failed\n"); brcmf_sdbrcm_rxfail(bus, false, RETRYCHAN(rd->channel)); sdio_release_host(bus->sdiodev->func[1]); continue; } skb_pull(pkt, head_read); pkt_align(pkt, rd->len_left, BRCMF_SDALIGN); ret = brcmf_sdcard_recv_pkt(bus->sdiodev, bus->sdiodev->sbwad, SDIO_FUNC_2, F2SYNC, pkt); bus->sdcnt.f2rxdata++; sdio_release_host(bus->sdiodev->func[1]); if (ret < 0) { brcmf_err("read %d bytes from channel %d failed: %d\n", rd->len, rd->channel, ret); brcmu_pkt_buf_free_skb(pkt); sdio_claim_host(bus->sdiodev->func[1]); brcmf_sdbrcm_rxfail(bus, true, RETRYCHAN(rd->channel)); sdio_release_host(bus->sdiodev->func[1]); continue; } if (head_read) { skb_push(pkt, head_read); memcpy(pkt->data, bus->rxhdr, head_read); head_read = 0; } else { memcpy(bus->rxhdr, pkt->data, SDPCM_HDRLEN); rd_new.seq_num = rd->seq_num; sdio_claim_host(bus->sdiodev->func[1]); if (brcmf_sdio_hdparser(bus, bus->rxhdr, &rd_new, BRCMF_SDIO_FT_NORMAL)) { rd->len = 0; brcmu_pkt_buf_free_skb(pkt); } bus->sdcnt.rx_readahead_cnt++; if (rd->len != roundup(rd_new.len, 16)) { brcmf_err("frame length mismatch:read %d, should be %d\n", rd->len, roundup(rd_new.len, 16) >> 4); rd->len = 0; brcmf_sdbrcm_rxfail(bus, true, true); sdio_release_host(bus->sdiodev->func[1]); brcmu_pkt_buf_free_skb(pkt); continue; } sdio_release_host(bus->sdiodev->func[1]); rd->len_nxtfrm = rd_new.len_nxtfrm; rd->channel = rd_new.channel; rd->dat_offset = rd_new.dat_offset; brcmf_dbg_hex_dump(!(BRCMF_BYTES_ON() && BRCMF_DATA_ON()) && BRCMF_HDRS_ON(), bus->rxhdr, SDPCM_HDRLEN, "RxHdr:\n"); if (rd_new.channel == SDPCM_CONTROL_CHANNEL) { brcmf_err("readahead on control packet %d?\n", rd_new.seq_num); /* Force retry w/normal header read */ rd->len = 0; sdio_claim_host(bus->sdiodev->func[1]); brcmf_sdbrcm_rxfail(bus, false, true); sdio_release_host(bus->sdiodev->func[1]); brcmu_pkt_buf_free_skb(pkt); continue; } } brcmf_dbg_hex_dump(BRCMF_BYTES_ON() && BRCMF_DATA_ON(), pkt->data, rd->len, "Rx Data:\n"); /* Save superframe descriptor and allocate packet frame */ if (rd->channel == SDPCM_GLOM_CHANNEL) { if (SDPCM_GLOMDESC(&bus->rxhdr[SDPCM_FRAMETAG_LEN])) { brcmf_dbg(GLOM, "glom descriptor, %d bytes:\n", rd->len); brcmf_dbg_hex_dump(BRCMF_GLOM_ON(), pkt->data, rd->len, "Glom Data:\n"); __skb_trim(pkt, rd->len); skb_pull(pkt, SDPCM_HDRLEN); bus->glomd = pkt; } else { brcmf_err("%s: glom superframe w/o " "descriptor!\n", __func__); sdio_claim_host(bus->sdiodev->func[1]); brcmf_sdbrcm_rxfail(bus, false, false); sdio_release_host(bus->sdiodev->func[1]); } /* prepare the descriptor for the next read */ rd->len = rd->len_nxtfrm << 4; rd->len_nxtfrm = 0; /* treat all packet as event if we don't know */ rd->channel = SDPCM_EVENT_CHANNEL; continue; } /* Fill in packet len and prio, deliver upward */ __skb_trim(pkt, rd->len); skb_pull(pkt, rd->dat_offset); /* prepare the descriptor for the next read */ rd->len = rd->len_nxtfrm << 4; rd->len_nxtfrm = 0; /* treat all packet as event if we don't know */ rd->channel = SDPCM_EVENT_CHANNEL; if (pkt->len == 0) { brcmu_pkt_buf_free_skb(pkt); continue; } skb_queue_head_init(&pktlist); skb_queue_tail(&pktlist, pkt); brcmf_rx_frames(bus->sdiodev->dev, &pktlist); } rxcount = maxframes - rxleft; /* Message if we hit the limit */ if (!rxleft) brcmf_dbg(DATA, "hit rx limit of %d frames\n", maxframes); else brcmf_dbg(DATA, "processed %d frames\n", rxcount); /* Back off rxseq if awaiting rtx, update rx_seq */ if (bus->rxskip) rd->seq_num--; bus->rx_seq = rd->seq_num; return rxcount; } static void brcmf_sdbrcm_wait_event_wakeup(struct brcmf_sdio *bus) { if (waitqueue_active(&bus->ctrl_wait)) wake_up_interruptible(&bus->ctrl_wait); return; } /* Writes a HW/SW header into the packet and sends it. */ /* Assumes: (a) header space already there, (b) caller holds lock */ static int brcmf_sdbrcm_txpkt(struct brcmf_sdio *bus, struct sk_buff *pkt, uint chan) { int ret; u8 *frame; u16 len, pad = 0; u32 swheader; int i; brcmf_dbg(TRACE, "Enter\n"); frame = (u8 *) (pkt->data); /* Add alignment padding, allocate new packet if needed */ pad = ((unsigned long)frame % BRCMF_SDALIGN); if (pad) { if (skb_headroom(pkt) < pad) { brcmf_dbg(INFO, "insufficient headroom %d for %d pad\n", skb_headroom(pkt), pad); bus->sdiodev->bus_if->tx_realloc++; ret = skb_cow(pkt, BRCMF_SDALIGN); if (ret) goto done; pad = ((unsigned long)frame % BRCMF_SDALIGN); } skb_push(pkt, pad); frame = (u8 *) (pkt->data); memset(frame, 0, pad + SDPCM_HDRLEN); } /* precondition: pad < BRCMF_SDALIGN */ /* Hardware tag: 2 byte len followed by 2 byte ~len check (all LE) */ len = (u16) (pkt->len); *(__le16 *) frame = cpu_to_le16(len); *(((__le16 *) frame) + 1) = cpu_to_le16(~len); /* Software tag: channel, sequence number, data offset */ swheader = ((chan << SDPCM_CHANNEL_SHIFT) & SDPCM_CHANNEL_MASK) | bus->tx_seq | (((pad + SDPCM_HDRLEN) << SDPCM_DOFFSET_SHIFT) & SDPCM_DOFFSET_MASK); *(((__le32 *) frame) + 1) = cpu_to_le32(swheader); *(((__le32 *) frame) + 2) = 0; #ifdef DEBUG tx_packets[pkt->priority]++; #endif brcmf_dbg_hex_dump(BRCMF_BYTES_ON() && ((BRCMF_CTL_ON() && chan == SDPCM_CONTROL_CHANNEL) || (BRCMF_DATA_ON() && chan != SDPCM_CONTROL_CHANNEL)), frame, len, "Tx Frame:\n"); brcmf_dbg_hex_dump(!(BRCMF_BYTES_ON() && ((BRCMF_CTL_ON() && chan == SDPCM_CONTROL_CHANNEL) || (BRCMF_DATA_ON() && chan != SDPCM_CONTROL_CHANNEL))) && BRCMF_HDRS_ON(), frame, min_t(u16, len, 16), "TxHdr:\n"); /* Raise len to next SDIO block to eliminate tail command */ if (bus->roundup && bus->blocksize && (len > bus->blocksize)) { u16 pad = bus->blocksize - (len % bus->blocksize); if ((pad <= bus->roundup) && (pad < bus->blocksize)) len += pad; } else if (len % BRCMF_SDALIGN) { len += BRCMF_SDALIGN - (len % BRCMF_SDALIGN); } /* Some controllers have trouble with odd bytes -- round to even */ if (len & (ALIGNMENT - 1)) len = roundup(len, ALIGNMENT); sdio_claim_host(bus->sdiodev->func[1]); ret = brcmf_sdcard_send_pkt(bus->sdiodev, bus->sdiodev->sbwad, SDIO_FUNC_2, F2SYNC, pkt); bus->sdcnt.f2txdata++; if (ret < 0) { /* On failure, abort the command and terminate the frame */ brcmf_dbg(INFO, "sdio error %d, abort command and terminate frame\n", ret); bus->sdcnt.tx_sderrs++; brcmf_sdcard_abort(bus->sdiodev, SDIO_FUNC_2); brcmf_sdio_regwb(bus->sdiodev, SBSDIO_FUNC1_FRAMECTRL, SFC_WF_TERM, NULL); bus->sdcnt.f1regdata++; for (i = 0; i < 3; i++) { u8 hi, lo; hi = brcmf_sdio_regrb(bus->sdiodev, SBSDIO_FUNC1_WFRAMEBCHI, NULL); lo = brcmf_sdio_regrb(bus->sdiodev, SBSDIO_FUNC1_WFRAMEBCLO, NULL); bus->sdcnt.f1regdata += 2; if ((hi == 0) && (lo == 0)) break; } } sdio_release_host(bus->sdiodev->func[1]); if (ret == 0) bus->tx_seq = (bus->tx_seq + 1) % SDPCM_SEQUENCE_WRAP; done: /* restore pkt buffer pointer before calling tx complete routine */ skb_pull(pkt, SDPCM_HDRLEN + pad); brcmf_txcomplete(bus->sdiodev->dev, pkt, ret == 0); return ret; } static uint brcmf_sdbrcm_sendfromq(struct brcmf_sdio *bus, uint maxframes) { struct sk_buff *pkt; u32 intstatus = 0; int ret = 0, prec_out; uint cnt = 0; uint datalen; u8 tx_prec_map; brcmf_dbg(TRACE, "Enter\n"); tx_prec_map = ~bus->flowcontrol; /* Send frames until the limit or some other event */ for (cnt = 0; (cnt < maxframes) && data_ok(bus); cnt++) { spin_lock_bh(&bus->txqlock); pkt = brcmu_pktq_mdeq(&bus->txq, tx_prec_map, &prec_out); if (pkt == NULL) { spin_unlock_bh(&bus->txqlock); break; } spin_unlock_bh(&bus->txqlock); datalen = pkt->len - SDPCM_HDRLEN; ret = brcmf_sdbrcm_txpkt(bus, pkt, SDPCM_DATA_CHANNEL); /* In poll mode, need to check for other events */ if (!bus->intr && cnt) { /* Check device status, signal pending interrupt */ sdio_claim_host(bus->sdiodev->func[1]); ret = r_sdreg32(bus, &intstatus, offsetof(struct sdpcmd_regs, intstatus)); sdio_release_host(bus->sdiodev->func[1]); bus->sdcnt.f2txdata++; if (ret != 0) break; if (intstatus & bus->hostintmask) atomic_set(&bus->ipend, 1); } } /* Deflow-control stack if needed */ if ((bus->sdiodev->bus_if->state == BRCMF_BUS_DATA) && bus->txoff && (pktq_len(&bus->txq) < TXLOW)) { bus->txoff = false; brcmf_txflowblock(bus->sdiodev->dev, false); } return cnt; } static void brcmf_sdbrcm_bus_stop(struct device *dev) { u32 local_hostintmask; u8 saveclk; int err; struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio; struct brcmf_sdio *bus = sdiodev->bus; brcmf_dbg(TRACE, "Enter\n"); if (bus->watchdog_tsk) { send_sig(SIGTERM, bus->watchdog_tsk, 1); kthread_stop(bus->watchdog_tsk); bus->watchdog_tsk = NULL; } sdio_claim_host(bus->sdiodev->func[1]); /* Enable clock for device interrupts */ brcmf_sdbrcm_bus_sleep(bus, false, false); /* Disable and clear interrupts at the chip level also */ w_sdreg32(bus, 0, offsetof(struct sdpcmd_regs, hostintmask)); local_hostintmask = bus->hostintmask; bus->hostintmask = 0; /* Change our idea of bus state */ bus->sdiodev->bus_if->state = BRCMF_BUS_DOWN; /* Force clocks on backplane to be sure F2 interrupt propagates */ saveclk = brcmf_sdio_regrb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, &err); if (!err) { brcmf_sdio_regwb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, (saveclk | SBSDIO_FORCE_HT), &err); } if (err) brcmf_err("Failed to force clock for F2: err %d\n", err); /* Turn off the bus (F2), free any pending packets */ brcmf_dbg(INTR, "disable SDIO interrupts\n"); brcmf_sdio_regwb(bus->sdiodev, SDIO_CCCR_IOEx, SDIO_FUNC_ENABLE_1, NULL); /* Clear any pending interrupts now that F2 is disabled */ w_sdreg32(bus, local_hostintmask, offsetof(struct sdpcmd_regs, intstatus)); /* Turn off the backplane clock (only) */ brcmf_sdbrcm_clkctl(bus, CLK_SDONLY, false); sdio_release_host(bus->sdiodev->func[1]); /* Clear the data packet queues */ brcmu_pktq_flush(&bus->txq, true, NULL, NULL); /* Clear any held glomming stuff */ if (bus->glomd) brcmu_pkt_buf_free_skb(bus->glomd); brcmf_sdbrcm_free_glom(bus); /* Clear rx control and wake any waiters */ spin_lock_bh(&bus->rxctl_lock); bus->rxlen = 0; spin_unlock_bh(&bus->rxctl_lock); brcmf_sdbrcm_dcmd_resp_wake(bus); /* Reset some F2 state stuff */ bus->rxskip = false; bus->tx_seq = bus->rx_seq = 0; } #ifdef CONFIG_BRCMFMAC_SDIO_OOB static inline void brcmf_sdbrcm_clrintr(struct brcmf_sdio *bus) { unsigned long flags; spin_lock_irqsave(&bus->sdiodev->irq_en_lock, flags); if (!bus->sdiodev->irq_en && !atomic_read(&bus->ipend)) { enable_irq(bus->sdiodev->irq); bus->sdiodev->irq_en = true; } spin_unlock_irqrestore(&bus->sdiodev->irq_en_lock, flags); } #else static inline void brcmf_sdbrcm_clrintr(struct brcmf_sdio *bus) { } #endif /* CONFIG_BRCMFMAC_SDIO_OOB */ static inline void brcmf_sdbrcm_adddpctsk(struct brcmf_sdio *bus) { struct list_head *new_hd; unsigned long flags; if (in_interrupt()) new_hd = kzalloc(sizeof(struct list_head), GFP_ATOMIC); else new_hd = kzalloc(sizeof(struct list_head), GFP_KERNEL); if (new_hd == NULL) return; spin_lock_irqsave(&bus->dpc_tl_lock, flags); list_add_tail(new_hd, &bus->dpc_tsklst); spin_unlock_irqrestore(&bus->dpc_tl_lock, flags); } static int brcmf_sdio_intr_rstatus(struct brcmf_sdio *bus) { u8 idx; u32 addr; unsigned long val; int n, ret; idx = brcmf_sdio_chip_getinfidx(bus->ci, BCMA_CORE_SDIO_DEV); addr = bus->ci->c_inf[idx].base + offsetof(struct sdpcmd_regs, intstatus); ret = brcmf_sdio_regrw_helper(bus->sdiodev, addr, &val, false); bus->sdcnt.f1regdata++; if (ret != 0) val = 0; val &= bus->hostintmask; atomic_set(&bus->fcstate, !!(val & I_HMB_FC_STATE)); /* Clear interrupts */ if (val) { ret = brcmf_sdio_regrw_helper(bus->sdiodev, addr, &val, true); bus->sdcnt.f1regdata++; } if (ret) { atomic_set(&bus->intstatus, 0); } else if (val) { for_each_set_bit(n, &val, 32) set_bit(n, (unsigned long *)&bus->intstatus.counter); } return ret; } static void brcmf_sdbrcm_dpc(struct brcmf_sdio *bus) { u32 newstatus = 0; unsigned long intstatus; uint rxlimit = bus->rxbound; /* Rx frames to read before resched */ uint txlimit = bus->txbound; /* Tx frames to send before resched */ uint framecnt = 0; /* Temporary counter of tx/rx frames */ int err = 0, n; brcmf_dbg(TRACE, "Enter\n"); sdio_claim_host(bus->sdiodev->func[1]); /* If waiting for HTAVAIL, check status */ if (!bus->sr_enabled && bus->clkstate == CLK_PENDING) { u8 clkctl, devctl = 0; #ifdef DEBUG /* Check for inconsistent device control */ devctl = brcmf_sdio_regrb(bus->sdiodev, SBSDIO_DEVICE_CTL, &err); if (err) { brcmf_err("error reading DEVCTL: %d\n", err); bus->sdiodev->bus_if->state = BRCMF_BUS_DOWN; } #endif /* DEBUG */ /* Read CSR, if clock on switch to AVAIL, else ignore */ clkctl = brcmf_sdio_regrb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, &err); if (err) { brcmf_err("error reading CSR: %d\n", err); bus->sdiodev->bus_if->state = BRCMF_BUS_DOWN; } brcmf_dbg(SDIO, "DPC: PENDING, devctl 0x%02x clkctl 0x%02x\n", devctl, clkctl); if (SBSDIO_HTAV(clkctl)) { devctl = brcmf_sdio_regrb(bus->sdiodev, SBSDIO_DEVICE_CTL, &err); if (err) { brcmf_err("error reading DEVCTL: %d\n", err); bus->sdiodev->bus_if->state = BRCMF_BUS_DOWN; } devctl &= ~SBSDIO_DEVCTL_CA_INT_ONLY; brcmf_sdio_regwb(bus->sdiodev, SBSDIO_DEVICE_CTL, devctl, &err); if (err) { brcmf_err("error writing DEVCTL: %d\n", err); bus->sdiodev->bus_if->state = BRCMF_BUS_DOWN; } bus->clkstate = CLK_AVAIL; } } /* Make sure backplane clock is on */ brcmf_sdbrcm_bus_sleep(bus, false, true); /* Pending interrupt indicates new device status */ if (atomic_read(&bus->ipend) > 0) { atomic_set(&bus->ipend, 0); err = brcmf_sdio_intr_rstatus(bus); } /* Start with leftover status bits */ intstatus = atomic_xchg(&bus->intstatus, 0); /* Handle flow-control change: read new state in case our ack * crossed another change interrupt. If change still set, assume * FC ON for safety, let next loop through do the debounce. */ if (intstatus & I_HMB_FC_CHANGE) { intstatus &= ~I_HMB_FC_CHANGE; err = w_sdreg32(bus, I_HMB_FC_CHANGE, offsetof(struct sdpcmd_regs, intstatus)); err = r_sdreg32(bus, &newstatus, offsetof(struct sdpcmd_regs, intstatus)); bus->sdcnt.f1regdata += 2; atomic_set(&bus->fcstate, !!