/* * builtin-stat.c * * Builtin stat command: Give a precise performance counters summary * overview about any workload, CPU or specific PID. * * Sample output: $ perf stat ./hackbench 10 Time: 0.118 Performance counter stats for './hackbench 10': 1708.761321 task-clock # 11.037 CPUs utilized 41,190 context-switches # 0.024 M/sec 6,735 CPU-migrations # 0.004 M/sec 17,318 page-faults # 0.010 M/sec 5,205,202,243 cycles # 3.046 GHz 3,856,436,920 stalled-cycles-frontend # 74.09% frontend cycles idle 1,600,790,871 stalled-cycles-backend # 30.75% backend cycles idle 2,603,501,247 instructions # 0.50 insns per cycle # 1.48 stalled cycles per insn 484,357,498 branches # 283.455 M/sec 6,388,934 branch-misses # 1.32% of all branches 0.154822978 seconds time elapsed * * Copyright (C) 2008-2011, Red Hat Inc, Ingo Molnar * * Improvements and fixes by: * * Arjan van de Ven * Yanmin Zhang * Wu Fengguang * Mike Galbraith * Paul Mackerras * Jaswinder Singh Rajput * * Released under the GPL v2. (and only v2, not any later version) */ #include "perf.h" #include "builtin.h" #include "util/cgroup.h" #include "util/util.h" #include #include "util/parse-events.h" #include "util/pmu.h" #include "util/event.h" #include "util/evlist.h" #include "util/evsel.h" #include "util/debug.h" #include "util/drv_configs.h" #include "util/color.h" #include "util/stat.h" #include "util/header.h" #include "util/cpumap.h" #include "util/thread.h" #include "util/thread_map.h" #include "util/counts.h" #include "util/group.h" #include "util/session.h" #include "util/tool.h" #include "util/group.h" #include "util/string2.h" #include "util/metricgroup.h" #include "asm/bug.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sane_ctype.h" #define DEFAULT_SEPARATOR " " #define CNTR_NOT_SUPPORTED "" #define CNTR_NOT_COUNTED "" #define FREEZE_ON_SMI_PATH "devices/cpu/freeze_on_smi" static void print_counters(struct timespec *ts, int argc, const char **argv); /* Default events used for perf stat -T */ static const char *transaction_attrs = { "task-clock," "{" "instructions," "cycles," "cpu/cycles-t/," "cpu/tx-start/," "cpu/el-start/," "cpu/cycles-ct/" "}" }; /* More limited version when the CPU does not have all events. */ static const char * transaction_limited_attrs = { "task-clock," "{" "instructions," "cycles," "cpu/cycles-t/," "cpu/tx-start/" "}" }; static const char * topdown_attrs[] = { "topdown-total-slots", "topdown-slots-retired", "topdown-recovery-bubbles", "topdown-fetch-bubbles", "topdown-slots-issued", NULL, }; static const char *smi_cost_attrs = { "{" "msr/aperf/," "msr/smi/," "cycles" "}" }; static struct perf_evlist *evsel_list; static struct rblist metric_events; static struct target target = { .uid = UINT_MAX, }; typedef int (*aggr_get_id_t)(struct cpu_map *m, int cpu); static int run_count = 1; static bool no_inherit = false; static volatile pid_t child_pid = -1; static bool null_run = false; static int detailed_run = 0; static bool transaction_run; static bool topdown_run = false; static bool smi_cost = false; static bool smi_reset = false; static bool big_num = true; static int big_num_opt = -1; static const char *csv_sep = NULL; static bool csv_output = false; static bool group = false; static const char *pre_cmd = NULL; static const char *post_cmd = NULL; static bool sync_run = false; static unsigned int initial_delay = 0; static unsigned int unit_width = 4; /* strlen("unit") */ static bool forever = false; static bool metric_only = false; static bool force_metric_only = false; static bool no_merge = false; static struct timespec ref_time; static struct cpu_map *aggr_map; static aggr_get_id_t aggr_get_id; static bool append_file; static const char *output_name; static int output_fd; static int print_free_counters_hint; struct perf_stat { bool record; struct perf_data data; struct perf_session *session; u64 bytes_written; struct perf_tool tool; bool maps_allocated; struct cpu_map *cpus; struct thread_map *threads; enum aggr_mode aggr_mode; }; static struct perf_stat perf_stat; #define STAT_RECORD perf_stat.record static volatile int done = 0; static struct perf_stat_config stat_config = { .aggr_mode = AGGR_GLOBAL, .scale = true, }; static bool is_duration_time(struct perf_evsel *evsel) { return !strcmp(evsel->name, "duration_time"); } static inline void diff_timespec(struct timespec *r, struct timespec *a, struct timespec *b) { r->tv_sec = a->tv_sec - b->tv_sec; if (a->tv_nsec < b->tv_nsec) { r->tv_nsec = a->tv_nsec + NSEC_PER_SEC - b->tv_nsec; r->tv_sec--; } else { r->tv_nsec = a->tv_nsec - b->tv_nsec ; } } static void perf_stat__reset_stats(void) { perf_evlist__reset_stats(evsel_list); perf_stat__reset_shadow_stats(); } static int create_perf_stat_counter(struct perf_evsel *evsel) { struct perf_event_attr *attr = &evsel->attr; struct perf_evsel *leader = evsel->leader; if (stat_config.scale) { attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED | PERF_FORMAT_TOTAL_TIME_RUNNING; } /* * The event is part of non trivial group, let's enable * the group read (for leader) and ID retrieval for all * members. */ if (leader->nr_members > 1) attr->read_format |= PERF_FORMAT_ID|PERF_FORMAT_GROUP; attr->inherit = !no_inherit; /* * Some events get initialized with sample_(period/type) set, * like tracepoints. Clear it up for counting. */ attr->sample_period = 0; /* * But set sample_type to PERF_SAMPLE_IDENTIFIER, which should be harmless * while avoiding that older tools show confusing messages. * * However for pipe sessions we need to keep it zero, * because script's perf_evsel__check_attr is triggered * by attr->sample_type != 0, and we can't run it on * stat sessions. */ if (!