/*- * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting * Copyright (c) 2004-2005 Atheros Communications, Inc. * Copyright (c) 2006 Devicescape Software, Inc. * Copyright (c) 2007 Jiri Slaby * Copyright (c) 2007 Luis R. Rodriguez * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any * redistribution must be conditioned upon including a substantially * similar Disclaimer requirement for further binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGES. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "base.h" #include "reg.h" #include "debug.h" #include "ani.h" #include "ath5k.h" #include "../regd.h" #define CREATE_TRACE_POINTS #include "trace.h" int ath5k_modparam_nohwcrypt; module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO); MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); static int modparam_all_channels; module_param_named(all_channels, modparam_all_channels, bool, S_IRUGO); MODULE_PARM_DESC(all_channels, "Expose all channels the device can use."); static int modparam_fastchanswitch; module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO); MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios."); /* Module info */ MODULE_AUTHOR("Jiri Slaby"); MODULE_AUTHOR("Nick Kossifidis"); MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards."); MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards"); MODULE_LICENSE("Dual BSD/GPL"); static int ath5k_init(struct ieee80211_hw *hw); static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan, bool skip_pcu); /* Known SREVs */ static const struct ath5k_srev_name srev_names[] = { #ifdef CONFIG_ATHEROS_AR231X { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R2 }, { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R7 }, { "2313", AR5K_VERSION_MAC, AR5K_SREV_AR2313_R8 }, { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R6 }, { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R7 }, { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R1 }, { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R2 }, #else { "5210", AR5K_VERSION_MAC, AR5K_SREV_AR5210 }, { "5311", AR5K_VERSION_MAC, AR5K_SREV_AR5311 }, { "5311A", AR5K_VERSION_MAC, AR5K_SREV_AR5311A }, { "5311B", AR5K_VERSION_MAC, AR5K_SREV_AR5311B }, { "5211", AR5K_VERSION_MAC, AR5K_SREV_AR5211 }, { "5212", AR5K_VERSION_MAC, AR5K_SREV_AR5212 }, { "5213", AR5K_VERSION_MAC, AR5K_SREV_AR5213 }, { "5213A", AR5K_VERSION_MAC, AR5K_SREV_AR5213A }, { "2413", AR5K_VERSION_MAC, AR5K_SREV_AR2413 }, { "2414", AR5K_VERSION_MAC, AR5K_SREV_AR2414 }, { "5424", AR5K_VERSION_MAC, AR5K_SREV_AR5424 }, { "5413", AR5K_VERSION_MAC, AR5K_SREV_AR5413 }, { "5414", AR5K_VERSION_MAC, AR5K_SREV_AR5414 }, { "2415", AR5K_VERSION_MAC, AR5K_SREV_AR2415 }, { "5416", AR5K_VERSION_MAC, AR5K_SREV_AR5416 }, { "5418", AR5K_VERSION_MAC, AR5K_SREV_AR5418 }, { "2425", AR5K_VERSION_MAC, AR5K_SREV_AR2425 }, { "2417", AR5K_VERSION_MAC, AR5K_SREV_AR2417 }, #endif { "xxxxx", AR5K_VERSION_MAC, AR5K_SREV_UNKNOWN }, { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 }, { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 }, { "5111A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111A }, { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 }, { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 }, { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A }, { "5112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112B }, { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 }, { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A }, { "2112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112B }, { "2413", AR5K_VERSION_RAD, AR5K_SREV_RAD_2413 }, { "5413", AR5K_VERSION_RAD, AR5K_SREV_RAD_5413 }, { "5424", AR5K_VERSION_RAD, AR5K_SREV_RAD_5424 }, { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 }, #ifdef CONFIG_ATHEROS_AR231X { "2316", AR5K_VERSION_RAD, AR5K_SREV_RAD_2316 }, { "2317", AR5K_VERSION_RAD, AR5K_SREV_RAD_2317 }, #endif { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN }, }; static const struct ieee80211_rate ath5k_rates[] = { { .bitrate = 10, .hw_value = ATH5K_RATE_CODE_1M, }, { .bitrate = 20, .hw_value = ATH5K_RATE_CODE_2M, .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 55, .hw_value = ATH5K_RATE_CODE_5_5M, .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 110, .hw_value = ATH5K_RATE_CODE_11M, .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 60, .hw_value = ATH5K_RATE_CODE_6M, .flags = 0 }, { .bitrate = 90, .hw_value = ATH5K_RATE_CODE_9M, .flags = 0 }, { .bitrate = 120, .hw_value = ATH5K_RATE_CODE_12M, .flags = 0 }, { .bitrate = 180, .hw_value = ATH5K_RATE_CODE_18M, .flags = 0 }, { .bitrate = 240, .hw_value = ATH5K_RATE_CODE_24M, .flags = 0 }, { .bitrate = 360, .hw_value = ATH5K_RATE_CODE_36M, .flags = 0 }, { .bitrate = 480, .hw_value = ATH5K_RATE_CODE_48M, .flags = 0 }, { .bitrate = 540, .hw_value = ATH5K_RATE_CODE_54M, .flags = 0 }, /* XR missing */ }; static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp) { u64 tsf = ath5k_hw_get_tsf64(ah); if ((tsf & 0x7fff) < rstamp) tsf -= 0x8000; return (tsf & ~0x7fff) | rstamp; } const char * ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val) { const char *name = "xxxxx"; unsigned int i; for (i = 0; i < ARRAY_SIZE(srev_names); i++) { if (srev_names[i].sr_type != type) continue; if ((val & 0xf0) == srev_names[i].sr_val) name = srev_names[i].sr_name; if ((val & 0xff) == srev_names[i].sr_val) { name = srev_names[i].sr_name; break; } } return name; } static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset) { struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv; return ath5k_hw_reg_read(ah, reg_offset); } static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset) { struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv; ath5k_hw_reg_write(ah, val, reg_offset); } static const struct ath_ops ath5k_common_ops = { .read = ath5k_ioread32, .write = ath5k_iowrite32, }; /***********************\ * Driver Initialization * \***********************/ static int ath5k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request) { struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy); struct ath5k_hw *ah = hw->priv; struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah); return ath_reg_notifier_apply(wiphy, request, regulatory); } /********************\ * Channel/mode setup * \********************/ /* * Returns true for the channel numbers used without all_channels modparam. */ static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band) { if (band == IEEE80211_BAND_2GHZ && chan <= 14) return true; return /* UNII 1,2 */ (((chan & 3) == 0 && chan >= 36 && chan <= 64) || /* midband */ ((chan & 3) == 0 && chan >= 100 && chan <= 140) || /* UNII-3 */ ((chan & 3) == 1 && chan >= 149 && chan <= 165) || /* 802.11j 5.030-5.080 GHz (20MHz) */ (chan == 8 || chan == 12 || chan == 16) || /* 802.11j 4.9GHz (20MHz) */ (chan == 184 || chan == 188 || chan == 192 || chan == 196)); } static unsigned int ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels, unsigned int mode, unsigned int max) { unsigned int count, size, freq, ch; enum ieee80211_band band; switch (mode) { case AR5K_MODE_11A: /* 1..220, but 2GHz frequencies are filtered by check_channel */ size = 220; band = IEEE80211_BAND_5GHZ; break; case AR5K_MODE_11B: case AR5K_MODE_11G: size = 26; band = IEEE80211_BAND_2GHZ; break; default: ATH5K_WARN(ah, "bad mode, not copying channels\n"); return 0; } count = 0; for (ch = 1; ch <= size && count < max; ch++) { freq = ieee80211_channel_to_frequency(ch, band); if (freq == 0) /* mapping failed - not a standard channel */ continue; /* Write channel info, needed for ath5k_channel_ok() */ channels[count].center_freq = freq; channels[count].band = band; channels[count].hw_value = mode; /* Check if channel is supported by the chipset */ if (!ath5k_channel_ok(ah, &channels[count])) continue; if (!modparam_all_channels && !ath5k_is_standard_channel(ch, band)) continue; count++; } return count; } static void ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b) { u8 i; for (i = 0; i < AR5K_MAX_RATES; i++) ah->rate_idx[b->band][i] = -1; for (i = 0; i < b->n_bitrates; i++) { ah->rate_idx[b->band][b->bitrates[i].hw_value] = i; if (b->bitrates[i].hw_value_short) ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i; } } static int ath5k_setup_bands(struct ieee80211_hw *hw) { struct ath5k_hw *ah = hw->priv; struct ieee80211_supported_band *sband; int max_c, count_c = 0; int i; BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < IEEE80211_NUM_BANDS); max_c = ARRAY_SIZE(ah->channels); /* 2GHz band */ sband = &ah->sbands[IEEE80211_BAND_2GHZ]; sband->band = IEEE80211_BAND_2GHZ; sband->bitrates = &ah->rates[IEEE80211_BAND_2GHZ][0]; if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) { /* G mode */ memcpy(sband->bitrates, &ath5k_rates[0], sizeof(struct ieee80211_rate) * 12); sband->n_bitrates = 12; sband->channels = ah->channels; sband->n_channels = ath5k_setup_channels(ah, sband->channels, AR5K_MODE_11G, max_c); hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband; count_c = sband->n_channels; max_c -= count_c; } else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) { /* B mode */ memcpy(sband->bitrates, &ath5k_rates[0], sizeof(struct ieee80211_rate) * 4); sband->n_bitrates = 4; /* 5211 only supports B rates and uses 4bit rate codes * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B) * fix them up here: */ if (ah->ah_version == AR5K_AR5211) { for (i = 0; i < 4; i++) { sband->bitrates[i].hw_value = sband->bitrates[i].hw_value & 0xF; sband->bitrates[i].hw_value_short = sband->bitrates[i].hw_value_short & 0xF; } } sband->channels = ah->channels; sband->n_channels = ath5k_setup_channels(ah, sband->channels, AR5K_MODE_11B, max_c); hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband; count_c = sband->n_channels; max_c -= count_c; } ath5k_setup_rate_idx(ah, sband); /* 5GHz band, A mode */ if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) { sband = &ah->sbands[IEEE80211_BAND_5GHZ]; sband->band = IEEE80211_BAND_5GHZ; sband->bitrates = &ah->rates[IEEE80211_BAND_5GHZ][0]; memcpy(sband->bitrates, &ath5k_rates[4], sizeof(struct ieee80211_rate) * 8); sband->n_bitrates = 8; sband->channels = &ah->channels[count_c]; sband->n_channels = ath5k_setup_channels(ah, sband->channels, AR5K_MODE_11A, max_c); hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband; } ath5k_setup_rate_idx(ah, sband); ath5k_debug_dump_bands(ah); return 0; } /* * Set/change channels. We always reset the chip. * To accomplish this we must first cleanup any pending DMA, * then restart stuff after a la ath5k_init. * * Called with ah->lock. */ int ath5k_chan_set(struct ath5k_hw *ah, struct ieee80211_channel *chan) { ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "channel set, resetting (%u -> %u MHz)\n", ah->curchan->center_freq, chan->center_freq); /* * To switch channels clear any pending DMA operations; * wait long enough for the RX fifo to drain, reset the * hardware at the new frequency, and then re-enable * the relevant bits of the h/w. */ return ath5k_reset(ah, chan, true); } void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif) { struct ath5k_vif_iter_data *iter_data = data; int i; struct ath5k_vif *avf = (void *)vif->drv_priv; if (iter_data->hw_macaddr) for (i = 0; i < ETH_ALEN; i++) iter_data->mask[i] &= ~(iter_data->hw_macaddr[i] ^ mac[i]); if (!iter_data->found_active) { iter_data->found_active = true; memcpy(iter_data->active_mac, mac, ETH_ALEN); } if (iter_data->need_set_hw_addr && iter_data->hw_macaddr) if (compare_ether_addr(iter_data->hw_macaddr, mac) == 0) iter_data->need_set_hw_addr = false; if (!iter_data->any_assoc) { if (avf->assoc) iter_data->any_assoc = true; } /* Calculate combined mode - when APs are active, operate in AP mode. * Otherwise use the mode of the new interface. This can currently * only deal with combinations of APs and STAs. Only one ad-hoc * interfaces is allowed. */ if (avf->opmode == NL80211_IFTYPE_AP) iter_data->opmode = NL80211_IFTYPE_AP; else { if (avf->opmode == NL80211_IFTYPE_STATION) iter_data->n_stas++; if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED) iter_data->opmode = avf->opmode; } } void ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah, struct ieee80211_vif *vif) { struct ath_common *common = ath5k_hw_common(ah); struct ath5k_vif_iter_data iter_data; u32 rfilt; /* * Use the hardware MAC address as reference, the hardware uses it * together with the BSSID mask when matching addresses. */ iter_data.hw_macaddr = common->macaddr; memset(&iter_data.mask, 0xff, ETH_ALEN); iter_data.found_active = false; iter_data.need_set_hw_addr = true; iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED; iter_data.n_stas = 0; if (vif) ath5k_vif_iter(&iter_data, vif->addr, vif); /* Get list of all active MAC addresses */ ieee80211_iterate_active_interfaces_atomic(ah->hw, ath5k_vif_iter, &iter_data); memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN); ah->opmode = iter_data.opmode; if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED) /* Nothing active, default to station mode */ ah->opmode = NL80211_IFTYPE_STATION; ath5k_hw_set_opmode(ah, ah->opmode); ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n", ah->opmode, ath_opmode_to_string(ah->opmode)); if (iter_data.need_set_hw_addr && iter_data.found_active) ath5k_hw_set_lladdr(ah, iter_data.active_mac); if (ath5k_hw_hasbssidmask(ah)) ath5k_hw_set_bssid_mask(ah, ah->bssidmask); /* Set up RX Filter */ if (iter_data.n_stas > 1) { /* If you have multiple STA interfaces connected to * different APs, ARPs are not received (most of the time?) * Enabling PROMISC appears to fix that problem. */ ah->filter_flags |= AR5K_RX_FILTER_PROM; } rfilt = ah->filter_flags; ath5k_hw_set_rx_filter(ah, rfilt); ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt); } static inline int ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix) { int rix; /* return base rate on errors */ if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES, "hw_rix out of bounds: %x\n", hw_rix)) return 0; rix = ah->rate_idx[ah->curchan->band][hw_rix]; if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix)) rix = 0; return rix; } /***************\ * Buffers setup * \***************/ static struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr) { struct ath_common *common = ath5k_hw_common(ah); struct sk_buff *skb; /* * Allocate buffer with headroom_needed space for the * fake physical layer header at the start. */ skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC); if (!skb) { ATH5K_ERR(ah, "can't alloc skbuff of size %u\n", common->rx_bufsize); return NULL; } *skb_addr = dma_map_single(ah->dev, skb->data, common->rx_bufsize, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) { ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__); dev_kfree_skb(skb); return NULL; } return skb; } static int ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf) { struct sk_buff *skb = bf->skb; struct ath5k_desc *ds; int ret; if (!skb) { skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr); if (!skb) return -ENOMEM; bf->skb = skb; } /* * Setup descriptors. For receive we always terminate * the descriptor list with a self-linked entry so we'll * not get overrun under high load (as can happen with a * 5212 when ANI processing enables PHY error frames). * * To ensure the last descriptor is self-linked we create * each descriptor as self-linked and add it to the end. As * each additional descriptor is added the previous self-linked * entry is "fixed" naturally. This should be safe even * if DMA is happening. When processing RX interrupts we * never remove/process the last, self-linked, entry on the * descriptor list. This ensures the hardware always has * someplace to write a new frame. */ ds = bf->desc; ds->ds_link = bf->daddr; /* link to self */ ds->ds_data = bf->skbaddr; ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0); if (ret) { ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__); return ret; } if (ah->rxlink != NULL) *ah->rxlink = bf->daddr; ah->rxlink = &ds->ds_link; return 0; } static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb) { struct ieee80211_hdr *hdr; enum ath5k_pkt_type htype; __le16 fc; hdr = (struct ieee80211_hdr *)skb->data; fc = hdr->frame_control; if (ieee80211_is_beacon(fc)) htype = AR5K_PKT_TYPE_BEACON; else if (ieee80211_is_probe_resp(fc)) htype = AR5K_PKT_TYPE_PROBE_RESP; else if (ieee80211_is_atim(fc)) htype = AR5K_PKT_TYPE_ATIM; else if (ieee80211_is_pspoll(fc)) htype = AR5K_PKT_TYPE_PSPOLL; else htype = AR5K_PKT_TYPE_NORMAL; return htype; } static int ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf, struct ath5k_txq *txq, int padsize) { struct ath5k_desc *ds = bf->desc; struct sk_buff *skb = bf->skb; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID; struct ieee80211_rate *rate; unsigned int mrr_rate[3], mrr_tries[3]; int i, ret; u16 hw_rate; u16 cts_rate = 0; u16 duration = 0; u8 rc_flags; flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK; /* XXX endianness */ bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len, DMA_TO_DEVICE); rate = ieee80211_get_tx_rate(ah->hw, info); if (!rate) { ret = -EINVAL; goto err_unmap; } if (info->flags & IEEE80211_TX_CTL_NO_ACK) flags |= AR5K_TXDESC_NOACK; rc_flags = info->control.rates[0].flags; hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ? rate->hw_value_short : rate->hw_value; pktlen = skb->len; /* FIXME: If we are in g mode and rate is a CCK rate * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta * from tx power (value is in dB units already) */ if (info->control.hw_key) { keyidx = info->control.hw_key->hw_key_idx; pktlen += info->control.hw_key->icv_len; } if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) { flags |= AR5K_TXDESC_RTSENA; cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value; duration = le16_to_cpu(ieee80211_rts_duration(ah->hw, info->control.vif, pktlen, info)); } if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { flags |= AR5K_TXDESC_CTSENA; cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value; duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw, info->control.vif, pktlen, info)); } ret = ah->ah_setup_tx_desc(ah, ds, pktlen, ieee80211_get_hdrlen_from_skb(skb), padsize, get_hw_packet_type(skb), (ah->power_level * 2), hw_rate, info->control.rates[0].count, keyidx, ah->ah_tx_ant, flags, cts_rate, duration); if (ret) goto err_unmap; memset(mrr_rate, 0, sizeof(mrr_rate)); memset(mrr_tries, 0, sizeof(mrr_tries)); for (i = 0; i < 