/* * Copyright 2011, Siemens AG * written by Alexander Smirnov */ /* * Based on patches from Jon Smirl * Copyright (c) 2011 Jon Smirl * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ /* Jon's code is based on 6lowpan implementation for Contiki which is: * Copyright (c) 2008, Swedish Institute of Computer Science. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the Institute nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include "6lowpan.h" /* * Uncompress address function for source and * destination address(non-multicast). * * address_mode is sam value or dam value. */ static int uncompress_addr(struct sk_buff *skb, struct in6_addr *ipaddr, const u8 address_mode, const u8 *lladdr, const u8 addr_type, const u8 addr_len) { bool fail; switch (address_mode) { case LOWPAN_IPHC_ADDR_00: /* for global link addresses */ fail = lowpan_fetch_skb(skb, ipaddr->s6_addr, 16); break; case LOWPAN_IPHC_ADDR_01: /* fe:80::XXXX:XXXX:XXXX:XXXX */ ipaddr->s6_addr[0] = 0xFE; ipaddr->s6_addr[1] = 0x80; fail = lowpan_fetch_skb(skb, &ipaddr->s6_addr[8], 8); break; case LOWPAN_IPHC_ADDR_02: /* fe:80::ff:fe00:XXXX */ ipaddr->s6_addr[0] = 0xFE; ipaddr->s6_addr[1] = 0x80; ipaddr->s6_addr[11] = 0xFF; ipaddr->s6_addr[12] = 0xFE; fail = lowpan_fetch_skb(skb, &ipaddr->s6_addr[14], 2); break; case LOWPAN_IPHC_ADDR_03: fail = false; switch (addr_type) { case IEEE802154_ADDR_LONG: /* fe:80::XXXX:XXXX:XXXX:XXXX * \_________________/ * hwaddr */ ipaddr->s6_addr[0] = 0xFE; ipaddr->s6_addr[1] = 0x80; memcpy(&ipaddr->s6_addr[8], lladdr, addr_len); /* second bit-flip (Universe/Local) * is done according RFC2464 */ ipaddr->s6_addr[8] ^= 0x02; break; case IEEE802154_ADDR_SHORT: /* fe:80::ff:fe00:XXXX * \__/ * short_addr * * Universe/Local bit is zero. */ ipaddr->s6_addr[0] = 0xFE; ipaddr->s6_addr[1] = 0x80; ipaddr->s6_addr[11] = 0xFF; ipaddr->s6_addr[12] = 0xFE; ipaddr->s6_addr16[7] = htons(*((u16 *)lladdr)); break; default: pr_debug("Invalid addr_type set\n"); return -EINVAL; } break; default: pr_debug("Invalid address mode value: 0x%x\n", address_mode); return -EINVAL; } if (fail) { pr_debug("Failed to fetch skb data\n"); return -EIO; } raw_dump_inline(NULL, "Reconstructed ipv6 addr is", ipaddr->s6_addr, 16); return 0; } /* * Uncompress address function for source context * based address(non-multicast). */ static int uncompress_context_based_src_addr(struct sk_buff *skb, struct in6_addr *ipaddr, const u8 sam) { switch (sam) { case LOWPAN_IPHC_ADDR_00: /* unspec address :: * Do nothing, address is already :: */ break; case LOWPAN_IPHC_ADDR_01: /* TODO */ case LOWPAN_IPHC_ADDR_02: /* TODO */ case LOWPAN_IPHC_ADDR_03: /* TODO */ netdev_warn(skb->dev, "SAM value 0x%x not supported\n", sam); return -EINVAL; default: pr_debug("Invalid sam value: 0x%x\n", sam); return -EINVAL; } raw_dump_inline(NULL, "Reconstructed context based ipv6 src addr is", ipaddr->s6_addr, 16); return 0; } static int skb_deliver(struct sk_buff *skb, struct ipv6hdr *hdr, struct net_device *dev, skb_delivery_cb deliver_skb) { struct sk_buff *new; int stat; new = skb_copy_expand(skb, sizeof(struct ipv6hdr), skb_tailroom(skb), GFP_ATOMIC); kfree_skb(skb); if (!new) return -ENOMEM; skb_push(new, sizeof(struct ipv6hdr)); skb_reset_network_header(new); skb_copy_to_linear_data(new, hdr, sizeof(struct ipv6hdr)); new->protocol = htons(ETH_P_IPV6); new->pkt_type = PACKET_HOST; new->dev = dev; raw_dump_table(__func__, "raw skb data dump before receiving", new->data, new->len); stat = deliver_skb(new, dev); kfree_skb(new); return stat; } /* Uncompress function for multicast destination address, * when M bit is set. */ static int lowpan_uncompress_multicast_daddr(struct sk_buff *skb, struct in6_addr *ipaddr, const u8 dam) { bool fail; switch (dam) { case LOWPAN_IPHC_DAM_00: /* 00: 128 bits. The full address * is carried in-line. */ fail = lowpan_fetch_skb(skb, ipaddr->s6_addr, 16); break; case LOWPAN_IPHC_DAM_01: /* 01: 48 bits. The address takes * the form ffXX::00XX:XXXX:XXXX. */ ipaddr->s6_addr[0] = 0xFF; fail = lowpan_fetch_skb(skb, &ipaddr->s6_addr[1], 1); fail |= lowpan_fetch_skb(skb, &ipaddr->s6_addr[11], 5); break; case LOWPAN_IPHC_DAM_10: /* 10: 32 bits. The address takes * the form ffXX::00XX:XXXX. */ ipaddr->s6_addr[0] = 0xFF; fail = lowpan_fetch_skb(skb, &ipaddr->s6_addr[1], 1); fail |= lowpan_fetch_skb(skb, &ipaddr->s6_addr[13], 3); break; case LOWPAN_IPHC_DAM_11: /* 11: 8 bits. The address takes * the form ff02::00XX. */ ipaddr->s6_addr[0] = 0xFF; ipaddr->s6_addr[1] = 0x02; fail = lowpan_fetch_skb(skb, &ipaddr->s6_addr[15], 1); break; default: pr_debug("DAM value has a wrong value: 0x%x\n", dam); return -EINVAL; } if (fail) { pr_debug("Failed to fetch skb data\n"); return -EIO; } raw_dump_inline(NULL, "Reconstructed ipv6 multicast addr is", ipaddr->s6_addr, 16); return 0; } static int uncompress_udp_header(struct sk_buff *skb, struct udphdr *uh) { u8 tmp; if (!uh) goto err; if (lowpan_fetch_skb_u8(skb, &tmp)) goto err; if ((tmp & LOWPAN_NHC_UDP_MASK) == LOWPAN_NHC_UDP_ID) { pr_debug("UDP header uncompression\n"); switch (tmp & LOWPAN_NHC_UDP_CS_P_11) { case LOWPAN_NHC_UDP_CS_P_00: memcpy(&uh->source, &skb->data[0], 2); memcpy(&uh->dest, &skb->data[2], 2); skb_pull(skb, 4); break; case LOWPAN_NHC_UDP_CS_P_01: memcpy(&uh->source, &skb->data[0], 2); uh->dest = skb->data[2] + LOWPAN_NHC_UDP_8BIT_PORT; skb_pull(skb, 3); break; case LOWPAN_NHC_UDP_CS_P_10: uh->source = skb->data[0] + LOWPAN_NHC_UDP_8BIT_PORT; memcpy(&uh->dest, &skb->data[1], 2); skb_pull(skb, 3); break; case LOWPAN_NHC_UDP_CS_P_11: uh->source = LOWPAN_NHC_UDP_4BIT_PORT + (skb->data[0] >> 4); uh->dest = LOWPAN_NHC_UDP_4BIT_PORT + (skb->data[0] & 0x0f); skb_pull(skb, 1); break; default: pr_debug("ERROR: unknown UDP format\n"); goto err; break; } pr_debug("uncompressed UDP ports: src = %d, dst = %d\n", uh->source, uh->dest); /* copy checksum */ memcpy(&uh->check, &skb->data[0], 2); skb_pull(skb, 2); /* * UDP lenght needs to be infered from the lower layers * here, we obtain the hint from the remaining size of the * frame */ uh->len = htons(skb->len + sizeof(struct udphdr)); pr_debug("uncompressed UDP length: src = %d", uh->len); } else { pr_debug("ERROR: unsupported NH format\n"); goto err; } return 0; err: return -EINVAL; } /* TTL uncompression values */ static const u8 lowpan_ttl_values[] = { 0, 1, 64, 255 }; int lowpan_process_data(struct sk_buff *skb, struct net_device *dev, const u8 *saddr, const u8 saddr_type, const u8 saddr_len, const u8 *daddr, const u8 daddr_type, const u8 daddr_len, u8 iphc0, u8 iphc1, skb_delivery_cb deliver_skb) { struct ipv6hdr hdr = {}; u8 tmp, num_context = 0; int err; raw_dump_table(__func__, "raw skb data dump uncompressed", skb->data, skb->len); /* another if the CID flag is set */ if (iphc1 & LOWPAN_IPHC_CID) { pr_debug("CID flag is set, increase header with one\n"); if (lowpan_fetch_skb_u8(skb, &num_context)) goto drop; } hdr.version = 6; /* Traffic Class and Flow Label */ switch ((iphc0 & LOWPAN_IPHC_TF) >> 3) { /* * Traffic Class and FLow Label carried in-line * ECN + DSCP + 4-bit Pad + Flow Label (4 bytes) */ case 0: /* 00b */ if (lowpan_fetch_skb_u8(skb, &tmp)) goto drop; memcpy(&hdr.flow_lbl, &skb->data[0], 3); skb_pull(skb, 3); hdr.priority = ((tmp >> 2) & 0x0f); hdr.flow_lbl[0] = ((tmp >> 2) & 0x30) | (tmp << 6) | (hdr.flow_lbl[0] & 0x0f); break; /* * Traffic class carried in-line * ECN + DSCP (1 byte), Flow Label is elided */ case 2: /* 10b */ if (lowpan_fetch_skb_u8(skb, &tmp)) goto drop; hdr.priority = ((tmp >> 2) & 0x0f); hdr.flow_lbl[0] = ((tmp << 6) & 0xC0) | ((tmp >> 2) & 0x30); break; /* * Flow Label carried in-line * ECN + 2-bit Pad + Flow Label (3 bytes), DSCP is elided */ case 1: /* 01b */ if (lowpan_fetch_skb_u8(skb, &tmp)) goto drop; hdr.flow_lbl[0] = (skb->data[0] & 0x0F) | ((tmp >> 2) & 0x30); memcpy(&hdr.flow_lbl[1], &skb->data[0], 2); skb_pull(skb, 2); break; /* Traffic Class and Flow Label are elided */ case 3: /* 11b */ break; default: break; } /* Next Header */ if ((iphc0 & LOWPAN_IPHC_NH_C) == 0) { /* Next header is carried inline */ if (lowpan_fetch_skb_u8(skb, &(hdr.nexthdr))) goto drop; pr_debug("NH flag is set, next header carried inline: %02x\n", hdr.nexthdr); } /* Hop Limit */ if ((iphc0 & 0x03) != LOWPAN_IPHC_TTL_I) hdr.hop_limit = lowpan_ttl_values[iphc0 & 0x03]; else { if (lowpan_fetch_skb_u8(skb, &(hdr.hop_limit))) goto drop; } /* Extract SAM to the tmp variable */ tmp = ((iphc1 & LOWPAN_IPHC_SAM) >> LOWPAN_IPHC_SAM_BIT) & 0x03; if (iphc1 & LOWPAN_IPHC_SAC) { /* Source address context based uncompression */ pr_debug("SAC bit is set. Handle context based source address.\n"); err = uncompress_context_based_src_addr( skb, &hdr.saddr, tmp); } else { /* Source address uncompression */ pr_debug("source address stateless compression\n"); err = uncompress_addr(skb, &hdr.saddr, tmp, saddr, saddr_type, saddr_len); } /* Check on error of previous branch */ if (err) goto drop; /* Extract DAM to the tmp variable */ tmp = ((iphc1 & LOWPAN_IPHC_DAM_11) >> LOWPAN_IPHC_DAM_BIT) & 0x03; /* check for Multicast Compression */ if (iphc1 & LOWPAN_IPHC_M) { if (iphc1 & LOWPAN_IPHC_DAC) { pr_debug("dest: context-based mcast compression\n"); /* TODO: implement this */ } else { err = lowpan_uncompress_multicast_daddr( skb, &hdr.daddr, tmp); if (err) goto drop; } } else { err = uncompress_addr(skb, &hdr.daddr, tmp, daddr, daddr_type, daddr_len); pr_debug("dest: stateless compression mode %d dest %pI6c\n", tmp, &hdr.daddr); if (err) goto drop; } /* UDP data uncompression */ if (iphc0 & LOWPAN_IPHC_NH_C) { struct udphdr uh; struct sk_buff *new; if (uncompress_udp_header(skb, &uh)) goto drop; /* * replace the compressed UDP head by the uncompressed UDP * header */ new = skb_copy_expand(skb, sizeof(struct udphdr), skb_tailroom(skb), GFP_ATOMIC); kfree_skb(skb); if (!new) return -ENOMEM; skb = new; skb_push(skb, sizeof(struct udphdr)); skb_reset_transport_header(skb); skb_copy_to_linear_data(skb, &uh, sizeof(struct udphdr)); raw_dump_table(__func__, "raw UDP header dump", (u8 *)&uh, sizeof(uh)); hdr.nexthdr = UIP_PROTO_UDP; } hdr.payload_len = htons(skb->len); pr_debug("skb headroom size = %d, data length = %d\n", skb_headroom(skb), skb->len); pr_debug("IPv6 header dump:\n\tversion = %d\n\tlength = %d\n\t" "nexthdr = 0x%02x\n\thop_lim = %d\n\tdest = %pI6c\n", hdr.version, ntohs(hdr.payload_len), hdr.nexthdr, hdr.hop_limit, &hdr.daddr); raw_dump_table(__func__, "raw header dump", (u8 *)&hdr, sizeof(hdr)); return skb_deliver(skb, &hdr, dev, deliver_skb); drop: kfree_skb(skb); return -EINVAL; } EXPORT_SYMBOL_GPL(lowpan_process_data); static u8 lowpan_compress_addr_64(u8 **hc06_ptr, u8 shift, const struct in6_addr *ipaddr, const unsigned char *lladdr) { u8 val = 0; if (is_addr_mac_addr_based(ipaddr, lladdr)) { val = 3; /* 0-bits */ pr_debug("address compression 0 bits\n"); } else if (lowpan_is_iid_16_bit_compressable(ipaddr)) { /* compress IID to 16 bits xxxx::XXXX */ memcpy(*hc06_ptr, &ipaddr->s6_addr16[7], 2); *hc06_ptr += 2; val = 2; /* 16-bits */ raw_dump_inline(NULL, "Compressed ipv6 addr is (16 bits)", *hc06_ptr - 2, 2); } else { /* do not compress IID => xxxx::IID */ memcpy(*hc06_ptr, &ipaddr->s6_addr16[4], 8); *hc06_ptr += 8; val = 1; /* 64-bits */ raw_dump_inline(NULL, "Compressed ipv6 addr is (64 bits)", *hc06_ptr - 8, 8); } return rol8(val, shift); } static void compress_udp_header(u8 **hc06_ptr, struct sk_buff *skb) { struct udphdr *uh = udp_hdr(skb); u8 tmp; if (((uh->source & LOWPAN_NHC_UDP_4BIT_MASK) == LOWPAN_NHC_UDP_4BIT_PORT) && ((uh->dest & LOWPAN_NHC_UDP_4BIT_MASK) == LOWPAN_NHC_UDP_4BIT_PORT)) { pr_debug("UDP header: both ports compression to 4 bits\n"); tmp = LOWPAN_NHC_UDP_CS_P_11; lowpan_push_hc_data(hc06_ptr, &tmp, sizeof(tmp)); tmp = /* subtraction is faster */ (u8)((uh->dest - LOWPAN_NHC_UDP_4BIT_PORT) + ((uh->source & LOWPAN_NHC_UDP_4BIT_PORT) << 4)); lowpan_push_hc_data(hc06_ptr, &tmp, sizeof(tmp)); } else if ((uh->dest & LOWPAN_NHC_UDP_8BIT_MASK) == LOWPAN_NHC_UDP_8BIT_PORT) { pr_debug("UDP header: remove 8 bits of dest\n"); tmp = LOWPAN_NHC_UDP_CS_P_01; lowpan_push_hc_data(hc06_ptr, &tmp, sizeof(tmp)); lowpan_push_hc_data(hc06_ptr, &uh->source, sizeof(uh->source)); tmp = (u8)(uh->dest - LOWPAN_NHC_UDP_8BIT_PORT); lowpan_push_hc_data(hc06_ptr, &tmp, sizeof(tmp)); } else