/* * Adaptec AAC series RAID controller driver * (c) Copyright 2001 Red Hat Inc. * * based on the old aacraid driver that is.. * Adaptec aacraid device driver for Linux. * * Copyright (c) 2000-2010 Adaptec, Inc. * 2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * */ #include #include #include #include #include #include #include #include #include #include /* For flush_kernel_dcache_page */ #include #include #include #include #include #include "aacraid.h" /* values for inqd_pdt: Peripheral device type in plain English */ #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */ #define INQD_PDT_PROC 0x03 /* Processor device */ #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */ #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */ #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */ #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */ #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */ #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */ /* * Sense codes */ #define SENCODE_NO_SENSE 0x00 #define SENCODE_END_OF_DATA 0x00 #define SENCODE_BECOMING_READY 0x04 #define SENCODE_INIT_CMD_REQUIRED 0x04 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A #define SENCODE_INVALID_COMMAND 0x20 #define SENCODE_LBA_OUT_OF_RANGE 0x21 #define SENCODE_INVALID_CDB_FIELD 0x24 #define SENCODE_LUN_NOT_SUPPORTED 0x25 #define SENCODE_INVALID_PARAM_FIELD 0x26 #define SENCODE_PARAM_NOT_SUPPORTED 0x26 #define SENCODE_PARAM_VALUE_INVALID 0x26 #define SENCODE_RESET_OCCURRED 0x29 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E #define SENCODE_INQUIRY_DATA_CHANGED 0x3F #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39 #define SENCODE_DIAGNOSTIC_FAILURE 0x40 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44 #define SENCODE_INVALID_MESSAGE_ERROR 0x49 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c #define SENCODE_OVERLAPPED_COMMAND 0x4E /* * Additional sense codes */ #define ASENCODE_NO_SENSE 0x00 #define ASENCODE_END_OF_DATA 0x05 #define ASENCODE_BECOMING_READY 0x01 #define ASENCODE_INIT_CMD_REQUIRED 0x02 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00 #define ASENCODE_INVALID_COMMAND 0x00 #define ASENCODE_LBA_OUT_OF_RANGE 0x00 #define ASENCODE_INVALID_CDB_FIELD 0x00 #define ASENCODE_LUN_NOT_SUPPORTED 0x00 #define ASENCODE_INVALID_PARAM_FIELD 0x00 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01 #define ASENCODE_PARAM_VALUE_INVALID 0x02 #define ASENCODE_RESET_OCCURRED 0x00 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00 #define ASENCODE_OVERLAPPED_COMMAND 0x00 #define BYTE0(x) (unsigned char)(x) #define BYTE1(x) (unsigned char)((x) >> 8) #define BYTE2(x) (unsigned char)((x) >> 16) #define BYTE3(x) (unsigned char)((x) >> 24) /* MODE_SENSE data format */ typedef struct { struct { u8 data_length; u8 med_type; u8 dev_par; u8 bd_length; } __attribute__((packed)) hd; struct { u8 dens_code; u8 block_count[3]; u8 reserved; u8 block_length[3]; } __attribute__((packed)) bd; u8 mpc_buf[3]; } __attribute__((packed)) aac_modep_data; /* MODE_SENSE_10 data format */ typedef struct { struct { u8 data_length[2]; u8 med_type; u8 dev_par; u8 rsrvd[2]; u8 bd_length[2]; } __attribute__((packed)) hd; struct { u8 dens_code; u8 block_count[3]; u8 reserved; u8 block_length[3]; } __attribute__((packed)) bd; u8 mpc_buf[3]; } __attribute__((packed)) aac_modep10_data; /*------------------------------------------------------------------------------ * S T R U C T S / T Y P E D E F S *----------------------------------------------------------------------------*/ /* SCSI inquiry data */ struct inquiry_data { u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */ u8 inqd_dtq; /* RMB | Device Type Qualifier */ u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */ u8 inqd_rdf; /* AENC | TrmIOP | Response data format */ u8 inqd_len; /* Additional length (n-4) */ u8 inqd_pad1[2];/* Reserved - must be zero */ u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ u8 inqd_vid[8]; /* Vendor ID */ u8 inqd_pid[16];/* Product ID */ u8 inqd_prl[4]; /* Product Revision Level */ }; /* Added for VPD 0x83 */ typedef struct { u8 CodeSet:4; /* VPD_CODE_SET */ u8 Reserved:4; u8 IdentifierType:4; /* VPD_IDENTIFIER_TYPE */ u8 Reserved2:4; u8 Reserved3; u8 IdentifierLength; u8 VendId[8]; u8 ProductId[16]; u8 SerialNumber[8]; /* SN in ASCII */ } TVPD_ID_Descriptor_Type_1; typedef struct { u8 CodeSet:4; /* VPD_CODE_SET */ u8 Reserved:4; u8 IdentifierType:4; /* VPD_IDENTIFIER_TYPE */ u8 Reserved2:4; u8 Reserved3; u8 IdentifierLength; struct TEU64Id { u32 Serial; /* The serial number supposed to be 40 bits, * bit we only support 32, so make the last byte zero. */ u8 Reserved; u8 VendId[3]; } EU64Id; } TVPD_ID_Descriptor_Type_2; typedef struct { u8 DeviceType:5; u8 DeviceTypeQualifier:3; u8 PageCode; u8 Reserved; u8 PageLength; TVPD_ID_Descriptor_Type_1 IdDescriptorType1; TVPD_ID_Descriptor_Type_2 IdDescriptorType2; } TVPD_Page83; /* * M O D U L E G L O B A L S */ static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap); static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg); static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg); static long aac_build_sgraw2(struct scsi_cmnd *scsicmd, struct aac_raw_io2 *rio2, int sg_max); static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new); static int aac_send_srb_fib(struct scsi_cmnd* scsicmd); #ifdef AAC_DETAILED_STATUS_INFO static char *aac_get_status_string(u32 status); #endif /* * Non dasd selection is handled entirely in aachba now */ static int nondasd = -1; static int aac_cache = 2; /* WCE=0 to avoid performance problems */ static int dacmode = -1; int aac_msi; int aac_commit = -1; int startup_timeout = 180; int aif_timeout = 120; int aac_sync_mode; /* Only Sync. transfer - disabled */ int aac_convert_sgl = 1; /* convert non-conformable s/g list - enabled */ module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode" " 0=off, 1=on"); module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list" " 0=off, 1=on"); module_param(nondasd, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices." " 0=off, 1=on"); module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n" "\tbit 0 - Disable FUA in WRITE SCSI commands\n" "\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n" "\tbit 2 - Disable only if Battery is protecting Cache"); module_param(dacmode, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC." " 0=off, 1=on"); module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the" " adapter for foreign arrays.\n" "This is typically needed in systems that do not have a BIOS." " 0=off, 1=on"); module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(msi, "IRQ handling." " 0=PIC(default), 1=MSI, 2=MSI-X)"); module_param(startup_timeout, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for" " adapter to have it's kernel up and\n" "running. This is typically adjusted for large systems that do not" " have a BIOS."); module_param(aif_timeout, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for" " applications to pick up AIFs before\n" "deregistering them. This is typically adjusted for heavily burdened" " systems."); int numacb = -1; module_param(numacb, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control" " blocks (FIB) allocated. Valid values are 512 and down. Default is" " to use suggestion from Firmware."); int acbsize = -1; module_param(acbsize, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)" " size. Valid values are 512, 2048, 4096 and 8192. Default is to use" " suggestion from Firmware."); int update_interval = 30 * 60; module_param(update_interval, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync" " updates issued to adapter."); int check_interval = 24 * 60 * 60; module_param(check_interval, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health" " checks."); int aac_check_reset = 1; module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the" " adapter. a value of -1 forces the reset to adapters programmed to" " ignore it."); int expose_physicals = -1; module_param(expose_physicals, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays." " -1=protect 0=off, 1=on"); int aac_reset_devices; module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization."); int aac_wwn = 1; module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n" "\t0 - Disable\n" "\t1 - Array Meta Data Signature (default)\n" "\t2 - Adapter Serial Number"); static inline int aac_valid_context(struct scsi_cmnd *scsicmd, struct fib *fibptr) { struct scsi_device *device; if (unlikely(!scsicmd || !scsicmd->scsi_done)) { dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n")); aac_fib_complete(fibptr); aac_fib_free(fibptr); return 0; } scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL; device = scsicmd->device; if (unlikely(!device || !scsi_device_online(device))) { dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n")); aac_fib_complete(fibptr); aac_fib_free(fibptr); return 0; } return 1; } /** * aac_get_config_status - check the adapter configuration * @common: adapter to query * * Query config status, and commit the configuration if needed. */ int aac_get_config_status(struct aac_dev *dev, int commit_flag) { int status = 0; struct fib * fibptr; if (!(fibptr = aac_fib_alloc(dev))) return -ENOMEM; aac_fib_init(fibptr); { struct aac_get_config_status *dinfo; dinfo = (struct aac_get_config_status *) fib_data(fibptr); dinfo->command = cpu_to_le32(VM_ContainerConfig); dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS); dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data)); } status = aac_fib_send(ContainerCommand, fibptr, sizeof (struct aac_get_config_status), FsaNormal, 1, 1, NULL, NULL); if (status < 0) { printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n"); } else { struct aac_get_config_status_resp *reply = (struct aac_get_config_status_resp *) fib_data(fibptr); dprintk((KERN_WARNING "aac_get_config_status: response=%d status=%d action=%d\n", le32_to_cpu(reply->response), le32_to_cpu(reply->status), le32_to_cpu(reply->data.action))); if ((le32_to_cpu(reply->response) != ST_OK) || (le32_to_cpu(reply->status) != CT_OK) || (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) { printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n"); status = -EINVAL; } } /* Do not set XferState to zero unless receives a response from F/W */ if (status >= 0) aac_fib_complete(fibptr); /* Send a CT_COMMIT_CONFIG to enable discovery of devices */ if (status >= 0) { if ((aac_commit == 1) || commit_flag) { struct aac_commit_config * dinfo; aac_fib_init(fibptr); dinfo = (struct aac_commit_config *) fib_data(fibptr); dinfo->command = cpu_to_le32(VM_ContainerConfig); dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG); status = aac_fib_send(ContainerCommand, fibptr, sizeof (struct aac_commit_config), FsaNormal, 1, 1, NULL, NULL); /* Do not set XferState to zero unless * receives a response from F/W */ if (status >= 0) aac_fib_complete(fibptr); } else if (aac_commit == 0) { printk(KERN_WARNING "aac_get_config_status: Foreign device configurations are being ignored\n"); } } /* FIB should be freed only after getting the response from the F/W */ if (status != -ERESTARTSYS) aac_fib_free(fibptr); return status; } static void aac_expose_phy_device(struct scsi_cmnd *scsicmd) { char inq_data; scsi_sg_copy_to_buffer(scsicmd, &inq_data, sizeof(inq_data)); if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) { inq_data &= 0xdf; scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data)); } } /** * aac_get_containers - list containers * @common: adapter to probe * * Make a list of all containers on this controller */ int aac_get_containers(struct aac_dev *dev) { struct fsa_dev_info *fsa_dev_ptr; u32 index; int status = 0; struct fib * fibptr; struct aac_get_container_count *dinfo; struct aac_get_container_count_resp *dresp; int maximum_num_containers = MAXIMUM_NUM_CONTAINERS; if (!