3; i++) { rate = ieee80211_get_alt_retry_rate(ah->hw, info, i); if (!rate) break; mrr_rate[i] = rate->hw_value; mrr_tries[i] = info->control.rates[i + 1].count; } ath5k_hw_setup_mrr_tx_desc(ah, ds, mrr_rate[0], mrr_tries[0], mrr_rate[1], mrr_tries[1], mrr_rate[2], mrr_tries[2]); ds->ds_link = 0; ds->ds_data = bf->skbaddr; spin_lock_bh(&txq->lock); list_add_tail(&bf->list, &txq->q); txq->txq_len++; if (txq->link == NULL) /* is this first packet? */ ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr); else /* no, so only link it */ *txq->link = bf->daddr; txq->link = &ds->ds_link; ath5k_hw_start_tx_dma(ah, txq->qnum); mmiowb(); spin_unlock_bh(&txq->lock); return 0; err_unmap: dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE); return ret; } /*******************\ * Descriptors setup * \*******************/ static int ath5k_desc_alloc(struct ath5k_hw *ah) { struct ath5k_desc *ds; struct ath5k_buf *bf; dma_addr_t da; unsigned int i; int ret; /* allocate descriptors */ ah->desc_len = sizeof(struct ath5k_desc) * (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1); ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len, &ah->desc_daddr, GFP_KERNEL); if (ah->desc == NULL) { ATH5K_ERR(ah, "can't allocate descriptors\n"); ret = -ENOMEM; goto err; } ds = ah->desc; da = ah->desc_daddr; ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n", ds, ah->desc_len, (unsigned long long)ah->desc_daddr); bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF, sizeof(struct ath5k_buf), GFP_KERNEL); if (bf == NULL) { ATH5K_ERR(ah, "can't allocate bufptr\n"); ret = -ENOMEM; goto err_free; } ah->bufptr = bf; INIT_LIST_HEAD(&ah->rxbuf); for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) { bf->desc = ds; bf->daddr = da; list_add_tail(&bf->list, &ah->rxbuf); } INIT_LIST_HEAD(&ah->txbuf); ah->txbuf_len = ATH_TXBUF; for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) { bf->desc = ds; bf->daddr = da; list_add_tail(&bf->list, &ah->txbuf); } /* beacon buffers */ INIT_LIST_HEAD(&ah->bcbuf); for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) { bf->desc = ds; bf->daddr = da; list_add_tail(&bf->list, &ah->bcbuf); } return 0; err_free: dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr); err: ah->desc = NULL; return ret; } void ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf) { BUG_ON(!bf); if (!bf->skb) return; dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len, DMA_TO_DEVICE); dev_kfree_skb_any(bf->skb); bf->skb = NULL; bf->skbaddr = 0; bf->desc->ds_data = 0; } void ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf) { struct ath_common *common = ath5k_hw_common(ah); BUG_ON(!bf); if (!bf->skb) return; dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize, DMA_FROM_DEVICE); dev_kfree_skb_any(bf->skb); bf->skb = NULL; bf->skbaddr = 0; bf->desc->ds_data = 0; } static void ath5k_desc_free(struct ath5k_hw *ah) { struct ath5k_buf *bf; list_for_each_entry(bf, &ah->txbuf, list) ath5k_txbuf_free_skb(ah, bf); list_for_each_entry(bf, &ah->rxbuf, list) ath5k_rxbuf_free_skb(ah, bf); list_for_each_entry(bf, &ah->bcbuf, list) ath5k_txbuf_free_skb(ah, bf); /* Free memory associated with all descriptors */ dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr); ah->desc = NULL; ah->desc_daddr = 0; kfree(ah->bufptr); ah->bufptr = NULL; } /**************\ * Queues setup * \**************/ static struct ath5k_txq * ath5k_txq_setup(struct ath5k_hw *ah, int qtype, int subtype) { struct ath5k_txq *txq; struct ath5k_txq_info qi = { .tqi_subtype = subtype, /* XXX: default values not correct for B and XR channels, * but who cares? */ .tqi_aifs = AR5K_TUNE_AIFS, .tqi_cw_min = AR5K_TUNE_CWMIN, .tqi_cw_max = AR5K_TUNE_CWMAX }; int qnum; /* * Enable interrupts only for EOL and DESC conditions. * We mark tx descriptors to receive a DESC interrupt * when a tx queue gets deep; otherwise we wait for the * EOL to reap descriptors. Note that this is done to * reduce interrupt load and this only defers reaping * descriptors, never transmitting frames. Aside from * reducing interrupts this also permits more concurrency. * The only potential downside is if the tx queue backs * up in which case the top half of the kernel may backup * due to a lack of tx descriptors. */ qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE | AR5K_TXQ_FLAG_TXDESCINT_ENABLE; qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi); if (qnum < 0) { /* * NB: don't print a message, this happens * normally on parts with too few tx queues */ return ERR_PTR(qnum); } if (qnum >= ARRAY_SIZE(ah->txqs)) { ATH5K_ERR(ah, "hw qnum %u out of range, max %tu!\n", qnum, ARRAY_SIZE(ah->txqs)); ath5k_hw_release_tx_queue(ah, qnum); return ERR_PTR(-EINVAL); } txq = &ah->txqs[qnum]; if (!txq->setup) { txq->qnum = qnum; txq->link = NULL; INIT_LIST_HEAD(&txq->q); spin_lock_init(&txq->lock); txq->setup = true; txq->txq_len = 0; txq->txq_max = ATH5K_TXQ_LEN_MAX; txq->txq_poll_mark = false; txq->txq_stuck = 0; } return &ah->txqs[qnum]; } static int ath5k_beaconq_setup(struct ath5k_hw *ah) { struct ath5k_txq_info qi = { /* XXX: default values not correct for B and XR channels, * but who cares? */ .tqi_aifs = AR5K_TUNE_AIFS, .tqi_cw_min = AR5K_TUNE_CWMIN, .tqi_cw_max = AR5K_TUNE_CWMAX, /* NB: for dynamic turbo, don't enable any other interrupts */ .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE }; return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi); } static int ath5k_beaconq_config(struct ath5k_hw *ah) { struct ath5k_txq_info qi; int ret; ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi); if (ret) goto err; if (ah->opmode == NL80211_IFTYPE_AP || ah->opmode == NL80211_IFTYPE_MESH_POINT) { /* * Always burst out beacon and CAB traffic * (aifs = cwmin = cwmax = 0) */ qi.tqi_aifs = 0; qi.tqi_cw_min = 0; qi.tqi_cw_max = 0; } else if (ah->opmode == NL80211_IFTYPE_ADHOC) { /* * Adhoc mode; backoff between 0 and (2 * cw_min). */ qi.tqi_aifs = 0; qi.tqi_cw_min = 0; qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN; } ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n", qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max); ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi); if (ret) { ATH5K_ERR(ah, "%s: unable to update parameters for beacon " "hardware queue!\n", __func__); goto err; } ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */ if (ret) goto err; /* reconfigure cabq with ready time to 80% of beacon_interval */ ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi); if (ret) goto err; qi.tqi_ready_time = (ah->bintval * 80) / 100; ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi); if (ret) goto err; ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB); err: return ret; } /** * ath5k_drain_tx_buffs - Empty tx buffers * * @ah The &struct ath5k_hw * * Empty tx buffers from all queues in preparation * of a reset or during shutdown. * * NB: this assumes output has been stopped and * we do not need to block ath5k_tx_tasklet */ static void ath5k_drain_tx_buffs(struct ath5k_hw *ah) { struct ath5k_txq *txq; struct ath5k_buf *bf, *bf0; int i; for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) { if (ah->txqs[i].setup) { txq = &ah->txqs[i]; spin_lock_bh(&txq->lock); list_for_each_entry_safe(bf, bf0, &txq->q, list) { ath5k_debug_printtxbuf(ah, bf); ath5k_txbuf_free_skb(ah, bf); spin_lock_bh(&ah->txbuflock); list_move_tail(&bf->list, &ah->txbuf); ah->txbuf_len++; txq->txq_len--; spin_unlock_bh(&ah->txbuflock); } txq->link = NULL; txq->txq_poll_mark = false; spin_unlock_bh(&txq->lock); } } } static void ath5k_txq_release(struct ath5k_hw *ah) { struct ath5k_txq *txq = ah->txqs; unsigned int i; for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++) if (txq->setup) { ath5k_hw_release_tx_queue(ah, txq->qnum); txq->setup = false; } } /*************\ * RX Handling * \*************/ /* * Enable the receive h/w following a reset. */ static int ath5k_rx_start(struct ath5k_hw *ah) { struct ath_common *common = ath5k_hw_common(ah); struct ath5k_buf *bf; int ret; common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz); ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n", common->cachelsz, common->rx_bufsize); spin_lock_bh(&ah->rxbuflock); ah->rxlink = NULL; list_for_each_entry(bf, &ah->rxbuf, list) { ret = ath5k_rxbuf_setup(ah, bf); if (ret != 0) { spin_unlock_bh(&ah->rxbuflock); goto err; } } bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list); ath5k_hw_set_rxdp(ah, bf->daddr); spin_unlock_bh(&ah->rxbuflock); ath5k_hw_start_rx_dma(ah); /* enable recv descriptors */ ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */ ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */ return 0; err: return ret; } /* * Disable the receive logic on PCU (DRU) * In preparation for a shutdown. * * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop * does. */ static void ath5k_rx_stop(struct ath5k_hw *ah) { ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */ ath5k_hw_stop_rx_pcu(ah); /* disable PCU */ ath5k_debug_printrxbuffs(ah); } static unsigned int ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb, struct ath5k_rx_status *rs) { struct ath_common *common = ath5k_hw_common(ah); struct ieee80211_hdr *hdr = (void *)skb->data; unsigned int keyix, hlen; if (!