if ((uh->source & LOWPAN_NHC_UDP_8BIT_MASK) == LOWPAN_NHC_UDP_8BIT_PORT) { pr_debug("UDP header: remove 8 bits of source\n"); tmp = LOWPAN_NHC_UDP_CS_P_10; lowpan_push_hc_data(hc06_ptr, &tmp, sizeof(tmp)); tmp = (u8)(uh->source - LOWPAN_NHC_UDP_8BIT_PORT); lowpan_push_hc_data(hc06_ptr, &tmp, sizeof(tmp)); lowpan_push_hc_data(hc06_ptr, &uh->dest, sizeof(uh->dest)); } else { pr_debug("UDP header: can't compress\n"); tmp = LOWPAN_NHC_UDP_CS_P_00; lowpan_push_hc_data(hc06_ptr, &tmp, sizeof(tmp)); lowpan_push_hc_data(hc06_ptr, &uh->source, sizeof(uh->source)); lowpan_push_hc_data(hc06_ptr, &uh->dest, sizeof(uh->dest)); } /* checksum is always inline */ lowpan_push_hc_data(hc06_ptr, &uh->check, sizeof(uh->check)); /* skip the UDP header */ skb_pull(skb, sizeof(struct udphdr)); } int lowpan_header_compress(struct sk_buff *skb, struct net_device *dev, unsigned short type, const void *_daddr, const void *_saddr, unsigned int len) { u8 tmp, iphc0, iphc1, *hc06_ptr; struct ipv6hdr *hdr; u8 head[100] = {}; if (type != ETH_P_IPV6) return -EINVAL; hdr = ipv6_hdr(skb); hc06_ptr = head + 2; pr_debug("IPv6 header dump:\n\tversion = %d\n\tlength = %d\n" "\tnexthdr = 0x%02x\n\thop_lim = %d\n\tdest = %pI6c\n", hdr->version, ntohs(hdr->payload_len), hdr->nexthdr, hdr->hop_limit, &hdr->daddr); raw_dump_table(__func__, "raw skb network header dump", skb_network_header(skb), sizeof(struct ipv6hdr)); /* * As we copy some bit-length fields, in the IPHC encoding bytes, * we sometimes use |= * If the field is 0, and the current bit value in memory is 1, * this does not work. We therefore reset the IPHC encoding here */ iphc0 = LOWPAN_DISPATCH_IPHC; iphc1 = 0; /* TODO: context lookup */ raw_dump_inline(__func__, "saddr", (unsigned char *)_saddr, IEEE802154_ADDR_LEN); raw_dump_inline(__func__, "daddr", (unsigned char *)_daddr, IEEE802154_ADDR_LEN); raw_dump_table(__func__, "sending raw skb network uncompressed packet", skb->data, skb->len); /* * Traffic class, flow label * If flow label is 0, compress it. If traffic class is 0, compress it * We have to process both in the same time as the offset of traffic * class depends on the presence of version and flow label */ /* hc06 format of TC is ECN | DSCP , original one is DSCP | ECN */ tmp = (hdr->priority << 4) | (hdr->flow_lbl[0] >> 4); tmp = ((tmp & 0x03) << 6) | (tmp >> 2); if (((hdr->flow_lbl[0] & 0x0F) == 0) && (hdr->flow_lbl[1] == 0) && (hdr->flow_lbl[2] == 0)) { /* flow label can be compressed */ iphc0 |= LOWPAN_IPHC_FL_C; if ((hdr->priority == 0) && ((hdr->flow_lbl[0] & 0xF0) == 0)) { /* compress (elide) all */ iphc0 |= LOWPAN_IPHC_TC_C; } else { /* compress only the flow label */ *hc06_ptr = tmp; hc06_ptr += 1; } } else { /* Flow label cannot be compressed */ if ((hdr->priority == 0) && ((hdr->flow_lbl[0] & 0xF0) == 0)) { /* compress only traffic class */ iphc0 |= LOWPAN_IPHC_TC_C; *hc06_ptr = (tmp & 0xc0) | (hdr->flow_lbl[0] & 0x0F); memcpy(hc06_ptr + 1, &hdr->flow_lbl[1], 2); hc06_ptr += 3; } else { /* compress nothing */ memcpy(hc06_ptr, &hdr, 4); /* replace the top byte with new