(newstatus & (I_HMB_FC_STATE | I_HMB_FC_CHANGE))); intstatus |= (newstatus & bus->hostintmask); } /* Handle host mailbox indication */ if (intstatus & I_HMB_HOST_INT) { intstatus &= ~I_HMB_HOST_INT; intstatus |= brcmf_sdbrcm_hostmail(bus); } sdio_release_host(bus->sdiodev->func[1]); /* Generally don't ask for these, can get CRC errors... */ if (intstatus & I_WR_OOSYNC) { brcmf_err("Dongle reports WR_OOSYNC\n"); intstatus &= ~I_WR_OOSYNC; } if (intstatus & I_RD_OOSYNC) { brcmf_err("Dongle reports RD_OOSYNC\n"); intstatus &= ~I_RD_OOSYNC; } if (intstatus & I_SBINT) { brcmf_err("Dongle reports SBINT\n"); intstatus &= ~I_SBINT; } /* Would be active due to wake-wlan in gSPI */ if (intstatus & I_CHIPACTIVE) { brcmf_dbg(INFO, "Dongle reports CHIPACTIVE\n"); intstatus &= ~I_CHIPACTIVE; } /* Ignore frame indications if rxskip is set */ if (bus->rxskip) intstatus &= ~I_HMB_FRAME_IND; /* On frame indication, read available frames */ if (PKT_AVAILABLE() && bus->clkstate == CLK_AVAIL) { framecnt = brcmf_sdio_readframes(bus, rxlimit); if (!bus->rxpending) intstatus &= ~I_HMB_FRAME_IND; rxlimit -= min(framecnt, rxlimit); } /* Keep still-pending events for next scheduling */ if (intstatus) { for_each_set_bit(n, &intstatus, 32) set_bit(n, (unsigned long *)&bus->intstatus.counter); } brcmf_sdbrcm_clrintr(bus); if (data_ok(bus) && bus->ctrl_frame_stat && (bus->clkstate == CLK_AVAIL)) { int i; sdio_claim_host(bus->sdiodev->func[1]); err = brcmf_sdcard_send_buf(bus->sdiodev, bus->sdiodev->sbwad, SDIO_FUNC_2, F2SYNC, bus->ctrl_frame_buf, (u32) bus->ctrl_frame_len); if (err < 0) { /* On failure, abort the command and terminate the frame */ brcmf_dbg(INFO, "sdio error %d, abort command and terminate frame\n", err); bus->sdcnt.tx_sderrs++; brcmf_sdcard_abort(bus->sdiodev, SDIO_FUNC_2); brcmf_sdio_regwb(bus->sdiodev, SBSDIO_FUNC1_FRAMECTRL, SFC_WF_TERM, &err); bus->sdcnt.f1regdata++; for (i = 0; i < 3; i++) { u8 hi, lo; hi = brcmf_sdio_regrb(bus->sdiodev, SBSDIO_FUNC1_WFRAMEBCHI, &err); lo = brcmf_sdio_regrb(bus->sdiodev, SBSDIO_FUNC1_WFRAMEBCLO, &err); bus->sdcnt.f1regdata += 2; if ((hi == 0) && (lo == 0)) break; } } else { bus->tx_seq = (bus->tx_seq + 1) % SDPCM_SEQUENCE_WRAP; } sdio_release_host(bus->sdiodev->func[1]); bus->ctrl_frame_stat = false; brcmf_sdbrcm_wait_event_wakeup(bus); } /* Send queued frames (limit 1 if rx may still be pending) */ else if ((bus->clkstate == CLK_AVAIL) && !atomic_read(&bus->fcstate) && brcmu_pktq_mlen(&bus->txq, ~bus->flowcontrol) && txlimit && data_ok(bus)) { framecnt = bus->rxpending ? min(txlimit, bus->txminmax) : txlimit; framecnt = brcmf_sdbrcm_sendfromq(bus, framecnt); txlimit -= framecnt; } if ((bus->sdiodev->bus_if->state == BRCMF_BUS_DOWN) || (err != 0)) { brcmf_err("failed backplane access over SDIO, halting operation\n"); bus->sdiodev->bus_if->state = BRCMF_BUS_DOWN; atomic_set(&bus->intstatus, 0); } else if (atomic_read(&bus->intstatus) || atomic_read(&bus->ipend) > 0 || (!atomic_read(&bus->fcstate) && brcmu_pktq_mlen(&bus->txq, ~bus->flowcontrol) && data_ok(bus)) || PKT_AVAILABLE()) { brcmf_sdbrcm_adddpctsk(bus); } /* If we're done for now, turn off clock request. */ if ((bus->clkstate != CLK_PENDING) && bus->idletime == BRCMF_IDLE_IMMEDIATE) { bus->activity = false; brcmf_dbg(SDIO, "idle state\n"); sdio_claim_host(bus->sdiodev->func[1]); brcmf_sdbrcm_bus_sleep(bus, true, false); sdio_release_host(bus->sdiodev->func[1]); } } static struct pktq *brcmf_sdbrcm_bus_gettxq(struct device *dev) { struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio; struct brcmf_sdio *bus = sdiodev->bus; return &bus->txq; } static int brcmf_sdbrcm_bus_txdata(struct device *dev, struct sk_buff *pkt) { int ret = -EBADE; uint datalen, prec; struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio; struct brcmf_sdio *bus = sdiodev->bus; unsigned long flags; brcmf_dbg(TRACE, "Enter\n"); datalen = pkt->len; /* Add space for the header */ skb_push(pkt, SDPCM_HDRLEN); /* precondition: IS_ALIGNED((unsigned long)(pkt->data), 2) */ prec = prio2prec((pkt->priority & PRIOMASK)); /* Check for existing queue, current flow-control, pending event, or pending clock */ brcmf_dbg(TRACE, "deferring pktq len %d\n", pktq_len(&bus->txq)); bus->sdcnt.fcqueued++; /* Priority based enq */ spin_lock_bh(&bus->txqlock); if (!brcmf_c_prec_enq(bus->sdiodev->dev, &bus->txq, pkt, prec)) { skb_pull(pkt, SDPCM_HDRLEN); brcmf_txcomplete(bus->sdiodev->dev, pkt, false); brcmf_err("out of bus->txq !!!\n"); ret = -ENOSR; } else { ret = 0; } spin_unlock_bh(&bus->txqlock); if (pktq_len(&bus->txq) >= TXHI) { bus->txoff = true; brcmf_txflowblock(bus->sdiodev->dev, true); } #ifdef DEBUG if (pktq_plen(&bus->txq, prec) > qcount[prec]) qcount[prec] = pktq_plen(&bus->txq, prec); #endif spin_lock_irqsave(&bus->dpc_tl_lock, flags); if (list_empty(&bus->dpc_tsklst)) { spin_unlock_irqrestore(&bus->dpc_tl_lock, flags); brcmf_sdbrcm_adddpctsk(bus); queue_work(bus->brcmf_wq, &bus->datawork); } else { spin_unlock_irqrestore(&bus->dpc_tl_lock, flags); } return ret; } #ifdef DEBUG #define CONSOLE_LINE_MAX 192 static int brcmf_sdbrcm_readconsole(struct brcmf_sdio *bus) { struct brcmf_console *c = &bus->console; u8 line[CONSOLE_LINE_MAX], ch; u32 n, idx, addr; int rv; /* Don't do anything until FWREADY updates console address */ if (bus->console_addr == 0) return 0; /* Read console log struct */ addr = bus->console_addr + offsetof(struct rte_console, log_le); rv = brcmf_sdio_ramrw(bus->sdiodev, false, addr, (u8 *)&c->log_le, sizeof(c->log_le)); if (rv < 0) return rv; /* Allocate console buffer (one time only) */ if (c->buf == NULL) { c->bufsize = le32_to_cpu(c->log_le.buf_size); c->buf = kmalloc(c->bufsize, GFP_ATOMIC); if (c->buf == NULL) return -ENOMEM; } idx = le32_to_cpu(c->log_le.idx); /* Protect against corrupt value */ if (idx > c->bufsize) return -EBADE; /* Skip reading the console buffer if the index pointer has not moved */ if (idx == c->last) return 0; /* Read the console buffer */ addr = le32_to_cpu(c->log_le.buf); rv = brcmf_sdio_ramrw(bus->sdiodev, false, addr, c->buf, c->bufsize); if (rv < 0) return rv; while (c->last != idx) { for (n = 0; n < CONSOLE_LINE_MAX - 2; n++) { if (c->last == idx) { /* This would output a partial line. * Instead, back up * the buffer pointer and output this * line next time around. */ if (c->last >= n) c->last -= n; else c->last = c->bufsize - n; goto break2; } ch = c->buf[c->last]; c->last = (c->last + 1) % c->bufsize; if (ch == '\n') break; line[n] = ch; } if (n > 0) { if (line[n - 1] == '\r') n--; line[n] = 0; pr_debug("CONSOLE: %s\n", line); } } break2: return 0; } #endif /* DEBUG */ static int brcmf_tx_frame(struct brcmf_sdio *bus, u8 *frame, u16 len) { int i; int ret; bus->ctrl_frame_stat = false; ret = brcmf_sdcard_send_buf(bus->sdiodev, bus->sdiodev->sbwad, SDIO_FUNC_2, F2SYNC, frame, len); if (ret < 0) { /* On failure, abort the command and terminate the frame */ brcmf_dbg(INFO, "sdio error %d, abort command and terminate frame\n", ret); bus->sdcnt.tx_sderrs++; brcmf_sdcard_abort(bus->sdiodev, SDIO_FUNC_2); brcmf_sdio_regwb(bus->sdiodev, SBSDIO_FUNC1_FRAMECTRL, SFC_WF_TERM, NULL); bus->sdcnt.f1regdata++; for (i = 0; i < 3; i++) { u8 hi, lo; hi = brcmf_sdio_regrb(bus->sdiodev, SBSDIO_FUNC1_WFRAMEBCHI, NULL); lo = brcmf_sdio_regrb(bus->sdiodev, SBSDIO_FUNC1_WFRAMEBCLO, NULL); bus->sdcnt.f1regdata += 2; if (hi == 0 && lo == 0) break; } return ret; } bus->tx_seq = (bus->tx_seq + 1) % SDPCM_SEQUENCE_WRAP; return ret; } static int brcmf_sdbrcm_bus_txctl(struct device *dev, unsigned char *msg, uint msglen) { u8 *frame; u16 len; u32 swheader; uint retries = 0; u8 doff = 0; int ret = -1; struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio; struct brcmf_sdio *bus = sdiodev->bus; unsigned long flags; brcmf_dbg(TRACE, "Enter\n"); /* Back the pointer to make a room for bus header */ frame = msg - SDPCM_HDRLEN; len = (msglen += SDPCM_HDRLEN); /* Add alignment padding (optional for ctl frames) */ doff = ((unsigned long)frame % BRCMF_SDALIGN); if (doff) { frame -= doff; len += doff; msglen += doff; memset(frame, 0, doff + SDPCM_HDRLEN); } /* precondition: doff < BRCMF_SDALIGN */ doff += SDPCM_HDRLEN; /* Round send length to next SDIO block */ if (bus->roundup && bus->blocksize && (len > bus->blocksize)) { u16 pad = bus->blocksize - (len % bus->blocksize); if ((pad <= bus->roundup) && (pad < bus->blocksize)) len += pad; } else if (len % BRCMF_SDALIGN) { len += BRCMF_SDALIGN - (len % BRCMF_SDALIGN); } /* Satisfy length-alignment requirements */ if (len & (ALIGNMENT - 1)) len = roundup(len, ALIGNMENT); /* precondition: IS_ALIGNED((unsigned long)frame, 2) */ /* Make sure backplane clock is on */ sdio_claim_host(bus->sdiodev->func[1]); brcmf_sdbrcm_bus_sleep(bus, false, false); sdio_release_host(bus->sdiodev->func[1]); /* Hardware tag: 2 byte len followed by 2 byte ~len check (all LE) */ *(__le16 *) frame = cpu_to_le16((u16) msglen); *(((__le16 *) frame) + 1) = cpu_to_le16(~msglen); /* Software tag: channel, sequence number, data offset */ swheader = ((SDPCM_CONTROL_CHANNEL << SDPCM_CHANNEL_SHIFT) & SDPCM_CHANNEL_MASK) | bus->tx_seq | ((doff << SDPCM_DOFFSET_SHIFT) & SDPCM_DOFFSET_MASK); put_unaligned_le32(swheader, frame + SDPCM_FRAMETAG_LEN); put_unaligned_le32(0, frame + SDPCM_FRAMETAG_LEN + sizeof(swheader)); if (!data_ok(bus)) { brcmf_dbg(INFO, "No bus credit bus->tx_max %d, bus->tx_seq %d\n", bus->tx_max, bus->tx_seq); bus->ctrl_frame_stat = true; /* Send from dpc */ bus->ctrl_frame_buf = frame; bus->ctrl_frame_len = len; wait_event_interruptible_timeout(bus->ctrl_wait, !bus->ctrl_frame_stat, msecs_to_jiffies(2000)); if (!bus->ctrl_frame_stat) { brcmf_dbg(SDIO, "ctrl_frame_stat == false\n"); ret = 0; } else { brcmf_dbg(SDIO, "ctrl_frame_stat == true\n"); ret = -1; } } if (ret == -1) { brcmf_dbg_hex_dump(BRCMF_BYTES_ON() && BRCMF_CTL_ON(), frame, len, "Tx Frame:\n"); brcmf_dbg_hex_dump(!(BRCMF_BYTES_ON() && BRCMF_CTL_ON()) && BRCMF_HDRS_ON(), frame, min_t(u16, len, 16), "TxHdr:\n"); do { sdio_claim_host(bus->sdiodev->func[1]); ret = brcmf_tx_frame(bus, frame, len); sdio_release_host(bus->sdiodev->func[1]); } while (ret < 0 && retries++ < TXRETRIES); } spin_lock_irqsave(&bus->dpc_tl_lock, flags); if ((bus->idletime == BRCMF_IDLE_IMMEDIATE) && list_empty(&bus->dpc_tsklst)) { spin_unlock_irqrestore(&bus->dpc_tl_lock, flags); bus->activity = false; sdio_claim_host(bus->sdiodev->func[1]); brcmf_dbg(INFO, "idle\n"); brcmf_sdbrcm_clkctl(bus, CLK_NONE, true); sdio_release_host(bus->sdiodev->func[1]); } else { spin_unlock_irqrestore(&bus->dpc_tl_lock, flags); } if (ret) bus->sdcnt.tx_ctlerrs++; else bus->sdcnt.tx_ctlpkts++; return ret ? -EIO : 0; } #ifdef DEBUG static inline bool brcmf_sdio_valid_shared_address(u32 addr) { return !(addr == 0 || ((~addr >> 16) & 0xffff) == (addr & 0xffff)); } static int brcmf_sdio_readshared(struct brcmf_sdio *bus, struct sdpcm_shared *sh) { u32 addr; int rv; u32 shaddr = 0; struct sdpcm_shared_le sh_le; __le32 addr_le; shaddr = bus->ci->rambase + bus->ramsize - 4; /* * Read last word in socram to determine * address of sdpcm_shared structure */ sdio_claim_host(bus->sdiodev->func[1]); brcmf_sdbrcm_bus_sleep(bus, false, false); rv = brcmf_sdio_ramrw(bus->sdiodev, false, shaddr, (u8 *)&addr_le, 4); sdio_release_host(bus->sdiodev->func[1]); if (rv < 0) return rv; addr = le32_to_cpu(addr_le); brcmf_dbg(SDIO, "sdpcm_shared address 0x%08X\n", addr); /* * Check if addr is valid. * NVRAM length at the end of memory should have been overwritten. */ if (!brcmf_sdio_valid_shared_address(addr)) { brcmf_err("invalid sdpcm_shared address 0x%08X\n", addr); return -EINVAL; } /* Read hndrte_shared structure */ rv = brcmf_sdio_ramrw(bus->sdiodev, false, addr, (u8 *)&sh_le, sizeof(struct sdpcm_shared_le)); if (rv < 0) return rv; /* Endianness */ sh->flags = le32_to_cpu(sh_le.flags); sh->trap_addr = le32_to_cpu(sh_le.trap_addr); sh->assert_exp_addr = le32_to_cpu(sh_le.assert_exp_addr); sh->assert_file_addr = le32_to_cpu(sh_le.assert_file_addr); sh->assert_line = le32_to_cpu(sh_le.assert_line); sh->console_addr = le32_to_cpu(sh_le.console_addr); sh->msgtrace_addr = le32_to_cpu(sh_le.msgtrace_addr); if ((sh->flags & SDPCM_SHARED_VERSION_MASK) > SDPCM_SHARED_VERSION) { brcmf_err("sdpcm shared version unsupported: dhd %d dongle %d\n", SDPCM_SHARED_VERSION, sh->flags & SDPCM_SHARED_VERSION_MASK); return -EPROTO; } return 0; } static int brcmf_sdio_dump_console(struct brcmf_sdio *bus, struct sdpcm_shared *sh, char __user *data, size_t count) { u32 addr, console_ptr, console_size, console_index; char *conbuf = NULL; __le32 sh_val; int rv; loff_t pos = 0; int nbytes = 0; /* obtain console information from device memory */ addr = sh->console_addr + offsetof(struct rte_console, log_le); rv = brcmf_sdio_ramrw(bus->sdiodev, false, addr, (u8 *)&sh_val, sizeof(u32)); if (rv < 0) return rv; console_ptr = le32_to_cpu(sh_val); addr = sh->console_addr + offsetof(struct rte_console, log_le.buf_size); rv = brcmf_sdio_ramrw(bus->sdiodev, false, addr, (u8 *)&sh_val, sizeof(u32)); if (rv < 0) return rv; console_size = le32_to_cpu(sh_val); addr = sh->console_addr + offsetof(struct rte_console, log_le.idx); rv = brcmf_sdio_ramrw(bus->sdiodev, false, addr, (u8 *)&sh_val, sizeof(u32)); if (rv < 0) return rv; console_index = le32_to_cpu(sh_val); /* allocate buffer for console data */ if (console_size <= CONSOLE_BUFFER_MAX) conbuf = vzalloc(console_size+1); if (!conbuf) return -ENOMEM; /* obtain the console data from device */ conbuf[console_size] = '\0'; rv = brcmf_sdio_ramrw(bus->sdiodev, false, console_ptr, (u8 *)conbuf, console_size); if (rv < 0) goto done; rv = simple_read_from_buffer(data, count, &pos, conbuf + console_index, console_size - console_index); if (rv < 0) goto done; nbytes = rv; if (console_index > 0) { pos = 0; rv = simple_read_from_buffer(data+nbytes, count, &pos, conbuf, console_index - 1); if (rv < 0) goto done; rv += nbytes; } done: vfree(conbuf); return rv; } static int brcmf_sdio_trap_info(struct brcmf_sdio *bus, struct sdpcm_shared *sh, char __user *data, size_t count) { int error, res; char buf[350]; struct brcmf_trap_info tr; loff_t pos = 0; if ((sh->flags & SDPCM_SHARED_TRAP) == 0) { brcmf_dbg(INFO, "no trap in firmware\n"); return 0; } error = brcmf_sdio_ramrw(bus->sdiodev, false, sh->trap_addr, (u8 *)&tr, sizeof(struct