(fibptr = aac_fib_alloc(dev))) return -ENOMEM; aac_fib_init(fibptr); dinfo = (struct aac_get_container_count *) fib_data(fibptr); dinfo->command = cpu_to_le32(VM_ContainerConfig); dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT); status = aac_fib_send(ContainerCommand, fibptr, sizeof (struct aac_get_container_count), FsaNormal, 1, 1, NULL, NULL); if (status >= 0) { dresp = (struct aac_get_container_count_resp *)fib_data(fibptr); maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries); if (fibptr->dev->supplement_adapter_info.SupportedOptions2 & AAC_OPTION_SUPPORTED_240_VOLUMES) { maximum_num_containers = le32_to_cpu(dresp->MaxSimpleVolumes); } aac_fib_complete(fibptr); } /* FIB should be freed only after getting the response from the F/W */ if (status != -ERESTARTSYS) aac_fib_free(fibptr); if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS) maximum_num_containers = MAXIMUM_NUM_CONTAINERS; fsa_dev_ptr = kzalloc(sizeof(*fsa_dev_ptr) * maximum_num_containers, GFP_KERNEL); if (!fsa_dev_ptr) return -ENOMEM; dev->fsa_dev = fsa_dev_ptr; dev->maximum_num_containers = maximum_num_containers; for (index = 0; index < dev->maximum_num_containers; ) { fsa_dev_ptr[index].devname[0] = '\0'; status = aac_probe_container(dev, index); if (status < 0) { printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n"); break; } /* * If there are no more containers, then stop asking. */ if (++index >= status) break; } return status; } static void get_container_name_callback(void *context, struct fib * fibptr) { struct aac_get_name_resp * get_name_reply; struct scsi_cmnd * scsicmd; scsicmd = (struct scsi_cmnd *) context; if (!aac_valid_context(scsicmd, fibptr)) return; dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies)); BUG_ON(fibptr == NULL); get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr); /* Failure is irrelevant, using default value instead */ if ((le32_to_cpu(get_name_reply->status) == CT_OK) && (get_name_reply->data[0] != '\0')) { char *sp = get_name_reply->data; sp[sizeof(((struct aac_get_name_resp *)NULL)->data)] = '\0'; while (*sp == ' ') ++sp; if (*sp) { struct inquiry_data inq; char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)]; int count = sizeof(d); char *dp = d; do { *dp++ = (*sp) ? *sp++ : ' '; } while (--count > 0); scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq)); memcpy(inq.inqd_pid, d, sizeof(d)); scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq)); } } scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; aac_fib_complete(fibptr); aac_fib_free(fibptr); scsicmd->scsi_done(scsicmd); } /** * aac_get_container_name - get container name, none blocking. */ static int aac_get_container_name(struct scsi_cmnd * scsicmd) { int status; struct aac_get_name *dinfo; struct fib * cmd_fibcontext; struct aac_dev * dev; dev = (struct aac_dev *)scsicmd->device->host->hostdata; if (!(cmd_fibcontext = aac_fib_alloc(dev))) return -ENOMEM; aac_fib_init(cmd_fibcontext); dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext); dinfo->command = cpu_to_le32(VM_ContainerConfig); dinfo->type = cpu_to_le32(CT_READ_NAME); dinfo->cid = cpu_to_le32(scmd_id(scsicmd)); dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data)); status = aac_fib_send(ContainerCommand, cmd_fibcontext, sizeof(struct aac_get_name_resp), FsaNormal, 0, 1, (fib_callback)get_container_name_callback, (void *) scsicmd); /* * Check that the command queued to the controller */ if (status == -EINPROGRESS) { scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; return 0; } printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status); aac_fib_complete(cmd_fibcontext); aac_fib_free(cmd_fibcontext); return -1; } static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd) { struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev; if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1)) return aac_scsi_cmd(scsicmd); scsicmd->result = DID_NO_CONNECT << 16; scsicmd->scsi_done(scsicmd); return 0; } static void _aac_probe_container2(void * context, struct fib * fibptr) { struct fsa_dev_info *fsa_dev_ptr; int (*callback)(struct scsi_cmnd *); struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context; if (!aac_valid_context(scsicmd, fibptr)) return; scsicmd->SCp.Status = 0; fsa_dev_ptr = fibptr->dev->fsa_dev; if (fsa_dev_ptr) { struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr); fsa_dev_ptr += scmd_id(scsicmd); if ((le32_to_cpu(dresp->status) == ST_OK) && (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) && (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) { if (!(fibptr->dev->supplement_adapter_info.SupportedOptions2 & AAC_OPTION_VARIABLE_BLOCK_SIZE)) { dresp->mnt[0].fileinfo.bdevinfo.block_size = 0x200; fsa_dev_ptr->block_size = 0x200; } else { fsa_dev_ptr->block_size = le32_to_cpu(dresp->mnt[0].fileinfo.bdevinfo.block_size); } fsa_dev_ptr->valid = 1; /* sense_key holds the current state of the spin-up */ if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY)) fsa_dev_ptr->sense_data.sense_key = NOT_READY; else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY) fsa_dev_ptr->sense_data.sense_key = NO_SENSE; fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol); fsa_dev_ptr->size = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) + (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32); fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0); } if ((fsa_dev_ptr->valid & 1) == 0) fsa_dev_ptr->valid = 0; scsicmd->SCp.Status = le32_to_cpu(dresp->count); } aac_fib_complete(fibptr); aac_fib_free(fibptr); callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr); scsicmd->SCp.ptr = NULL; (*callback)(scsicmd); return; } static void _aac_probe_container1(void * context, struct fib * fibptr) { struct scsi_cmnd * scsicmd; struct aac_mount * dresp; struct aac_query_mount *dinfo; int status; dresp = (struct aac_mount *) fib_data(fibptr); if (!(fibptr->dev->supplement_adapter_info.SupportedOptions2 & AAC_OPTION_VARIABLE_BLOCK_SIZE)) dresp->mnt[0].capacityhigh = 0; if ((le32_to_cpu(dresp->status) != ST_OK) || (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) { _aac_probe_container2(context, fibptr); return; } scsicmd = (struct scsi_cmnd *) context; if (!aac_valid_context(scsicmd, fibptr)) return; aac_fib_init(fibptr); dinfo = (struct aac_query_mount *)fib_data(fibptr); if (fibptr->dev->supplement_adapter_info.SupportedOptions2 & AAC_OPTION_VARIABLE_BLOCK_SIZE) dinfo->command = cpu_to_le32(VM_NameServeAllBlk); else dinfo->command = cpu_to_le32(VM_NameServe64); dinfo->count = cpu_to_le32(scmd_id(scsicmd)); dinfo->type = cpu_to_le32(FT_FILESYS); status = aac_fib_send(ContainerCommand, fibptr, sizeof(struct aac_query_mount), FsaNormal, 0, 1, _aac_probe_container2, (void *) scsicmd); /* * Check that the command queued to the controller */ if (status == -EINPROGRESS) scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; else if (status < 0) { /* Inherit results from VM_NameServe, if any */ dresp->status = cpu_to_le32(ST_OK); _aac_probe_container2(context, fibptr); } } static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *)) { struct fib * fibptr; int status = -ENOMEM; if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) { struct aac_query_mount *dinfo; aac_fib_init(fibptr); dinfo = (struct aac_query_mount *)fib_data(fibptr); if (fibptr->dev->supplement_adapter_info.SupportedOptions2 & AAC_OPTION_VARIABLE_BLOCK_SIZE) dinfo->command = cpu_to_le32(VM_NameServeAllBlk); else dinfo->command = cpu_to_le32(VM_NameServe); dinfo->count = cpu_to_le32(scmd_id(scsicmd)); dinfo->type = cpu_to_le32(FT_FILESYS); scsicmd->SCp.ptr = (char *)callback; status = aac_fib_send(ContainerCommand, fibptr, sizeof(struct aac_query_mount), FsaNormal, 0, 1, _aac_probe_container1, (void *) scsicmd); /* * Check that the command queued to the controller */ if (status == -EINPROGRESS) { scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; return 0; } if (status < 0) { scsicmd->SCp.ptr = NULL; aac_fib_complete(fibptr); aac_fib_free(fibptr); } } if (status < 0) { struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev; if (fsa_dev_ptr) { fsa_dev_ptr += scmd_id(scsicmd); if ((fsa_dev_ptr->valid & 1) == 0) { fsa_dev_ptr->valid = 0; return (*callback)(scsicmd); } } } return status; } /** * aac_probe_container - query a logical volume * @dev: device to query * @cid: container identifier * * Queries the controller about the given volume. The volume information * is updated in the struct fsa_dev_info structure rather than returned. */ static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd) { scsicmd->device = NULL; return 0; } int aac_probe_container(struct aac_dev *dev, int cid) { struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL); struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL); int status; if (!scsicmd || !scsidev) { kfree(scsicmd); kfree(scsidev); return -ENOMEM; } scsicmd->list.next = NULL; scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1; scsicmd->device = scsidev; scsidev->sdev_state = 0; scsidev->id = cid; scsidev->host = dev->scsi_host_ptr; if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0) while (scsicmd->device == scsidev) schedule(); kfree(scsidev); status = scsicmd->SCp.Status; kfree(scsicmd); return status; } /* Local Structure to set SCSI inquiry data strings */ struct scsi_inq { char vid[8]; /* Vendor ID */ char pid[16]; /* Product ID */ char prl[4]; /* Product Revision Level */ }; /** * InqStrCopy - string merge * @a: string to copy from * @b: string to copy to * * Copy a String from one location to another * without copying \0 */ static void inqstrcpy(char *a, char *b) { while (*a != (char)0) *b++ = *a++; } static char *container_types[] = { "None", "Volume", "Mirror", "Stripe", "RAID5", "SSRW", "SSRO", "Morph", "Legacy", "RAID4", "RAID10", "RAID00", "V-MIRRORS", "PSEUDO R4", "RAID50", "RAID5D", "RAID5D0", "RAID1E", "RAID6", "RAID60", "Unknown" }; char * get_container_type(unsigned tindex) { if (tindex >= ARRAY_SIZE(container_types)) tindex = ARRAY_SIZE(container_types) - 1; return container_types[tindex]; } /* Function: setinqstr * * Arguments: [1] pointer to void [1] int * * Purpose: Sets SCSI inquiry data strings for vendor, product * and revision level. Allows