/* * Copyright © 2010 Daniel Vetter * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include #include #include "i915_drv.h" #include "i915_trace.h" #include "intel_drv.h" #define GEN6_PPGTT_PD_ENTRIES 512 #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t)) typedef uint64_t gen8_gtt_pte_t; /* PPGTT stuff */ #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0)) #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0)) #define GEN6_PDE_VALID (1 << 0) /* gen6+ has bit 11-4 for physical addr bit 39-32 */ #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr) #define GEN6_PTE_VALID (1 << 0) #define GEN6_PTE_UNCACHED (1 << 1) #define HSW_PTE_UNCACHED (0) #define GEN6_PTE_CACHE_LLC (2 << 1) #define GEN7_PTE_CACHE_L3_LLC (3 << 1) #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr) #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr) /* Cacheability Control is a 4-bit value. The low three bits are stored in * * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE. */ #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \ (((bits) & 0x8) << (11 - 3))) #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2) #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3) #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb) #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6) static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr, enum i915_cache_level level, bool valid) { gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0; pte |= addr; return pte; } static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr, enum i915_cache_level level, bool valid) { gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0; pte |= GEN6_PTE_ADDR_ENCODE(addr); switch (level) { case I915_CACHE_L3_LLC: case I915_CACHE_LLC: pte |= GEN6_PTE_CACHE_LLC; break; case I915_CACHE_NONE: pte |= GEN6_PTE_UNCACHED; break; default: WARN_ON(1); } return pte; } static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr, enum i915_cache_level level, bool valid) { gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0; pte |= GEN6_PTE_ADDR_ENCODE(addr); switch (level) { case I915_CACHE_L3_LLC: pte |= GEN7_PTE_CACHE_L3_LLC; break; case I915_CACHE_LLC: pte |= GEN6_PTE_CACHE_LLC; break; case I915_CACHE_NONE: pte |= GEN6_PTE_UNCACHED; break; default: WARN_ON(1); } return pte; } #define BYT_PTE_WRITEABLE (1 << 1) #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2) static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr, enum i915_cache_level level, bool valid) { gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0; pte |= GEN6_PTE_ADDR_ENCODE(addr); /* Mark the page as writeable. Other platforms don't have a * setting for read-only/writable, so this matches that behavior. */ pte |= BYT_PTE_WRITEABLE; if (level != I915_CACHE_NONE) pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; return pte; } static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr, enum i915_cache_level level, bool valid) { gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0; pte |= HSW_PTE_ADDR_ENCODE(addr); if (level != I915_CACHE_NONE) pte |= HSW_WB_LLC_AGE3; return pte; } static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr, enum i915_cache_level level, bool valid) { gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0; pte |= HSW_PTE_ADDR_ENCODE(addr); switch (level) { case I915_CACHE_NONE: break; case I915_CACHE_WT: pte |= HSW_WT_ELLC_LLC_AGE0; break; default: pte |= HSW_WB_ELLC_LLC_AGE0; break; } return pte; } static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt) { struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private; gen6_gtt_pte_t __iomem *pd_addr; uint32_t pd_entry; int i; WARN_ON(ppgtt->pd_offset & 0x3f); pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm + ppgtt->pd_offset / sizeof(gen6_gtt_pte_t); for (i = 0; i < ppgtt->num_pd_entries; i++) { dma_addr_t pt_addr; pt_addr = ppgtt->pt_dma_addr[i]; pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr); pd_entry |= GEN6_PDE_VALID; writel(pd_entry, pd_addr + i); } readl(pd_addr); } static int gen6_ppgtt_enable(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; uint32_t