/* SPDX-License-Identifier: GPL-2.0+ */ /* * Copyright (C) 2014 Freescale Semiconductor, Inc. */ #ifndef __LINUX_MTD_SPI_NOR_H #define __LINUX_MTD_SPI_NOR_H #include #include #include #include /* * Manufacturer IDs * * The first byte returned from the flash after sending opcode SPINOR_OP_RDID. * Sometimes these are the same as CFI IDs, but sometimes they aren't. */ #define SNOR_MFR_ATMEL CFI_MFR_ATMEL #define SNOR_MFR_GIGADEVICE 0xc8 #define SNOR_MFR_INTEL CFI_MFR_INTEL #define SNOR_MFR_ST CFI_MFR_ST /* ST Micro */ #define SNOR_MFR_MICRON CFI_MFR_MICRON /* Micron */ #define SNOR_MFR_MACRONIX CFI_MFR_MACRONIX #define SNOR_MFR_SPANSION CFI_MFR_AMD #define SNOR_MFR_SST CFI_MFR_SST #define SNOR_MFR_WINBOND 0xef /* Also used by some Spansion */ /* * Note on opcode nomenclature: some opcodes have a format like * SPINOR_OP_FUNCTION{4,}_x_y_z. The numbers x, y, and z stand for the number * of I/O lines used for the opcode, address, and data (respectively). The * FUNCTION has an optional suffix of '4', to represent an opcode which * requires a 4-byte (32-bit) address. */ /* Flash opcodes. */ #define SPINOR_OP_WREN 0x06 /* Write enable */ #define SPINOR_OP_RDSR 0x05 /* Read status register */ #define SPINOR_OP_WRSR 0x01 /* Write status register 1 byte */ #define SPINOR_OP_RDSR2 0x3f /* Read status register 2 */ #define SPINOR_OP_WRSR2 0x3e /* Write status register 2 */ #define SPINOR_OP_READ 0x03 /* Read data bytes (low frequency) */ #define SPINOR_OP_READ_FAST 0x0b /* Read data bytes (high frequency) */ #define SPINOR_OP_READ_1_1_2 0x3b /* Read data bytes (Dual Output SPI) */ #define SPINOR_OP_READ_1_2_2 0xbb /* Read data bytes (Dual I/O SPI) */ #define SPINOR_OP_READ_1_1_4 0x6b /* Read data bytes (Quad Output SPI) */ #define SPINOR_OP_READ_1_4_4 0xeb /* Read data bytes (Quad I/O SPI) */ #define SPINOR_OP_READ_1_1_8 0x8b /* Read data bytes (Octal Output SPI) */ #define SPINOR_OP_READ_1_8_8 0xcb /* Read data bytes (Octal I/O SPI) */ #define SPINOR_OP_PP 0x02 /* Page program (up to 256 bytes) */ #define SPINOR_OP_PP_1_1_4 0x32 /* Quad page program */ #define SPINOR_OP_PP_1_4_4 0x38 /* Quad page program */ #define SPINOR_OP_PP_1_1_8 0x82 /* Octal page program */ #define SPINOR_OP_PP_1_8_8 0xc2 /* Octal page program */ #define SPINOR_OP_BE_4K 0x20 /* Erase 4KiB block */ #define SPINOR_OP_BE_4K_PMC 0xd7 /* Erase 4KiB block on PMC chips */ #define SPINOR_OP_BE_32K 0x52 /* Erase 32KiB block */ #define SPINOR_OP_CHIP_ERASE 0xc7 /* Erase whole flash chip */ #define SPINOR_OP_SE 0xd8 /* Sector erase (usually 64KiB) */ #define SPINOR_OP_RDID 0x9f /* Read JEDEC ID */ #define SPINOR_OP_RDSFDP 0x5a /* Read SFDP */ #define SPINOR_OP_RDCR 0x35 /* Read configuration register */ #define SPINOR_OP_RDFSR 0x70 /* Read flag status register */ #define SPINOR_OP_CLFSR 0x50 /* Clear flag status register */ #define SPINOR_OP_RDEAR 0xc8 /* Read Extended Address Register */ #define SPINOR_OP_WREAR 0xc5 /* Write Extended Address Register */ /* 4-byte address opcodes - used on Spansion and some Macronix flashes. */ #define SPINOR_OP_READ_4B 0x13 /* Read data bytes (low frequency) */ #define SPINOR_OP_READ_FAST_4B 0x0c /* Read data bytes (high frequency) */ #define SPINOR_OP_READ_1_1_2_4B 0x3c /* Read data bytes (Dual Output SPI) */ #define SPINOR_OP_READ_1_2_2_4B 