(rs->rs_status & AR5K_RXERR_DECRYPT) && rs->rs_keyix != AR5K_RXKEYIX_INVALID) return RX_FLAG_DECRYPTED; /* Apparently when a default key is used to decrypt the packet the hw does not set the index used to decrypt. In such cases get the index from the packet. */ hlen = ieee80211_hdrlen(hdr->frame_control); if (ieee80211_has_protected(hdr->frame_control) && !(rs->rs_status & AR5K_RXERR_DECRYPT) && skb->len >= hlen + 4) { keyix = skb->data[hlen + 3] >> 6; if (test_bit(keyix, common->keymap)) return RX_FLAG_DECRYPTED; } return 0; } static void ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb, struct ieee80211_rx_status *rxs) { struct ath_common *common = ath5k_hw_common(ah); u64 tsf, bc_tstamp; u32 hw_tu; struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data; if (ieee80211_is_beacon(mgmt->frame_control) && le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS && memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) == 0) { /* * Received an IBSS beacon with the same BSSID. Hardware *must* * have updated the local TSF. We have to work around various * hardware bugs, though... */ tsf = ath5k_hw_get_tsf64(ah); bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp); hw_tu = TSF_TO_TU(tsf); ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "beacon %llx mactime %llx (diff %lld) tsf now %llx\n", (unsigned long long)bc_tstamp, (unsigned long long)rxs->mactime, (unsigned long long)(rxs->mactime - bc_tstamp), (unsigned long long)tsf); /* * Sometimes the HW will give us a wrong tstamp in the rx * status, causing the timestamp extension to go wrong. * (This seems to happen especially with beacon frames bigger * than 78 byte (incl. FCS)) * But we know that the receive timestamp must be later than the * timestamp of the beacon since HW must have synced to that. * * NOTE: here we assume mactime to be after the frame was * received, not like mac80211 which defines it at the start. */ if (bc_tstamp > rxs->mactime) { ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "fixing mactime from %llx to %llx\n", (unsigned long long)rxs->mactime, (unsigned long long)tsf); rxs->mactime = tsf; } /* * Local TSF might have moved higher than our beacon timers, * in that case we have to update them to continue sending * beacons. This also takes care of synchronizing beacon sending * times with other stations. */ if (hw_tu >= ah->nexttbtt) ath5k_beacon_update_timers(ah, bc_tstamp); /* Check if the beacon timers are still correct, because a TSF * update might have created a window between them - for a * longer description see the comment of this function: */ if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) { ath5k_beacon_update_timers(ah, bc_tstamp); ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "fixed beacon timers after beacon receive\n"); } } } static void ath5k_update_beacon_rssi(struct ath5k_hw *ah, struct sk_buff *skb, int rssi) { struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data; struct ath_common *common = ath5k_hw_common(ah); /* only beacons from our BSSID */ if (!ieee80211_is_beacon(mgmt->frame_control) || memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) != 0) return; ewma_add(&ah->ah_beacon_rssi_avg, rssi); /* in IBSS mode we should keep RSSI statistics per neighbour */ /* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */ } /* * Compute padding position. skb must contain an IEEE 802.11 frame */ static int ath5k_common_padpos(struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; __le16 frame_control = hdr->frame_control; int padpos = 24; if (ieee80211_has_a4(frame_control)) padpos += ETH_ALEN; if (ieee80211_is_data_qos(frame_control)) padpos += IEEE80211_QOS_CTL_LEN; return padpos; } /* * This function expects an 802.11 frame and returns the number of * bytes added, or -1 if we don't have enough header room. */ static int ath5k_add_padding(struct sk_buff *skb) { int padpos = ath5k_common_padpos(skb); int padsize = padpos & 3; if (padsize && skb->len > padpos) { if (skb_headroom(skb) < padsize) return -1; skb_push(skb, padsize); memmove(skb->data, skb->data + padsize, padpos); return padsize; } return 0; } /* * The MAC header is padded to have 32-bit boundary if the * packet payload is non-zero. The general calculation for * padsize would take into account odd header lengths: * padsize = 4 - (hdrlen & 3); however, since only * even-length headers are used, padding can only be 0 or 2 * bytes and we can optimize this a bit. We must not try to * remove padding from short control frames that do not have a * payload. * * This function expects an 802.11 frame and returns the number of * bytes removed. */ static int ath5k_remove_padding(struct sk_buff *skb) { int padpos = ath5k_common_padpos(skb); int padsize = padpos & 3; if (padsize && skb->len >= padpos + padsize) { memmove(skb->data + padsize, skb->data, padpos); skb_pull(skb, padsize); return padsize; } return 0; } static void ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb, struct ath5k_rx_status *rs) { struct ieee80211_rx_status *rxs; ath5k_remove_padding(skb); rxs = IEEE80211_SKB_RXCB(skb); rxs->flag = 0; if (unlikely(rs->rs_status & AR5K_RXERR_MIC)) rxs->flag |= RX_FLAG_MMIC_ERROR; /* * always extend the mac timestamp, since this information is * also needed for proper IBSS merging. * * XXX: it might be too late to do it here, since rs_tstamp is * 15bit only. that means TSF extension has to be done within * 32768usec (about 32ms). it might be necessary to move this to * the interrupt handler, like it is done in madwifi. * * Unfortunately we don't know when the hardware takes the rx * timestamp (beginning of phy frame, data frame, end of rx?). * The only thing we know is that it is hardware specific... * On AR5213 it seems the rx timestamp is at the end of the * frame, but I'm not sure. * * NOTE: mac80211 defines mactime at the beginning of the first * data symbol. Since we don't have any time references it's * impossible to comply to that. This affects IBSS merge only * right now, so it's not too bad... */ rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp); rxs->flag |= RX_FLAG_MACTIME_MPDU; rxs->freq = ah->curchan->center_freq; rxs->band = ah->curchan->band; rxs->signal = ah->ah_noise_floor + rs->rs_rssi; rxs->antenna = rs->rs_antenna; if (rs->rs_antenna > 0 && rs->rs_antenna < 5) ah->stats.antenna_rx[rs->rs_antenna]++; else ah->stats.antenna_rx[0]++; /* invalid */ rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate); rxs->flag |= ath5k_rx_decrypted(ah, skb, rs); if (rxs->rate_idx >= 0 && rs->rs_rate == ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short) rxs->flag |= RX_FLAG_SHORTPRE; trace_ath5k_rx(ah, skb); ath5k_update_beacon_rssi(ah, skb, rs->rs_rssi); /* check beacons in IBSS mode */ if (ah->opmode == NL80211_IFTYPE_ADHOC) ath5k_check_ibss_tsf(ah, skb, rxs); ieee80211_rx(ah->hw, skb); } /** ath5k_frame_receive_ok() - Do we want to receive this frame or not? * * Check if we want to further process this frame or not. Also update * statistics. Return true if we want this frame, false if not. */ static bool ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs) { ah->stats.rx_all_count++; ah->stats.rx_bytes_count += rs->rs_datalen; if (unlikely(rs->rs_status)) { if (rs->rs_status & AR5K_RXERR_CRC) ah->stats.rxerr_crc++; if (rs->rs_status & AR5K_RXERR_FIFO) ah->stats.rxerr_fifo++; if (rs->rs_status & AR5K_RXERR_PHY) { ah->stats.rxerr_phy++; if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32) ah->stats.rxerr_phy_code[rs->rs_phyerr]++; return false; } if (rs->rs_status & AR5K_RXERR_DECRYPT) { /* * Decrypt error. If the error occurred * because there was no hardware key, then * let the frame through so the upper layers * can process it. This is necessary for 5210 * parts which have no way to setup a ``clear'' * key cache entry. * * XXX do key cache faulting */ ah->stats.rxerr_decrypt++; if (rs->rs_keyix == AR5K_RXKEYIX_INVALID && !(rs->rs_status & AR5K_RXERR_CRC)) return true; } if (rs->rs_status & AR5K_RXERR_MIC) { ah->stats.rxerr_mic++; return true; } /* reject any frames with non-crypto errors */ if (rs->rs_status & ~(AR5K_RXERR_DECRYPT)) return false; } if (unlikely(rs->rs_more)) { ah->stats.rxerr_jumbo++; return false; } return true; } static void ath5k_set_current_imask(struct ath5k_hw *ah) { enum ath5k_int imask; unsigned long flags; spin_lock_irqsave(&ah->irqlock, flags); imask = ah->imask; if (ah->rx_pending) imask &= ~AR5K_INT_RX_ALL; if (ah->tx_pending) imask &= ~AR5K_INT_TX_ALL; ath5k_hw_set_imr(ah, imask); spin_unlock_irqrestore(&ah->irqlock, flags); } static void ath5k_tasklet_rx(unsigned long data) { struct ath5k_rx_status rs = {}; struct sk_buff *skb, *next_skb; dma_addr_t next_skb_addr; struct ath5k_hw *ah = (void *)data; struct ath_common *common = ath5k_hw_common(ah); struct ath5k_buf *bf; struct ath5k_desc *ds; int ret; spin_lock(&ah->rxbuflock); if (list_empty(&ah->rxbuf)) { ATH5K_WARN(ah, "empty rx buf pool\n"); goto unlock; } do { bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list); BUG_ON(bf->skb == NULL); skb = bf->skb; ds = bf->desc; /* bail if HW is still using self-linked descriptor */ if (ath5k_hw_get_rxdp(ah) == bf->daddr) break; ret = ah->ah_proc_rx_desc(ah, ds, &rs); if (unlikely(ret == -EINPROGRESS)) break; else if (unlikely(ret)) { ATH5K_ERR(ah, "error in processing rx