pd_offset; struct intel_ring_buffer *ring; struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; int i; BUG_ON(ppgtt->pd_offset & 0x3f); gen6_write_pdes(ppgtt); pd_offset = ppgtt->pd_offset; pd_offset /= 64; /* in cachelines, */ pd_offset <<= 16; if (INTEL_INFO(dev)->gen == 6) { uint32_t ecochk, gab_ctl, ecobits; ecobits = I915_READ(GAC_ECO_BITS); I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT | ECOBITS_PPGTT_CACHE64B); gab_ctl = I915_READ(GAB_CTL); I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT); ecochk = I915_READ(GAM_ECOCHK); I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B); I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); } else if (INTEL_INFO(dev)->gen >= 7) { uint32_t ecochk, ecobits; ecobits = I915_READ(GAC_ECO_BITS); I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B); ecochk = I915_READ(GAM_ECOCHK); if (IS_HASWELL(dev)) { ecochk |= ECOCHK_PPGTT_WB_HSW; } else { ecochk |= ECOCHK_PPGTT_LLC_IVB; ecochk &= ~ECOCHK_PPGTT_GFDT_IVB; } I915_WRITE(GAM_ECOCHK, ecochk); /* GFX_MODE is per-ring on gen7+ */ } for_each_ring(ring, dev_priv, i) { if (INTEL_INFO(dev)->gen >= 7) I915_WRITE(RING_MODE_GEN7(ring), _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G); I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset); } return 0; } /* PPGTT support for Sandybdrige/Gen6 and later */ static void gen6_ppgtt_clear_range(struct i915_address_space *vm, unsigned first_entry, unsigned num_entries, bool use_scratch) { struct i915_hw_ppgtt *ppgtt = container_of(vm, struct i915_hw_ppgtt, base); gen6_gtt_pte_t *pt_vaddr, scratch_pte; unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES; unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES; unsigned last_pte, i; scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true); while (num_entries) { last_pte = first_pte + num_entries; if (last_pte > I915_PPGTT_PT_ENTRIES) last_pte = I915_PPGTT_PT_ENTRIES; pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]); for (i = first_pte; i < last_pte; i++) pt_vaddr[i] = scratch_pte; kunmap_atomic(pt_vaddr); num_entries -= last_pte - first_pte; first_pte = 0; act_pt++; } } static void gen6_ppgtt_insert_entries(struct i915_address_space *vm, struct sg_table *pages, unsigned first_entry, enum i915_cache_level cache_level) { struct i915_hw_ppgtt *ppgtt = container_of(vm, struct i915_hw_ppgtt, base); gen6_gtt_pte_t *pt_vaddr; unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES; unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES; struct sg_page_iter sg_iter; pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]); for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) { dma_addr_t page_addr; page_addr = sg_page_iter_dma_address(&sg_iter); pt_vaddr[act_pte] = vm->pte_encode(page_addr, cache_level, true); if (++act_pte == I915_PPGTT_PT_ENTRIES) { kunmap_atomic(pt_vaddr); act_pt++; pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]); act_pte = 0; } } kunmap_atomic(pt_vaddr); } static void gen6_ppgtt_cleanup(struct i915_address_space *vm) { struct i915_hw_ppgtt *ppgtt = container_of(vm, struct i915_hw_ppgtt, base); int i; drm_mm_takedown(&ppgtt->base.mm); if (ppgtt->pt_dma_addr) { for (i = 0; i < ppgtt->num_pd_entries; i++) pci_unmap_page(ppgtt->base.dev->pdev, ppgtt->pt_dma_addr[i], 4096, PCI_DMA_BIDIRECTIONAL); } kfree(ppgtt->pt_dma_addr); for (i = 0; i < ppgtt->num_pd_entries; i++) __free_page(ppgtt->pt_pages[i]); kfree(ppgtt->pt_pages); kfree(ppgtt); } static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt) { struct drm_device *dev = ppgtt->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; unsigned first_pd_entry_in_global_pt; int i; int ret = -ENOMEM; /* ppgtt PDEs reside in the global gtt pagetable, which has 512*1024 * entries. For aliasing ppgtt support we just steal them at the end for * now. */ first_pd_entry_in_global_pt = gtt_total_entries(dev_priv->gtt); ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode; ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES; ppgtt->enable = gen6_ppgtt_enable; ppgtt->base.clear_range = gen6_ppgtt_clear_range; ppgtt->base.insert_entries = gen6_ppgtt_insert_entries; ppgtt->base.cleanup = gen6_ppgtt_cleanup; ppgtt->base.scratch = dev_priv->gtt.base.scratch; ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *), GFP_KERNEL); if (!ppgtt->pt_pages) return -ENOMEM; for (i = 0; i < ppgtt->num_pd_entries; i++) { ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL); if (!ppgtt->pt_pages[i]) goto err_pt_alloc; } ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t), GFP_KERNEL); if (!ppgtt->pt_dma_addr) goto err_pt_alloc; for (i = 0; i < ppgtt->num_pd_entries; i++) { dma_addr_t pt_addr; pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096, PCI_DMA_BIDIRECTIONAL); if (pci_dma_mapping_error(dev->pdev, pt_addr)) { ret = -EIO; goto err_pd_pin; } ppgtt->pt_dma_addr[i] = pt_addr; } ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES, true); ppgtt->pd_offset = first_pd_entry_in_global_pt * sizeof(gen6_gtt_pte_t); return 0; err_pd_pin: if (ppgtt->pt_dma_addr) { for (i--; i >= 0; i--) pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i], 4096, PCI_DMA_BIDIRECTIONAL); } err_pt_alloc: kfree(ppgtt->pt_dma_addr); for (i = 0; i < ppgtt->num_pd_entries; i++) { if (ppgtt->pt_pages[i]) __free_page(ppgtt->pt_pages[i]); } kfree(ppgtt->pt_pages); return ret; } static int i915_gem_init_aliasing_ppgtt(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct i915_hw_ppgtt *ppgtt; int ret; ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); if (!ppgtt) return -ENOMEM; ppgtt->base.dev = dev; if (INTEL_INFO(dev)->gen < 8) ret = gen6_ppgtt_init(ppgtt); else if (IS_GEN8(dev)) ret = -ENOSYS; else BUG(); if (ret) kfree(ppgtt); else { dev_priv->mm.aliasing_ppgtt = ppgtt; drm_mm_init(&ppgtt->base.mm, ppgtt->base.start, ppgtt->base.total); } return ret; } void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; if (!ppgtt) return; ppgtt->base.cleanup(&ppgtt->base); dev_priv->mm.aliasing_ppgtt = NULL; } void i915_ppgtt_bind_object(struct i915_hw_ppgtt *ppgtt, struct drm_i915_gem_object *obj, enum i915_cache_level cache_level) { ppgtt->base.insert_entries(&ppgtt->base, obj->pages, i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT, cache_level); } void i915_ppgtt_unbind_object(struct i915_hw_ppgtt *ppgtt, struct drm_i915_gem_object *obj) { ppgtt->base.clear_range(&ppgtt->base, i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT, obj->base.size >> PAGE_SHIFT, true); } extern int intel_iommu_gfx_mapped; /* Certain Gen5 chipsets require require idling the GPU before * unmapping anything from the GTT when VT-d is enabled. */ static inline bool needs_idle_maps(struct drm_device *dev) { #ifdef CONFIG_INTEL_IOMMU /* Query intel_iommu to see if we need the workaround. Presumably that * was loaded first. */ if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped) return true; #endif return false; } static bool do_idling(struct drm_i915_private *dev_priv) { bool ret = dev_priv->mm.interruptible; if (unlikely(dev_priv->gtt.do_idle_maps)) { dev_priv->mm.interruptible = false; if (i915_gpu_idle(dev_priv->dev)) { DRM_ERROR("Couldn't idle GPU\n"); /* Wait a bit, in hopes it avoids the hang */ udelay(10); } } return ret; } static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible) { if (unlikely(dev_priv->gtt.do_idle_maps)) dev_priv->mm.interruptible = interruptible; } void i915_check_and_clear_faults(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_ring_buffer *ring; int i; if (INTEL_INFO(dev)->gen < 6) return; for_each_ring(ring, dev_priv, i) { u32 fault_reg; fault_reg = I915_READ(RING_FAULT_REG(ring)); if (fault_reg & RING_FAULT_VALID) { DRM_DEBUG_DRIVER("Unexpected fault\n" "\tAddr: 0x%08lx\\n" "\tAddress space: %s\n" "\tSource ID: %d\n" "\tType: %d\n", fault_reg & PAGE_MASK, fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT", RING_FAULT_SRCID(fault_reg), RING_FAULT_FAULT_TYPE(fault_reg)); I915_WRITE(RING_FAULT_REG(ring), fault_reg & ~RING_FAULT_VALID); } } POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS])); } void i915_gem_suspend_gtt_mappings(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; /* Don't