0xbc /* Read data bytes (Dual I/O SPI) */ #define SPINOR_OP_READ_1_1_4_4B 0x6c /* Read data bytes (Quad Output SPI) */ #define SPINOR_OP_READ_1_4_4_4B 0xec /* Read data bytes (Quad I/O SPI) */ #define SPINOR_OP_READ_1_1_8_4B 0x7c /* Read data bytes (Octal Output SPI) */ #define SPINOR_OP_READ_1_8_8_4B 0xcc /* Read data bytes (Octal I/O SPI) */ #define SPINOR_OP_PP_4B 0x12 /* Page program (up to 256 bytes) */ #define SPINOR_OP_PP_1_1_4_4B 0x34 /* Quad page program */ #define SPINOR_OP_PP_1_4_4_4B 0x3e /* Quad page program */ #define SPINOR_OP_PP_1_1_8_4B 0x84 /* Octal page program */ #define SPINOR_OP_PP_1_8_8_4B 0x8e /* Octal page program */ #define SPINOR_OP_BE_4K_4B 0x21 /* Erase 4KiB block */ #define SPINOR_OP_BE_32K_4B 0x5c /* Erase 32KiB block */ #define SPINOR_OP_SE_4B 0xdc /* Sector erase (usually 64KiB) */ /* Double Transfer Rate opcodes - defined in JEDEC JESD216B. */ #define SPINOR_OP_READ_1_1_1_DTR 0x0d #define SPINOR_OP_READ_1_2_2_DTR 0xbd #define SPINOR_OP_READ_1_4_4_DTR 0xed #define SPINOR_OP_READ_1_1_1_DTR_4B 0x0e #define SPINOR_OP_READ_1_2_2_DTR_4B 0xbe #define SPINOR_OP_READ_1_4_4_DTR_4B 0xee /* Used for SST flashes only. */ #define SPINOR_OP_BP 0x02 /* Byte program */ #define SPINOR_OP_WRDI 0x04 /* Write disable */ #define SPINOR_OP_AAI_WP 0xad /* Auto address increment word program */ /* Used for S3AN flashes only */ #define SPINOR_OP_XSE 0x50 /* Sector erase */ #define SPINOR_OP_XPP 0x82 /* Page program */ #define SPINOR_OP_XRDSR 0xd7 /* Read status register */ #define XSR_PAGESIZE BIT(0) /* Page size in Po2 or Linear */ #define XSR_RDY BIT(7) /* Ready */ /* Used for Macronix and Winbond flashes. */ #define SPINOR_OP_EN4B 0xb7 /* Enter 4-byte mode */ #define SPINOR_OP_EX4B 0xe9 /* Exit 4-byte mode */ /* Used for Spansion flashes only. */ #define SPINOR_OP_BRWR 0x17 /* Bank register write */ #define SPINOR_OP_CLSR 0x30 /* Clear status register 1 */ /* Used for Micron flashes only. */ #define SPINOR_OP_RD_EVCR 0x65 /* Read EVCR register */ #define SPINOR_OP_WD_EVCR 0x61 /* Write EVCR register */ /* Status Register bits. */ #define SR_WIP BIT(0) /* Write in progress */ #define SR_WEL BIT(1) /* Write enable latch */ /* meaning of other SR_* bits may differ between vendors */ #define SR_BP0 BIT(2) /* Block protect 0 */ #define SR_BP1 BIT(3) /* Block protect 1 */ #define SR_BP2 BIT(4) /* Block protect 2 */ #define SR_TB BIT(5) /* Top/Bottom protect */ #define SR_SRWD BIT(7) /* SR write protect */ /* Spansion/Cypress specific status bits */ #define SR_E_ERR BIT(5) #define SR_P_ERR BIT(6) #define SR_QUAD_EN_MX BIT(6) /* Macronix Quad I/O */ /* Enhanced Volatile Configuration Register bits */ #define EVCR_QUAD_EN_MICRON BIT(7) /* Micron Quad I/O */ /* Flag Status Register bits */ #define FSR_READY BIT(7) /* Device status, 0 = Busy, 1 = Ready */ #define FSR_E_ERR BIT(5) /* Erase operation status */ #define FSR_P_ERR BIT(4) /* Program operation status */ #define FSR_PT_ERR BIT(1) /* Protection error bit */ /* Configuration Register bits. */ #define CR_QUAD_EN_SPAN BIT(1) /* Spansion Quad I/O */ /* Status Register 2 bits. */ #define SR2_QUAD_EN_BIT7 BIT(7) /* Supported SPI protocols */ #define SNOR_PROTO_INST_MASK GENMASK(23, 16) #define SNOR_PROTO_INST_SHIFT 16 #define SNOR_PROTO_INST(_nbits) \ ((((unsigned long)(_nbits)) << SNOR_PROTO_INST_SHIFT) & \ SNOR_PROTO_INST_MASK) #define SNOR_PROTO_ADDR_MASK GENMASK(15, 8) #define SNOR_PROTO_ADDR_SHIFT 8 #define SNOR_PROTO_ADDR(_nbits) \ ((((unsigned long)(_nbits)) << SNOR_PROTO_ADDR_SHIFT) & \ SNOR_PROTO_ADDR_MASK) #define SNOR_PROTO_DATA_MASK GENMASK(7, 0) #define SNOR_PROTO_DATA_SHIFT 0 #define SNOR_PROTO_DATA(_nbits) \ ((((unsigned long)(_nbits)) << SNOR_PROTO_DATA_SHIFT) & \ SNOR_PROTO_DATA_MASK) #define SNOR_PROTO_IS_DTR BIT(24) /* Double Transfer Rate */ #define SNOR_PROTO_STR(_inst_nbits, _addr_nbits, _data_nbits) \ (SNOR_PROTO_INST(_inst_nbits) | \ SNOR_PROTO_ADDR(_addr_nbits) | \ SNOR_PROTO_DATA(_data_nbits)) #define SNOR_PROTO_DTR(_inst_nbits, _addr_nbits, _data_nbits) \ (SNOR_PROTO_IS_DTR | \ SNOR_PROTO_STR(_inst_nbits, _addr_nbits, _data_nbits)) enum spi_nor_protocol { SNOR_PROTO_1_1_1 = SNOR_PROTO_STR(1, 1, 1), SNOR_PROTO_1_1_2 = SNOR_PROTO_STR(1, 1, 2), SNOR_PROTO_1_1_4 = SNOR_PROTO_STR(1, 1, 4), SNOR_PROTO_1_1_8 = SNOR_PROTO_STR(1, 1, 8), SNOR_PROTO_1_2_2 = SNOR_PROTO_STR(1, 2, 2), SNOR_PROTO_1_4_4 = SNOR_PROTO_STR(1, 4, 4), SNOR_PROTO_1_8_8 = SNOR_PROTO_STR(1, 8, 8), SNOR_PROTO_2_2_2 = SNOR_PROTO_STR(2, 2, 2), SNOR_PROTO_4_4_4 = SNOR_PROTO_STR(4, 4, 4), SNOR_PROTO_8_8_8 = SNOR_PROTO_STR(8, 8, 8), SNOR_PROTO_1_1_1_DTR = SNOR_PROTO_DTR(1, 1, 1), SNOR_PROTO_1_2_2_DTR = SNOR_PROTO_DTR(1, 2, 2), SNOR_PROTO_1_4_4_DTR = SNOR_PROTO_DTR(1, 4, 4), SNOR_PROTO_1_8_8_DTR = SNOR_PROTO_DTR(1, 8, 8), }; static inline bool spi_nor_protocol_is_dtr(enum spi_nor_protocol proto) { return !!(proto & SNOR_PROTO_IS_DTR); } static inline u8 spi_nor_get_protocol_inst_nbits(enum spi_nor_protocol proto) { return ((unsigned long)(proto & SNOR_PROTO_INST_MASK)) >> SNOR_PROTO_INST_SHIFT; } static inline u8 spi_nor_get_protocol_addr_nbits(enum spi_nor_protocol proto) { return ((unsigned long)(proto & SNOR_PROTO_ADDR_MASK)) >> SNOR_PROTO_ADDR_SHIFT; } static inline u8 spi_nor_get_protocol_data_nbits(enum spi_nor_protocol proto) { return ((unsigned long)(proto & SNOR_PROTO_DATA_MASK)) >> SNOR_PROTO_DATA_SHIFT; } static inline u8 spi_nor_get_protocol_width(enum spi_nor_protocol proto) { return spi_nor_get_protocol_data_nbits(proto); } enum spi_nor_ops { SPI_NOR_OPS_READ = 0, SPI_NOR_OPS_WRITE, SPI_NOR_OPS_ERASE, SPI_NOR_OPS_LOCK, SPI_NOR_OPS_UNLOCK, }; enum spi_nor_option_flags { SNOR_F_USE_FSR = BIT(0), SNOR_F_HAS_SR_TB = BIT(1), SNOR_F_NO_OP_CHIP_ERASE = BIT(2), SNOR_F_S3AN_ADDR_DEFAULT = BIT(3), SNOR_F_READY_XSR_RDY = BIT(4), SNOR_F_USE_CLSR = BIT(5), SNOR_F_BROKEN_RESET = BIT(6), SNOR_F_4B_OPCODES = BIT(7), SNOR_F_HAS_4BAIT = BIT(8), }; /** * struct spi_nor_erase_type - Structure to describe a SPI NOR erase type * @size: the size of the sector/block erased by the erase type. * JEDEC JESD216B imposes erase sizes to be a power of 2. * @size_shift: @size is a power of 2, the shift is stored in * @size_shift. * @size_mask: the size mask based on @size_shift. * @opcode: the SPI command op code to erase the sector/block. * @idx: Erase Type index as sorted in the Basic Flash Parameter * Table. It will be used to synchronize the supported * Erase Types with the ones identified in the SFDP * optional tables. */ struct spi_nor_erase_type { u32 size; u32 size_shift; u32 size_mask; u8 opcode; u8 