(STAT_RECORD && perf_stat.data.is_pipe)) attr->sample_type = PERF_SAMPLE_IDENTIFIER; /* * Disabling all counters initially, they will be enabled * either manually by us or by kernel via enable_on_exec * set later. */ if (perf_evsel__is_group_leader(evsel)) { attr->disabled = 1; /* * In case of initial_delay we enable tracee * events manually. */ if (target__none(&target) && !initial_delay) attr->enable_on_exec = 1; } if (target__has_cpu(&target)) return perf_evsel__open_per_cpu(evsel, perf_evsel__cpus(evsel)); return perf_evsel__open_per_thread(evsel, evsel_list->threads); } /* * Does the counter have nsecs as a unit? */ static inline int nsec_counter(struct perf_evsel *evsel) { if (perf_evsel__match(evsel, SOFTWARE, SW_CPU_CLOCK) || perf_evsel__match(evsel, SOFTWARE, SW_TASK_CLOCK)) return 1; return 0; } static int process_synthesized_event(struct perf_tool *tool __maybe_unused, union perf_event *event, struct perf_sample *sample __maybe_unused, struct machine *machine __maybe_unused) { if (perf_data__write(&perf_stat.data, event, event->header.size) < 0) { pr_err("failed to write perf data, error: %m\n"); return -1; } perf_stat.bytes_written += event->header.size; return 0; } static int write_stat_round_event(u64 tm, u64 type) { return perf_event__synthesize_stat_round(NULL, tm, type, process_synthesized_event, NULL); } #define WRITE_STAT_ROUND_EVENT(time, interval) \ write_stat_round_event(time, PERF_STAT_ROUND_TYPE__ ## interval) #define SID(e, x, y) xyarray__entry(e->sample_id, x, y) static int perf_evsel__write_stat_event(struct perf_evsel *counter, u32 cpu, u32 thread, struct perf_counts_values *count) { struct perf_sample_id *sid = SID(counter, cpu, thread); return perf_event__synthesize_stat(NULL, cpu, thread, sid->id, count, process_synthesized_event, NULL); } /* * Read out the results of a single counter: * do not aggregate counts across CPUs in system-wide mode */ static int read_counter(struct perf_evsel *counter) { int nthreads = thread_map__nr(evsel_list->threads); int ncpus, cpu, thread; if (target__has_cpu(&target)) ncpus = perf_evsel__nr_cpus(counter); else ncpus = 1; if (!counter->supported) return -ENOENT; if (counter->system_wide) nthreads = 1; for (thread = 0; thread < nthreads; thread++) { for (cpu = 0; cpu < ncpus; cpu++) { struct perf_counts_values *count; count = perf_counts(counter->counts, cpu, thread); /* * The leader's group read loads data into its group members * (via perf_evsel__read_counter) and sets threir count->loaded. */ if (!count->loaded && perf_evsel__read_counter(counter, cpu, thread)) { counter->counts->scaled = -1; perf_counts(counter->counts, cpu, thread)->ena = 0; perf_counts(counter->counts, cpu, thread)->run = 0; return -1; } count->loaded = false; if (STAT_RECORD) { if (perf_evsel__write_stat_event(counter, cpu, thread, count)) { pr_err("failed to write stat event\n"); return -1; } } if (verbose > 1) { fprintf(stat_config.output, "%s: %d: %" PRIu64 " %" PRIu64 " %" PRIu64 "\n", perf_evsel__name(counter), cpu, count->val, count->ena, count->run); } } } return 0; } static void read_counters(void) { struct perf_evsel *counter; int ret; evlist__for_each_entry(evsel_list, counter) { ret = read_counter(counter); if (ret) pr_debug("failed to read counter %s\n", counter->name); if (ret == 0 && perf_stat_process_counter(&stat_config, counter)) pr_warning("failed to process counter %s\n", counter->name); } } static void process_interval(void) { struct timespec ts, rs; read_counters(); clock_gettime(CLOCK_MONOTONIC, &ts); diff_timespec(&rs, &ts, &ref_time); if (STAT_RECORD) { if (WRITE_STAT_ROUND_EVENT(rs.tv_sec * NSEC_PER_SEC + rs.tv_nsec, INTERVAL)) pr_err("failed to write stat round event\n"); } init_stats(&walltime_nsecs_stats); update_stats(&walltime_nsecs_stats, stat_config.interval * 1000000); print_counters(&rs, 0, NULL); } static void enable_counters(void) { if (initial_delay) usleep(initial_delay * USEC_PER_MSEC); /* * We need to enable counters only if: * - we don't have tracee (attaching to task or cpu) * - we have initial delay configured */ if (!target__none(&target) || initial_delay) perf_evlist__enable(evsel_list); } static void disable_counters(void) { /* * If we don't have tracee (attaching to task or cpu), counters may * still be running. To get accurate group ratios, we must stop groups * from counting before reading their constituent counters. */ if (!target__none(&target)) perf_evlist__disable(evsel_list); } static volatile int workload_exec_errno; /* * perf_evlist__prepare_workload will send a SIGUSR1 * if the fork fails, since we asked by setting its * want_signal to true. */ static void workload_exec_failed_signal(int signo __maybe_unused, siginfo_t *info, void *ucontext __maybe_unused) { workload_exec_errno = info->si_value.sival_int; } static int perf_stat_synthesize_config(bool is_pipe) { int err; if (is_pipe) { err = perf_event__synthesize_attrs(NULL, perf_stat.session, process_synthesized_event); if (err < 0) { pr_err("Couldn't synthesize attrs.\n"); return err; } } err = perf_event__synthesize_extra_attr(NULL, evsel_list, process_synthesized_event, is_pipe); err = perf_event__synthesize_thread_map2(NULL, evsel_list->threads, process_synthesized_event, NULL); if (err < 0) { pr_err("Couldn't synthesize thread map.\n"); return err; } err = perf_event__synthesize_cpu_map(NULL, evsel_list->cpus, process_synthesized_event, NULL); if (err < 0) { pr_err("Couldn't synthesize thread map.\n"); return err; } err = perf_event__synthesize_stat_config(NULL, &stat_config, process_synthesized_event, NULL); if (err < 0) { pr_err("Couldn't synthesize config.\n"); return err; } return 0; } #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) static int __store_counter_ids(struct perf_evsel *counter, struct cpu_map *cpus, struct thread_map *threads) { int cpu, thread; for (cpu = 0; cpu < cpus->nr; cpu++) { for (thread = 0; thread < threads->nr; thread++) { int fd = FD(counter, cpu, thread); if (perf_evlist__id_add_fd(evsel_list, counter, cpu, thread, fd) < 0) return -1; } } return 0; } static int store_counter_ids(struct perf_evsel *counter) { struct cpu_map *cpus = counter->cpus; struct thread_map *threads = counter->threads; if (perf_evsel__alloc_id(counter, cpus->nr, threads->nr)) return -ENOMEM; return __store_counter_ids(counter, cpus, threads); } static bool perf_evsel__should_store_id(struct perf_evsel *counter) { return STAT_RECORD || counter->attr.read_format & PERF_FORMAT_ID; } static struct perf_evsel *perf_evsel__reset_weak_group(struct perf_evsel *evsel) { struct perf_evsel *c2, *leader; bool is_open = true; leader = evsel->leader; pr_debug("Weak group for %s/%d failed\n", leader->name, leader->nr_members); /* * for_each_group_member doesn't work here because it doesn't * include the first entry. */ evlist__for_each_entry(evsel_list, c2) { if (c2 == evsel) is_open = false; if (c2->leader == leader) { if (is_open) perf_evsel__close(c2); c2->leader = c2; c2->nr_members = 0; } } return leader; } static int __run_perf_stat(int argc, const char **argv) { int interval = stat_config.interval; char msg[BUFSIZ]; unsigned long long t0, t1; struct perf_evsel *counter; struct timespec ts; size_t l; int status = 0; const bool