descriptor\n"); ah->stats.rxerr_proc++; break; } if (ath5k_receive_frame_ok(ah, &rs)) { next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr); /* * If we can't replace bf->skb with a new skb under * memory pressure, just skip this packet */ if (!next_skb) goto next; dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize, DMA_FROM_DEVICE); skb_put(skb, rs.rs_datalen); ath5k_receive_frame(ah, skb, &rs); bf->skb = next_skb; bf->skbaddr = next_skb_addr; } next: list_move_tail(&bf->list, &ah->rxbuf); } while (ath5k_rxbuf_setup(ah, bf) == 0); unlock: spin_unlock(&ah->rxbuflock); ah->rx_pending = false; ath5k_set_current_imask(ah); } /*************\ * TX Handling * \*************/ void ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb, struct ath5k_txq *txq) { struct ath5k_hw *ah = hw->priv; struct ath5k_buf *bf; unsigned long flags; int padsize; trace_ath5k_tx(ah, skb, txq); /* * The hardware expects the header padded to 4 byte boundaries. * If this is not the case, we add the padding after the header. */ padsize = ath5k_add_padding(skb); if (padsize < 0) { ATH5K_ERR(ah, "tx hdrlen not %%4: not enough" " headroom to pad"); goto drop_packet; } if (txq->txq_len >= txq->txq_max && txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX) ieee80211_stop_queue(hw, txq->qnum); spin_lock_irqsave(&ah->txbuflock, flags); if (list_empty(&ah->txbuf)) { ATH5K_ERR(ah, "no further txbuf available, dropping packet\n"); spin_unlock_irqrestore(&ah->txbuflock, flags); ieee80211_stop_queues(hw); goto drop_packet; } bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list); list_del(&bf->list); ah->txbuf_len--; if (list_empty(&ah->txbuf)) ieee80211_stop_queues(hw); spin_unlock_irqrestore(&ah->txbuflock, flags); bf->skb = skb; if (ath5k_txbuf_setup(ah, bf, txq, padsize)) { bf->skb = NULL; spin_lock_irqsave(&ah->txbuflock, flags); list_add_tail(&bf->list, &ah->txbuf); ah->txbuf_len++; spin_unlock_irqrestore(&ah->txbuflock, flags); goto drop_packet; } return; drop_packet: dev_kfree_skb_any(skb); } static void ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb, struct ath5k_txq *txq, struct ath5k_tx_status *ts) { struct ieee80211_tx_info *info; u8 tries[3]; int i; ah->stats.tx_all_count++; ah->stats.tx_bytes_count += skb->len; info = IEEE80211_SKB_CB(skb); tries[0] = info->status.rates[0].count; tries[1] = info->status.rates[1].count; tries[2] = info->status.rates[2].count; ieee80211_tx_info_clear_status(info); for (i = 0; i < ts->ts_final_idx; i++) { struct ieee80211_tx_rate *r = &info->status.rates[i]; r->count = tries[i]; } info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry; info->status.rates[ts->ts_final_idx + 1].idx = -1; if (unlikely(ts->ts_status)) { ah->stats.ack_fail++; if (ts->ts_status & AR5K_TXERR_FILT) { info->flags |= IEEE80211_TX_STAT_TX_FILTERED; ah->stats.txerr_filt++; } if (ts->ts_status & AR5K_TXERR_XRETRY) ah->stats.txerr_retry++; if (ts->ts_status & AR5K_TXERR_FIFO) ah->stats.txerr_fifo++; } else { info->flags |= IEEE80211_TX_STAT_ACK; info->status.ack_signal = ts->ts_rssi; /* count the successful attempt as well */ info->status.rates[ts->ts_final_idx].count++; } /* * Remove MAC header padding before giving the frame * back to mac80211. */ ath5k_remove_padding(skb); if (ts->ts_antenna > 0 && ts->ts_antenna < 5) ah->stats.antenna_tx[ts->ts_antenna]++; else ah->stats.antenna_tx[0]++; /* invalid */ trace_ath5k_tx_complete(ah, skb, txq, ts); ieee80211_tx_status(ah->hw, skb); } static void ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq) { struct ath5k_tx_status ts = {}; struct ath5k_buf *bf, *bf0; struct ath5k_desc *ds; struct sk_buff *skb; int ret; spin_lock(&txq->lock); list_for_each_entry_safe(bf, bf0, &txq->q, list) { txq->txq_poll_mark = false; /* skb might already have been processed last time. */ if (bf->skb != NULL) { ds = bf->desc; ret = ah->ah_proc_tx_desc(ah, ds, &ts); if (unlikely(ret == -EINPROGRESS)) break; else if (unlikely(ret)) { ATH5K_ERR(ah, "error %d while processing " "queue %u\n", ret, txq->qnum); break; } skb = bf->skb; bf->skb = NULL; dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE); ath5k_tx_frame_completed(ah, skb, txq, &ts); } /* * It's possible that the hardware can say the buffer is * completed when it hasn't yet loaded the ds_link from * host memory and moved on. * Always keep the last descriptor to avoid HW races... */ if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) { spin_lock(&ah->txbuflock); list_move_tail(&bf->list, &ah->txbuf); ah->txbuf_len++; txq->txq_len--; spin_unlock(&ah->txbuflock); } } spin_unlock(&txq->lock); if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4) ieee80211_wake_queue(ah->hw, txq->qnum); } static void ath5k_tasklet_tx(unsigned long data) { int i; struct ath5k_hw *ah = (void *)data; for (i = 0; i < AR5K_NUM_TX_QUEUES; i++) if (ah->txqs[i].setup && (ah->ah_txq_isr & BIT(i))) ath5k_tx_processq(ah, &ah->txqs[i]); ah->tx_pending = false; ath5k_set_current_imask(ah); } /*****************\ * Beacon handling * \*****************/ /* * Setup the beacon frame for transmit. */ static int ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf) { struct sk_buff *skb = bf->skb; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ath5k_desc *ds; int ret = 0; u8 antenna; u32 flags; const int padsize = 0; bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len, DMA_TO_DEVICE); ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] " "skbaddr %llx\n", skb, skb->data, skb->len, (unsigned long long)bf->skbaddr); if (dma_mapping_error(ah->dev, bf->skbaddr)) { ATH5K_ERR(ah, "beacon DMA mapping failed\n"); return -EIO; } ds = bf->desc; antenna = ah->ah_tx_ant; flags = AR5K_TXDESC_NOACK; if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) { ds->ds_link = bf->daddr; /* self-linked */ flags |= AR5K_TXDESC_VEOL; } else ds->ds_link = 0; /* * If we use multiple antennas on AP and use * the Sectored AP scenario, switch antenna every * 4 beacons to make sure everybody hears our AP. * When a client tries to associate, hw will keep * track of the tx antenna to be used for this client * automatically, based on ACKed packets. * * Note: AP still listens and transmits RTS on the * default antenna which is supposed to be an omni. * * Note2: On sectored scenarios it's possible to have * multiple antennas (1 omni -- the default -- and 14 * sectors), so if we choose to actually support this * mode, we need to allow the user to set how many antennas * we have and tweak the code below to send beacons * on all of them. */ if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP) antenna = ah->bsent & 4 ? 2 : 1; /* FIXME: If we are in g mode and rate is a CCK rate * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta * from tx power (value is in dB units already) */ ds->ds_data = bf->skbaddr; ret = ah->ah_setup_tx_desc(ah, ds, skb->len, ieee80211_get_hdrlen_from_skb(skb), padsize, AR5K_PKT_TYPE_BEACON, (ah->power_level * 2), ieee80211_get_tx_rate(ah->hw, info)->hw_value, 1, AR5K_TXKEYIX_INVALID, antenna, flags, 0, 0); if (ret) goto err_unmap; return 0; err_unmap: dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE); return ret; } /* * Updates the beacon that is sent by ath5k_beacon_send. For adhoc, * this is called only once at config_bss time, for AP we do it every * SWBA interrupt so that the TIM will reflect buffered frames. * * Called with the beacon lock. */ int ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { int ret; struct ath5k_hw *ah = hw->priv; struct ath5k_vif *avf = (void *)vif->drv_priv; struct sk_buff *skb; if (WARN_ON(!vif)) { ret = -EINVAL; goto out; } skb = ieee80211_beacon_get(hw, vif); if (!skb) { ret = -ENOMEM; goto out; } ath5k_txbuf_free_skb(ah, avf->bbuf); avf->bbuf->skb = skb; ret = ath5k_beacon_setup(ah, avf->bbuf); if (ret) avf->bbuf->skb = NULL; out: return ret; } /* * Transmit a beacon frame at SWBA. Dynamic updates to the * frame contents are done as needed and the slot time is * also adjusted based on current state. * * This is called from software irq context (beacontq tasklets) * or user context from ath5k_beacon_config. */ static void ath5k_beacon_send(struct ath5k_hw *ah) { struct ieee80211_vif *vif; struct ath5k_vif *avf; struct ath5k_buf *bf; struct sk_buff *skb; ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n"); /* * Check if the previous beacon has gone out. If * not, don't don't try to post another: skip this * period and wait for the next. Missed beacons * indicate a problem and should not occur. If we * miss too many consecutive beacons reset the device. */ if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) { ah->bmisscount++; ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "missed %u consecutive beacons\n", ah->bmisscount); if (ah->bmisscount > 10) { /* NB: 10 is a guess */ ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "stuck beacon time (%u missed)\n", ah->bmisscount); ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "stuck beacon, resetting\n"); ieee80211_queue_work(ah->hw, &ah->reset_work); } return; } if (unlikely(ah->bmisscount != 0)) { ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "resume beacon xmit after %u misses\n", ah->bmisscount); ah->bmisscount = 0; } if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs > 1) || ah->opmode == NL80211_IFTYPE_MESH_POINT) { u64 tsf = ath5k_hw_get_tsf64(ah); u32 tsftu = TSF_TO_TU(tsf); int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval; vif = ah->bslot[(slot + 1) % ATH_BCBUF]; ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "tsf %llx tsftu %x intval %u slot %u vif %p\n", (unsigned long long)tsf, tsftu, ah->bintval, slot, vif); } else /* only one interface */ vif = ah->bslot[0]; if (!vif) return; avf = (void *)vif->drv_priv; bf = avf->bbuf; if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION || ah->opmode == NL80211_IFTYPE_MONITOR)) { ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf ? bf->skb : NULL); return; } /* * Stop any current dma and put the new frame on the queue. * This should never fail since we check above that no frames * are still pending on the queue. */ if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) { ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq); /* NB: hw still stops DMA, so proceed */ } /* refresh the beacon for AP or MESH mode */ if (ah->opmode == NL80211_IFTYPE_AP || ah->opmode == NL80211_IFTYPE_MESH_POINT) ath5k_beacon_update(ah->hw, vif); trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]); ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr); ath5k_hw_start_tx_dma(ah, ah->bhalq); ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n", ah->bhalq, (unsigned long long)bf->daddr, bf->desc); skb = ieee80211_get_buffered_bc(ah->hw, vif); while (skb) { ath5k_tx_queue(ah->hw, skb, ah->cabq); if (ah->cabq->txq_len >= ah->cabq->txq_max) break; skb = ieee80211_get_buffered_bc(ah->hw, vif); } ah->bsent++; } /** * ath5k_beacon_update_timers - update beacon timers * * @ah: struct ath5k_hw pointer we are operating on * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a * beacon timer update based on the current HW TSF. * * Calculate the next target beacon transmit time (TBTT) based on the timestamp * of a received beacon or the current local hardware TSF and write it to the * beacon timer registers. * * This is called in a variety of situations, e.g. when a beacon is received, * when a TSF update has been detected, but also when an new IBSS is created or * when we otherwise know we have to update the timers, but we keep it in this * function to have it all together in one place. */ void ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf) { u32 nexttbtt, intval, hw_tu, bc_tu; u64 hw_tsf; intval = ah->bintval & AR5K_BEACON_PERIOD; if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs > 1) { intval /= ATH_BCBUF; /* staggered multi-bss beacons */ if (intval < 15) ATH5K_WARN(ah, "intval %u is too low, min 15\n", intval); } if (WARN_ON(!intval)) return; /* beacon TSF converted to TU */ bc_tu = TSF_TO_TU(bc_tsf); /* current TSF converted to TU */ hw_tsf = ath5k_hw_get_tsf64(ah); hw_tu = TSF_TO_TU(hw_tsf); #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3) /* We use FUDGE to make sure the next TBTT is ahead of the current TU. * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer * configuration we need to make sure it is bigger than that. */ if (bc_tsf == -1) { /* * no beacons received, called internally. * just need to refresh timers based on HW TSF. */ nexttbtt = roundup(hw_tu + FUDGE, intval); } else if (bc_tsf == 0) { /* * no beacon received, probably called by ath5k_reset_tsf(). * reset TSF to start with 0. */ nexttbtt = intval; intval |= AR5K_BEACON_RESET_TSF; } else if (bc_tsf > hw_tsf) { /* * beacon received, SW merge happened but HW TSF not yet updated. * not possible to reconfigure timers yet, but next time we * receive a beacon with the same BSSID, the hardware will * automatically update the TSF and then we need to reconfigure * the timers. */ ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "need to wait for HW TSF sync\n"); return; } else { /* * most important case for beacon synchronization between STA. * * beacon received and HW TSF has been already updated by HW. * update next TBTT based on the TSF of the beacon, but make * sure it is ahead of our local TSF timer. */ nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval); } #undef FUDGE ah->nexttbtt = nexttbtt; intval |= AR5K_BEACON_ENA; ath5k_hw_init_beacon(ah, nexttbtt, intval); /* * debugging output last in order to preserve the time critical aspect * of this function */ if (bc_tsf == -1) ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "reconfigured timers based on HW TSF\n"); else if (bc_tsf == 0) ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "reset HW TSF and timers\n"); else ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "updated timers based on beacon TSF\n"); ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n", (unsigned long long) bc_tsf, (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt); ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n", intval & AR5K_BEACON_PERIOD, intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "", intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : ""); } /** * ath5k_beacon_config - Configure the beacon queues and interrupts * * @ah: struct ath5k_hw pointer we are operating on * * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA * interrupts to detect TSF updates only. */ void ath5k_beacon_config(struct ath5k_hw *ah) { unsigned long flags; spin_lock_irqsave(&ah->block, flags); ah->bmisscount = 0; ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA); if (ah->enable_beacon) { /* * In IBSS mode we use a self-linked tx descriptor and let the * hardware send the beacons automatically. We have to load it * only once here. * We use the SWBA interrupt only to keep track of the beacon * timers in order to detect automatic TSF updates. */ ath5k_beaconq_config(ah); ah->imask |= AR5K_INT_SWBA; if (ah->opmode == NL80211_IFTYPE_ADHOC) { if (ath5k_hw_hasveol(ah)) ath5k_beacon_send(ah); } else ath5k_beacon_update_timers(ah, -1); } else { ath5k_hw_stop_beacon_queue(ah, ah->bhalq); } ath5k_hw_set_imr(ah, ah->imask); mmiowb(); spin_unlock_irqrestore(&ah->block, flags); } static void ath5k_tasklet_beacon(unsigned long data) { struct ath5k_hw *ah = (struct ath5k_hw *) data; /* * Software beacon alert--time to send a beacon. * * In IBSS mode we use this interrupt just to * keep track of the next TBTT (target beacon * transmission time) in order to detect whether * automatic TSF updates happened. */ if (ah->opmode == NL80211_IFTYPE_ADHOC) { /* XXX: only if VEOL supported */ u64 tsf = ath5k_hw_get_tsf64(ah); ah->nexttbtt += ah->bintval; ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "SWBA nexttbtt: %x hw_tu: %x " "TSF: %llx\n", ah->nexttbtt, TSF_TO_TU(tsf), (unsigned long long) tsf); } else { spin_lock(&ah->block); ath5k_beacon_send(ah); spin_unlock(&ah->block); } } /********************\ * Interrupt handling * \********************/ static void ath5k_intr_calibration_poll(struct ath5k_hw *ah) { if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) && !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL)) { /* run ANI only when full calibration is not active */ ah->ah_cal_next_ani = jiffies + msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI); tasklet_schedule(&ah->ani_tasklet); } else if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) { ah->ah_cal_next_full = jiffies + msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL); tasklet_schedule(&ah->calib); } /* we could use SWI to generate enough interrupts to meet our * calibration interval requirements, if necessary: * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */ } static void ath5k_schedule_rx(struct ath5k_hw *ah) { ah->rx_pending = true; tasklet_schedule(&ah->rxtq); } static void ath5k_schedule_tx(struct ath5k_hw *ah) { ah->tx_pending = true; tasklet_schedule(&ah->txtq); } static irqreturn_t ath5k_intr(int irq, void *dev_id) { struct ath5k_hw *ah = dev_id; enum ath5k_int status; unsigned int counter = 1000; if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) || ((ath5k_get_bus_type(ah) != ATH_AHB) && !ath5k_hw_is_intr_pending(ah)))) return IRQ_NONE; do { ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */ ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n", status, ah->imask); if (unlikely(status & AR5K_INT_FATAL)) { /* * Fatal errors are unrecoverable. * Typically these are caused by DMA errors. */ ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "fatal int, resetting\n"); ieee80211_queue_work(ah->hw, &ah->reset_work); } else if (unlikely(status & AR5K_INT_RXORN)) { /* * Receive buffers are full. Either the bus is busy or * the CPU is not fast enough to process all received * frames. * Older chipsets need a reset to come out of this * condition, but we treat it as RX for newer chips. * We don't know exactly which versions need a reset - * this guess is copied from the HAL. */ ah->stats.rxorn_intr++; if (ah->ah_mac_srev < AR5K_SREV_AR5212) { ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "rx overrun, resetting\n"); ieee80211_queue_work(ah->hw, &ah->reset_work); } else ath5k_schedule_rx(ah); } else { if (status & AR5K_INT_SWBA) tasklet_hi_schedule(&ah->beacontq); if (status & AR5K_INT_RXEOL) { /* * NB: the hardware should re-read the link when * RXE bit is written, but it doesn't work at * least on older hardware revs. */ ah->stats.rxeol_intr++; } if (status & AR5K_INT_TXURN) { /* bump