idx; }; /** * struct spi_nor_erase_command - Used for non-uniform erases * The structure is used to describe a list of erase commands to be executed * once we validate that the erase can be performed. The elements in the list * are run-length encoded. * @list: for inclusion into the list of erase commands. * @count: how many times the same erase command should be * consecutively used. * @size: the size of the sector/block erased by the command. * @opcode: the SPI command op code to erase the sector/block. */ struct spi_nor_erase_command { struct list_head list; u32 count; u32 size; u8 opcode; }; /** * struct spi_nor_erase_region - Structure to describe a SPI NOR erase region * @offset: the offset in the data array of erase region start. * LSB bits are used as a bitmask encoding flags to * determine if this region is overlaid, if this region is * the last in the SPI NOR flash memory and to indicate * all the supported erase commands inside this region. * The erase types are sorted in ascending order with the * smallest Erase Type size being at BIT(0). * @size: the size of the region in bytes. */ struct spi_nor_erase_region { u64 offset; u64 size; }; #define SNOR_ERASE_TYPE_MAX 4 #define SNOR_ERASE_TYPE_MASK GENMASK_ULL(SNOR_ERASE_TYPE_MAX - 1, 0) #define SNOR_LAST_REGION BIT(4) #define SNOR_OVERLAID_REGION BIT(5) #define SNOR_ERASE_FLAGS_MAX 6 #define SNOR_ERASE_FLAGS_MASK GENMASK_ULL(SNOR_ERASE_FLAGS_MAX - 1, 0) /** * struct spi_nor_erase_map - Structure to describe the SPI NOR erase map * @regions: array of erase regions. The regions are consecutive in * address space. Walking through the regions is done * incrementally. * @uniform_region: a pre-allocated erase region for SPI NOR with a uniform * sector size (legacy implementation). * @erase_type: an array of erase types shared by all the regions. * The erase types are sorted in ascending order, with the * smallest Erase Type size being the first member in the * erase_type array. * @uniform_erase_type: bitmask encoding erase types that can erase the * entire memory. This member is completed at init by * uniform and non-uniform SPI NOR flash memories if they * support at least one erase type that can erase the * entire memory. */ struct spi_nor_erase_map { struct spi_nor_erase_region *regions; struct spi_nor_erase_region uniform_region; struct spi_nor_erase_type erase_type[SNOR_ERASE_TYPE_MAX]; u8 uniform_erase_type; }; /** * struct flash_info - Forward declaration of a structure used internally by * spi_nor_scan() */ struct flash_info; /** * struct spi_nor - Structure for defining a the SPI NOR layer * @mtd: point to a mtd_info structure * @lock: the lock for the read/write/erase/lock/unlock operations * @dev: point to a spi device, or a spi nor controller device. * @spimem: point to the spi mem device * @bouncebuf: bounce buffer used when the buffer passed by the MTD * layer is not DMA-able * @bouncebuf_size: size of the bounce buffer * @info: spi-nor part JDEC MFR id and other info * @page_size: the page size of the SPI NOR * @addr_width: number of address bytes * @erase_opcode: the opcode for erasing a sector * @read_opcode: the read opcode * @read_dummy: the dummy needed by the read operation * @program_opcode: the program opcode * @sst_write_second: used by the