bother messing with faults pre GEN6 as we have little * documentation supporting that it's a good idea. */ if (INTEL_INFO(dev)->gen < 6) return; i915_check_and_clear_faults(dev); dev_priv->gtt.base.clear_range(&dev_priv->gtt.base, dev_priv->gtt.base.start / PAGE_SIZE, dev_priv->gtt.base.total / PAGE_SIZE, false); } void i915_gem_restore_gtt_mappings(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj; i915_check_and_clear_faults(dev); /* First fill our portion of the GTT with scratch pages */ dev_priv->gtt.base.clear_range(&dev_priv->gtt.base, dev_priv->gtt.base.start / PAGE_SIZE, dev_priv->gtt.base.total / PAGE_SIZE, true); list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { i915_gem_clflush_object(obj, obj->pin_display); i915_gem_gtt_bind_object(obj, obj->cache_level); } i915_gem_chipset_flush(dev); } int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj) { if (obj->has_dma_mapping) return 0; if (!dma_map_sg(&obj->base.dev->pdev->dev, obj->pages->sgl, obj->pages->nents, PCI_DMA_BIDIRECTIONAL)) return -ENOSPC; return 0; } static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte) { #ifdef writeq writeq(pte, addr); #else iowrite32((u32)pte, addr); iowrite32(pte >> 32, addr + 4); #endif } static void gen8_ggtt_insert_entries(struct i915_address_space *vm, struct sg_table *st, unsigned int first_entry, enum i915_cache_level level) { struct drm_i915_private *dev_priv = vm->dev->dev_private; gen8_gtt_pte_t __iomem *gtt_entries = (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry; int i = 0; struct sg_page_iter sg_iter; dma_addr_t addr; for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) { addr = sg_dma_address(sg_iter.sg) + (sg_iter.sg_pgoffset << PAGE_SHIFT); gen8_set_pte(>t_entries[i], gen8_pte_encode(addr, level, true)); i++; } /* * XXX: This serves as a posting read to make sure that the PTE has * actually been updated. There is some concern that even though * registers and PTEs are within the same BAR that they are potentially * of NUMA access patterns. Therefore, even with the way we assume * hardware should work, we must keep this posting read for paranoia. */ if (i != 0) WARN_ON(readq(>t_entries[i-1]) != gen8_pte_encode(addr, level, true)); #if 0 /* TODO: Still needed on GEN8? */ /* This next bit makes the above posting read even more important. We * want to flush the TLBs only after we're certain all the PTE updates * have finished. */ I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); POSTING_READ(GFX_FLSH_CNTL_GEN6); #endif } /* * Binds an object into the global gtt with the specified cache level. The object * will be accessible to the GPU via commands whose operands reference offsets * within the global GTT as well as accessible by the GPU through the GMADR * mapped BAR (dev_priv->mm.gtt->gtt). */ static void gen6_ggtt_insert_entries(struct i915_address_space *vm, struct sg_table *st, unsigned int first_entry, enum i915_cache_level level) { struct drm_i915_private *dev_priv = vm->dev->dev_private; gen6_gtt_pte_t __iomem *gtt_entries = (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry; int i = 0; struct sg_page_iter sg_iter; dma_addr_t addr; for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) { addr = sg_page_iter_dma_address(&sg_iter); iowrite32(vm->pte_encode(addr, level, true), >t_entries[i]); i++; } /* XXX: This serves as a posting read to make sure that the PTE has * actually been updated. There is some concern that even though * registers and PTEs are within the same BAR that they are potentially * of NUMA access patterns. Therefore, even with the way we assume * hardware should work, we must keep this posting read for paranoia. */ if (i != 0) WARN_ON(readl(>t_entries[i-1]) != vm->pte_encode(addr, level, true)); /* This next bit makes the above posting read even more important. We * want to flush the TLBs only after we're certain all the PTE updates * have finished. */ I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); POSTING_READ(GFX_FLSH_CNTL_GEN6); } static void gen8_ggtt_clear_range(struct i915_address_space *vm, unsigned int first_entry, unsigned