brcmf_trap_info)); if (error < 0) return error; res = scnprintf(buf, sizeof(buf), "dongle trap info: type 0x%x @ epc 0x%08x\n" " cpsr 0x%08x spsr 0x%08x sp 0x%08x\n" " lr 0x%08x pc 0x%08x offset 0x%x\n" " r0 0x%08x r1 0x%08x r2 0x%08x r3 0x%08x\n" " r4 0x%08x r5 0x%08x r6 0x%08x r7 0x%08x\n", le32_to_cpu(tr.type), le32_to_cpu(tr.epc), le32_to_cpu(tr.cpsr), le32_to_cpu(tr.spsr), le32_to_cpu(tr.r13), le32_to_cpu(tr.r14), le32_to_cpu(tr.pc), sh->trap_addr, le32_to_cpu(tr.r0), le32_to_cpu(tr.r1), le32_to_cpu(tr.r2), le32_to_cpu(tr.r3), le32_to_cpu(tr.r4), le32_to_cpu(tr.r5), le32_to_cpu(tr.r6), le32_to_cpu(tr.r7)); return simple_read_from_buffer(data, count, &pos, buf, res); } static int brcmf_sdio_assert_info(struct brcmf_sdio *bus, struct sdpcm_shared *sh, char __user *data, size_t count) { int error = 0; char buf[200]; char file[80] = "?"; char expr[80] = ""; int res; loff_t pos = 0; if ((sh->flags & SDPCM_SHARED_ASSERT_BUILT) == 0) { brcmf_dbg(INFO, "firmware not built with -assert\n"); return 0; } else if ((sh->flags & SDPCM_SHARED_ASSERT) == 0) { brcmf_dbg(INFO, "no assert in dongle\n"); return 0; } sdio_claim_host(bus->sdiodev->func[1]); if (sh->assert_file_addr != 0) { error = brcmf_sdio_ramrw(bus->sdiodev, false, sh->assert_file_addr, (u8 *)file, 80); if (error < 0) return error; } if (sh->assert_exp_addr != 0) { error = brcmf_sdio_ramrw(bus->sdiodev, false, sh->assert_exp_addr, (u8 *)expr, 80); if (error < 0) return error; } sdio_release_host(bus->sdiodev->func[1]); res = scnprintf(buf, sizeof(buf), "dongle assert: %s:%d: assert(%s)\n", file, sh->assert_line, expr); return simple_read_from_buffer(data, count, &pos, buf, res); } static int brcmf_sdbrcm_checkdied(struct brcmf_sdio *bus) { int error; struct sdpcm_shared sh; error = brcmf_sdio_readshared(bus, &sh); if (error < 0) return error; if ((sh.flags & SDPCM_SHARED_ASSERT_BUILT) == 0) brcmf_dbg(INFO, "firmware not built with -assert\n"); else if (sh.flags & SDPCM_SHARED_ASSERT) brcmf_err("assertion in dongle\n"); if (sh.flags & SDPCM_SHARED_TRAP) brcmf_err("firmware trap in dongle\n"); return 0; } static int brcmf_sdbrcm_died_dump(struct brcmf_sdio *bus, char __user *data, size_t count, loff_t *ppos) { int error = 0; struct sdpcm_shared sh; int nbytes = 0; loff_t pos = *ppos; if (pos != 0) return 0; error = brcmf_sdio_readshared(bus, &sh); if (error < 0) goto done; error = brcmf_sdio_assert_info(bus, &sh, data, count); if (error < 0) goto done; nbytes = error; error = brcmf_sdio_trap_info(bus, &sh, data+nbytes, count); if (error < 0) goto done; nbytes += error; error = brcmf_sdio_dump_console(bus, &sh, data+nbytes, count); if (error < 0) goto done; nbytes += error; error = nbytes; *ppos += nbytes; done: return error; } static ssize_t brcmf_sdio_forensic_read(struct file *f, char __user *data, size_t count, loff_t *ppos) { struct brcmf_sdio *bus = f->private_data; int res; res = brcmf_sdbrcm_died_dump(bus, data, count, ppos); if (res > 0) *ppos += res; return (ssize_t)res; } static const struct file_operations brcmf_sdio_forensic_ops = { .owner = THIS_MODULE, .open = simple_open, .read = brcmf_sdio_forensic_read }; static void brcmf_sdio_debugfs_create(struct brcmf_sdio *bus) { struct brcmf_pub *drvr = bus->sdiodev->bus_if->drvr; struct dentry *dentry = brcmf_debugfs_get_devdir(drvr); if (IS_ERR_OR_NULL(dentry)) return; debugfs_create_file("forensics", S_IRUGO, dentry, bus, &brcmf_sdio_forensic_ops); brcmf_debugfs_create_sdio_count(drvr, &bus->sdcnt); } #else static int brcmf_sdbrcm_checkdied(struct brcmf_sdio *bus) { return 0; } static void brcmf_sdio_debugfs_create(struct brcmf_sdio *bus) { } #endif /* DEBUG */ static int brcmf_sdbrcm_bus_rxctl(struct device *dev, unsigned char *msg, uint msglen) { int timeleft; uint rxlen = 0; bool pending; u8 *buf; struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio; struct brcmf_sdio *bus = sdiodev->bus; brcmf_dbg(TRACE, "Enter\n"); /* Wait until control frame is available */ timeleft = brcmf_sdbrcm_dcmd_resp_wait(bus, &bus->rxlen, &pending); spin_lock_bh(&bus->rxctl_lock); rxlen = bus->rxlen; memcpy(msg, bus->rxctl, min(msglen, rxlen)); bus->rxctl = NULL; buf = bus->rxctl_orig; bus->rxctl_orig = NULL; bus->rxlen = 0; spin_unlock_bh(&bus->rxctl_lock); vfree(buf); if (rxlen) { brcmf_dbg(CTL, "resumed on rxctl frame, got %d expected %d\n", rxlen, msglen); } else if (timeleft == 0) { brcmf_err("resumed on timeout\n"); brcmf_sdbrcm_checkdied(bus); } else if (pending) { brcmf_dbg(CTL, "cancelled\n"); return -ERESTARTSYS; } else { brcmf_dbg(CTL, "resumed for unknown reason?\n"); brcmf_sdbrcm_checkdied(bus); } if (rxlen) bus->sdcnt.rx_ctlpkts++; else bus->sdcnt.rx_ctlerrs++; return rxlen ? (int)rxlen : -ETIMEDOUT; } static bool brcmf_sdbrcm_download_state(struct brcmf_sdio *bus, bool enter) { struct chip_info *ci = bus->ci; /* To enter download state, disable ARM and reset SOCRAM. * To exit download state, simply reset ARM (default is RAM boot). */ if (enter) { bus->alp_only = true; brcmf_sdio_chip_enter_download(bus->sdiodev, ci); } else { if (!brcmf_sdio_chip_exit_download(bus->sdiodev, ci, bus->vars, bus->varsz)) return false; /* Allow HT Clock now that the ARM is running. */ bus->alp_only = false; bus->sdiodev->bus_if->state = BRCMF_BUS_LOAD; } return true; } static int brcmf_sdbrcm_get_image(char *buf, int len, struct brcmf_sdio *bus) { if (bus->firmware->size < bus->fw_ptr + len) len = bus->firmware->size - bus->fw_ptr; memcpy(buf, &bus->firmware->data[bus->fw_ptr], len); bus->fw_ptr += len; return len; } static int brcmf_sdbrcm_download_code_file(struct brcmf_sdio *bus) { int offset; uint len; u8 *memblock = NULL, *memptr; int ret; u8 idx; brcmf_dbg(INFO, "Enter\n"); ret = request_firmware(&bus->firmware, BRCMF_SDIO_FW_NAME, &bus->sdiodev->func[2]->dev); if (ret) { brcmf_err("Fail to request firmware %d\n", ret); return ret; } bus->fw_ptr = 0; memptr = memblock = kmalloc(MEMBLOCK + BRCMF_SDALIGN, GFP_ATOMIC); if (memblock == NULL) { ret = -ENOMEM; goto err; } if ((u32)(unsigned long)memblock % BRCMF_SDALIGN) memptr += (BRCMF_SDALIGN - ((u32)(unsigned long)memblock % BRCMF_SDALIGN)); offset = bus->ci->rambase; /* Download image */ len = brcmf_sdbrcm_get_image((char *)memptr, MEMBLOCK, bus); idx = brcmf_sdio_chip_getinfidx(bus->ci, BCMA_CORE_ARM_CR4); if (BRCMF_MAX_CORENUM != idx) memcpy(&bus->ci->rst_vec, memptr, sizeof(bus->ci->rst_vec)); while (len) { ret = brcmf_sdio_ramrw(bus->sdiodev, true, offset, memptr, len); if (ret) { brcmf_err("error %d on writing %d membytes at 0x%08x\n", ret, MEMBLOCK, offset); goto err; } offset += MEMBLOCK; len = brcmf_sdbrcm_get_image((char *)memptr, MEMBLOCK, bus); } err: kfree(memblock); release_firmware(bus->firmware); bus->fw_ptr = 0; return ret; } /* * ProcessVars:Takes a buffer of "=\n" lines read from a file * and ending in a NUL. * Removes carriage returns, empty lines, comment lines, and converts * newlines to NULs. * Shortens buffer as needed and pads with NULs. End of buffer is marked * by two NULs. */ static int brcmf_process_nvram_vars(struct brcmf_sdio *bus) { char *varbuf; char *dp; bool findNewline; int column; int ret = 0; uint buf_len, n, len; len = bus->firmware->size; varbuf = vmalloc(len); if (!varbuf) return -ENOMEM; memcpy(varbuf, bus->firmware->data, len); dp = varbuf; findNewline = false; column = 0; for (n = 0; n < len; n++) { if (varbuf[n] == 0) break; if (varbuf[n] == '\r') continue; if (findNewline && varbuf[n] != '\n') continue; findNewline = false; if (varbuf[n] == '#') { findNewline = true; continue; } if (varbuf[n] == '\n') { if (column == 0) continue; *dp++ = 0; column = 0; continue; } *dp++ = varbuf[n]; column++; } buf_len = dp - varbuf; while (dp < varbuf + n) *dp++ = 0; kfree(bus->vars); /* roundup needed for download to device */ bus->varsz = roundup(buf_len + 1, 4); bus->vars = kmalloc(bus->varsz, GFP_KERNEL); if (bus->vars == NULL) { bus->varsz = 0; ret = -ENOMEM; goto err; } /* copy the processed variables and add null termination */ memcpy(bus->vars, varbuf, buf_len); bus->vars[buf_len] = 0; err: vfree(varbuf); return ret; } static int brcmf_sdbrcm_download_nvram(struct brcmf_sdio *bus) { int ret; ret = request_firmware(&bus->firmware, BRCMF_SDIO_NV_NAME, &bus->sdiodev->func[2]->dev); if (ret) { brcmf_err("Fail to request nvram %d\n", ret); return ret; } ret = brcmf_process_nvram_vars(bus); release_firmware(bus->firmware); return ret; } static int _brcmf_sdbrcm_download_firmware(struct brcmf_sdio *bus) { int bcmerror = -1; /* Keep arm in reset */ if (!brcmf_sdbrcm_download_state(bus, true)) { brcmf_err("error placing ARM core in reset\n"); goto err; } if (brcmf_sdbrcm_download_code_file(bus)) { brcmf_err("dongle image file download failed\n"); goto err; } if (brcmf_sdbrcm_download_nvram(bus)) { brcmf_err("dongle nvram file download failed\n"); goto err; } /* Take arm out of reset */ if (!brcmf_sdbrcm_download_state(bus, false)) { brcmf_err("error getting out of ARM core reset\n"); goto err; } bcmerror = 0; err: return bcmerror; } static bool brcmf_sdbrcm_sr_capable(struct brcmf_sdio *bus) { u32 addr, reg; brcmf_dbg(TRACE, "Enter\n"); /* old chips with PMU version less than 17 don't support save restore */ if (bus->ci->pmurev < 17) return false; /* read PMU chipcontrol register 3*/ addr = CORE_CC_REG(bus->ci->c_inf[0].base, chipcontrol_addr); brcmf_sdio_regwl(bus->sdiodev, addr, 3, NULL); addr = CORE_CC_REG(bus->ci->c_inf[0].base, chipcontrol_data); reg = brcmf_sdio_regrl(bus->sdiodev, addr, NULL); return (bool)reg; } static void brcmf_sdbrcm_sr_init(struct brcmf_sdio *bus) { int err = 0; u8 val; brcmf_dbg(TRACE, "Enter\n"); val = brcmf_sdio_regrb(bus->sdiodev, SBSDIO_FUNC1_WAKEUPCTRL, &err); if (err) { brcmf_err("error reading SBSDIO_FUNC1_WAKEUPCTRL\n"); return; } val |= 1 << SBSDIO_FUNC1_WCTRL_HTWAIT_SHIFT; brcmf_sdio_regwb(bus->sdiodev, SBSDIO_FUNC1_WAKEUPCTRL, val, &err); if (err) { brcmf_err("error writing SBSDIO_FUNC1_WAKEUPCTRL\n"); return; } /* Add CMD14 Support */ brcmf_sdio_regwb(bus->sdiodev, SDIO_CCCR_BRCM_CARDCAP, (SDIO_CCCR_BRCM_CARDCAP_CMD14_SUPPORT | SDIO_CCCR_BRCM_CARDCAP_CMD14_EXT), &err); if (err) { brcmf_err("error writing SDIO_CCCR_BRCM_CARDCAP\n"); return; } brcmf_sdio_regwb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, SBSDIO_FORCE_HT, &err); if (err) { brcmf_err("error writing SBSDIO_FUNC1_CHIPCLKCSR\n"); return; } /* set flag */ bus->sr_enabled = true; brcmf_dbg(INFO, "SR enabled\n"); } /* enable KSO bit */ static int brcmf_sdbrcm_kso_init(struct brcmf_sdio *bus) { u8 val; int err = 0; brcmf_dbg(TRACE, "Enter\n"); /* KSO bit added in SDIO core rev 12 */ if (bus->ci->c_inf[1].rev < 12) return 0; val = brcmf_sdio_regrb(bus->sdiodev, SBSDIO_FUNC1_SLEEPCSR, &err); if (err) { brcmf_err("error reading SBSDIO_FUNC1_SLEEPCSR\n"); return err; } if (!(val & SBSDIO_FUNC1_SLEEPCSR_KSO_MASK)) { val |= (SBSDIO_FUNC1_SLEEPCSR_KSO_EN << SBSDIO_FUNC1_SLEEPCSR_KSO_SHIFT); brcmf_sdio_regwb(bus->sdiodev, SBSDIO_FUNC1_SLEEPCSR, val, &err); if (err) { brcmf_err("error writing SBSDIO_FUNC1_SLEEPCSR\n"); return err; } } return 0; } static bool brcmf_sdbrcm_download_firmware(struct brcmf_sdio *bus) { bool ret; sdio_claim_host(bus->sdiodev->func[1]); brcmf_sdbrcm_clkctl(bus, CLK_AVAIL, false); ret = _brcmf_sdbrcm_download_firmware(bus) == 0; brcmf_sdbrcm_clkctl(bus, CLK_SDONLY, false); sdio_release_host(bus->sdiodev->func[1]); return ret; } static int brcmf_sdbrcm_bus_init(struct device *dev) { struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio; struct brcmf_sdio *bus = sdiodev->bus; unsigned long timeout; u8 ready, enable; int err, ret = 0; u8 saveclk; brcmf_dbg(TRACE, "Enter\n"); /* try to download image and nvram to the dongle */ if (bus_if->state == BRCMF_BUS_DOWN) { if (!(brcmf_sdbrcm_download_firmware(bus))) return -1; } if (!bus->sdiodev->bus_if->drvr) return 0; /* Start the watchdog timer */ bus->sdcnt.tickcnt = 0; brcmf_sdbrcm_wd_timer(bus, BRCMF_WD_POLL_MS); sdio_claim_host(bus->sdiodev->func[1]); /* Make sure backplane clock is on, needed to generate F2 interrupt */ brcmf_sdbrcm_clkctl(bus, CLK_AVAIL, false); if (bus->clkstate != CLK_AVAIL) goto exit; /* Force clocks on backplane to be sure F2 interrupt propagates */ saveclk = brcmf_sdio_regrb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, &err); if (!err) { brcmf_sdio_regwb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, (saveclk | SBSDIO_FORCE_HT), &err); } if (err) { brcmf_err("Failed to force clock for F2: err %d\n", err); goto exit; } /* Enable function 2 (frame transfers) */ w_sdreg32(bus, SDPCM_PROT_VERSION << SMB_DATA_VERSION_SHIFT, offsetof(struct sdpcmd_regs, tosbmailboxdata)); enable = (SDIO_FUNC_ENABLE_1 | SDIO_FUNC_ENABLE_2); brcmf_sdio_regwb(bus->sdiodev, SDIO_CCCR_IOEx, enable, NULL); timeout = jiffies + msecs_to_jiffies(BRCMF_WAIT_F2RDY); ready = 0; while (enable != ready) { ready = brcmf_sdio_regrb(bus->sdiodev, SDIO_CCCR_IORx, NULL); if (time_after(jiffies, timeout)) break; else if (time_after(jiffies, timeout - BRCMF_WAIT_F2RDY + 50)) /* prevent busy waiting if it takes too long */ msleep_interruptible(20); } brcmf_dbg(INFO, "enable 0x%02x, ready 0x%02x\n", enable, ready); /* If F2 successfully enabled, set core and enable interrupts */ if (ready == enable) { /* Set up the interrupt mask and enable interrupts */ bus->hostintmask = HOSTINTMASK; w_sdreg32(bus, bus->hostintmask, offsetof(struct sdpcmd_regs, hostintmask)); brcmf_sdio_regwb(bus->sdiodev, SBSDIO_WATERMARK, 8, &err); } else { /* Disable F2 again */ enable = SDIO_FUNC_ENABLE_1; brcmf_sdio_regwb(bus->sdiodev, SDIO_CCCR_IOEx, enable, NULL); ret = -ENODEV; } if (brcmf_sdbrcm_sr_capable(bus)) { brcmf_sdbrcm_sr_init(bus); } else { /* Restore previous clock setting */ brcmf_sdio_regwb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, saveclk, &err); } if (ret == 0) { ret = brcmf_sdio_intr_register(bus->sdiodev); if (ret != 0) brcmf_err("intr register failed:%d\n", ret); } /* If we didn't come up, turn off backplane clock */ if (bus_if->state != BRCMF_BUS_DATA) brcmf_sdbrcm_clkctl(bus, CLK_NONE, false); exit: sdio_release_host(bus->sdiodev->func[1]); return ret; } void brcmf_sdbrcm_isr(void *arg) { struct brcmf_sdio *bus = (struct brcmf_sdio *) arg; brcmf_dbg(TRACE, "Enter\n"); if (!bus) { brcmf_err("bus is null pointer, exiting\n"); return; } if (bus->sdiodev->bus_if->state == BRCMF_BUS_DOWN) { brcmf_err("bus is down. we have nothing to do\n"); return; } /* Count the interrupt call */ bus->sdcnt.intrcount++; if (in_interrupt()) atomic_set(&bus->ipend, 1); else if (brcmf_sdio_intr_rstatus(bus)) { brcmf_err("failed backplane access\n"); bus->sdiodev->bus_if->state = BRCMF_BUS_DOWN; } /* Disable additional interrupts (is this needed now)? */ if (!bus->intr) brcmf_err("isr w/o interrupt configured!