forks = (argc > 0); bool is_pipe = STAT_RECORD ? perf_stat.data.is_pipe : false; struct perf_evsel_config_term *err_term; if (interval) { ts.tv_sec = interval / USEC_PER_MSEC; ts.tv_nsec = (interval % USEC_PER_MSEC) * NSEC_PER_MSEC; } else { ts.tv_sec = 1; ts.tv_nsec = 0; } if (forks) { if (perf_evlist__prepare_workload(evsel_list, &target, argv, is_pipe, workload_exec_failed_signal) < 0) { perror("failed to prepare workload"); return -1; } child_pid = evsel_list->workload.pid; } if (group) perf_evlist__set_leader(evsel_list); evlist__for_each_entry(evsel_list, counter) { try_again: if (create_perf_stat_counter(counter) < 0) { /* Weak group failed. Reset the group. */ if ((errno == EINVAL || errno == EBADF) && counter->leader != counter && counter->weak_group) { counter = perf_evsel__reset_weak_group(counter); goto try_again; } /* * PPC returns ENXIO for HW counters until 2.6.37 * (behavior changed with commit b0a873e). */ if (errno == EINVAL || errno == ENOSYS || errno == ENOENT || errno == EOPNOTSUPP || errno == ENXIO) { if (verbose > 0) ui__warning("%s event is not supported by the kernel.\n", perf_evsel__name(counter)); counter->supported = false; if ((counter->leader != counter) || !(counter->leader->nr_members > 1)) continue; } else if (perf_evsel__fallback(counter, errno, msg, sizeof(msg))) { if (verbose > 0) ui__warning("%s\n", msg); goto try_again; } perf_evsel__open_strerror(counter, &target, errno, msg, sizeof(msg)); ui__error("%s\n", msg); if (child_pid != -1) kill(child_pid, SIGTERM); return -1; } counter->supported = true; l = strlen(counter->unit); if (l > unit_width) unit_width = l; if (perf_evsel__should_store_id(counter) && store_counter_ids(counter)) return -1; } if (perf_evlist__apply_filters(evsel_list, &counter)) { pr_err("failed to set filter \"%s\" on event %s with %d (%s)\n", counter->filter, perf_evsel__name(counter), errno, str_error_r(errno, msg, sizeof(msg))); return -1; } if (perf_evlist__apply_drv_configs(evsel_list, &counter, &err_term)) { pr_err("failed to set config \"%s\" on event %s with %d (%s)\n", err_term->val.drv_cfg, perf_evsel__name(counter), errno, str_error_r(errno, msg, sizeof(msg))); return -1; } if (STAT_RECORD) { int err, fd = perf_data__fd(&perf_stat.data); if (is_pipe) { err = perf_header__write_pipe(perf_data__fd(&perf_stat.data)); } else { err = perf_session__write_header(perf_stat.session, evsel_list, fd, false); } if (err < 0) return err; err = perf_stat_synthesize_config(is_pipe); if (err < 0) return err; } /* * Enable counters and exec the command: */ t0 = rdclock(); clock_gettime(CLOCK_MONOTONIC, &ref_time); if (forks) { perf_evlist__start_workload(evsel_list); enable_counters(); if (interval) { while (!waitpid(child_pid, &status, WNOHANG)) { nanosleep(&ts, NULL); process_interval(); } } waitpid(child_pid, &status, 0); if (workload_exec_errno) { const char *emsg = str_error_r(workload_exec_errno, msg, sizeof(msg)); pr_err("Workload failed: %s\n", emsg); return -1; } if (WIFSIGNALED(status)) psignal(WTERMSIG(status), argv[0]); } else { enable_counters(); while (!done) { nanosleep(&ts, NULL); if (interval) process_interval(); } } disable_counters(); t1 = rdclock(); update_stats(&walltime_nsecs_stats, t1 - t0); /* * Closing a group leader splits the group, and as we only disable * group leaders, results in remaining events becoming enabled. To * avoid arbitrary skew, we must read all counters before closing any * group leaders. */ read_counters(); perf_evlist__close(evsel_list); return WEXITSTATUS(status); } static int run_perf_stat(int argc, const char **argv) { int ret; if (pre_cmd) { ret = system(pre_cmd); if (ret) return ret; } if (sync_run) sync(); ret = __run_perf_stat(argc, argv); if (ret) return ret; if (post_cmd) { ret = system(post_cmd); if (ret) return ret; } return ret; } static void print_running(u64 run, u64 ena) { if (csv_output) { fprintf(stat_config.output, "%s%" PRIu64 "%s%.2f", csv_sep, run, csv_sep, ena ? 100.0 * run / ena : 100.0); } else if (run != ena) { fprintf(stat_config.output, " (%.2f%%)", 100.0 * run / ena); } } static void print_noise_pct(double total, double avg) { double pct = rel_stddev_stats(total, avg); if (csv_output) fprintf(stat_config.output, "%s%.2f%%", csv_sep, pct); else if (pct) fprintf(stat_config.output, " ( +-%6.2f%% )", pct); } static void print_noise(struct perf_evsel *evsel, double avg) { struct perf_stat_evsel *ps; if (run_count == 1) return; ps = evsel->stats; print_noise_pct(stddev_stats(&ps->res_stats[0]), avg); } static void aggr_printout(struct perf_evsel *evsel, int id, int nr) { switch (stat_config.aggr_mode) { case AGGR_CORE: fprintf(stat_config.output, "S%d-C%*d%s%*d%s", cpu_map__id_to_socket(id), csv_output ? 0 : -8, cpu_map__id_to_cpu(id), csv_sep, csv_output ? 0 : 4, nr, csv_sep); break; case AGGR_SOCKET: fprintf(stat_config.output, "S%*d%s%*d%s", csv_output ? 0 : -5, id, csv_sep, csv_output ? 0 : 4, nr, csv_sep); break; case AGGR_NONE: fprintf(stat_config.output, "CPU%*d%s", csv_output ? 0 : -4, perf_evsel__cpus(evsel)->map[id], csv_sep); break; case AGGR_THREAD: fprintf(stat_config.output, "%*s-%*d%s", csv_output ? 0 : 16, thread_map__comm(evsel->threads, id), csv_output ? 0 : -8, thread_map__pid(evsel->threads, id), csv_sep); break; case AGGR_GLOBAL: case AGGR_UNSET: default: break; } } struct outstate { FILE *fh; bool newline; const char *prefix; int nfields; int id, nr; struct perf_evsel *evsel; }; #define METRIC_LEN 35 static void new_line_std(void *ctx) { struct outstate *os = ctx; os->newline = true; } static void do_new_line_std(struct outstate *os) { fputc('\n', os->fh); fputs(os->prefix, os->fh); aggr_printout(os->evsel, os->id, os->nr); if (stat_config.aggr_mode == AGGR_NONE) fprintf(os->fh, " "); fprintf(os->fh, " "); } static void print_metric_std(void *ctx, const char *color, const char *fmt, const char *unit, double val) { struct outstate *os = ctx; FILE *out = os->fh; int n; bool newline = os->newline; os->newline = false; if (unit == NULL || fmt == NULL) { fprintf(out, "%-*s", METRIC_LEN, ""); return; } if (newline) do_new_line_std(os); n = fprintf(out, " # "); if (color) n += color_fprintf(out, color, fmt, val); else n += fprintf(out, fmt, val); fprintf(out, " %-*s", METRIC_LEN - n - 1, unit); } static void new_line_csv(void *ctx) { struct outstate *os = ctx; int i; fputc('\n', os->fh); if (os->prefix) fprintf(os->fh, "%s%s", os->prefix, csv_sep); aggr_printout(os->evsel, os->id, os->nr); for (i = 0; i < os->nfields; i++) fputs(csv_sep, os->fh); } static void print_metric_csv(void *ctx, const char *color __maybe_unused, const char *fmt, const char *unit, double val) { struct outstate *os = ctx; FILE *out = os->fh; char buf[64], *vals, *ends; if (unit == NULL || fmt == NULL) { fprintf(out, "%s%s%s%s", csv_sep, csv_sep, csv_sep, csv_sep); return; } snprintf(buf, sizeof(buf), fmt, val); ends = vals = ltrim(buf); while (isdigit(*ends) || *ends == '.') ends++; *ends = 0; while (isspace(*unit)) unit++; fprintf(out, "%s%s%s%s", csv_sep, vals, csv_sep, unit); } #define METRIC_ONLY_LEN 20 /* Filter out some columns that don't work well in metrics only mode */ static bool valid_only_metric(const char *unit) { if (!unit) return false; if (strstr(unit, "/sec") || strstr(unit, "hz") || strstr(unit, "Hz") || strstr(unit, "CPUs utilized")) return false; return true; } static const char *fixunit(char *buf, struct perf_evsel *evsel, const char *unit) { if (!strncmp(unit, "of all", 6)) { snprintf(buf, 1024, "%s %s", perf_evsel__name(evsel), unit); return buf; } return unit; } static void print_metric_only(void *ctx, const char *color, const char *fmt, const char *unit, double val) { struct outstate *os = ctx; FILE *out = os->fh; int n; char buf[1024]; unsigned mlen = METRIC_ONLY_LEN; if (!valid_only_metric(unit)) return; unit = fixunit(buf, os->evsel, unit); if (color) n = color_fprintf(out, color, fmt, val); else n = fprintf(out, fmt, val); if (n > METRIC_ONLY_LEN) n = METRIC_ONLY_LEN; if (mlen < strlen(unit)) mlen = strlen(unit) + 1; fprintf(out, "%*s", mlen - n, ""); } static void print_metric_only_csv(void *ctx, const char *color __maybe_unused, const char *fmt, const char *unit, double val) { struct outstate *os = ctx; FILE *out = os->fh; char buf[64], *vals, *ends; char tbuf[1024]; if (!valid_only_metric(unit)) return; unit = fixunit(tbuf, os->evsel, unit); snprintf(buf, sizeof buf, fmt, val); ends = vals = ltrim(buf); while (isdigit(*ends) || *ends == '.') ends++; *ends = 0; fprintf(out, "%s%s", vals, csv_sep); } static void new_line_metric(void *ctx __maybe_unused) { } static void print_metric_header(void *ctx, const char *color __maybe_unused, const char *fmt __maybe_unused, const char *unit, double val __maybe_unused) { struct outstate *os = ctx; char tbuf[1024]; if (!valid_only_metric(unit)) return; unit = fixunit(tbuf, os->evsel, unit); if (csv_output) fprintf(os->fh, "%s%s", unit, csv_sep); else fprintf(os->fh, "%-*s ", METRIC_ONLY_LEN, unit); } static void nsec_printout(int id, int nr, struct perf_evsel *evsel, double avg) { FILE *output = stat_config.output; double msecs = avg / NSEC_PER_MSEC; const char *fmt_v, *fmt_n; char name[25]; fmt_v = csv_output ? "%.6f%s" : "%18.6f%s"; fmt_n = csv_output ? "%s" : "%-25s"; aggr_printout(evsel, id, nr); scnprintf(name, sizeof(name), "%s%s", perf_evsel__name(evsel), csv_output ? "" : " (msec)"); fprintf(output, fmt_v, msecs, csv_sep); if (csv_output) fprintf(output, "%s%s", evsel->unit, csv_sep); else fprintf(output, "%-*s%s", unit_width, evsel->unit, csv_sep); fprintf(output, fmt_n, name); if (evsel->cgrp) fprintf(output, "%s%s", csv_sep, evsel->cgrp->name); } static int first_shadow_cpu(struct perf_evsel *evsel, int id) { int i; if (!aggr_get_id) return 0; if (stat_config.aggr_mode == AGGR_NONE) return id; if (stat_config.aggr_mode == AGGR_GLOBAL) return 0; for (i = 0; i < perf_evsel__nr_cpus(evsel); i++) { int cpu2 = perf_evsel__cpus(evsel)->map[i]; if (aggr_get_id(evsel_list->cpus, cpu2) == id) return cpu2; } return 0; } static void abs_printout(int id, int nr, struct perf_evsel *evsel, double avg) { FILE *output = stat_config.output; double sc = evsel->scale; const char *fmt; if (csv_output) { fmt = floor(sc) != sc ? "%.2f%s" : "%.0f%s"; } else { if (big_num) fmt = floor(sc) != sc ? "%'18.2f%s" : "%'18.0f%s"; else fmt = floor(sc) != sc ? "%18.2f%s" : "%18.0f%s"; } aggr_printout(evsel, id, nr); fprintf(output, fmt, avg, csv_sep); if (evsel->unit) fprintf(output, "%-*s%s", csv_output ? 0 : unit_width, evsel->unit, csv_sep); fprintf(output, "%-*s", csv_output ? 0 : 25, perf_evsel__name(evsel)); if (evsel->cgrp) fprintf(output, "%s%s", csv_sep, evsel->cgrp->name); } static void printout(int id, int nr, struct perf_evsel *counter, double uval, char *prefix, u64 run, u64 ena, double noise) { struct perf_stat_output_ctx out; struct outstate os = { .fh = stat_config.output, .prefix = prefix ? prefix : "", .id = id, .nr = nr, .evsel = counter, }; print_metric_t pm = print_metric_std; void (*nl)(void *); if (metric_only) { nl = new_line_metric; if (csv_output) pm = print_metric_only_csv; else pm = print_metric_only; } else nl = new_line_std; if (csv_output && !metric_only) { static int aggr_fields[] = { [AGGR_GLOBAL] = 0, [AGGR_THREAD] = 1, [AGGR_NONE] = 1, [AGGR_SOCKET] = 2, [AGGR_CORE] = 2, }; pm = print_metric_csv; nl = new_line_csv; os.nfields = 3; os.nfields += aggr_fields[stat_config.aggr_mode]; if (counter->cgrp) os.nfields++; } if (run == 0 || ena == 0 || counter->counts->scaled == -1) { if (metric_only) { pm(&os, NULL, "", "", 0); return; } aggr_printout(counter, id, nr); fprintf(stat_config.output, "%*s%s", csv_output ? 0 : 18, counter->supported ? CNTR_NOT_COUNTED : CNTR_NOT_SUPPORTED, csv_sep); if (counter->supported) print_free_counters_hint = 1; fprintf(stat_config.output, "%-*s%s", csv_output ? 0 : unit_width, counter->unit, csv_sep); fprintf(stat_config.output, "%*s", csv_output ? 0 : -25, perf_evsel__name(counter)); if (counter->cgrp) fprintf(stat_config.output, "%s%s", csv_sep, counter->cgrp->name); if (!csv_output) pm(&os, NULL, NULL, "", 0); print_noise(counter, noise); print_running(run, ena); if (csv_output) pm(&os, NULL, NULL, "", 0); return; } if (metric_only) /* nothing */; else if (nsec_counter(counter)) nsec_printout(id, nr, counter, uval); else abs_printout(id, nr, counter, uval); out.print_metric = pm; out.new_line = nl; out.ctx = &os; out.force_header = false; if (csv_output && !metric_only) { print_noise(counter, noise); print_running(run, ena); } perf_stat__print_shadow_stats(counter, uval, first_shadow_cpu(counter, id), &out, &metric_events); if (!csv_output && !metric_only) { print_noise(counter, noise); print_running(run, ena); } } static void aggr_update_shadow(void) { int cpu, s2, id, s; u64 val; struct perf_evsel *counter; for (s = 0; s < aggr_map->nr; s++) { id = aggr_map->map[s]; evlist__for_each_entry(evsel_list, counter) { val = 0; for (cpu = 0; cpu < perf_evsel__nr_cpus(counter); cpu++) { s2 = aggr_get_id(evsel_list->cpus, cpu); if (s2 != id) continue; val += perf_counts(counter->counts, cpu, 0)->val; } perf_stat__update_shadow_stats(counter, val, first_shadow_cpu(counter, id)); } } } static void collect_all_aliases(struct perf_evsel *counter, void (*cb)(struct perf_evsel *counter, void *data, bool first), void *data) { struct perf_evsel *alias; alias = list_prepare_entry(counter, &(evsel_list->entries), node); list_for_each_entry_continue (alias, &evsel_list->entries, node) { if (strcmp(perf_evsel__name(alias), perf_evsel__name(counter)) || alias->scale != counter->scale || alias->cgrp != counter->cgrp || strcmp(alias->unit, counter->unit) || nsec_counter(alias) != nsec_counter(counter)) break; alias->merged_stat = true; cb(alias, data, false); } } static bool collect_data(struct perf_evsel *counter, void (*cb)(struct perf_evsel *counter, void *data, bool first), void *data) { if (counter->merged_stat) return false; cb(counter, data, true); if (!no_merge && counter->auto_merge_stats) collect_all_aliases(counter, cb, data); return true; } struct aggr_data { u64 ena, run, val; int id; int nr; int cpu; }; static void aggr_cb(struct perf_evsel *counter, void *data, bool first) { struct aggr_data *ad = data; int cpu, s2; for (cpu = 0; cpu < perf_evsel__nr_cpus(counter); cpu++) { struct perf_counts_values *counts; s2 = aggr_get_id(perf_evsel__cpus(counter), cpu); if (s2 != ad->id) continue; if (first) ad->nr++; counts = perf_counts(counter->counts, cpu, 0); /* * When any result is bad, make them all to give * consistent output in interval mode. */ if (counts->ena == 0 || counts->run == 0 || counter->counts->scaled == -1) { ad->ena = 0; ad->run = 0; break; } ad->val += counts->val; ad->ena += counts->ena; ad->run += counts->run; } } static void print_aggr(char *prefix) { FILE *output = stat_config.output; struct perf_evsel *counter; int s, id, nr; double uval; u64 ena, run, val; bool first; if (!(aggr_map || aggr_get_id)) return; aggr_update_shadow(); /* * With metric_only everything is on a single line. * Without each counter has its own line. */ for (s = 0; s < aggr_map->nr; s++) { struct aggr_data ad; if (prefix && metric_only) fprintf(output, "%s", prefix); ad.id = id = aggr_map->map[s]; first = true; evlist__for_each_entry(evsel_list, counter) { if (is_duration_time(counter)) continue; ad.val = ad.ena = ad.run = 0; ad.nr = 0; if (!collect_data(counter, aggr_cb, &ad)) continue; nr = ad.nr; ena = ad.ena; run = ad.run; val = ad.val; if (first && metric_only) { first = false; aggr_printout(counter, id, nr); } if (prefix && !metric_only) fprintf(output, "%s", prefix); uval = val * counter->scale; printout(id, nr, counter, uval, prefix, run, ena, 1.0); if (!metric_only) fputc('\n', output); } if (metric_only) fputc('\n', output); } } static void print_aggr_thread(struct perf_evsel *counter, char *prefix) { FILE *output = stat_config.output; int nthreads = thread_map__nr(counter->threads); int ncpus = cpu_map__nr(counter->cpus); int cpu, thread; double uval; for (thread = 0; thread < nthreads; thread++) { u64 ena = 0, run = 0, val = 0; for (cpu = 0; cpu < ncpus; cpu++) { val += perf_counts(counter->counts, cpu, thread)->val; ena += perf_counts(counter->counts, cpu, thread)->ena; run += perf_counts(counter->counts, cpu, thread)->run; } if (prefix) fprintf(output, "%s", prefix); uval = val * counter->scale; printout(thread, 0, counter, uval, prefix, run, ena, 1.0); fputc('\n', output); } } struct caggr_data { double avg, avg_enabled, avg_running; }; static void counter_aggr_cb(struct perf_evsel *counter, void *data, bool first __maybe_unused) { struct caggr_data *cd = data; struct perf_stat_evsel *ps = counter->stats; cd->avg += avg_stats(&ps->res_stats[0]); cd->avg_enabled += avg_stats(&ps->res_stats[1]); cd->avg_running += avg_stats(&ps->res_stats[2]); } /* * Print out the results of a single counter: * aggregated counts in system-wide mode */ static void print_counter_aggr(struct perf_evsel *counter, char *prefix) { FILE *output = stat_config.output; double uval; struct caggr_data cd = { .avg = 0.0 }; if (!collect_data(counter, counter_aggr_cb, &cd)) return; if (prefix && !metric_only) fprintf(output, "%s", prefix); uval = cd.avg * counter->scale; printout(-1, 0, counter, uval, prefix, cd.avg_running, cd.avg_enabled, cd.avg); if (!metric_only) fprintf(output, "\n"); } static void counter_cb(struct perf_evsel *counter, void *data, bool first __maybe_unused) { struct aggr_data *ad = data; ad->val += perf_counts(counter->counts, ad->cpu, 0)->val; ad->ena += perf_counts(counter->counts, ad->cpu, 0)->ena; ad->run += perf_counts(counter->counts, ad->cpu, 0)->run; } /* * Print out the results of a single counter: * does not use aggregated count in system-wide */ static void print_counter(struct perf_evsel *counter, char *prefix) { FILE *output = stat_config.output; u64 ena, run, val; double uval; int cpu; for (cpu = 0; cpu < perf_evsel__nr_cpus(counter); cpu++) { struct aggr_data ad = { .cpu = cpu }; if (!collect_data(counter, counter_cb, &ad)) return; val = ad.val; ena = ad.ena; run = ad.run; if (prefix) fprintf(output, "%s", prefix); uval = val * counter->scale; printout(cpu, 0, counter, uval, prefix, run, ena, 1.0); fputc('\n', output); } } static void print_no_aggr_metric(char *prefix) { int cpu; int nrcpus = 0; struct perf_evsel *counter; u64 ena, run, val; double uval; nrcpus = evsel_list->cpus->nr; for (cpu = 0; cpu < nrcpus; cpu++) { bool first = true; if (prefix) fputs(prefix, stat_config.output); evlist__for_each_entry(evsel_list, counter) { if (is_duration_time(counter)) continue; if (first) { aggr_printout(counter, cpu, 0); first = false; } val = perf_counts(counter->counts, cpu, 0)->val; ena = perf_counts(counter->counts, cpu, 0)->ena; run = perf_counts(counter->counts, cpu, 0)->run; uval = val * counter->scale; printout(cpu, 0, counter, uval, prefix, run, ena, 1.0); } fputc('\n', stat_config.output); } } static int aggr_header_lens[] = { [AGGR_CORE] = 18, [AGGR_SOCKET] = 12, [AGGR_NONE] = 6, [AGGR_THREAD] = 24, [AGGR_GLOBAL] = 0, }; static const char *aggr_header_csv[] = { [AGGR_CORE] = "core,cpus,", [AGGR_SOCKET] = "socket,cpus", [AGGR_NONE] = "cpu,", [AGGR_THREAD] = "comm-pid,", [AGGR_GLOBAL] = "" }; static void print_metric_headers(const char *prefix, bool no_indent) { struct perf_stat_output_ctx out; struct perf_evsel *counter; struct outstate os = { .fh = stat_config.output }; if (prefix) fprintf(stat_config.output, "%s", prefix); if (!csv_output && !no_indent) fprintf(stat_config.output, "%*s", aggr_header_lens[stat_config.aggr_mode], ""); if (csv_output) { if (stat_config.interval) fputs("time,", stat_config.output); fputs(aggr_header_csv[stat_config.aggr_mode], stat_config.output); } /* Print metrics headers only */ evlist__for_each_entry(evsel_list, counter) { if (is_duration_time(counter)) continue; os.evsel = counter; out.ctx = &os; out.print_metric = print_metric_header; out.new_line = new_line_metric; out.force_header = true; os.evsel = counter; perf_stat__print_shadow_stats(counter, 0, 0, &out, &metric_events); } fputc('\n', stat_config.output); } static void print_interval(char *prefix, struct timespec *ts) { FILE *output = stat_config.output; static int num_print_interval; sprintf(prefix, "%6lu.