strings to be set in platform dependent * files instead of in OS dependent driver source. */ static void setinqstr(struct aac_dev *dev, void *data, int tindex) { struct scsi_inq *str; str = (struct scsi_inq *)(data); /* cast data to scsi inq block */ memset(str, ' ', sizeof(*str)); if (dev->supplement_adapter_info.AdapterTypeText[0]) { char * cp = dev->supplement_adapter_info.AdapterTypeText; int c; if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C')) inqstrcpy("SMC", str->vid); else { c = sizeof(str->vid); while (*cp && *cp != ' ' && --c) ++cp; c = *cp; *cp = '\0'; inqstrcpy (dev->supplement_adapter_info.AdapterTypeText, str->vid); *cp = c; while (*cp && *cp != ' ') ++cp; } while (*cp == ' ') ++cp; /* last six chars reserved for vol type */ c = 0; if (strlen(cp) > sizeof(str->pid)) { c = cp[sizeof(str->pid)]; cp[sizeof(str->pid)] = '\0'; } inqstrcpy (cp, str->pid); if (c) cp[sizeof(str->pid)] = c; } else { struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype); inqstrcpy (mp->vname, str->vid); /* last six chars reserved for vol type */ inqstrcpy (mp->model, str->pid); } if (tindex < ARRAY_SIZE(container_types)){ char *findit = str->pid; for ( ; *findit != ' '; findit++); /* walk till we find a space */ /* RAID is superfluous in the context of a RAID device */ if (memcmp(findit-4, "RAID", 4) == 0) *(findit -= 4) = ' '; if (((findit - str->pid) + strlen(container_types[tindex])) < (sizeof(str->pid) + sizeof(str->prl))) inqstrcpy (container_types[tindex], findit + 1); } inqstrcpy ("V1.0", str->prl); } static void get_container_serial_callback(void *context, struct fib * fibptr) { struct aac_get_serial_resp * get_serial_reply; struct scsi_cmnd * scsicmd; BUG_ON(fibptr == NULL); scsicmd = (struct scsi_cmnd *) context; if (!aac_valid_context(scsicmd, fibptr)) return; get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr); /* Failure is irrelevant, using default value instead */ if (le32_to_cpu(get_serial_reply->status) == CT_OK) { /*Check to see if it's for VPD 0x83 or 0x80 */ if (scsicmd->cmnd[2] == 0x83) { /* vpd page 0x83 - Device Identification Page */ int i; TVPD_Page83 VPDPage83Data; memset(((u8 *)&VPDPage83Data), 0, sizeof(VPDPage83Data)); /* DIRECT_ACCESS_DEVIC */ VPDPage83Data.DeviceType = 0; /* DEVICE_CONNECTED */ VPDPage83Data.DeviceTypeQualifier = 0; /* VPD_DEVICE_IDENTIFIERS */ VPDPage83Data.PageCode = 0x83; VPDPage83Data.Reserved = 0; VPDPage83Data.PageLength = sizeof(VPDPage83Data.IdDescriptorType1) + sizeof(VPDPage83Data.IdDescriptorType2); /* T10 Vendor Identifier Field Format */ /* VpdCodeSetAscii */ VPDPage83Data.IdDescriptorType1.CodeSet = 2; /* VpdIdentifierTypeVendorId */ VPDPage83Data.IdDescriptorType1.IdentifierType = 1; VPDPage83Data.IdDescriptorType1.IdentifierLength = sizeof(VPDPage83Data.IdDescriptorType1) - 4; /* "ADAPTEC " for adaptec */ memcpy(VPDPage83Data.IdDescriptorType1.VendId, "ADAPTEC ", sizeof(VPDPage83Data.IdDescriptorType1.VendId)); memcpy(VPDPage83Data.IdDescriptorType1.ProductId, "ARRAY ", sizeof( VPDPage83Data.IdDescriptorType1.ProductId)); /* Convert to ascii based serial number. * The LSB is the the end. */ for (i = 0; i < 8; i++) { u8 temp = (u8)((get_serial_reply->uid >> ((7 - i) * 4)) & 0xF); if (temp > 0x9) { VPDPage83Data.IdDescriptorType1.SerialNumber[i] = 'A' + (temp - 0xA); } else { VPDPage83Data.IdDescriptorType1.SerialNumber[i] = '0' + temp; } } /* VpdCodeSetBinary */ VPDPage83Data.IdDescriptorType2.CodeSet = 1; /* VpdIdentifierTypeEUI64 */ VPDPage83Data.IdDescriptorType2.IdentifierType = 2; VPDPage83Data.IdDescriptorType2.IdentifierLength = sizeof(VPDPage83Data.IdDescriptorType2) - 4; VPDPage83Data.IdDescriptorType2.EU64Id.VendId[0] = 0xD0; VPDPage83Data.IdDescriptorType2.EU64Id.VendId[1] = 0; VPDPage83Data.IdDescriptorType2.EU64Id.VendId[2] = 0; VPDPage83Data.IdDescriptorType2.EU64Id.Serial = get_serial_reply->uid; VPDPage83Data.IdDescriptorType2.EU64Id.Reserved = 0; /* Move the inquiry data to the response buffer. */ scsi_sg_copy_from_buffer(scsicmd, &VPDPage83Data, sizeof(VPDPage83Data)); } else { /* It must be for VPD 0x80 */ char sp[13]; /* EVPD bit set */ sp[0] = INQD_PDT_DA; sp[1] = scsicmd->cmnd[2]; sp[2] = 0; sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X", le32_to_cpu(get_serial_reply->uid)); scsi_sg_copy_from_buffer(scsicmd, sp, sizeof(sp)); } } scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; aac_fib_complete(fibptr); aac_fib_free(fibptr); scsicmd->scsi_done(scsicmd); } /** * aac_get_container_serial - get container serial, none blocking. */ static int aac_get_container_serial(struct scsi_cmnd * scsicmd) { int status; struct aac_get_serial *dinfo; struct fib * cmd_fibcontext; struct aac_dev * dev; dev = (struct aac_dev *)scsicmd->device->host->hostdata; if (!(cmd_fibcontext = aac_fib_alloc(dev))) return -ENOMEM; aac_fib_init(cmd_fibcontext); dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext); dinfo->command = cpu_to_le32(VM_ContainerConfig); dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID); dinfo->cid = cpu_to_le32(scmd_id(scsicmd)); status = aac_fib_send(ContainerCommand, cmd_fibcontext, sizeof(struct aac_get_serial_resp), FsaNormal, 0, 1, (fib_callback) get_container_serial_callback, (void *) scsicmd); /* * Check that the command queued to the controller */ if (status == -EINPROGRESS) { scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; return 0; } printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status); aac_fib_complete(cmd_fibcontext); aac_fib_free(cmd_fibcontext); return -1; } /* Function: setinqserial * * Arguments: [1] pointer to void [1] int * * Purpose: Sets SCSI Unit Serial number. * This is a fake. We should read a proper * serial number from the container. But * without docs it's quite hard to do it :-) * So this will have to do in the meantime. */ static int setinqserial(struct aac_dev *dev, void *data, int cid) { /* * This breaks array migration. */ return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X", le32_to_cpu(dev->adapter_info.serial[0]), cid); } static inline void set_sense(struct sense_data *sense_data, u8 sense_key, u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer) { u8 *sense_buf = (u8 *)sense_data; /* Sense data valid, err code 70h */ sense_buf[0] = 0x70; /* No info field */ sense_buf[1] = 0; /* Segment number, always zero */ sense_buf[2] = sense_key; /* Sense key */ sense_buf[12] = sense_code; /* Additional sense code */ sense_buf[13] = a_sense_code; /* Additional sense code qualifier */ if (sense_key == ILLEGAL_REQUEST) { sense_buf[7] = 10; /* Additional sense length */ sense_buf[15] = bit_pointer; /* Illegal parameter is in the parameter block */ if (sense_code == SENCODE_INVALID_CDB_FIELD) sense_buf[15] |= 0xc0;/* Std sense key specific field */ /* Illegal parameter is in the CDB block */ sense_buf[16] = field_pointer >> 8; /* MSB */ sense_buf[17] = field_pointer; /* LSB */ } else sense_buf[7] = 6; /* Additional sense length */ } static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba) { if (lba & 0xffffffff00000000LL) { int cid = scmd_id(cmd); dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; set_sense(&dev->fsa_dev[cid].sense_data, HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), SCSI_SENSE_BUFFERSIZE)); cmd->scsi_done(cmd); return 1; } return 0; } static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba) { return 0; } static void io_callback(void *context, struct fib * fibptr); static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) { struct aac_dev *dev = fib->dev; u16 fibsize, command; long ret; aac_fib_init(fib); if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 && !dev->sync_mode) { struct aac_raw_io2 *readcmd2; readcmd2 = (struct aac_raw_io2 *) fib_data(fib); memset(readcmd2, 0, sizeof(struct aac_raw_io2)); readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff)); readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); readcmd2->byteCount = cpu_to_le32(count * dev->fsa_dev[scmd_id(cmd)].block_size); readcmd2->cid = cpu_to_le16(scmd_id(cmd)); readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ); ret = aac_build_sgraw2(cmd, readcmd2, dev->scsi_host_ptr->sg_tablesize); if (ret < 0) return ret; command = ContainerRawIo2; fibsize = sizeof(struct aac_raw_io2) + ((le32_to_cpu(readcmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212)); } else { struct aac_raw_io *readcmd; readcmd = (struct aac_raw_io *) fib_data(fib); readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); readcmd->count = cpu_to_le32(count * dev->fsa_dev[scmd_id(cmd)].block_size); readcmd->cid = cpu_to_le16(scmd_id(cmd)); readcmd->flags = cpu_to_le16(RIO_TYPE_READ); readcmd->bpTotal = 0; readcmd->bpComplete = 0; ret = aac_build_sgraw(cmd, &readcmd->sg); if (ret < 0) return ret; command = ContainerRawIo; fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw)); } BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); /* * Now send the Fib to the adapter */ return aac_fib_send(command, fib, fibsize, FsaNormal, 0, 1, (fib_callback) io_callback, (void *) cmd); } static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) { u16 fibsize; struct aac_read64 *readcmd; long ret; aac_fib_init(fib); readcmd = (struct aac_read64 *) fib_data(fib); readcmd->command = cpu_to_le32(VM_CtHostRead64); readcmd->cid = cpu_to_le16(scmd_id(cmd)); readcmd->sector_count = cpu_to_le16(count); readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); readcmd->pad = 0; readcmd->flags = 0; ret = aac_build_sg64(cmd, &readcmd->sg); if (ret < 0) return ret; fibsize = sizeof(struct aac_read64) + ((le32_to_cpu(readcmd->sg.count) - 1) * sizeof (struct sgentry64)); BUG_ON (fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); /* * Now send the Fib to the adapter */ return aac_fib_send(ContainerCommand64, fib, fibsize, FsaNormal, 0, 1, (fib_callback) io_callback, (void *) cmd); } static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) { u16 fibsize; struct aac_read *readcmd; struct aac_dev *dev = fib->dev; long ret; aac_fib_init(fib); readcmd = (struct aac_read *) fib_data(fib); readcmd->command = cpu_to_le32(VM_CtBlockRead); readcmd->cid = cpu_to_le32(scmd_id(cmd)); readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); readcmd->count = cpu_to_le32(count * dev->fsa_dev[scmd_id(cmd)].block_size); ret = aac_build_sg(cmd, &readcmd->sg); if (ret < 0) return ret; fibsize = sizeof(struct aac_read) + ((le32_to_cpu(readcmd->sg.count) - 1) * sizeof (struct sgentry)); BUG_ON (fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); /* * Now send the Fib to the adapter */ return aac_fib_send(ContainerCommand, fib, fibsize, FsaNormal, 0, 1, (fib_callback) io_callback, (void *) cmd); } static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) { struct aac_dev *dev = fib->dev; u16 fibsize, command; long ret; aac_fib_init(fib); if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 && !dev->sync_mode) { struct aac_raw_io2 *writecmd2; writecmd2 = (struct aac_raw_io2 *) fib_data(fib); memset(writecmd2, 0, sizeof(struct aac_raw_io2)); writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff)); writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); writecmd2->byteCount = cpu_to_le32(count * dev->fsa_dev[scmd_id(cmd)].block_size); writecmd2->cid = cpu_to_le16(scmd_id(cmd)); writecmd2->flags = (fua && ((aac_cache & 5) != 1) && (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ? cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) : cpu_to_le16(RIO2_IO_TYPE_WRITE); ret = aac_build_sgraw2(cmd, writecmd2, dev->scsi_host_ptr->sg_tablesize); if (ret < 0) return ret; command = ContainerRawIo2; fibsize = sizeof(struct aac_raw_io2) + ((le32_to_cpu(writecmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212)); } else { struct aac_raw_io *writecmd; writecmd = (struct aac_raw_io *) fib_data(fib); writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); writecmd->count = cpu_to_le32(count * dev->fsa_dev[scmd_id(cmd)].block_size); writecmd->cid = cpu_to_le16(scmd_id(cmd)); writecmd->flags = (fua && ((aac_cache & 5) != 1) && (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ? cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) : cpu_to_le16(RIO_TYPE_WRITE); writecmd->bpTotal = 0; writecmd->bpComplete = 0; ret = aac_build_sgraw(cmd, &writecmd->sg); if (ret < 0) return ret; command = ContainerRawIo; fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw)); } BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); /* * Now send the Fib to the adapter */ return aac_fib_send(command, fib, fibsize, FsaNormal, 0, 1, (fib_callback) io_callback, (void *) cmd); } static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) { u16 fibsize; struct aac_write64 *writecmd; long ret; aac_fib_init(fib); writecmd = (struct aac_write64 *) fib_data(fib); writecmd->command = cpu_to_le32(VM_CtHostWrite64); writecmd->cid = cpu_to_le16(scmd_id(cmd)); writecmd->sector_count = cpu_to_le16(count); writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); writecmd->pad = 0; writecmd->flags = 0; ret = aac_build_sg64(cmd, &writecmd->sg); if (ret < 0) return ret; fibsize = sizeof(struct aac_write64) + ((le32_to_cpu(writecmd->sg.count) - 1) * sizeof (struct sgentry64)); BUG_ON (fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); /* * Now send the Fib to the adapter */ return aac_fib_send(ContainerCommand64, fib, fibsize, FsaNormal, 0, 1, (fib_callback) io_callback, (void *) cmd); } static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) { u16 fibsize; struct aac_write *writecmd; struct aac_dev *dev = fib->dev; long ret; aac_fib_init(fib); writecmd = (struct aac_write *) fib_data(fib); writecmd->command = cpu_to_le32(VM_CtBlockWrite); writecmd->cid = cpu_to_le32(scmd_id(cmd)); writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); writecmd->count = cpu_to_le32(count * dev->fsa_dev[scmd_id(cmd)].block_size); writecmd->sg.count = cpu_to_le32(1); /* ->stable is not used - it did mean which type of write */ ret = aac_build_sg(cmd, &writecmd->sg); if (ret < 0) return ret; fibsize = sizeof(struct aac_write) + ((le32_to_cpu(writecmd->sg.count) - 1) * sizeof (struct sgentry)); BUG_ON (fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); /* * Now send the Fib to the adapter */ return aac_fib_send(ContainerCommand, fib, fibsize, FsaNormal, 0, 1, (fib_callback) io_callback, (void *) cmd); } static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd) { struct aac_srb * srbcmd; u32 flag; u32 timeout; aac_fib_init(fib); switch(cmd->sc_data_direction){ case DMA_TO_DEVICE: flag = SRB_DataOut; break; case DMA_BIDIRECTIONAL: flag = SRB_DataIn | SRB_DataOut; break; case DMA_FROM_DEVICE: flag = SRB_DataIn; break; case DMA_NONE: default: /* shuts up some versions of gcc */ flag = SRB_NoDataXfer; break; } srbcmd = (struct aac_srb*) fib_data(fib); srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd))); srbcmd->id = cpu_to_le32(scmd_id(cmd)); srbcmd->lun = cpu_to_le32(cmd->device->lun); srbcmd->flags = cpu_to_le32(flag); timeout = cmd->request->timeout/HZ; if (timeout == 0) timeout = 1; srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds srbcmd->retry_limit = 0; /* Obsolete parameter */ srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len); return srbcmd; } static void aac_srb_callback(void *context, struct fib * fibptr); static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd) { u16 fibsize; struct aac_srb * srbcmd = aac_scsi_common(fib, cmd); long ret; ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg); if (ret < 0) return ret; srbcmd->count = cpu_to_le32(scsi_bufflen(cmd)); memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len); /* * Build Scatter/Gather list */ fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) + ((le32_to_cpu(srbcmd->sg.count) & 0xff) * sizeof (struct sgentry64)); BUG_ON (fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); /* * Now send the Fib to the adapter */ return aac_fib_send(ScsiPortCommand64, fib, fibsize, FsaNormal, 0, 1, (fib_callback) aac_srb_callback, (void *) cmd); } static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd) { u16 fibsize; struct aac_srb * srbcmd = aac_scsi_common(fib, cmd); long ret; ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg); if (ret < 0) return ret; srbcmd->count = cpu_to_le32(scsi_bufflen(cmd)); memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len); /* * Build Scatter/Gather list */ fibsize = sizeof (struct aac_srb) + (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) * sizeof (struct sgentry)); BUG_ON (fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); /* * Now send the Fib to the adapter */ return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1, (fib_callback) aac_srb_callback, (void *) cmd); } static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd) { if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac && (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) return FAILED; return aac_scsi_32(fib, cmd); } int aac_get_adapter_info(struct aac_dev* dev) { struct fib* fibptr; int rcode; u32 tmp; struct aac_adapter_info *info; struct aac_bus_info *command; struct aac_bus_info_response *bus_info; if (!(fibptr = aac_fib_alloc(dev))) return -ENOMEM; aac_fib_init(fibptr); info = (struct aac_adapter_info *) fib_data(fibptr); memset(info,0,sizeof(*info)); rcode = aac_fib_send(RequestAdapterInfo, fibptr, sizeof(*info), FsaNormal, -1, 1, /* First `interrupt' command uses special wait */ NULL, NULL); if (rcode < 0) { /* FIB should be freed only after * getting the response from the F/W */ if (rcode != -ERESTARTSYS) { aac_fib_complete(fibptr); aac_fib_free(fibptr); } return rcode; } memcpy(&dev->adapter_info, info, sizeof(*info)); if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) { struct aac_supplement_adapter_info * sinfo; aac_fib_init(fibptr); sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr); memset(sinfo,0,sizeof(*sinfo)); rcode = aac_fib_send(RequestSupplementAdapterInfo, fibptr, sizeof(*sinfo), FsaNormal, 1, 1, NULL, NULL); if (rcode >= 0) memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo)); if (rcode == -ERESTARTSYS) { fibptr = aac_fib_alloc(dev); if (!fibptr) return -ENOMEM; } } /* * GetBusInfo */ aac_fib_init(fibptr); bus_info = (struct aac_bus_info_response *) fib_data(fibptr); memset(bus_info, 0, sizeof(*bus_info)); command = (struct aac_bus_info *)bus_info; command->Command = cpu_to_le32(VM_Ioctl); command->ObjType = cpu_to_le32(FT_DRIVE); command->MethodId = cpu_to_le32(1); command->CtlCmd = cpu_to_le32(GetBusInfo); rcode = aac_fib_send(ContainerCommand, fibptr, sizeof (*bus_info), FsaNormal, 1, 1, NULL, NULL); /* reasoned default */ dev->maximum_num_physicals = 16; if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) { dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus); dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount); } if (!dev->in_reset) { char buffer[16]; tmp = le32_to_cpu(dev->adapter_info.kernelrev); printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n", dev->name, dev->id, tmp>>24, (tmp>>16)&0xff, tmp&0xff, le32_to_cpu(dev->adapter_info.kernelbuild), (int)sizeof(dev->supplement_adapter_info.BuildDate), dev->supplement_adapter_info.BuildDate); tmp = le32_to_cpu(dev->adapter_info.monitorrev); printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n", dev->name, dev->id, tmp>>24,(tmp>>16)&0xff,tmp&0xff, le32_to_cpu(dev->adapter_info.monitorbuild)); tmp = le32_to_cpu(dev->adapter_info.biosrev); printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n", dev->name, dev->id, tmp>>24,(tmp>>16)&0xff,tmp&0xff, le32_to_cpu(dev->adapter_info.biosbuild)); buffer[0] = '\0'; if (aac_get_serial_number( shost_to_class(dev->scsi_host_ptr), buffer)) printk(KERN_INFO "%s%d: serial %s", dev->name, dev->id, buffer); if (dev->supplement_adapter_info.VpdInfo.Tsid[0]) { printk(KERN_INFO "%s%d: TSID %.*s\n", dev->name, dev->id, (int)sizeof(dev->supplement_adapter_info.VpdInfo.Tsid), dev->supplement_adapter_info.VpdInfo.Tsid); } if (!aac_check_reset || ((aac_check_reset == 1) && (dev->supplement_adapter_info.SupportedOptions2 & AAC_OPTION_IGNORE_RESET))) { printk(KERN_INFO "%s%d: Reset Adapter Ignored\n", dev->name, dev->id); } } dev->cache_protected = 0; dev->jbod = ((dev->supplement_adapter_info.FeatureBits & AAC_FEATURE_JBOD) != 0); dev->nondasd_support = 0; dev->raid_scsi_mode = 0; if(dev->adapter_info.options & AAC_OPT_NONDASD) dev->nondasd_support = 1; /* * If the firmware supports ROMB RAID/SCSI mode and we are currently * in RAID/SCSI mode, set the flag. For now if in this mode we will * force nondasd support on. If we decide to allow the non-dasd flag * additional changes changes will have to be made to support * RAID/SCSI. the function aac_scsi_cmd in this module will have to be * changed to support the new dev->raid_scsi_mode flag instead of * leaching off of the dev->nondasd_support flag. Also in linit.c the * function aac_detect will have to be modified where it sets up the * max number of channels based on the aac->nondasd_support flag only. */ if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) && (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) { dev->nondasd_support = 1; dev->raid_scsi_mode = 1; } if (dev->raid_scsi_mode != 0) printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n", dev->name, dev->id); if (nondasd != -1) dev->nondasd_support = (nondasd!=0); if (dev->nondasd_support && !dev->in_reset) printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id); if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32)) dev->needs_dac = 1; dev->dac_support = 0; if ((sizeof(dma_addr_t) > 4) && dev->needs_dac && (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) { if (!dev->in_reset) printk(KERN_INFO "%s%d: 64bit support enabled.\n", dev->name, dev->id); dev->dac_support = 1; } if(dacmode != -1) { dev->dac_support = (dacmode!