ECN | DSCP format */ *hc06_ptr = tmp; hc06_ptr += 4; } } /* NOTE: payload length is always compressed */ /* Next Header is compress if UDP */ if (hdr->nexthdr == UIP_PROTO_UDP) iphc0 |= LOWPAN_IPHC_NH_C; if ((iphc0 & LOWPAN_IPHC_NH_C) == 0) { *hc06_ptr = hdr->nexthdr; hc06_ptr += 1; } /* * Hop limit * if 1: compress, encoding is 01 * if 64: compress, encoding is 10 * if 255: compress, encoding is 11 * else do not compress */ switch (hdr->hop_limit) { case 1: iphc0 |= LOWPAN_IPHC_TTL_1; break; case 64: iphc0 |= LOWPAN_IPHC_TTL_64; break; case 255: iphc0 |= LOWPAN_IPHC_TTL_255; break; default: *hc06_ptr = hdr->hop_limit; hc06_ptr += 1; break; } /* source address compression */ if (is_addr_unspecified(&hdr->saddr)) { pr_debug("source address is unspecified, setting SAC\n"); iphc1 |= LOWPAN_IPHC_SAC; /* TODO: context lookup */ } else if (is_addr_link_local(&hdr->saddr)) { iphc1 |= lowpan_compress_addr_64(&hc06_ptr, LOWPAN_IPHC_SAM_BIT, &hdr->saddr, _saddr); pr_debug("source address unicast link-local %pI6c " "iphc1 0x%02x\n", &hdr->saddr, iphc1); } else { pr_debug("send the full source address\n"); memcpy(hc06_ptr, &hdr->saddr.s6_addr16[0], 16); hc06_ptr += 16; } /* destination address compression */ if (is_addr_mcast(&hdr->daddr)) { pr_debug("destination address is multicast: "); iphc1 |= LOWPAN_IPHC_M; if (lowpan_is_mcast_addr_compressable8(&hdr->daddr)) { pr_debug("compressed to 1 octet\n"); iphc1 |= LOWPAN_IPHC_DAM_11; /* use last byte */ *hc06_ptr = hdr->daddr.s6_addr[15]; hc06_ptr += 1; } else if (lowpan_is_mcast_addr_compressable32(&hdr->daddr)) { pr_debug("compressed to 4 octets\n"); iphc1 |= LOWPAN_IPHC_DAM_10; /* second byte + the last three */ *hc06_ptr = hdr->daddr.s6_addr[1]; memcpy(hc06_ptr + 1, &hdr->daddr.s6_addr[13], 3); hc06_ptr += 4; } else if (lowpan_is_mcast_addr_compressable48(&hdr->daddr)) { pr_debug("compressed to 6 octets\n"); iphc1 |= LOWPAN_IPHC_DAM_01; /* second byte + the last five */ *hc06_ptr = hdr->daddr.s6_addr[1]; memcpy(hc06_ptr + 1, &hdr->daddr.s6_addr[11], 5); hc06_ptr += 6; } else { pr_debug("using full address\n"); iphc1 |= LOWPAN_IPHC_DAM_00; memcpy(hc06_ptr, &hdr->daddr.s6_addr[0], 16); hc06_ptr += 16; } } else { /* TODO: context lookup */ if (is_addr_link_local(&hdr->daddr)) { iphc1 |= lowpan_compress_addr_64(&hc06_ptr, LOWPAN_IPHC_DAM_BIT, &hdr->daddr, _daddr); pr_debug("dest address unicast link-local %pI6c " "iphc1 0x%02x\n", &hdr->daddr, iphc1); } else { pr_debug("dest address unicast %pI6c\n", &hdr->daddr); memcpy(hc06_ptr, &hdr->daddr.s6_addr16[0], 16); hc06_ptr += 16; } } /* UDP header compression */ if (hdr->nexthdr == UIP_PROTO_UDP) compress_udp_header(&hc06_ptr, skb); head[0] = iphc0; head[1] = iphc1; skb_pull(skb, sizeof(struct ipv6hdr)); skb_reset_transport_header(skb); memcpy(skb_push(skb, hc06_ptr - head), head, hc06_ptr - head); skb_reset_network_header(skb); pr_debug("header len %d skb %u\n", (int)(hc06_ptr - head), skb->len); raw_dump_table(__func__, "raw skb data dump compressed", skb->data, skb->len); return 0; } EXPORT_SYMBOL_GPL(lowpan_header_compress);