%09lu%s", ts->tv_sec, ts->tv_nsec, csv_sep); if (num_print_interval == 0 && !csv_output) { switch (stat_config.aggr_mode) { case AGGR_SOCKET: fprintf(output, "# time socket cpus"); if (!metric_only) fprintf(output, " counts %*s events\n", unit_width, "unit"); break; case AGGR_CORE: fprintf(output, "# time core cpus"); if (!metric_only) fprintf(output, " counts %*s events\n", unit_width, "unit"); break; case AGGR_NONE: fprintf(output, "# time CPU"); if (!metric_only) fprintf(output, " counts %*s events\n", unit_width, "unit"); break; case AGGR_THREAD: fprintf(output, "# time comm-pid"); if (!metric_only) fprintf(output, " counts %*s events\n", unit_width, "unit"); break; case AGGR_GLOBAL: default: fprintf(output, "# time"); if (!metric_only) fprintf(output, " counts %*s events\n", unit_width, "unit"); case AGGR_UNSET: break; } } if (num_print_interval == 0 && metric_only) print_metric_headers(" ", true); if (++num_print_interval == 25) num_print_interval = 0; } static void print_header(int argc, const char **argv) { FILE *output = stat_config.output; int i; fflush(stdout); if (!csv_output) { fprintf(output, "\n"); fprintf(output, " Performance counter stats for "); if (target.system_wide) fprintf(output, "\'system wide"); else if (target.cpu_list) fprintf(output, "\'CPU(s) %s", target.cpu_list); else if (!target__has_task(&target)) { fprintf(output, "\'%s", argv ? argv[0] : "pipe"); for (i = 1; argv && (i < argc); i++) fprintf(output, " %s", argv[i]); } else if (target.pid) fprintf(output, "process id \'%s", target.pid); else fprintf(output, "thread id \'%s", target.tid); fprintf(output, "\'"); if (run_count > 1) fprintf(output, " (%d runs)", run_count); fprintf(output, ":\n\n"); } } static void print_footer(void) { FILE *output = stat_config.output; int n; if (!null_run) fprintf(output, "\n"); fprintf(output, " %17.9f seconds time elapsed", avg_stats(&walltime_nsecs_stats) / NSEC_PER_SEC); if (run_count > 1) { fprintf(output, " "); print_noise_pct(stddev_stats(&walltime_nsecs_stats), avg_stats(&walltime_nsecs_stats)); } fprintf(output, "\n\n"); if (print_free_counters_hint && sysctl__read_int("kernel/nmi_watchdog", &n) >= 0 && n > 0) fprintf(output, "Some events weren't counted. Try disabling the NMI watchdog:\n" " echo 0 > /proc/sys/kernel/nmi_watchdog\n" " perf stat ...\n" " echo 1 > /proc/sys/kernel/nmi_watchdog\n"); } static void print_counters(struct timespec *ts, int argc, const char **argv) { int interval = stat_config.interval; struct perf_evsel *counter; char buf[64], *prefix = NULL; /* Do not print anything if we record to the pipe. */ if (STAT_RECORD && perf_stat.data.is_pipe) return; if (interval) print_interval(prefix = buf, ts); else print_header(argc, argv); if (metric_only) { static int num_print_iv; if (num_print_iv == 0 && !interval) print_metric_headers(prefix, false); if (num_print_iv++ == 25) num_print_iv = 0; if (stat_config.aggr_mode == AGGR_GLOBAL && prefix) fprintf(stat_config.output, "%s", prefix); } switch (stat_config.aggr_mode) { case AGGR_CORE: case AGGR_SOCKET: print_aggr(prefix); break; case AGGR_THREAD: evlist__for_each_entry(evsel_list, counter) { if (is_duration_time(counter)) continue; print_aggr_thread(counter, prefix); } break; case AGGR_GLOBAL: evlist__for_each_entry(evsel_list, counter) { if (is_duration_time(counter)) continue; print_counter_aggr(counter, prefix); } if (metric_only) fputc('\n', stat_config.output); break; case AGGR_NONE: if (metric_only) print_no_aggr_metric(prefix); else { evlist__for_each_entry(evsel_list, counter) { if (is_duration_time(counter)) continue; print_counter(counter, prefix); } } break; case AGGR_UNSET: default: break; } if (!interval && !csv_output) print_footer(); fflush(stat_config.output); } static volatile int signr = -1; static void skip_signal(int signo) { if ((child_pid == -1) || stat_config.interval) done = 1; signr = signo; /* * render child_pid harmless * won't send SIGTERM to a random * process in case of race condition * and fast PID recycling */ child_pid = -1; } static void sig_atexit(void) { sigset_t set, oset; /* * avoid race condition with SIGCHLD handler * in skip_signal() which is modifying child_pid * goal is to avoid send SIGTERM to a random * process */ sigemptyset(&set); sigaddset(&set, SIGCHLD); sigprocmask(SIG_BLOCK, &set, &oset); if (child_pid != -1) kill(child_pid, SIGTERM); sigprocmask(SIG_SETMASK, &oset, NULL); if (signr == -1) return; signal(signr, SIG_DFL); kill(getpid(), signr); } static int stat__set_big_num(const struct option *opt __maybe_unused, const char *s __maybe_unused, int unset) { big_num_opt = unset ? 