int num_entries, bool use_scratch) { struct drm_i915_private *dev_priv = vm->dev->dev_private; gen8_gtt_pte_t scratch_pte, __iomem *gtt_base = (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry; const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry; int i; if (WARN(num_entries > max_entries, "First entry = %d; Num entries = %d (max=%d)\n", first_entry, num_entries, max_entries)) num_entries = max_entries; scratch_pte = gen8_pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch); for (i = 0; i < num_entries; i++) gen8_set_pte(>t_base[i], scratch_pte); readl(gtt_base); } static void gen6_ggtt_clear_range(struct i915_address_space *vm, unsigned int first_entry, unsigned int num_entries, bool use_scratch) { struct drm_i915_private *dev_priv = vm->dev->dev_private; gen6_gtt_pte_t scratch_pte, __iomem *gtt_base = (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry; const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry; int i; if (WARN(num_entries > max_entries, "First entry = %d; Num entries = %d (max=%d)\n", first_entry, num_entries, max_entries)) num_entries = max_entries; scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch); for (i = 0; i < num_entries; i++) iowrite32(scratch_pte, >t_base[i]); readl(gtt_base); } static void i915_ggtt_insert_entries(struct i915_address_space *vm, struct sg_table *st, unsigned int pg_start, enum i915_cache_level cache_level) { unsigned int flags = (cache_level == I915_CACHE_NONE) ? AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; intel_gtt_insert_sg_entries(st, pg_start, flags); } static void i915_ggtt_clear_range(struct i915_address_space *vm, unsigned int first_entry, unsigned int num_entries, bool unused) { intel_gtt_clear_range(first_entry, num_entries); } void i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj, enum i915_cache_level cache_level) { struct drm_device *dev = obj->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT; dev_priv->gtt.base.insert_entries(&dev_priv->gtt.base, obj->pages, entry, cache_level); obj->has_global_gtt_mapping = 1; } void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj) { struct drm_device *dev = obj->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT; dev_priv->gtt.base.clear_range(&dev_priv->gtt.base, entry, obj->base.size >> PAGE_SHIFT, true); obj->has_global_gtt_mapping = 0; } void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj) { struct drm_device *dev = obj->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; bool interruptible; interruptible = do_idling(dev_priv); if (!obj->has_dma_mapping) dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents, PCI_DMA_BIDIRECTIONAL); undo_idling(dev_priv, interruptible); } static void i915_gtt_color_adjust(struct drm_mm_node *node, unsigned long color, unsigned long *start, unsigned long *end) { if (node->color != color) *start += 4096; if (!list_empty(&node->node_list)) { node = list_entry(node->node_list.next, struct drm_mm_node, node_list); if (node->allocated && node->color != color) *end -= 4096; } } void i915_gem_setup_global_gtt(struct drm_device *dev, unsigned long start, unsigned long mappable_end, unsigned long end) { /* Let GEM Manage all of the aperture. * * However, leave one page at the end still bound to the scratch page. * There are a number of places where the hardware apparently prefetches * past the end of the object, and we've seen multiple hangs with the * GPU head pointer stuck in a batchbuffer bound at the last page of the * aperture. One page should be enough to keep any prefetching inside * of the aperture. */ struct drm_i915_private *dev_priv = dev->dev_private; struct i915_address_space *ggtt_vm = &dev_priv->gtt.base; struct drm_mm_node *entry; struct drm_i915_gem_object *obj; unsigned long hole_start, hole_end; BUG_ON(mappable_end > end); /* Subtract the guard page ... */ drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE); if (!HAS_LLC(dev)) dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust; /* Mark any preallocated objects as occupied */ list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm); int