SST write operation * @flags: flag options for the current SPI-NOR (SNOR_F_*) * @read_proto: the SPI protocol for read operations * @write_proto: the SPI protocol for write operations * @reg_proto the SPI protocol for read_reg/write_reg/erase operations * @erase_map: the erase map of the SPI NOR * @prepare: [OPTIONAL] do some preparations for the * read/write/erase/lock/unlock operations * @unprepare: [OPTIONAL] do some post work after the * read/write/erase/lock/unlock operations * @read_reg: [DRIVER-SPECIFIC] read out the register * @write_reg: [DRIVER-SPECIFIC] write data to the register * @read: [DRIVER-SPECIFIC] read data from the SPI NOR * @write: [DRIVER-SPECIFIC] write data to the SPI NOR * @erase: [DRIVER-SPECIFIC] erase a sector of the SPI NOR * at the offset @offs; if not provided by the driver, * spi-nor will send the erase opcode via write_reg() * @flash_lock: [FLASH-SPECIFIC] lock a region of the SPI NOR * @flash_unlock: [FLASH-SPECIFIC] unlock a region of the SPI NOR * @flash_is_locked: [FLASH-SPECIFIC] check if a region of the SPI NOR is * completely locked * @quad_enable: [FLASH-SPECIFIC] enables SPI NOR quad mode * @clear_sr_bp: [FLASH-SPECIFIC] clears the Block Protection Bits from * the SPI NOR Status Register. * @priv: the private data */ struct spi_nor { struct mtd_info mtd; struct mutex lock; struct device *dev; struct spi_mem *spimem; u8 *bouncebuf; size_t bouncebuf_size; const struct flash_info *info; u32 page_size; u8 addr_width; u8 erase_opcode; u8 read_opcode; u8 read_dummy; u8 program_opcode; enum spi_nor_protocol read_proto; enum spi_nor_protocol write_proto; enum spi_nor_protocol reg_proto; bool sst_write_second; u32 flags; struct spi_nor_erase_map erase_map; int (*prepare)(struct spi_nor *nor, enum spi_nor_ops ops); void (*unprepare)(struct spi_nor *nor, enum spi_nor_ops ops); int (*read_reg)(struct spi_nor *nor, u8 opcode, u8 *buf, int len); int (*write_reg)(struct spi_nor *nor, u8 opcode, u8 *buf, int len); ssize_t (*read)(struct spi_nor *nor, loff_t from, size_t len, u_char *read_buf); ssize_t (*write)(struct spi_nor *nor, loff_t to, size_t len, const u_char *write_buf); int (*erase)(struct spi_nor *nor, loff_t offs); int (*flash_lock)(struct spi_nor *nor, loff_t ofs, uint64_t len); int (*flash_unlock)(struct spi_nor *nor, loff_t ofs, uint64_t len); int (*flash_is_locked)(struct spi_nor *nor, loff_t ofs, uint64_t len); int (*quad_enable)(struct spi_nor *nor); int (*clear_sr_bp)(struct spi_nor *nor); void *priv; }; static u64 __maybe_unused spi_nor_region_is_last(const struct spi_nor_erase_region *region) { return region->offset & SNOR_LAST_REGION; } static u64 __maybe_unused spi_nor_region_end(const struct spi_nor_erase_region *region) { return (region->offset & ~SNOR_ERASE_FLAGS_MASK) + region->size; } static void __maybe_unused spi_nor_region_mark_end(struct spi_nor_erase_region *region) { region->offset |= SNOR_LAST_REGION; } static void __maybe_unused spi_nor_region_mark_overlay(struct spi_nor_erase_region *region) { region->offset |= SNOR_OVERLAID_REGION; } static bool __maybe_unused spi_nor_has_uniform_erase(const struct spi_nor *nor) { return !!nor->erase_map.uniform_erase_type; } static inline void spi_nor_set_flash_node(struct spi_nor *nor, struct device_node *np) { mtd_set_of_node(&nor->mtd, np); } static inline struct device_node *spi_nor_get_flash_node(struct spi_nor *nor) { return mtd_get_of_node(&nor->mtd); } /** * struct spi_nor_hwcaps - Structure for describing the hardware capabilies * supported by the SPI controller (bus master). * @mask: the bitmask listing all the supported hw capabilies */ struct spi_nor_hwcaps { u32 mask; }; /* *(Fast) Read capabilities. * MUST be ordered by priority: the higher bit position, the higher priority. * As a matter of performances, it is relevant to use Octal SPI protocols first, * then Quad SPI protocols before Dual SPI protocols, Fast Read and lastly * (Slow) Read. */ #define SNOR_HWCAPS_READ_MASK GENMASK(14, 0) #define SNOR_HWCAPS_READ BIT(0) #define SNOR_HWCAPS_READ_FAST BIT(1) #define SNOR_HWCAPS_READ_1_1_1_DTR BIT(2) #define SNOR_HWCAPS_READ_DUAL GENMASK(6, 3) #define SNOR_HWCAPS_READ_1_1_2 BIT(3) #define SNOR_HWCAPS_READ_1_2_2 BIT(4) #define SNOR_HWCAPS_READ_2_2_2 BIT(5) #define SNOR_HWCAPS_READ_1_2_2_DTR BIT(6) #define SNOR_HWCAPS_READ_QUAD GENMASK(10, 7) #define SNOR_HWCAPS_READ_1_1_4 BIT(7) #define SNOR_HWCAPS_READ_1_4_4 BIT(8) #define SNOR_HWCAPS_READ_4_4_4 BIT(9) #define SNOR_HWCAPS_READ_1_4_4_DTR BIT(10) #define SNOR_HWCAPS_READ_OCTAL GENMASK(14, 11) #define SNOR_HWCAPS_READ_1_1_8 BIT(11) #define SNOR_HWCAPS_READ_1_8_8 BIT(12) #define SNOR_HWCAPS_READ_8_8_8 BIT(13) #define SNOR_HWCAPS_READ_1_8_8_DTR BIT(14) /* * Page Program capabilities. * MUST be ordered by priority: the higher bit position, the higher priority. * Like (Fast) Read capabilities, Octal/Quad SPI protocols are preferred to the * legacy SPI 1-1-1 protocol. * Note that Dual Page Programs are not supported because there is no existing * JEDEC/SFDP standard to define them. Also at this moment no SPI flash memory * implements such commands. */ #define SNOR_HWCAPS_PP_MASK GENMASK(22, 16) #define SNOR_HWCAPS_PP BIT(16) #define SNOR_HWCAPS_PP_QUAD GENMASK(19, 17) #define SNOR_HWCAPS_PP_1_1_4 BIT(17) #define SNOR_HWCAPS_PP_1_4_4 BIT(18) #define SNOR_HWCAPS_PP_4_4_4 BIT(19) #define SNOR_HWCAPS_PP_OCTAL GENMASK(22, 20) #define SNOR_HWCAPS_PP_1_1_8 BIT(20) #define SNOR_HWCAPS_PP_1_8_8 BIT(21) #define SNOR_HWCAPS_PP_8_8_8 BIT(22) #define SNOR_HWCAPS_X_X_X (SNOR_HWCAPS_READ_2_2_2 | \ SNOR_HWCAPS_READ_4_4_4 | \ SNOR_HWCAPS_READ_8_8_8 | \ SNOR_HWCAPS_PP_4_4_4 | \ SNOR_HWCAPS_PP_8_8_8) #define SNOR_HWCAPS_DTR (SNOR_HWCAPS_READ_1_1_1_DTR | \ SNOR_HWCAPS_READ_1_2_2_DTR | \ SNOR_HWCAPS_READ_1_4_4_DTR | \ SNOR_HWCAPS_READ_1_8_8_DTR) #define SNOR_HWCAPS_ALL (SNOR_HWCAPS_READ_MASK | \ SNOR_HWCAPS_PP_MASK) /** * spi_nor_scan() - scan the SPI NOR * @nor: the spi_nor structure * @name: the chip type name * @hwcaps: the hardware capabilities supported by the controller driver * * The drivers can use this fuction to scan the SPI NOR. * In the scanning, it will try to get all the necessary information to * fill the mtd_info{} and the spi_nor{}. * * The chip type name can be provided through the @name parameter. * * Return: 0 for success, others for failure. */ int spi_nor_scan(struct spi_nor *nor, const char *name, const struct spi_nor_hwcaps *hwcaps); /** * spi_nor_restore_addr_mode() - restore the status of SPI NOR * @nor: the spi_nor structure */ void spi_nor_restore(struct spi_nor *nor); #endif