0 : 1; return 0; } static int enable_metric_only(const struct option *opt __maybe_unused, const char *s __maybe_unused, int unset) { force_metric_only = true; metric_only = !unset; return 0; } static int parse_metric_groups(const struct option *opt, const char *str, int unset __maybe_unused) { return metricgroup__parse_groups(opt, str, &metric_events); } static const struct option stat_options[] = { OPT_BOOLEAN('T', "transaction", &transaction_run, "hardware transaction statistics"), OPT_CALLBACK('e', "event", &evsel_list, "event", "event selector. use 'perf list' to list available events", parse_events_option), OPT_CALLBACK(0, "filter", &evsel_list, "filter", "event filter", parse_filter), OPT_BOOLEAN('i', "no-inherit", &no_inherit, "child tasks do not inherit counters"), OPT_STRING('p', "pid", &target.pid, "pid", "stat events on existing process id"), OPT_STRING('t', "tid", &target.tid, "tid", "stat events on existing thread id"), OPT_BOOLEAN('a', "all-cpus", &target.system_wide, "system-wide collection from all CPUs"), OPT_BOOLEAN('g', "group", &group, "put the counters into a counter group"), OPT_BOOLEAN('c', "scale", &stat_config.scale, "scale/normalize counters"), OPT_INCR('v', "verbose", &verbose, "be more verbose (show counter open errors, etc)"), OPT_INTEGER('r', "repeat", &run_count, "repeat command and print average + stddev (max: 100, forever: 0)"), OPT_BOOLEAN('n', "null", &null_run, "null run - dont start any counters"), OPT_INCR('d', "detailed", &detailed_run, "detailed run - start a lot of events"), OPT_BOOLEAN('S', "sync", &sync_run, "call sync() before starting a run"), OPT_CALLBACK_NOOPT('B', "big-num", NULL, NULL, "print large numbers with thousands\' separators", stat__set_big_num), OPT_STRING('C', "cpu", &target.cpu_list, "cpu", "list of cpus to monitor in system-wide"), OPT_SET_UINT('A', "no-aggr", &stat_config.aggr_mode, "disable CPU count aggregation", AGGR_NONE), OPT_BOOLEAN(0, "no-merge", &no_merge, "Do not merge identical named events"), OPT_STRING('x', "field-separator", &csv_sep, "separator", "print counts with custom separator"), OPT_CALLBACK('G', "cgroup", &evsel_list, "name", "monitor event in cgroup name only", parse_cgroups), OPT_STRING('o', "output", &output_name, "file", "output file name"), OPT_BOOLEAN(0, "append", &append_file, "append to the output file"), OPT_INTEGER(0, "log-fd", &output_fd, "log output to fd, instead of stderr"), OPT_STRING(0, "pre", &pre_cmd, "command", "command to run prior to the measured command"), OPT_STRING(0, "post", &post_cmd, "command", "command to run after to the measured command"), OPT_UINTEGER('I', "interval-print", &stat_config.interval, "print counts at regular interval in ms (>= 10)"), OPT_SET_UINT(0, "per-socket", &stat_config.aggr_mode, "aggregate counts per processor socket", AGGR_SOCKET), OPT_SET_UINT(0, "per-core", &stat_config.aggr_mode, "aggregate counts per physical processor core", AGGR_CORE), OPT_SET_UINT(0, "per-thread", &stat_config.aggr_mode, "aggregate counts per thread", AGGR_THREAD), OPT_UINTEGER('D', "delay", &initial_delay, "ms to wait before starting measurement after program start"), OPT_CALLBACK_NOOPT(0, "metric-only", &metric_only, NULL, "Only print computed metrics. No raw values", enable_metric_only), OPT_BOOLEAN(0, "topdown", &topdown_run, "measure topdown level 1 statistics"), OPT_BOOLEAN(0, "smi-cost", &smi_cost, "measure SMI cost"), OPT_CALLBACK('M', "metrics", &evsel_list, "metric/metric group list", "monitor specified metrics or metric groups (separated by ,)", parse_metric_groups), OPT_END() }; static int perf_stat__get_socket(struct cpu_map *map, int cpu) { return cpu_map__get_socket(map, cpu, NULL); } static int perf_stat__get_core(struct cpu_map *map, int cpu) { return cpu_map__get_core(map, cpu, NULL); } static int cpu_map__get_max(struct cpu_map *map) { int i, max = -1; for (i = 0; i < map->nr; i++) { if (map->map[i] > max) max = map->map[i]; } return max; } static struct cpu_map *cpus_aggr_map; static int perf_stat__get_aggr(aggr_get_id_t get_id, struct cpu_map *map, int idx) { int cpu; if (idx >= map->nr) return -1; cpu = map->map[idx]; if (cpus_aggr_map->map[cpu] == -1) cpus_aggr_map->map[cpu] = get_id(map, idx); return cpus_aggr_map->map[cpu]; } static int perf_stat__get_socket_cached(struct cpu_map *map, int idx) { return perf_stat__get_aggr(perf_stat__get_socket, map, idx); } static int perf_stat__get_core_cached(struct cpu_map *map, int idx) { return perf_stat__get_aggr(perf_stat__get_core, map, idx); } static int perf_stat_init_aggr_mode(void) { int nr; switch (stat_config.aggr_mode) { case AGGR_SOCKET: if (cpu_map__build_socket_map(evsel_list->cpus, &aggr_map)) { perror("cannot build socket map"); return -1; } aggr_get_id = perf_stat__get_socket_cached; break; case AGGR_CORE: if (cpu_map__build_core_map(evsel_list->cpus, &aggr_map)) { perror("cannot build core map"); return -1; } aggr_get_id = perf_stat__get_core_cached; break; case AGGR_NONE: case AGGR_GLOBAL: case AGGR_THREAD: case AGGR_UNSET: default: break; } /* * The evsel_list->cpus is the base we operate on, * taking the highest cpu number to be the size of * the aggregation translate cpumap. */ nr = cpu_map__get_max(evsel_list->cpus); cpus_aggr_map = cpu_map__empty_new(nr + 1); return cpus_aggr_map ? 0 : -ENOMEM; } static void perf_stat__exit_aggr_mode(void) { cpu_map__put(aggr_map); cpu_map__put(cpus_aggr_map); aggr_map = NULL; cpus_aggr_map = NULL; } static inline int perf_env__get_cpu(struct perf_env *env, struct cpu_map *map, int idx) { int cpu; if (idx > map->nr) return -1; cpu = map->map[idx]; if (cpu >= env->nr_cpus_avail) return -1; return cpu; } static int perf_env__get_socket(struct cpu_map *map, int idx, void *data) { struct perf_env *env = data; int cpu = perf_env__get_cpu(env, map, idx); return cpu == -1 ? -1 : env->cpu[cpu].socket_id; } static int perf_env__get_core(struct cpu_map *map, int idx, void *data) { struct perf_env *env = data; int core = -1, cpu = perf_env__get_cpu(env, map, idx); if (cpu != -1) { int socket_id = env->cpu[cpu].socket_id; /* * Encode socket in upper 16 bits * core_id is relative to socket, and * we need a global id. So we combine * socket + core id. */ core = (socket_id << 16) | (env->cpu[cpu].core_id & 0xffff); } return core; } static int perf_env__build_socket_map(struct perf_env *env, struct cpu_map *cpus, struct cpu_map **sockp) { return cpu_map__build_map(cpus, sockp, perf_env__get_socket, env); } static int perf_env__build_core_map(struct perf_env *env, struct cpu_map *cpus, struct cpu_map **corep) { return cpu_map__build_map(cpus, corep, perf_env__get_core, env); } static int perf_stat__get_socket_file(struct cpu_map *map, int idx) { return perf_env__get_socket(map, idx, &perf_stat.session->header.env); } static int perf_stat__get_core_file(struct cpu_map *map, int idx) { return perf_env__get_core(map, idx, &perf_stat.session->header.env); } static int perf_stat_init_aggr_mode_file(struct perf_stat *st) { struct perf_env *env = &st->session->header.env; switch (stat_config.aggr_mode) { case AGGR_SOCKET: if (perf_env__build_socket_map(env, evsel_list->cpus, &aggr_map)) { perror("cannot build socket map"); return -1; } aggr_get_id = perf_stat__get_socket_file; break; case AGGR_CORE: if (perf_env__build_core_map(env, evsel_list->cpus, &aggr_map)) { perror("cannot build core map"); return -1; } aggr_get_id = perf_stat__get_core_file; break; case AGGR_NONE: case AGGR_GLOBAL: case AGGR_THREAD: case AGGR_UNSET: default: break; } return 0; } static int topdown_filter_events(const char **attr, char **str, bool use_group) { int off = 0; int i; int len = 0; char *s; for (i = 0; attr[i]; i++) { if (pmu_have_event("cpu", attr[i])) { len += strlen(attr[i]) + 1; attr[i - off] = attr[i]; } else off++; } attr[i - off] = NULL; *str = malloc(len + 1 + 2); if (!