=0); } /* avoid problems with AAC_QUIRK_SCSI_32 controllers */ if (dev->dac_support && (aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32)) { dev->nondasd_support = 0; dev->jbod = 0; expose_physicals = 0; } if(dev->dac_support != 0) { if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(64)) && !pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(64))) { if (!dev->in_reset) printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n", dev->name, dev->id); } else if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(32)) && !pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(32))) { printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n", dev->name, dev->id); dev->dac_support = 0; } else { printk(KERN_WARNING"%s%d: No suitable DMA available.\n", dev->name, dev->id); rcode = -ENOMEM; } } /* * Deal with configuring for the individualized limits of each packet * interface. */ dev->a_ops.adapter_scsi = (dev->dac_support) ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32) ? aac_scsi_32_64 : aac_scsi_64) : aac_scsi_32; if (dev->raw_io_interface) { dev->a_ops.adapter_bounds = (dev->raw_io_64) ? aac_bounds_64 : aac_bounds_32; dev->a_ops.adapter_read = aac_read_raw_io; dev->a_ops.adapter_write = aac_write_raw_io; } else { dev->a_ops.adapter_bounds = aac_bounds_32; dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size - sizeof(struct aac_fibhdr) - sizeof(struct aac_write) + sizeof(struct sgentry)) / sizeof(struct sgentry); if (dev->dac_support) { dev->a_ops.adapter_read = aac_read_block64; dev->a_ops.adapter_write = aac_write_block64; /* * 38 scatter gather elements */ dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size - sizeof(struct aac_fibhdr) - sizeof(struct aac_write64) + sizeof(struct sgentry64)) / sizeof(struct sgentry64); } else { dev->a_ops.adapter_read = aac_read_block; dev->a_ops.adapter_write = aac_write_block; } dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT; if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) { /* * Worst case size that could cause sg overflow when * we break up SG elements that are larger than 64KB. * Would be nice if we could tell the SCSI layer what * the maximum SG element size can be. Worst case is * (sg_tablesize-1) 4KB elements with one 64KB * element. * 32bit -> 468 or 238KB 64bit -> 424 or 212KB */ dev->scsi_host_ptr->max_sectors = (dev->scsi_host_ptr->sg_tablesize * 8) + 112; } } /* FIB should be freed only after getting the response from the F/W */ if (rcode != -ERESTARTSYS) { aac_fib_complete(fibptr); aac_fib_free(fibptr); } return rcode; } static void io_callback(void *context, struct fib * fibptr) { struct aac_dev *dev; struct aac_read_reply *readreply; struct scsi_cmnd *scsicmd; u32 cid; scsicmd = (struct scsi_cmnd *) context; if (!aac_valid_context(scsicmd, fibptr)) return; dev = fibptr->dev; cid = scmd_id(scsicmd); if (nblank(dprintk(x))) { u64 lba; switch (scsicmd->cmnd[0]) { case WRITE_6: case READ_6: lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; break; case WRITE_16: case READ_16: lba = ((u64)scsicmd->cmnd[2] << 56) | ((u64)scsicmd->cmnd[3] << 48) | ((u64)scsicmd->cmnd[4] << 40) | ((u64)scsicmd->cmnd[5] << 32) | ((u64)scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16) | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; break; case WRITE_12: case READ_12: lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; break; default: lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; break; } printk(KERN_DEBUG "io_callback[cpu %d]: lba = %llu, t = %ld.\n", smp_processor_id(), (unsigned long long)lba, jiffies); } BUG_ON(fibptr == NULL); scsi_dma_unmap(scsicmd); readreply = (struct aac_read_reply *)fib_data(fibptr); switch (le32_to_cpu(readreply->status)) { case ST_OK: scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE; break; case ST_NOT_READY: scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY, SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0); memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), SCSI_SENSE_BUFFERSIZE)); break; default: #ifdef AAC_DETAILED_STATUS_INFO printk(KERN_WARNING "io_callback: io failed, status = %d\n", le32_to_cpu(readreply->status)); #endif scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; set_sense(&dev->fsa_dev[cid].sense_data, HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), SCSI_SENSE_BUFFERSIZE)); break; } aac_fib_complete(fibptr); aac_fib_free(fibptr); scsicmd->scsi_done(scsicmd); } static int aac_read(struct scsi_cmnd * scsicmd) { u64 lba; u32 count; int status; struct aac_dev *dev; struct fib * cmd_fibcontext; int cid; dev = (struct aac_dev *)scsicmd->device->host->hostdata; /* * Get block address and transfer length */ switch (scsicmd->cmnd[0]) { case READ_6: dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd))); lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; count = scsicmd->cmnd[4]; if (count == 0) count = 256; break; case READ_16: dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd))); lba = ((u64)scsicmd->cmnd[2] << 56) | ((u64)scsicmd->cmnd[3] << 48) | ((u64)scsicmd->cmnd[4] << 40) | ((u64)scsicmd->cmnd[5] << 32) | ((u64)scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16) | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) | (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; break; case READ_12: dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd))); lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16) | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; break; default: dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd))); lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; break; } if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) { cid = scmd_id(scsicmd); dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; set_sense(&dev->fsa_dev[cid].sense_data, HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), SCSI_SENSE_BUFFERSIZE)); scsicmd->scsi_done(scsicmd); return 1; } dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n", smp_processor_id(), (unsigned long long)lba, jiffies)); if (aac_adapter_bounds(dev,scsicmd,lba)) return 0; /* * Alocate and initialize a Fib */ if (!(cmd_fibcontext = aac_fib_alloc(dev))) { printk(KERN_WARNING "aac_read: fib allocation failed\n"); return -1; } status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count); /* * Check that the command queued to the controller */ if (status == -EINPROGRESS) { scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; return 0; } printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status); /* * For some reason, the Fib didn't queue, return QUEUE_FULL */ scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL; scsicmd->scsi_done(scsicmd); aac_fib_complete(cmd_fibcontext); aac_fib_free(cmd_fibcontext); return 0; } static int aac_write(struct scsi_cmnd * scsicmd) { u64 lba; u32 count; int fua; int status; struct aac_dev *dev; struct fib * cmd_fibcontext; int cid; dev = (struct aac_dev *)scsicmd->device->host->hostdata; /* * Get block address and transfer length */ if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */ { lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; count = scsicmd->cmnd[4]; if (count == 0) count = 256; fua = 0; } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */ dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd))); lba = ((u64)scsicmd->cmnd[2] << 56) | ((u64)scsicmd->cmnd[3] << 48) | ((u64)scsicmd->cmnd[4] << 40) | ((u64)scsicmd->cmnd[5] << 32) | ((u64)scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16) | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) | (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; fua = scsicmd->cmnd[1] & 0x8; } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */ dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd))); lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16) | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; fua = scsicmd->cmnd[1] & 0x8; } else { dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd))); lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; fua = scsicmd->cmnd[1] & 0x8; } if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) { cid = scmd_id(scsicmd); dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; set_sense(&dev->fsa_dev[cid].sense_data, HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), SCSI_SENSE_BUFFERSIZE)); scsicmd->scsi_done(scsicmd); return 1; } dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n", smp_processor_id(), (unsigned long long)lba, jiffies)); if (aac_adapter_bounds(dev,scsicmd,lba)) return 0; /* * Allocate and initialize a Fib then setup a BlockWrite command */ if (!(cmd_fibcontext = aac_fib_alloc(dev))) { /* FIB temporarily unavailable,not catastrophic failure */ /* scsicmd->result = DID_ERROR << 16; * scsicmd->scsi_done(scsicmd); * return 0; */ printk(KERN_WARNING "aac_write: fib allocation failed\n"); return -1; } status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua); /* * Check that the command queued to the controller */ if (status == -EINPROGRESS) { scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; return 0; } printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status); /* * For some reason, the Fib didn't queue, return QUEUE_FULL */ scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL; scsicmd->scsi_done(scsicmd); aac_fib_complete(cmd_fibcontext); aac_fib_free(cmd_fibcontext); return 0; } static void synchronize_callback(void *context, struct fib *fibptr) { struct aac_synchronize_reply *synchronizereply; struct scsi_cmnd *cmd; cmd = context; if (!aac_valid_context(cmd, fibptr)) return; dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies)); BUG_ON(fibptr == NULL); synchronizereply = fib_data(fibptr); if (le32_to_cpu(synchronizereply->status) == CT_OK) cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; else { struct scsi_device *sdev = cmd->device; struct aac_dev *dev = fibptr->dev; u32 cid = sdev_id(sdev); printk(KERN_WARNING "synchronize_callback: synchronize failed, status = %d\n", le32_to_cpu(synchronizereply->status)); cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; set_sense(&dev->fsa_dev[cid].sense_data, HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), SCSI_SENSE_BUFFERSIZE)); } aac_fib_complete(fibptr); aac_fib_free(fibptr); cmd->scsi_done(cmd); } static int aac_synchronize(struct scsi_cmnd *scsicmd) { int status; struct fib *cmd_fibcontext; struct aac_synchronize *synchronizecmd; struct scsi_cmnd *cmd; struct scsi_device *sdev = scsicmd->device; int active = 0; struct aac_dev *aac; u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; unsigned long flags; /* * Wait for all outstanding queued commands to complete to this * specific target (block). */ spin_lock_irqsave(&sdev->list_lock, flags); list_for_each_entry(cmd, &sdev->cmd_list, list) if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) { u64 cmnd_lba; u32 cmnd_count; if (cmd->cmnd[0] == WRITE_6) { cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) | (cmd->cmnd[2] << 8) | cmd->cmnd[3]; cmnd_count = cmd->cmnd[4]; if (cmnd_count == 0) cmnd_count = 256; } else if (cmd->cmnd[0] == WRITE_16) { cmnd_lba = ((u64)cmd->cmnd[2] << 56) | ((u64)cmd->cmnd[3] << 48) | ((u64)cmd->cmnd[4] << 40) | ((u64)cmd->cmnd[5] << 32) | ((u64)cmd->cmnd[6] << 24) | (cmd->cmnd[7] << 16) | (cmd->cmnd[8] << 8) | cmd->cmnd[9]; cmnd_count = (cmd->cmnd[10] << 24) | (cmd->cmnd[11] << 16) | (cmd->cmnd[12] << 8) | cmd->cmnd[13]; } else if (cmd->cmnd[0] == WRITE_12) { cmnd_lba = ((u64)cmd->cmnd[2] << 24) | (cmd->cmnd[3] << 16) | (cmd->cmnd[4] << 8) | cmd->cmnd[5]; cmnd_count = (cmd->cmnd[6] << 24) | (cmd->cmnd[7] << 16) | (cmd->cmnd[8] << 8) | cmd->cmnd[9]; } else if (cmd->cmnd[0] == WRITE_10) { cmnd_lba = ((u64)cmd->cmnd[2] << 24) | (cmd->cmnd[3] << 16) | (cmd->cmnd[4] << 8) | cmd->cmnd[5]; cmnd_count = (cmd->cmnd[7] << 8) | cmd->cmnd[8]; } else continue; if (((cmnd_lba + cmnd_count) < lba) || (count && ((lba + count) < cmnd_lba))) continue; ++active; break; } spin_unlock_irqrestore(&sdev->list_lock, flags); /* * Yield the processor (requeue for later) */ if (active) return SCSI_MLQUEUE_DEVICE_BUSY; aac = (struct aac_dev *)sdev->host->hostdata; if (aac->in_reset) return SCSI_MLQUEUE_HOST_BUSY; /* * Allocate and initialize a Fib */ if (!