\n"); brcmf_sdbrcm_adddpctsk(bus); queue_work(bus->brcmf_wq, &bus->datawork); } static bool brcmf_sdbrcm_bus_watchdog(struct brcmf_sdio *bus) { #ifdef DEBUG struct brcmf_bus *bus_if = dev_get_drvdata(bus->sdiodev->dev); #endif /* DEBUG */ unsigned long flags; brcmf_dbg(TIMER, "Enter\n"); /* Poll period: check device if appropriate. */ if (!bus->sr_enabled && bus->poll && (++bus->polltick >= bus->pollrate)) { u32 intstatus = 0; /* Reset poll tick */ bus->polltick = 0; /* Check device if no interrupts */ if (!bus->intr || (bus->sdcnt.intrcount == bus->sdcnt.lastintrs)) { spin_lock_irqsave(&bus->dpc_tl_lock, flags); if (list_empty(&bus->dpc_tsklst)) { u8 devpend; spin_unlock_irqrestore(&bus->dpc_tl_lock, flags); sdio_claim_host(bus->sdiodev->func[1]); devpend = brcmf_sdio_regrb(bus->sdiodev, SDIO_CCCR_INTx, NULL); sdio_release_host(bus->sdiodev->func[1]); intstatus = devpend & (INTR_STATUS_FUNC1 | INTR_STATUS_FUNC2); } else { spin_unlock_irqrestore(&bus->dpc_tl_lock, flags); } /* If there is something, make like the ISR and schedule the DPC */ if (intstatus) { bus->sdcnt.pollcnt++; atomic_set(&bus->ipend, 1); brcmf_sdbrcm_adddpctsk(bus); queue_work(bus->brcmf_wq, &bus->datawork); } } /* Update interrupt tracking */ bus->sdcnt.lastintrs = bus->sdcnt.intrcount; } #ifdef DEBUG /* Poll for console output periodically */ if (bus_if && bus_if->state == BRCMF_BUS_DATA && bus->console_interval != 0) { bus->console.count += BRCMF_WD_POLL_MS; if (bus->console.count >= bus->console_interval) { bus->console.count -= bus->console_interval; sdio_claim_host(bus->sdiodev->func[1]); /* Make sure backplane clock is on */ brcmf_sdbrcm_bus_sleep(bus, false, false); if (brcmf_sdbrcm_readconsole(bus) < 0) /* stop on error */ bus->console_interval = 0; sdio_release_host(bus->sdiodev->func[1]); } } #endif /* DEBUG */ /* On idle timeout clear activity flag and/or turn off clock */ if ((bus->idletime > 0) && (bus->clkstate == CLK_AVAIL)) { if (++bus->idlecount >= bus->idletime) { bus->idlecount = 0; if (bus->activity) { bus->activity = false; brcmf_sdbrcm_wd_timer(bus, BRCMF_WD_POLL_MS); } else { brcmf_dbg(SDIO, "idle\n"); sdio_claim_host(bus->sdiodev->func[1]); brcmf_sdbrcm_bus_sleep(bus, true, false); sdio_release_host(bus->sdiodev->func[1]); } } } return (atomic_read(&bus->ipend) > 0); } static bool brcmf_sdbrcm_chipmatch(u16 chipid) { if (chipid == BCM43143_CHIP_ID) return true; if (chipid == BCM43241_CHIP_ID) return true; if (chipid == BCM4329_CHIP_ID) return true; if (chipid == BCM4330_CHIP_ID) return true; if (chipid == BCM4334_CHIP_ID) return true; if (chipid == BCM4335_CHIP_ID) return true; return false; } static void brcmf_sdio_dataworker(struct work_struct *work) { struct brcmf_sdio *bus = container_of(work, struct brcmf_sdio, datawork); struct list_head *cur_hd, *tmp_hd; unsigned long flags; spin_lock_irqsave(&bus->dpc_tl_lock, flags); list_for_each_safe(cur_hd, tmp_hd, &bus->dpc_tsklst) { spin_unlock_irqrestore(&bus->dpc_tl_lock, flags); brcmf_sdbrcm_dpc(bus); spin_lock_irqsave(&bus->dpc_tl_lock, flags); list_del(cur_hd); kfree(cur_hd); } spin_unlock_irqrestore(&bus->dpc_tl_lock, flags); } static void brcmf_sdbrcm_release_malloc(struct brcmf_sdio *bus) { brcmf_dbg(TRACE, "Enter\n"); kfree(bus->rxbuf); bus->rxctl = bus->rxbuf = NULL; bus->rxlen = 0; kfree(bus->databuf); bus->databuf = NULL; } static bool brcmf_sdbrcm_probe_malloc(struct brcmf_sdio *bus) { brcmf_dbg(TRACE, "Enter\n"); if (bus->sdiodev->bus_if->maxctl) { bus->rxblen = roundup((bus->sdiodev->bus_if->maxctl + SDPCM_HDRLEN), ALIGNMENT) + BRCMF_SDALIGN; bus->rxbuf = kmalloc(bus->rxblen, GFP_ATOMIC); if (!(bus->rxbuf)) goto fail; } /* Allocate buffer to receive glomed packet */ bus->databuf = kmalloc(MAX_DATA_BUF, GFP_ATOMIC); if (!(bus->databuf)) { /* release rxbuf which was already located as above */ if (!bus->rxblen) kfree(bus->rxbuf); goto fail; } /* Align the buffer */ if ((unsigned long)bus->databuf % BRCMF_SDALIGN) bus->dataptr = bus->databuf + (BRCMF_SDALIGN - ((unsigned long)bus->databuf % BRCMF_SDALIGN)); else bus->dataptr = bus->databuf; return true; fail: return false; } static bool brcmf_sdbrcm_probe_attach(struct brcmf_sdio *bus, u32 regsva) { u8 clkctl = 0; int err = 0; int reg_addr; u32 reg_val; bus->alp_only = true; sdio_claim_host(bus->sdiodev->func[1]); pr_debug("F1 signature read @0x18000000=0x%4x\n", brcmf_sdio_regrl(bus->sdiodev, SI_ENUM_BASE, NULL)); /* * Force PLL off until brcmf_sdio_chip_attach() * programs PLL control regs */ brcmf_sdio_regwb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, BRCMF_INIT_CLKCTL1, &err); if (!err) clkctl = brcmf_sdio_regrb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, &err); if (err || ((clkctl & ~SBSDIO_AVBITS) != BRCMF_INIT_CLKCTL1)) { brcmf_err("ChipClkCSR access: err %d wrote 0x%02x read 0x%02x\n", err, BRCMF_INIT_CLKCTL1, clkctl); goto fail; } if (brcmf_sdio_chip_attach(bus->sdiodev, &bus->ci, regsva)) { brcmf_err("brcmf_sdio_chip_attach failed!\n"); goto fail; } if (!brcmf_sdbrcm_chipmatch((u16) bus->ci->chip)) { brcmf_err("unsupported chip: 0x%04x\n", bus->ci->chip); goto fail; } if (brcmf_sdbrcm_kso_init(bus)) { brcmf_err("error enabling KSO\n"); goto fail; } brcmf_sdio_chip_drivestrengthinit(bus->sdiodev, bus->ci, SDIO_DRIVE_STRENGTH); /* Get info on the SOCRAM cores... */ bus->ramsize = bus->ci->ramsize; if (!(bus->ramsize)) { brcmf_err("failed to find SOCRAM memory!\n"); goto fail; } /* Set card control so an SDIO card reset does a WLAN backplane reset */ reg_val = brcmf_sdio_regrb(bus->sdiodev, SDIO_CCCR_BRCM_CARDCTRL, &err); if (err) goto fail; reg_val |= SDIO_CCCR_BRCM_CARDCTRL_WLANRESET; brcmf_sdio_regwb(bus->sdiodev, SDIO_CCCR_BRCM_CARDCTRL, reg_val, &err); if (err) goto fail; /* set PMUControl so a backplane reset does PMU state reload */ reg_addr = CORE_CC_REG(bus->ci->c_inf[0].base, pmucontrol); reg_val = brcmf_sdio_regrl(bus->sdiodev, reg_addr, &err); if (err) goto fail; reg_val |= (BCMA_CC_PMU_CTL_RES_RELOAD << BCMA_CC_PMU_CTL_RES_SHIFT); brcmf_sdio_regwl(bus->sdiodev, reg_addr, reg_val, &err); if (err) goto fail; sdio_release_host(bus->sdiodev->func[1]); brcmu_pktq_init(&bus->txq, (PRIOMASK + 1), TXQLEN); /* Locate an appropriately-aligned portion of hdrbuf */ bus->rxhdr = (u8 *) roundup((unsigned long)&bus->hdrbuf[0], BRCMF_SDALIGN); /* Set the poll and/or interrupt flags */ bus->intr = true; bus->poll = false; if (bus->poll) bus->pollrate = 1; return true; fail: sdio_release_host(bus->sdiodev->func[1]); return