ret; DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n", i915_gem_obj_ggtt_offset(obj), obj->base.size); WARN_ON(i915_gem_obj_ggtt_bound(obj)); ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node); if (ret) DRM_DEBUG_KMS("Reservation failed\n"); obj->has_global_gtt_mapping = 1; list_add(&vma->vma_link, &obj->vma_list); } dev_priv->gtt.base.start = start; dev_priv->gtt.base.total = end - start; /* Clear any non-preallocated blocks */ drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) { const unsigned long count = (hole_end - hole_start) / PAGE_SIZE; DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n", hole_start, hole_end); ggtt_vm->clear_range(ggtt_vm, hole_start / PAGE_SIZE, count, true); } /* And finally clear the reserved guard page */ ggtt_vm->clear_range(ggtt_vm, end / PAGE_SIZE - 1, 1, true); } static bool intel_enable_ppgtt(struct drm_device *dev) { if (i915_enable_ppgtt >= 0) return i915_enable_ppgtt; #ifdef CONFIG_INTEL_IOMMU /* Disable ppgtt on SNB if VT-d is on. */ if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) return false; #endif return true; } void i915_gem_init_global_gtt(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; unsigned long gtt_size, mappable_size; gtt_size = dev_priv->gtt.base.total; mappable_size = dev_priv->gtt.mappable_end; if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) { int ret; if (INTEL_INFO(dev)->gen <= 7) { /* PPGTT pdes are stolen from global gtt ptes, so shrink the * aperture accordingly when using aliasing ppgtt. */ gtt_size -= GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE; } i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size); ret = i915_gem_init_aliasing_ppgtt(dev); if (!ret) return; DRM_ERROR("Aliased PPGTT setup failed %d\n", ret); drm_mm_takedown(&dev_priv->gtt.base.mm); gtt_size += GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE; } i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size); } static int setup_scratch_page(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct page *page; dma_addr_t dma_addr; page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO); if (page == NULL) return -ENOMEM; get_page(page); set_pages_uc(page, 1); #ifdef CONFIG_INTEL_IOMMU dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); if (pci_dma_mapping_error(dev->pdev, dma_addr)) return -EINVAL; #else dma_addr = page_to_phys(page); #endif dev_priv->gtt.base.scratch.page = page; dev_priv->gtt.base.scratch.addr = dma_addr; return 0; } static void teardown_scratch_page(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct page *page = dev_priv->gtt.base.scratch.page; set_pages_wb(page, 1); pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); put_page(page); __free_page(page); } static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) { snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; return snb_gmch_ctl << 20; } static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) { bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; if (bdw_gmch_ctl) bdw_gmch_ctl = 1 << bdw_gmch_ctl; return bdw_gmch_ctl << 20; } static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl) { snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT; snb_gmch_ctl &= SNB_GMCH_GMS_MASK; return snb_gmch_ctl << 25; /* 32 MB units */ } static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl) { bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT; bdw_gmch_ctl &= BDW_GMCH_GMS_MASK; return bdw_gmch_ctl << 25; /* 32 MB units */ } static int ggtt_probe_common(struct drm_device *dev, size_t gtt_size) { struct drm_i915_private *dev_priv = dev->dev_private; phys_addr_t gtt_bus_addr; int ret; /* For Modern GENs the PTEs and register space are split in the BAR */ gtt_bus_addr = pci_resource_start(dev->pdev, 0) + (pci_resource_len(dev->pdev, 0) / 2); dev_priv->gtt.gsm = ioremap_wc(gtt_bus_addr, gtt_size); if (!dev_priv->gtt.gsm) { DRM_ERROR("Failed to map the gtt page table\n"); return -ENOMEM; } ret = setup_scratch_page(dev); if (ret) { DRM_ERROR("Scratch setup failed\n"); /* iounmap will also get called at remove, but