(cmd_fibcontext = aac_fib_alloc(aac))) return SCSI_MLQUEUE_HOST_BUSY; aac_fib_init(cmd_fibcontext); synchronizecmd = fib_data(cmd_fibcontext); synchronizecmd->command = cpu_to_le32(VM_ContainerConfig); synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE); synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd)); synchronizecmd->count = cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data)); /* * Now send the Fib to the adapter */ status = aac_fib_send(ContainerCommand, cmd_fibcontext, sizeof(struct aac_synchronize), FsaNormal, 0, 1, (fib_callback)synchronize_callback, (void *)scsicmd); /* * Check that the command queued to the controller */ if (status == -EINPROGRESS) { scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; return 0; } printk(KERN_WARNING "aac_synchronize: aac_fib_send failed with status: %d.\n", status); aac_fib_complete(cmd_fibcontext); aac_fib_free(cmd_fibcontext); return SCSI_MLQUEUE_HOST_BUSY; } static void aac_start_stop_callback(void *context, struct fib *fibptr) { struct scsi_cmnd *scsicmd = context; if (!aac_valid_context(scsicmd, fibptr)) return; BUG_ON(fibptr == NULL); scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; aac_fib_complete(fibptr); aac_fib_free(fibptr); scsicmd->scsi_done(scsicmd); } static int aac_start_stop(struct scsi_cmnd *scsicmd) { int status; struct fib *cmd_fibcontext; struct aac_power_management *pmcmd; struct scsi_device *sdev = scsicmd->device; struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata; if (!(aac->supplement_adapter_info.SupportedOptions2 & AAC_OPTION_POWER_MANAGEMENT)) { scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; scsicmd->scsi_done(scsicmd); return 0; } if (aac->in_reset) return SCSI_MLQUEUE_HOST_BUSY; /* * Allocate and initialize a Fib */ cmd_fibcontext = aac_fib_alloc(aac); if (!cmd_fibcontext) return SCSI_MLQUEUE_HOST_BUSY; aac_fib_init(cmd_fibcontext); pmcmd = fib_data(cmd_fibcontext); pmcmd->command = cpu_to_le32(VM_ContainerConfig); pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT); /* Eject bit ignored, not relevant */ pmcmd->sub = (scsicmd->cmnd[4] & 1) ? cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT); pmcmd->cid = cpu_to_le32(sdev_id(sdev)); pmcmd->parm = (scsicmd->cmnd[1] & 1) ? cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0; /* * Now send the Fib to the adapter */ status = aac_fib_send(ContainerCommand, cmd_fibcontext, sizeof(struct aac_power_management), FsaNormal, 0, 1, (fib_callback)aac_start_stop_callback, (void *)scsicmd); /* * Check that the command queued to the controller */ if (status == -EINPROGRESS) { scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; return 0; } aac_fib_complete(cmd_fibcontext); aac_fib_free(cmd_fibcontext); return SCSI_MLQUEUE_HOST_BUSY; } /** * aac_scsi_cmd() - Process SCSI command * @scsicmd: SCSI command block * * Emulate a SCSI command and queue the required request for the * aacraid firmware. */ int aac_scsi_cmd(struct scsi_cmnd * scsicmd) { u32 cid; struct Scsi_Host *host = scsicmd->device->host; struct aac_dev *dev = (struct aac_dev *)host->hostdata; struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev; if (fsa_dev_ptr == NULL) return -1; /* * If the bus, id or lun is out of range, return fail * Test does not apply to ID 16, the pseudo id for the controller * itself. */ cid = scmd_id(scsicmd); if (cid != host->this_id) { if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) { if((cid >= dev->maximum_num_containers) || (scsicmd->device->lun != 0)) { scsicmd->result = DID_NO_CONNECT << 16; scsicmd->scsi_done(scsicmd); return 0; } /* * If the target container doesn't exist, it may have * been newly created */ if (((fsa_dev_ptr[cid].valid & 1) == 0) || (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY)) { switch (scsicmd->cmnd[0]) { case SERVICE_ACTION_IN_16: if (!(dev->raw_io_interface) || !(dev->raw_io_64) || ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) break; case INQUIRY: case READ_CAPACITY: case TEST_UNIT_READY: if (dev->in_reset) return -1; return _aac_probe_container(scsicmd, aac_probe_container_callback2); default: break; } } } else { /* check for physical non-dasd devices */ if (dev->nondasd_support || expose_physicals || dev->jbod) { if (dev->in_reset) return -1; return aac_send_srb_fib(scsicmd); } else { scsicmd->result = DID_NO_CONNECT << 16; scsicmd->scsi_done(scsicmd); return 0; } } } /* * else Command for the controller itself */ else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */ (scsicmd->cmnd[0] != TEST_UNIT_READY)) { dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0])); scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; set_sense(&dev->fsa_dev[cid].sense_data, ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, ASENCODE_INVALID_COMMAND, 0, 0); memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), SCSI_SENSE_BUFFERSIZE)); scsicmd->scsi_done(scsicmd); return 0; } /* Handle commands here that don't really require going out to the adapter */ switch (scsicmd->cmnd[0]) { case INQUIRY: { struct inquiry_data inq_data; dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid)); memset(&inq_data, 0, sizeof (struct inquiry_data)); if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) { char *arr = (char *)&inq_data; /* EVPD bit set */ arr[0] = (scmd_id(scsicmd) == host->this_id) ? INQD_PDT_PROC : INQD_PDT_DA; if (scsicmd->cmnd[2] == 0) { /* supported vital product data pages */ arr[3] = 3; arr[4] = 0x0; arr[5] = 0x80; arr[6] = 0x83; arr[1] = scsicmd->cmnd[2]; scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data)); scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; } else if (scsicmd->cmnd[2] == 0x80) { /* unit serial number page */ arr[3] = setinqserial(dev, &arr[4], scmd_id(scsicmd)); arr[1] = scsicmd->cmnd[2]; scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data)); if (aac_wwn != 2) return aac_get_container_serial( scsicmd); scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; } else if (scsicmd->cmnd[2] == 0x83) { /* vpd page 0x83 - Device Identification Page */ char *sno = (char *)&inq_data; sno[3] = setinqserial(dev, &sno[4], scmd_id(scsicmd)); if (aac_wwn != 2) return aac_get_container_serial( scsicmd); scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; } else { /* vpd page not implemented */ scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; set_sense(&dev->fsa_dev[cid].sense_data, ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD, ASENCODE_NO_SENSE, 7, 2); memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), SCSI_SENSE_BUFFERSIZE)); } scsicmd->scsi_done(scsicmd); return 0; } inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */ inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */ inq_data.inqd_len = 31; /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */ /* * Set the Vendor, Product, and Revision Level * see: .c i.e. aac.c */ if (cid == host->this_id) { setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types)); inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */ scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data)); scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; scsicmd->scsi_done(scsicmd); return 0; } if (dev->in_reset) return -1; setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type); inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */ scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data)); return aac_get_container_name(scsicmd); } case SERVICE_ACTION_IN_16: if (!(dev->raw_io_interface) || !(dev->raw_io_64) || ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) break; { u64 capacity; char cp[13]; unsigned int alloc_len; dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n")); capacity = fsa_dev_ptr[cid].size - 1; cp[0] = (capacity >> 56) & 0xff; cp[1] = (capacity >> 48) & 0xff; cp[2] = (capacity >> 40) & 0xff; cp[3] = (capacity >> 32) & 0xff; cp[4] = (capacity >> 24) & 0xff; cp[5] = (capacity >> 16) & 0xff; cp[6] = (capacity >> 8) & 0xff; cp[7] = (capacity >> 0) & 0xff; cp[8] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff; cp[9] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff; cp[10] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff; cp[11] = (fsa_dev_ptr[cid].block_size) & 0xff; cp[12] = 0; alloc_len = ((scsicmd->cmnd[10] << 24) + (scsicmd->cmnd[11] << 16) + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]); alloc_len = min_t(size_t, alloc_len, sizeof(cp)); scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len); if (alloc_len < scsi_bufflen(scsicmd)) scsi_set_resid(scsicmd, scsi_bufflen(scsicmd) - alloc_len); /* Do not cache partition table for arrays */ scsicmd->device->removable = 1; scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; scsicmd->scsi_done(scsicmd); return 0; } case READ_CAPACITY: { u32 capacity; char cp[8]; dprintk((KERN_DEBUG "READ CAPACITY command.\n")); if (fsa_dev_ptr[cid].size <= 0x100000000ULL) capacity = fsa_dev_ptr[cid].size - 1; else capacity = (u32)-1; cp[0] = (capacity >> 24) & 0xff; cp[1] = (capacity >> 16) & 0xff; cp[2] = (capacity >> 8) & 0xff; cp[3] = (capacity >> 0) & 0xff; cp[4] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff; cp[5] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff; cp[6] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff; cp[7] = (fsa_dev_ptr[cid].block_size) & 0xff; scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp)); /* Do not cache partition table for arrays */ scsicmd->device->removable = 1; scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; scsicmd->scsi_done(scsicmd); return 0; } case MODE_SENSE: { int mode_buf_length = 4; u32 capacity; aac_modep_data mpd; if (fsa_dev_ptr[cid].size <= 0x100000000ULL) capacity = fsa_dev_ptr[cid].size - 1; else capacity = (u32)-1; dprintk((KERN_DEBUG "MODE SENSE command.