tx trigger level */ ath5k_hw_update_tx_triglevel(ah, true); } if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR)) ath5k_schedule_rx(ah); if (status & (AR5K_INT_TXOK | AR5K_INT_TXDESC | AR5K_INT_TXERR | AR5K_INT_TXEOL)) ath5k_schedule_tx(ah); if (status & AR5K_INT_BMISS) { /* TODO */ } if (status & AR5K_INT_MIB) { ah->stats.mib_intr++; ath5k_hw_update_mib_counters(ah); ath5k_ani_mib_intr(ah); } if (status & AR5K_INT_GPIO) tasklet_schedule(&ah->rf_kill.toggleq); } if (ath5k_get_bus_type(ah) == ATH_AHB) break; } while (ath5k_hw_is_intr_pending(ah) && --counter > 0); if (ah->rx_pending || ah->tx_pending) ath5k_set_current_imask(ah); if (unlikely(!counter)) ATH5K_WARN(ah, "too many interrupts, giving up for now\n"); ath5k_intr_calibration_poll(ah); return IRQ_HANDLED; } /* * Periodically recalibrate the PHY to account * for temperature/environment changes. */ static void ath5k_tasklet_calibrate(unsigned long data) { struct ath5k_hw *ah = (void *)data; /* Only full calibration for now */ ah->ah_cal_mask |= AR5K_CALIBRATION_FULL; ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n", ieee80211_frequency_to_channel(ah->curchan->center_freq), ah->curchan->hw_value); if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) { /* * Rfgain is out of bounds, reset the chip * to load new gain values. */ ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "calibration, resetting\n"); ieee80211_queue_work(ah->hw, &ah->reset_work); } if (ath5k_hw_phy_calibrate(ah, ah->curchan)) ATH5K_ERR(ah, "calibration of channel %u failed\n", ieee80211_frequency_to_channel( ah->curchan->center_freq)); /* Noise floor calibration interrupts rx/tx path while I/Q calibration * doesn't. * TODO: We should stop TX here, so that it doesn't interfere. * Note that stopping the queues is not enough to stop TX! */ if (time_is_before_eq_jiffies(ah->ah_cal_next_nf)) { ah->ah_cal_next_nf = jiffies + msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_NF); ath5k_hw_update_noise_floor(ah); } ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL; } static void ath5k_tasklet_ani(unsigned long data) { struct ath5k_hw *ah = (void *)data; ah->ah_cal_mask |= AR5K_CALIBRATION_ANI; ath5k_ani_calibration(ah); ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI; } static void ath5k_tx_complete_poll_work(struct work_struct *work) { struct ath5k_hw *ah = container_of(work, struct ath5k_hw, tx_complete_work.work); struct ath5k_txq *txq; int i; bool needreset = false; mutex_lock(&ah->lock); for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) { if (ah->txqs[i].setup) { txq = &ah->txqs[i]; spin_lock_bh(&txq->lock); if (txq->txq_len > 1) { if (txq->txq_poll_mark) { ATH5K_DBG(ah, ATH5K_DEBUG_XMIT, "TX queue stuck %d\n", txq->qnum); needreset = true; txq->txq_stuck++; spin_unlock_bh(&txq->lock); break; } else { txq->txq_poll_mark = true; } } spin_unlock_bh(&txq->lock); } } if (needreset) { ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "TX queues stuck, resetting\n"); ath5k_reset(ah, NULL, true); } mutex_unlock(&ah->lock); ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work, msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT)); } /*************************\ * Initialization routines * \*************************/ int __devinit ath5k_init_softc(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops) { struct ieee80211_hw *hw = ah->hw; struct ath_common *common; int ret; int csz; /* Initialize driver private data */ SET_IEEE80211_DEV(hw, ah->dev); hw->flags = IEEE80211_HW_RX_INCLUDES_FCS | IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | IEEE80211_HW_SIGNAL_DBM | IEEE80211_HW_REPORTS_TX_ACK_STATUS; hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_AP) | BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_ADHOC) | BIT(NL80211_IFTYPE_MESH_POINT); /* both antennas can be configured as RX or TX */ hw->wiphy->available_antennas_tx = 0x3; hw->wiphy->available_antennas_rx = 0x3; hw->extra_tx_headroom = 2; hw->channel_change_time = 5000; /* * Mark the device as detached to avoid processing * interrupts until setup is complete. */ __set_bit(ATH_STAT_INVALID, ah->status); ah->opmode = NL80211_IFTYPE_STATION; ah->bintval = 1000; mutex_init(&ah->lock); spin_lock_init(&ah->rxbuflock); spin_lock_init(&ah->txbuflock); spin_lock_init(&ah->block); spin_lock_init(&ah->irqlock); /* Setup interrupt handler */ ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah); if (ret) { ATH5K_ERR(ah, "request_irq failed\n"); goto err; } common = ath5k_hw_common(ah); common->ops = &ath5k_common_ops; common->bus_ops = bus_ops; common->ah = ah; common->hw = hw; common->priv = ah; common->clockrate = 40; /* * Cache line size is used to size and align various * structures used to communicate with the hardware. */ ath5k_read_cachesize(common, &csz); common->cachelsz = csz << 2; /* convert to bytes */ spin_lock_init(&common->cc_lock); /* Initialize device */ ret = ath5k_hw_init(ah); if (ret) goto err_irq; /* set up multi-rate retry capabilities */ if (ah->ah_version == AR5K_AR5212) { hw->max_rates = 4; hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT, AR5K_INIT_RETRY_LONG); } hw->vif_data_size = sizeof(struct ath5k_vif); /* Finish private driver data initialization */ ret = ath5k_init(hw); if (ret) goto err_ah; ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n", ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev), ah->ah_mac_srev, ah->ah_phy_revision); if (!ah->ah_single_chip) { /* Single chip radio (!RF5111) */ if (ah->ah_radio_5ghz_revision && !ah->ah_radio_2ghz_revision) { /* No 5GHz support -> report 2GHz radio */ if (!test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) { ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n", ath5k_chip_name(AR5K_VERSION_RAD, ah->ah_radio_5ghz_revision), ah->ah_radio_5ghz_revision); /* No 2GHz support (5110 and some * 5GHz only cards) -> report 5GHz radio */ } else if (!test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) { ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n", ath5k_chip_name(AR5K_VERSION_RAD, ah->ah_radio_5ghz_revision), ah->ah_radio_5ghz_revision); /* Multiband radio */ } else { ATH5K_INFO(ah, "RF%s multiband radio found" " (0x%x)\n", ath5k_chip_name(AR5K_VERSION_RAD, ah->ah_radio_5ghz_revision), ah->ah_radio_5ghz_revision); } } /* Multi chip radio (RF5111 - RF2111) -> * report both 2GHz/5GHz radios */ else if (ah->ah_radio_5ghz_revision && ah->ah_radio_2ghz_revision) { ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n", ath5k_chip_name(AR5K_VERSION_RAD, ah->ah_radio_5ghz_revision), ah->ah_radio_5ghz_revision); ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n", ath5k_chip_name(AR5K_VERSION_RAD, ah->ah_radio_2ghz_revision), ah->ah_radio_2ghz_revision); } } ath5k_debug_init_device(ah); /* ready to process interrupts */ __clear_bit(ATH_STAT_INVALID, ah->status); return 0; err_ah: ath5k_hw_deinit(ah); err_irq: free_irq(ah->irq, ah); err: return ret; } static int ath5k_stop_locked(struct ath5k_hw *ah) { ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n", test_bit(ATH_STAT_INVALID, ah->status)); /* * Shutdown the hardware and driver: * stop output from above * disable interrupts * turn off timers * turn off the radio * clear transmit machinery * clear receive machinery * drain and release tx queues * reclaim beacon resources * power down hardware * * Note that some of this work is not possible if the * hardware is gone (invalid). */ ieee80211_stop_queues(ah->hw); if (!test_bit(ATH_STAT_INVALID, ah->status)) { ath5k_led_off(ah); ath5k_hw_set_imr(ah, 0); synchronize_irq(ah->irq); ath5k_rx_stop(ah); ath5k_hw_dma_stop(ah); ath5k_drain_tx_buffs(ah); ath5k_hw_phy_disable(ah); } return 0; } int ath5k_start(struct ieee80211_hw *hw) { struct ath5k_hw *ah = hw->priv; struct ath_common *common = ath5k_hw_common(ah); int ret, i; mutex_lock(&ah->lock); ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode); /* * Stop anything previously setup. This is safe * no matter this is the first time through or not. */ ath5k_stop_locked(ah); /* * The basic interface to setting the hardware in a good * state is ``reset''. On return the hardware is known to * be powered up and with interrupts disabled. This must * be followed by initialization of the appropriate bits * and then setup of the interrupt mask. */ ah->curchan = ah->hw->conf.channel; ah->imask = AR5K_INT_RXOK | AR5K_INT_RXERR | AR5K_INT_RXEOL | AR5K_INT_RXORN | AR5K_INT_TXDESC | AR5K_INT_TXEOL | AR5K_INT_FATAL | AR5K_INT_GLOBAL | AR5K_INT_MIB; ret = ath5k_reset(ah, NULL, false); if (ret) goto done; ath5k_rfkill_hw_start(ah); /* * Reset the key cache since some parts do not reset the * contents on initial power up or resume from suspend. */ for (i = 0; i < common->keymax; i++) ath_hw_keyreset(common, (u16) i); /* Use higher rates for acks instead of base * rate */ ah->ah_ack_bitrate_high = true; for (i = 0; i < ARRAY_SIZE(ah->bslot); i++) ah->bslot[i] = NULL; ret = 0; done: mmiowb(); mutex_unlock(&ah->lock); ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work, msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT)); return ret; } static void ath5k_stop_tasklets(struct ath5k_hw *ah) { ah->rx_pending = false; ah->tx_pending = false; tasklet_kill(&ah->rxtq); tasklet_kill(&ah->txtq); tasklet_kill(&ah->calib); tasklet_kill(&ah->beacontq); tasklet_kill(&ah->ani_tasklet); } /* * Stop the device, grabbing the top-level lock to protect * against concurrent entry through ath5k_init (which can happen * if another thread does a system call and the thread doing the * stop is preempted). */ void ath5k_stop(struct ieee80211_hw *hw) { struct ath5k_hw *ah = hw->priv; int ret; mutex_lock(&ah->lock); ret = ath5k_stop_locked(ah); if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) { /* * Don't set the card in full sleep mode! * * a) When the device is in this state it must be carefully * woken up or references to registers in the PCI clock * domain may freeze the bus (and system). This varies * by chip and is mostly an issue with newer parts * (madwifi sources mentioned srev >= 0x78) that go to * sleep more quickly. * * b) On older chips full sleep results a weird behaviour * during wakeup. I tested various cards with srev < 0x78 * and they don't wake up after module reload, a second * module reload is needed to bring the card up again. * * Until we figure out what's going on don't enable * full chip reset on any chip (this is what Legacy HAL * and Sam's HAL do anyway). Instead Perform a full reset * on the device (same as initial state after attach) and * leave it idle (keep MAC/BB on warm reset) */ ret = ath5k_hw_on_hold(ah); ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "putting device to sleep\n"); } mmiowb(); mutex_unlock(&ah->lock); ath5k_stop_tasklets(ah); cancel_delayed_work_sync(&ah->tx_complete_work); ath5k_rfkill_hw_stop(ah); } /* * Reset the hardware. If chan is not NULL, then also pause rx/tx * and change to the given channel. * * This should be called with ah->lock. */ static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan, bool skip_pcu) { struct ath_common *common = ath5k_hw_common(ah); int ret, ani_mode; bool fast; ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n"); ath5k_hw_set_imr(ah, 0); synchronize_irq(ah->irq); ath5k_stop_tasklets(ah); /* Save ani mode and disable ANI during * reset. If we don't we might get false * PHY error interrupts. */ ani_mode = ah->ani_state.ani_mode; ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF); /* We are going to empty hw queues * so we should also free any remaining * tx buffers */ ath5k_drain_tx_buffs(ah); if (chan) ah->curchan = chan; fast = ((chan != NULL) && modparam_fastchanswitch) ? 1 : 0; ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu); if (ret) { ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret); goto err; } ret = ath5k_rx_start(ah); if (ret) { ATH5K_ERR(ah, "can't start recv logic\n"); goto err; } ath5k_ani_init(ah, ani_mode); ah->ah_cal_next_full = jiffies + msecs_to_jiffies(100); ah->ah_cal_next_ani = jiffies; ah->ah_cal_next_nf = jiffies; ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8); /* clear survey data and cycle counters */ memset(&ah->survey, 0, sizeof(ah->survey)); spin_lock_bh(&common->cc_lock); ath_hw_cycle_counters_update(common); memset(&common->cc_survey, 0, sizeof(common->cc_survey)); memset(&common->cc_ani, 0, sizeof(common->cc_ani)); spin_unlock_bh(&common->cc_lock); /* * Change channels and update the h/w rate map if we're switching; * e.g. 11a to 11b/g. * * We may be doing a reset in response to an ioctl that changes the * channel so update any state that might change as a result. * * XXX needed? */ /* ath5k_chan_change(ah, c); */ ath5k_beacon_config(ah); /* intrs are enabled by ath5k_beacon_config */ ieee80211_wake_queues(ah->hw); return 0; err: return ret; } static void ath5k_reset_work(struct work_struct *work) { struct ath5k_hw *ah = container_of(work, struct ath5k_hw, reset_work); mutex_lock(&ah->lock); ath5k_reset(ah, NULL, true); mutex_unlock(&ah->lock); } static int __devinit ath5k_init(struct ieee80211_hw *hw) { struct ath5k_hw *ah = hw->priv; struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah); struct ath5k_txq *txq; u8 mac[ETH_ALEN] = {}; int ret; /* * Check if the MAC has multi-rate retry support. * We do this by trying to setup a fake extended * descriptor. MACs that don't have support will * return false w/o doing anything. MACs that do * support it will return true w/o doing anything. */ ret = ath5k_hw_setup_mrr_tx_desc(ah, NULL, 0, 0, 0, 0, 0, 0); if (ret < 0) goto err; if (ret > 0) __set_bit(ATH_STAT_MRRETRY, ah->status); /* * Collect the channel list. The 802.11 layer * is responsible for filtering this list based * on settings like the phy mode and regulatory * domain restrictions. */ ret = ath5k_setup_bands(hw); if (ret) { ATH5K_ERR(ah, "can't get channels\n"); goto err; } /* * Allocate tx+rx descriptors and populate the lists. */ ret = ath5k_desc_alloc(ah); if (ret) { ATH5K_ERR(ah, "can't allocate descriptors\n"); goto err; } /* * Allocate hardware transmit queues: one queue for * beacon frames and one data queue for each QoS * priority. Note that hw functions handle resetting * these queues at the needed time. */ ret = ath5k_beaconq_setup(ah); if (ret < 0) { ATH5K_ERR(ah, "can't setup a beacon xmit queue\n"); goto err_desc; } ah->bhalq = ret; ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0); if (IS_ERR(ah->cabq)) { ATH5K_ERR(ah, "can't setup cab queue\n"); ret = PTR_ERR(ah->cabq); goto err_bhal; } /* 5211 and 5212 usually support 10 queues but we better rely on the * capability information */ if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) { /* This order matches mac80211's queue priority, so we can * directly use the mac80211 queue number without any mapping */ txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO); if (IS_ERR(txq)) { ATH5K_ERR(ah, "can't setup xmit queue\n"); ret = PTR_ERR(txq); goto err_queues; } txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI); if (IS_ERR(txq)) { ATH5K_ERR(ah, "can't setup xmit queue\n"); ret = PTR_ERR(txq); goto err_queues; } txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE); if (IS_ERR(txq)) { ATH5K_ERR(ah, "can't setup xmit queue\n"); ret = PTR_ERR(txq); goto err_queues; } txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK); if (IS_ERR(txq)) { ATH5K_ERR(ah, "can't setup xmit queue\n"); ret = PTR_ERR(txq); goto err_queues; } hw->queues = 4; } else { /* older hardware (5210) can only support one data queue */ txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE); if (IS_ERR(txq)) { ATH5K_ERR(ah, "can't setup xmit queue\n"); ret = PTR_ERR(txq); goto err_queues; } hw->queues = 1; } tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah); tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah); tasklet_init(&ah->calib, ath5k_tasklet_calibrate, (unsigned long)ah); tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah); tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah); INIT_WORK(&ah->reset_work, ath5k_reset_work); INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work); ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac); if (ret) { ATH5K_ERR(ah, "unable to read address from EEPROM\n"); goto err_queues; } SET_IEEE80211_PERM_ADDR(hw, mac); /* All MAC address bits matter for ACKs */ ath5k_update_bssid_mask_and_opmode(ah, NULL); regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain; ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier); if (ret) { ATH5K_ERR(ah, "can't initialize regulatory system\n"); goto err_queues; } ret = ieee80211_register_hw(hw); if (ret) { ATH5K_ERR(ah, "can't register ieee80211 hw\n"); goto err_queues; } if (!ath_is_world_regd(regulatory)) regulatory_hint(hw->wiphy, regulatory->alpha2); ath5k_init_leds(ah); ath5k_sysfs_register(ah); return 0; err_queues: ath5k_txq_release(ah); err_bhal: ath5k_hw_release_tx_queue(ah, ah->bhalq); err_desc: ath5k_desc_free(ah); err: return ret; } void ath5k_deinit_softc(struct ath5k_hw *ah) { struct ieee80211_hw *hw = ah->hw; /* * NB: the order of these is important: * o call the 802.11 layer before detaching ath5k_hw to * ensure callbacks into the driver to delete global * key cache entries can be handled * o reclaim the tx queue data structures after calling * the 802.11 layer as we'll get called back to reclaim * node state and potentially want to use them * o to cleanup the tx queues the hal is called, so detach * it last * XXX: ??? detach ath5k_hw ??? * Other than that, it's straightforward... */ ieee80211_unregister_hw(hw); ath5k_desc_free(ah); ath5k_txq_release(ah); ath5k_hw_release_tx_queue(ah, ah->bhalq); ath5k_unregister_leds(ah); ath5k_sysfs_unregister(ah); /* * NB: can't reclaim these until after ieee80211_ifdetach * returns because we'll get called back to reclaim node * state and potentially want to use them. */ ath5k_hw_deinit(ah); free_irq(ah->irq, ah); } bool ath5k_any_vif_assoc(struct ath5k_hw *ah) { struct ath5k_vif_iter_data iter_data; iter_data.hw_macaddr = NULL; iter_data.any_assoc = false; iter_data.need_set_hw_addr = false; iter_data.found_active = true; ieee80211_iterate_active_interfaces_atomic(ah->hw, ath5k_vif_iter, &iter_data); return iter_data.any_assoc; } void ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable) { struct ath5k_hw *ah = hw->priv; u32 rfilt; rfilt = ath5k_hw_get_rx_filter(ah); if (enable) rfilt |= AR5K_RX_FILTER_BEACON; else rfilt &= ~AR5K_RX_FILTER_BEACON; ath5k_hw_set_rx_filter(ah, rfilt); ah->filter_flags = rfilt; }