meh */ iounmap(dev_priv->gtt.gsm); } return ret; } static int gen8_gmch_probe(struct drm_device *dev, size_t *gtt_total, size_t *stolen, phys_addr_t *mappable_base, unsigned long *mappable_end) { struct drm_i915_private *dev_priv = dev->dev_private; unsigned int gtt_size; u16 snb_gmch_ctl; int ret; /* TODO: We're not aware of mappable constraints on gen8 yet */ *mappable_base = pci_resource_start(dev->pdev, 2); *mappable_end = pci_resource_len(dev->pdev, 2); if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39))) pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39)); pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); *stolen = gen8_get_stolen_size(snb_gmch_ctl); gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl); *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT; ret = ggtt_probe_common(dev, gtt_size); dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range; dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries; return ret; } static int gen6_gmch_probe(struct drm_device *dev, size_t *gtt_total, size_t *stolen, phys_addr_t *mappable_base, unsigned long *mappable_end) { struct drm_i915_private *dev_priv = dev->dev_private; unsigned int gtt_size; u16 snb_gmch_ctl; int ret; *mappable_base = pci_resource_start(dev->pdev, 2); *mappable_end = pci_resource_len(dev->pdev, 2); /* 64/512MB is the current min/max we actually know of, but this is just * a coarse sanity check. */ if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) { DRM_ERROR("Unknown GMADR size (%lx)\n", dev_priv->gtt.mappable_end); return -ENXIO; } if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40))) pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40)); pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); *stolen = gen6_get_stolen_size(snb_gmch_ctl); gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl); *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT; ret = ggtt_probe_common(dev, gtt_size); dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range; dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries; return ret; } static void gen6_gmch_remove(struct i915_address_space *vm) { struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base); iounmap(gtt->gsm); teardown_scratch_page(vm->dev); } static int i915_gmch_probe(struct drm_device *dev, size_t *gtt_total, size_t *stolen, phys_addr_t *mappable_base, unsigned long *mappable_end) { struct drm_i915_private *dev_priv = dev->dev_private; int ret; ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL); if (!ret) { DRM_ERROR("failed to set up gmch\n"); return -EIO; } intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end); dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev); dev_priv->gtt.base.clear_range = i915_ggtt_clear_range; dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries; return 0; } static void i915_gmch_remove(struct i915_address_space *vm) { intel_gmch_remove(); } int i915_gem_gtt_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct i915_gtt *gtt = &dev_priv->gtt; int ret; if (INTEL_INFO(dev)->gen <= 5) { gtt->gtt_probe = i915_gmch_probe; gtt->base.cleanup = i915_gmch_remove; } else if (INTEL_INFO(dev)->gen < 8) { gtt->gtt_probe = gen6_gmch_probe; gtt->base.cleanup = gen6_gmch_remove; if (IS_HASWELL(dev) && dev_priv->ellc_size) gtt->base.pte_encode = iris_pte_encode; else if (IS_HASWELL(dev)) gtt->base.pte_encode = hsw_pte_encode; else if (IS_VALLEYVIEW(dev)) gtt->base.pte_encode = byt_pte_encode; else if (INTEL_INFO(dev)->gen >= 7) gtt->base.pte_encode = ivb_pte_encode; else gtt->base.pte_encode = snb_pte_encode; } else { dev_priv->gtt.gtt_probe = gen8_gmch_probe; dev_priv->gtt.base.cleanup = gen6_gmch_remove; } ret = gtt->gtt_probe(dev, >t->base.total, >t->stolen_size, >t->mappable_base, >t->mappable_end); if (ret) return ret; gtt->base.dev = dev; /* GMADR is the PCI mmio aperture into the global GTT. */ DRM_INFO("Memory usable by graphics device = %zdM\n", gtt->base.total >> 20); DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20); DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20); return 0; }