\n")); memset((char *)&mpd, 0, sizeof(aac_modep_data)); /* Mode data length */ mpd.hd.data_length = sizeof(mpd.hd) - 1; /* Medium type - default */ mpd.hd.med_type = 0; /* Device-specific param, bit 8: 0/1 = write enabled/protected bit 4: 0/1 = FUA enabled */ mpd.hd.dev_par = 0; if (dev->raw_io_interface && ((aac_cache & 5) != 1)) mpd.hd.dev_par = 0x10; if (scsicmd->cmnd[1] & 0x8) mpd.hd.bd_length = 0; /* Block descriptor length */ else { mpd.hd.bd_length = sizeof(mpd.bd); mpd.hd.data_length += mpd.hd.bd_length; mpd.bd.block_length[0] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff; mpd.bd.block_length[1] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff; mpd.bd.block_length[2] = fsa_dev_ptr[cid].block_size & 0xff; mpd.mpc_buf[0] = scsicmd->cmnd[2]; if (scsicmd->cmnd[2] == 0x1C) { /* page length */ mpd.mpc_buf[1] = 0xa; /* Mode data length */ mpd.hd.data_length = 23; } else { /* Mode data length */ mpd.hd.data_length = 15; } if (capacity > 0xffffff) { mpd.bd.block_count[0] = 0xff; mpd.bd.block_count[1] = 0xff; mpd.bd.block_count[2] = 0xff; } else { mpd.bd.block_count[0] = (capacity >> 16) & 0xff; mpd.bd.block_count[1] = (capacity >> 8) & 0xff; mpd.bd.block_count[2] = capacity & 0xff; } } if (((scsicmd->cmnd[2] & 0x3f) == 8) || ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) { mpd.hd.data_length += 3; mpd.mpc_buf[0] = 8; mpd.mpc_buf[1] = 1; mpd.mpc_buf[2] = ((aac_cache & 6) == 2) ? 0 : 0x04; /* WCE */ mode_buf_length = sizeof(mpd); } if (mode_buf_length > scsicmd->cmnd[4]) mode_buf_length = scsicmd->cmnd[4]; else mode_buf_length = sizeof(mpd); scsi_sg_copy_from_buffer(scsicmd, (char *)&mpd, mode_buf_length); scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; scsicmd->scsi_done(scsicmd); return 0; } case MODE_SENSE_10: { u32 capacity; int mode_buf_length = 8; aac_modep10_data mpd10; if (fsa_dev_ptr[cid].size <= 0x100000000ULL) capacity = fsa_dev_ptr[cid].size - 1; else capacity = (u32)-1; dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n")); memset((char *)&mpd10, 0, sizeof(aac_modep10_data)); /* Mode data length (MSB) */ mpd10.hd.data_length[0] = 0; /* Mode data length (LSB) */ mpd10.hd.data_length[1] = sizeof(mpd10.hd) - 1; /* Medium type - default */ mpd10.hd.med_type = 0; /* Device-specific param, bit 8: 0/1 = write enabled/protected bit 4: 0/1 = FUA enabled */ mpd10.hd.dev_par = 0; if (dev->raw_io_interface && ((aac_cache & 5) != 1)) mpd10.hd.dev_par = 0x10; mpd10.hd.rsrvd[0] = 0; /* reserved */ mpd10.hd.rsrvd[1] = 0; /* reserved */ if (scsicmd->cmnd[1] & 0x8) { /* Block descriptor length (MSB) */ mpd10.hd.bd_length[0] = 0; /* Block descriptor length (LSB) */ mpd10.hd.bd_length[1] = 0; } else { mpd10.hd.bd_length[0] = 0; mpd10.hd.bd_length[1] = sizeof(mpd10.bd); mpd10.hd.data_length[1] += mpd10.hd.bd_length[1]; mpd10.bd.block_length[0] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff; mpd10.bd.block_length[1] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff; mpd10.bd.block_length[2] = fsa_dev_ptr[cid].block_size & 0xff; if (capacity > 0xffffff) { mpd10.bd.block_count[0] = 0xff; mpd10.bd.block_count[1] = 0xff; mpd10.bd.block_count[2] = 0xff; } else { mpd10.bd.block_count[0] = (capacity >> 16) & 0xff; mpd10.bd.block_count[1] = (capacity >> 8) & 0xff; mpd10.bd.block_count[2] = capacity & 0xff; } } if (((scsicmd->cmnd[2] & 0x3f) == 8) || ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) { mpd10.hd.data_length[1] += 3; mpd10.mpc_buf[0] = 8; mpd10.mpc_buf[1] = 1; mpd10.mpc_buf[2] = ((aac_cache & 6) == 2) ? 0 : 0x04; /* WCE */ mode_buf_length = sizeof(mpd10); if (mode_buf_length > scsicmd->cmnd[8]) mode_buf_length = scsicmd->cmnd[8]; } scsi_sg_copy_from_buffer(scsicmd, (char *)&mpd10, mode_buf_length); scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; scsicmd->scsi_done(scsicmd); return 0; } case REQUEST_SENSE: dprintk((KERN_DEBUG "REQUEST SENSE command.\n")); memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data)); memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data)); scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; scsicmd->scsi_done(scsicmd); return 0; case ALLOW_MEDIUM_REMOVAL: dprintk((KERN_DEBUG "LOCK command.\n")); if (scsicmd->cmnd[4]) fsa_dev_ptr[cid].locked = 1; else fsa_dev_ptr[cid].locked = 0; scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; scsicmd->scsi_done(scsicmd); return 0; /* * These commands are all No-Ops */ case TEST_UNIT_READY: if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) { scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY, SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0); memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), SCSI_SENSE_BUFFERSIZE)); scsicmd->scsi_done(scsicmd); return 0; } /* FALLTHRU */ case RESERVE: case RELEASE: case REZERO_UNIT: case REASSIGN_BLOCKS: case SEEK_10: scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; scsicmd->scsi_done(scsicmd); return 0; case START_STOP: return aac_start_stop(scsicmd); } switch (scsicmd->cmnd[0]) { case READ_6: case READ_10: case READ_12: case READ_16: if (dev->in_reset) return -1; /* * Hack to keep track of ordinal number of the device that * corresponds to a container. Needed to convert * containers to /dev/sd device names */ if (scsicmd->request->rq_disk) strlcpy(fsa_dev_ptr[cid].devname, scsicmd->request->rq_disk->disk_name, min(sizeof(fsa_dev_ptr[cid].devname), sizeof(scsicmd->request->rq_disk->disk_name) + 1)); return aac_read(scsicmd); case WRITE_6: case WRITE_10: case WRITE_12: case WRITE_16: if (dev->in_reset) return -1; return aac_write(scsicmd); case SYNCHRONIZE_CACHE: if (((aac_cache & 6) == 6) && dev->cache_protected) { scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; scsicmd->scsi_done(scsicmd); return 0; } /* Issue FIB to tell Firmware to flush it's cache */ if ((aac_cache & 6) != 2) return aac_synchronize(scsicmd); /* FALLTHRU */ default: /* * Unhandled commands */ dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0])); scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; set_sense(&dev->fsa_dev[cid].sense_data, ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, ASENCODE_INVALID_COMMAND, 0, 0); memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), SCSI_SENSE_BUFFERSIZE)); scsicmd->scsi_done(scsicmd); return 0; } } static int query_disk(struct aac_dev *dev, void __user *arg) { struct aac_query_disk qd; struct fsa_dev_info *fsa_dev_ptr; fsa_dev_ptr = dev->fsa_dev; if (!fsa_dev_ptr) return -EBUSY; if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk))) return -EFAULT; if (qd.cnum == -1) qd.cnum = qd.id; else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1)) { if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers) return -EINVAL; qd.instance = dev->scsi_host_ptr->host_no; qd.bus = 0; qd.id = CONTAINER_TO_ID(qd.cnum); qd.lun = CONTAINER_TO_LUN(qd.cnum); } else return -EINVAL; qd.valid = fsa_dev_ptr[qd.cnum].valid != 0; qd.locked = fsa_dev_ptr[qd.cnum].locked; qd.deleted = fsa_dev_ptr[qd.cnum].deleted; if (fsa_dev_ptr[qd.cnum].devname[0] == '\0') qd.unmapped = 1; else qd.unmapped = 0; strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname, min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1)); if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk))) return -EFAULT; return 0; } static int force_delete_disk(struct aac_dev *dev, void __user *arg) { struct aac_delete_disk dd; struct fsa_dev_info *fsa_dev_ptr; fsa_dev_ptr = dev->fsa_dev; if (!fsa_dev_ptr) return -EBUSY; if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) return -EFAULT; if (dd.cnum >= dev->maximum_num_containers) return -EINVAL; /* * Mark this container as being deleted. */ fsa_dev_ptr[dd.cnum].deleted = 1; /* * Mark the container as no longer valid */ fsa_dev_ptr[dd.cnum].valid = 0; return 0; } static int delete_disk(struct aac_dev *dev, void __user *arg) { struct aac_delete_disk dd; struct fsa_dev_info *fsa_dev_ptr; fsa_dev_ptr = dev->fsa_dev; if (!fsa_dev_ptr) return -EBUSY; if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) return -EFAULT; if (dd.cnum >= dev->maximum_num_containers) return -EINVAL; /* * If the container is locked, it can not be deleted by the API. */ if (fsa_dev_ptr[dd.cnum].locked) return -EBUSY; else { /* * Mark the container as no longer being valid. */ fsa_dev_ptr[dd.cnum].valid = 0; fsa_dev_ptr[dd.cnum].devname[0] = '\0'; return 0; } } int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg) { switch (cmd) { case FSACTL_QUERY_DISK: return query_disk(dev, arg); case FSACTL_DELETE_DISK: return delete_disk(dev, arg); case FSACTL_FORCE_DELETE_DISK: return force_delete_disk(dev, arg); case FSACTL_GET_CONTAINERS: return aac_get_containers(dev); default: return -ENOTTY; } } /** * * aac_srb_callback * @context: the context set in the fib - here it is scsi cmd * @fibptr: pointer to the fib * * Handles the completion of a scsi command to a non dasd device * */ static void aac_srb_callback(void *context, struct fib * fibptr) { struct aac_dev *dev; struct aac_srb_reply *srbreply; struct scsi_cmnd *scsicmd; scsicmd = (struct scsi_cmnd *) context; if (!aac_valid_context(scsicmd, fibptr)) return; BUG_ON(fibptr == NULL); dev = fibptr->dev; srbreply = (struct aac_srb_reply *) fib_data(fibptr); scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */ if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) { /* fast response */ srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS); srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD); } else { /* * Calculate resid for sg */ scsi_set_resid(scsicmd, scsi_bufflen(scsicmd) - le32_to_cpu(srbreply->data_xfer_length)); } scsi_dma_unmap(scsicmd); /* expose physical device if expose_physicald flag is on */ if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01) && expose_physicals > 0) aac_expose_phy_device(scsicmd); /* * First check the fib status */ if (le32_to_cpu(srbreply->status) != ST_OK){ int len; printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status)); len = min_t(u32, le32_to_cpu(srbreply->sense_data_size), SCSI_SENSE_BUFFERSIZE); scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; memcpy(scsicmd->sense_buffer, srbreply->sense_data, len); } /* * Next check the srb status */ switch( (le32_to_cpu(srbreply->srb_status))&0x3f){ case SRB_STATUS_ERROR_RECOVERY: case SRB_STATUS_PENDING: case SRB_STATUS_SUCCESS: scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; break; case SRB_STATUS_DATA_OVERRUN: switch(scsicmd->cmnd[0]){ case READ_6: case WRITE_6: case READ_10: case WRITE_10: case READ_12: case WRITE_12: case READ_16: case WRITE_16: if (le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow) { printk(KERN_WARNING"aacraid: SCSI CMD underflow\n"); } else { printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n"); } scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8; break; case INQUIRY: { scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; break; } default: scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; break; } break; case SRB_STATUS_ABORTED: scsicmd->result = DID_ABORT << 16 | ABORT << 8; break; case SRB_STATUS_ABORT_FAILED: // Not sure about this one - but assuming the hba was trying to abort for some reason scsicmd->result = DID_ERROR << 16 | ABORT << 8; break; case SRB_STATUS_PARITY_ERROR: scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8; break; case SRB_STATUS_NO_DEVICE: case SRB_STATUS_INVALID_PATH_ID: case SRB_STATUS_INVALID_TARGET_ID: case SRB_STATUS_INVALID_LUN: case SRB_STATUS_SELECTION_TIMEOUT: scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; break; case