false; } static bool brcmf_sdbrcm_probe_init(struct brcmf_sdio *bus) { brcmf_dbg(TRACE, "Enter\n"); sdio_claim_host(bus->sdiodev->func[1]); /* Disable F2 to clear any intermediate frame state on the dongle */ brcmf_sdio_regwb(bus->sdiodev, SDIO_CCCR_IOEx, SDIO_FUNC_ENABLE_1, NULL); bus->sdiodev->bus_if->state = BRCMF_BUS_DOWN; bus->rxflow = false; /* Done with backplane-dependent accesses, can drop clock... */ brcmf_sdio_regwb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, 0, NULL); sdio_release_host(bus->sdiodev->func[1]); /* ...and initialize clock/power states */ bus->clkstate = CLK_SDONLY; bus->idletime = BRCMF_IDLE_INTERVAL; bus->idleclock = BRCMF_IDLE_ACTIVE; /* Query the F2 block size, set roundup accordingly */ bus->blocksize = bus->sdiodev->func[2]->cur_blksize; bus->roundup = min(max_roundup, bus->blocksize); /* bus module does not support packet chaining */ bus->use_rxchain = false; bus->sd_rxchain = false; /* SR state */ bus->sleeping = false; bus->sr_enabled = false; return true; } static int brcmf_sdbrcm_watchdog_thread(void *data) { struct brcmf_sdio *bus = (struct brcmf_sdio *)data; allow_signal(SIGTERM); /* Run until signal received */ while (1) { if (kthread_should_stop()) break; if (!wait_for_completion_interruptible(&bus->watchdog_wait)) { brcmf_sdbrcm_bus_watchdog(bus); /* Count the tick for reference */ bus->sdcnt.tickcnt++; } else break; } return 0; } static void brcmf_sdbrcm_watchdog(unsigned long data) { struct brcmf_sdio *bus = (struct brcmf_sdio *)data; if (bus->watchdog_tsk) { complete(&bus->watchdog_wait); /* Reschedule the watchdog */ if (bus->wd_timer_valid) mod_timer(&bus->timer, jiffies + BRCMF_WD_POLL_MS * HZ / 1000); } } static void brcmf_sdbrcm_release_dongle(struct brcmf_sdio *bus) { brcmf_dbg(TRACE, "Enter\n"); if (bus->ci) { sdio_claim_host(bus->sdiodev->func[1]); brcmf_sdbrcm_clkctl(bus, CLK_AVAIL, false); brcmf_sdbrcm_clkctl(bus, CLK_NONE, false); sdio_release_host(bus->sdiodev->func[1]); brcmf_sdio_chip_detach(&bus->ci); if (bus->vars && bus->varsz) kfree(bus->vars); bus->vars = NULL; } brcmf_dbg(TRACE, "Disconnected\n"); } /* Detach and free everything */ static void brcmf_sdbrcm_release(struct brcmf_sdio *bus) { brcmf_dbg(TRACE, "Enter\n"); if (bus) { /* De-register interrupt handler */ brcmf_sdio_intr_unregister(bus->sdiodev); cancel_work_sync(&bus->datawork); if (bus->brcmf_wq) destroy_workqueue(bus->brcmf_wq); if (bus->sdiodev->bus_if->drvr) { brcmf_detach(bus->sdiodev->dev); brcmf_sdbrcm_release_dongle(bus); } brcmf_sdbrcm_release_malloc(bus); kfree(bus); } brcmf_dbg(TRACE, "Disconnected\n"); } static struct brcmf_bus_ops brcmf_sdio_bus_ops = { .stop = brcmf_sdbrcm_bus_stop, .init = brcmf_sdbrcm_bus_init, .txdata = brcmf_sdbrcm_bus_txdata, .txctl = brcmf_sdbrcm_bus_txctl, .rxctl = brcmf_sdbrcm_bus_rxctl, .gettxq = brcmf_sdbrcm_bus_gettxq, }; void *brcmf_sdbrcm_probe(u32 regsva, struct brcmf_sdio_dev *sdiodev) { int ret; struct brcmf_sdio *bus; struct brcmf_bus_dcmd *dlst; u32 dngl_txglom; u32 dngl_txglomalign; u8 idx; brcmf_dbg(TRACE, "Enter\n"); /* We make an assumption about address window mappings: * regsva == SI_ENUM_BASE*/ /* Allocate private bus interface state */ bus = kzalloc(sizeof(struct brcmf_sdio), GFP_ATOMIC); if (!bus) goto fail; bus->sdiodev = sdiodev; sdiodev->bus = bus; skb_queue_head_init(&bus->glom); bus->txbound = BRCMF_TXBOUND; bus->rxbound = BRCMF_RXBOUND; bus->txminmax = BRCMF_TXMINMAX; bus->tx_seq = SDPCM_SEQUENCE_WRAP - 1; INIT_WORK(&bus->datawork, brcmf_sdio_dataworker); bus->brcmf_wq = create_singlethread_workqueue("brcmf_wq"); if (bus->brcmf_wq == NULL) { brcmf_err("insufficient memory to create txworkqueue\n"); goto fail; } /* attempt to attach to the dongle */ if (!(brcmf_sdbrcm_probe_attach(bus, regsva))) { brcmf_err("brcmf_sdbrcm_probe_attach failed\n"); goto fail; } spin_lock_init(&bus->rxctl_lock); spin_lock_init(&bus->txqlock); init_waitqueue_head(&bus->ctrl_wait); init_waitqueue_head(&bus->dcmd_resp_wait); /* Set up the watchdog timer */ init_timer(&bus->timer); bus->timer.data = (unsigned long)bus; bus->timer.function = brcmf_sdbrcm_watchdog; /* Initialize watchdog thread */ init_completion(&bus->watchdog_wait); bus->watchdog_tsk = kthread_run(brcmf_sdbrcm_watchdog_thread, bus, "brcmf_watchdog"); if (IS_ERR(bus->watchdog_tsk)) { pr_warn("brcmf_watchdog thread failed to start\n"); bus->watchdog_tsk = NULL; } /* Initialize DPC thread */ INIT_LIST_HEAD(&bus->dpc_tsklst); spin_lock_init(&bus->dpc_tl_lock); /* Assign bus interface call back */ bus->sdiodev->bus_if->dev = bus->sdiodev->dev; bus->sdiodev->bus_if->ops = &brcmf_sdio_bus_ops; bus->sdiodev->bus_if->chip = bus->ci->chip; bus->sdiodev->bus_if->chiprev = bus->ci->chiprev; /* Attach to the brcmf/OS/network interface */ ret = brcmf_attach(SDPCM_RESERVE, bus->sdiodev->dev); if (ret != 0) { brcmf_err("brcmf_attach failed\n"); goto fail; } /* Allocate buffers */ if (!(brcmf_sdbrcm_probe_malloc(bus))) { brcmf_err("brcmf_sdbrcm_probe_malloc failed\n"); goto fail; } if (!(brcmf_sdbrcm_probe_init(bus))) { brcmf_err("brcmf_sdbrcm_probe_init failed\n"); goto fail; } brcmf_sdio_debugfs_create(bus); brcmf_dbg(INFO, "completed!!\n"); /* sdio bus core specific dcmd */ idx = brcmf_sdio_chip_getinfidx(bus->ci, BCMA_CORE_SDIO_DEV); dlst = kzalloc(sizeof(struct brcmf_bus_dcmd), GFP_KERNEL); if (dlst) { if (bus->ci->c_inf[idx].rev < 12) { /* for sdio core rev < 12, disable txgloming */ dngl_txglom = 0; dlst->name = "bus:txglom"; dlst->param = (char *)&dngl_txglom; dlst->param_len = sizeof(u32); } else { /* otherwise, set txglomalign */ dngl_txglomalign = bus->sdiodev->bus_if->align; dlst->name = "bus:txglomalign"; dlst->param = (char *)&dngl_txglomalign; dlst->param_len = sizeof(u32); } list_add(&dlst->list, &bus->sdiodev->bus_if->dcmd_list); } /* if firmware path present try to download and bring up bus */ ret = brcmf_bus_start(bus->sdiodev->dev); if (ret != 0) { brcmf_err("dongle is not responding\n"); goto fail; } return bus; fail: brcmf_sdbrcm_release(bus); return NULL; } void brcmf_sdbrcm_disconnect(void *ptr) { struct brcmf_sdio *bus = (struct brcmf_sdio *)ptr; brcmf_dbg(TRACE, "Enter\n"); if (bus) brcmf_sdbrcm_release(bus); brcmf_dbg(TRACE, "Disconnected\n"); } void brcmf_sdbrcm_wd_timer(struct brcmf_sdio *bus, uint wdtick) { /* Totally stop the timer */ if (!wdtick && bus->wd_timer_valid) { del_timer_sync(&bus->timer); bus->wd_timer_valid = false; bus->save_ms = wdtick; return; } /* don't start the wd until fw is loaded */ if (bus->sdiodev->bus_if->state == BRCMF_BUS_DOWN) return; if (wdtick) { if (bus->save_ms != BRCMF_WD_POLL_MS) { if (bus->wd_timer_valid) /* Stop timer and restart at new value */ del_timer_sync(&bus->timer); /* Create timer again when watchdog period is dynamically changed or in the first instance */ bus->timer.expires = jiffies + BRCMF_WD_POLL_MS * HZ / 1000; add_timer(&bus->timer); } else { /* Re arm the timer, at last watchdog period */ mod_timer(&bus->timer, jiffies + BRCMF_WD_POLL_MS * HZ / 1000); } bus->wd_timer_valid = true; bus->save_ms = wdtick; } }