SRB_STATUS_COMMAND_TIMEOUT: case SRB_STATUS_TIMEOUT: scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8; break; case SRB_STATUS_BUSY: scsicmd->result = DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8; break; case SRB_STATUS_BUS_RESET: scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8; break; case SRB_STATUS_MESSAGE_REJECTED: scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8; break; case SRB_STATUS_REQUEST_FLUSHED: case SRB_STATUS_ERROR: case SRB_STATUS_INVALID_REQUEST: case SRB_STATUS_REQUEST_SENSE_FAILED: case SRB_STATUS_NO_HBA: case SRB_STATUS_UNEXPECTED_BUS_FREE: case SRB_STATUS_PHASE_SEQUENCE_FAILURE: case SRB_STATUS_BAD_SRB_BLOCK_LENGTH: case SRB_STATUS_DELAYED_RETRY: case SRB_STATUS_BAD_FUNCTION: case SRB_STATUS_NOT_STARTED: case SRB_STATUS_NOT_IN_USE: case SRB_STATUS_FORCE_ABORT: case SRB_STATUS_DOMAIN_VALIDATION_FAIL: default: #ifdef AAC_DETAILED_STATUS_INFO printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n", le32_to_cpu(srbreply->srb_status) & 0x3F, aac_get_status_string( le32_to_cpu(srbreply->srb_status) & 0x3F), scsicmd->cmnd[0], le32_to_cpu(srbreply->scsi_status)); #endif if ((scsicmd->cmnd[0] == ATA_12) || (scsicmd->cmnd[0] == ATA_16)) { if (scsicmd->cmnd[2] & (0x01 << 5)) { scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; break; } else { scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8; break; } } else { scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8; break; } } if (le32_to_cpu(srbreply->scsi_status) == SAM_STAT_CHECK_CONDITION) { int len; scsicmd->result |= SAM_STAT_CHECK_CONDITION; len = min_t(u32, le32_to_cpu(srbreply->sense_data_size), SCSI_SENSE_BUFFERSIZE); #ifdef AAC_DETAILED_STATUS_INFO printk(KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n", le32_to_cpu(srbreply->status), len); #endif memcpy(scsicmd->sense_buffer, srbreply->sense_data, len); } /* * OR in the scsi status (already shifted up a bit) */ scsicmd->result |= le32_to_cpu(srbreply->scsi_status); aac_fib_complete(fibptr); aac_fib_free(fibptr); scsicmd->scsi_done(scsicmd); } /** * * aac_send_scb_fib * @scsicmd: the scsi command block * * This routine will form a FIB and fill in the aac_srb from the * scsicmd passed in. */ static int aac_send_srb_fib(struct scsi_cmnd* scsicmd) { struct fib* cmd_fibcontext; struct aac_dev* dev; int status; dev = (struct aac_dev *)scsicmd->device->host->hostdata; if (scmd_id(scsicmd) >= dev->maximum_num_physicals || scsicmd->device->lun > 7) { scsicmd->result = DID_NO_CONNECT << 16; scsicmd->scsi_done(scsicmd); return 0; } /* * Allocate and initialize a Fib then setup a BlockWrite command */ if (!(cmd_fibcontext = aac_fib_alloc(dev))) { return -1; } status = aac_adapter_scsi(cmd_fibcontext, scsicmd); /* * Check that the command queued to the controller */ if (status == -EINPROGRESS) { scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; return 0; } printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status); aac_fib_complete(cmd_fibcontext); aac_fib_free(cmd_fibcontext); return -1; } static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg) { struct aac_dev *dev; unsigned long byte_count = 0; int nseg; dev = (struct aac_dev *)scsicmd->device->host->hostdata; // Get rid of old data psg->count = 0; psg->sg[0].addr = 0; psg->sg[0].count = 0; nseg = scsi_dma_map(scsicmd); if (nseg < 0) return nseg; if (nseg) { struct scatterlist *sg; int i; psg->count = cpu_to_le32(nseg); scsi_for_each_sg(scsicmd, sg, nseg, i) { psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg)); psg->sg[i].count = cpu_to_le32(sg_dma_len(sg)); byte_count += sg_dma_len(sg); } /* hba wants the size to be exact */ if (byte_count > scsi_bufflen(scsicmd)) { u32 temp = le32_to_cpu(psg->sg[i-1].count) - (byte_count - scsi_bufflen(scsicmd)); psg->sg[i-1].count = cpu_to_le32(temp); byte_count = scsi_bufflen(scsicmd); } /* Check for command underflow */ if(scsicmd->underflow && (byte_count < scsicmd->underflow)){ printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", byte_count, scsicmd->underflow); } } return byte_count; } static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg) { struct aac_dev *dev; unsigned long byte_count = 0; u64 addr; int nseg; dev = (struct aac_dev *)scsicmd->device->host->hostdata; // Get rid of old data psg->count = 0; psg->sg[0].addr[0] = 0; psg->sg[0].addr[1] = 0; psg->sg[0].count = 0; nseg = scsi_dma_map(scsicmd); if (nseg < 0) return nseg; if (nseg) { struct scatterlist *sg; int i; scsi_for_each_sg(scsicmd, sg, nseg, i) { int count = sg_dma_len(sg); addr = sg_dma_address(sg); psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff); psg->sg[i].addr[1] = cpu_to_le32(addr>>32); psg->sg[i].count = cpu_to_le32(count); byte_count += count; } psg->count = cpu_to_le32(nseg); /* hba wants the size to be exact */ if (byte_count > scsi_bufflen(scsicmd)) { u32 temp = le32_to_cpu(psg->sg[i-1].count) - (byte_count - scsi_bufflen(scsicmd)); psg->sg[i-1].count = cpu_to_le32(temp); byte_count = scsi_bufflen(scsicmd); } /* Check for command underflow */ if(scsicmd->underflow && (byte_count < scsicmd->underflow)){ printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", byte_count, scsicmd->underflow); } } return byte_count; } static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg) { unsigned long byte_count = 0; int nseg; // Get rid of old data psg->count = 0; psg->sg[0].next = 0; psg->sg[0].prev = 0; psg->sg[0].addr[0] = 0; psg->sg[0].addr[1] = 0; psg->sg[0].count = 0; psg->sg[0].flags = 0; nseg = scsi_dma_map(scsicmd); if (nseg < 0) return nseg; if (nseg) { struct scatterlist *sg; int i; scsi_for_each_sg(scsicmd, sg, nseg, i) { int count = sg_dma_len(sg); u64 addr = sg_dma_address(sg); psg->sg[i].next = 0; psg->sg[i].prev = 0; psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32)); psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff)); psg->sg[i].count = cpu_to_le32(count); psg->sg[i].flags = 0; byte_count += count; } psg->count = cpu_to_le32(nseg); /* hba wants the size to be exact */ if (byte_count > scsi_bufflen(scsicmd)) { u32 temp = le32_to_cpu(psg->sg[i-1].count) - (byte_count - scsi_bufflen(scsicmd)); psg->sg[i-1].count = cpu_to_le32(temp); byte_count = scsi_bufflen(scsicmd); } /* Check for command underflow */ if(scsicmd->underflow && (byte_count < scsicmd->underflow)){ printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", byte_count, scsicmd->underflow); } } return byte_count; } static long aac_build_sgraw2(struct scsi_cmnd *scsicmd, struct aac_raw_io2 *rio2, int sg_max) { unsigned long byte_count = 0; int nseg; nseg = scsi_dma_map(scsicmd); if (nseg < 0) return nseg; if (nseg) { struct scatterlist *sg; int i, conformable = 0; u32 min_size = PAGE_SIZE, cur_size; scsi_for_each_sg(scsicmd, sg, nseg, i) { int count = sg_dma_len(sg); u64 addr = sg_dma_address(sg); BUG_ON(i >= sg_max); rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32)); rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff)); cur_size = cpu_to_le32(count); rio2->sge[i].length = cur_size; rio2->sge[i].flags = 0; if (i == 0) { conformable = 1; rio2->sgeFirstSize = cur_size; } else if (i == 1) { rio2->sgeNominalSize = cur_size; min_size = cur_size; } else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) { conformable = 0; if (cur_size < min_size) min_size = cur_size; } byte_count += count; } /* hba wants the size to be exact */ if (byte_count > scsi_bufflen(scsicmd)) { u32 temp = le32_to_cpu(rio2->sge[i-1].length) - (byte_count - scsi_bufflen(scsicmd)); rio2->sge[i-1].length = cpu_to_le32(temp); byte_count = scsi_bufflen(scsicmd); } rio2->sgeCnt = cpu_to_le32(nseg); rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212); /* not conformable: evaluate required sg elements */ if (!conformable) { int j, nseg_new = nseg, err_found; for (i = min_size / PAGE_SIZE; i >= 1; --i) { err_found = 0; nseg_new = 2; for (j = 1; j < nseg - 1; ++j) { if (rio2->sge[j].length % (i*PAGE_SIZE)) { err_found = 1; break; } nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE)); } if (!err_found) break; } if (i > 0 && nseg_new <= sg_max) aac_convert_sgraw2(rio2, i, nseg, nseg_new); } else rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT); /* Check for command underflow */ if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", byte_count, scsicmd->underflow); } } return byte_count; } static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new) { struct sge_ieee1212 *sge; int i, j, pos; u32 addr_low; if (aac_convert_sgl == 0) return 0; sge = kmalloc(nseg_new * sizeof(struct sge_ieee1212), GFP_ATOMIC); if (sge == NULL) return -1; for (i = 1, pos = 1; i < nseg-1; ++i) { for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) { addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE; sge[pos].addrLow = addr_low; sge[pos].addrHigh = rio2->sge[i].addrHigh; if (addr_low < rio2->sge[i].addrLow) sge[pos].addrHigh++; sge[pos].length = pages * PAGE_SIZE; sge[pos].flags = 0; pos++; } } sge[pos] = rio2->sge[nseg-1]; memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212)); kfree(sge); rio2->sgeCnt = cpu_to_le32(nseg_new); rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT); rio2->sgeNominalSize = pages * PAGE_SIZE; return 0; } #ifdef AAC_DETAILED_STATUS_INFO struct aac_srb_status_info { u32 status; char *str; }; static struct aac_srb_status_info srb_status_info[] = { { SRB_STATUS_PENDING, "Pending Status"}, { SRB_STATUS_SUCCESS, "Success"}, { SRB_STATUS_ABORTED, "Aborted Command"}, { SRB_STATUS_ABORT_FAILED, "Abort Failed"}, { SRB_STATUS_ERROR, "Error Event"}, { SRB_STATUS_BUSY, "Device Busy"}, { SRB_STATUS_INVALID_REQUEST, "Invalid Request"}, { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"}, { SRB_STATUS_NO_DEVICE, "No Device"}, { SRB_STATUS_TIMEOUT, "Timeout"}, { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"}, { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"}, { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"}, { SRB_STATUS_BUS_RESET, "Bus Reset"}, { SRB_STATUS_PARITY_ERROR, "Parity Error"}, { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"}, { SRB_STATUS_NO_HBA, "No HBA"}, { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"}, { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"}, { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"}, { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"}, { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"}, { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"}, { SRB_STATUS_INVALID_LUN, "Invalid LUN"}, { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"}, { SRB_STATUS_BAD_FUNCTION, "Bad Function"}, { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"}, { SRB_STATUS_NOT_STARTED, "Not Started"}, { SRB_STATUS_NOT_IN_USE, "Not In Use"}, { SRB_STATUS_FORCE_ABORT, "Force Abort"}, { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"}, { 0xff, "Unknown Error"} }; char *aac_get_status_string(u32 status) { int i; for (i = 0; i < ARRAY_SIZE(srb_status_info); i++) if (srb_status_info[i].status == status) return srb_status_info[i].str; return "Bad Status Code"; } #endif