*str) return -1; s = *str; if (i - off == 0) { *s = 0; return 0; } if (use_group) *s++ = '{'; for (i = 0; attr[i]; i++) { strcpy(s, attr[i]); s += strlen(s); *s++ = ','; } if (use_group) { s[-1] = '}'; *s = 0; } else s[-1] = 0; return 0; } __weak bool arch_topdown_check_group(bool *warn) { *warn = false; return false; } __weak void arch_topdown_group_warn(void) { } /* * Add default attributes, if there were no attributes specified or * if -d/--detailed, -d -d or -d -d -d is used: */ static int add_default_attributes(void) { int err; struct perf_event_attr default_attrs0[] = { { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK }, { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES }, { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS }, { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS }, { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES }, }; struct perf_event_attr frontend_attrs[] = { { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_STALLED_CYCLES_FRONTEND }, }; struct perf_event_attr backend_attrs[] = { { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_STALLED_CYCLES_BACKEND }, }; struct perf_event_attr default_attrs1[] = { { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS }, { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS }, { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_MISSES }, }; /* * Detailed stats (-d), covering the L1 and last level data caches: */ struct perf_event_attr detailed_attrs[] = { { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_L1D << 0 | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_L1D << 0 | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_LL << 0 | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_LL << 0 | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, }; /* * Very detailed stats (-d -d), covering the instruction cache and the TLB caches: */ struct perf_event_attr very_detailed_attrs[] = { { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_L1I << 0 | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_L1I << 0 | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_DTLB << 0 | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_DTLB << 0 | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_ITLB << 0 | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_ITLB << 0 | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, }; /* * Very, very detailed stats (-d -d -d), adding prefetch events: */ struct perf_event_attr very_very_detailed_attrs[] = { { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_L1D << 0 | (PERF_COUNT_HW_CACHE_OP_PREFETCH << 8) | (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_L1D << 0 | (PERF_COUNT_HW_CACHE_OP_PREFETCH << 8) | (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, }; /* Set attrs if no event is selected and !null_run: */ if (null_run) return 0; if (transaction_run) { if (pmu_have_event("cpu", "cycles-ct") && pmu_have_event("cpu", "el-start")) err = parse_events(evsel_list, transaction_attrs, NULL); else err = parse_events(evsel_list, transaction_limited_attrs, NULL); if (err) { fprintf(stderr, "Cannot set up transaction events\n"); return -1; } return 0; } if (smi_cost) { int smi; if (sysfs__read_int(FREEZE_ON_SMI_PATH, &smi) < 0) { fprintf(stderr, "freeze_on_smi is not supported.\n"); return -1; } if (!smi) { if (sysfs__write_int(FREEZE_ON_SMI_PATH, 1) < 0) { fprintf(stderr, "Failed to set freeze_on_smi.\n"); return -1; } smi_reset = true; } if (pmu_have_event("msr", "aperf") && pmu_have_event("msr", "smi")) { if (!force_metric_only) metric_only = true; err = parse_events(evsel_list, smi_cost_attrs, NULL); } else { fprintf(stderr, "To measure SMI cost, it needs " "msr/aperf/, msr/smi/ and cpu/cycles/ support\n"); return -1; } if (err) { fprintf(stderr, "Cannot set up SMI cost events\n"); return -1; } return 0; } if (topdown_run) { char *str = NULL; bool warn = false; if (stat_config.aggr_mode != AGGR_GLOBAL && stat_config.aggr_mode != AGGR_CORE) { pr_err("top down event configuration requires --per-core mode\n"); return -1; } stat_config.aggr_mode = AGGR_CORE; if (nr_cgroups || !target__has_cpu(&target)) { pr_err("top down event configuration requires system-wide mode (-a)\n"); return -1; } if (!force_metric_only) metric_only = true; if (topdown_filter_events(topdown_attrs, &str, arch_topdown_check_group(&warn)) < 0) { pr_err("Out of memory\n"); return -1; } if (topdown_attrs[0] && str) { if (warn) arch_topdown_group_warn(); err = parse_events(evsel_list, str, NULL); if (err) { fprintf(stderr, "Cannot set up top down events %s: %d\n", str, err); free(str); return -1; } } else { fprintf(stderr, "System does not support topdown\n"); return -1; } free(str); } if (!evsel_list->nr_entries) { if (target__has_cpu(&target)) default_attrs0[0].config = PERF_COUNT_SW_CPU_CLOCK; if (perf_evlist__add_default_attrs(evsel_list, default_attrs0) < 0) return -1; if (pmu_have_event("cpu", "stalled-cycles-frontend")) { if (perf_evlist__add_default_attrs(evsel_list, frontend_attrs) < 0) return -1; } if (pmu_have_event("cpu", "stalled-cycles-backend")) { if (perf_evlist__add_default_attrs(evsel_list, backend_attrs) < 0) return -1; } if (perf_evlist__add_default_attrs(evsel_list, default_attrs1) < 0) return -1; } /* Detailed events get appended to the event list: */ if (detailed_run < 1) return 0; /* Append detailed run extra attributes: */ if (perf_evlist__add_default_attrs(evsel_list, detailed_attrs) < 0) return -1; if (detailed_run < 2) return 0; /* Append very detailed run extra attributes: */ if (perf_evlist__add_default_attrs(evsel_list, very_detailed_attrs) < 0) return -1; if (detailed_run < 3) return 0; /* Append very, very detailed run extra attributes: */ return perf_evlist__add_default_attrs(evsel_list, very_very_detailed_attrs); } static const char * const stat_record_usage[] = { "perf stat record []", NULL, }; static void init_features(struct perf_session *session) { int feat; for (feat = HEADER_FIRST_FEATURE; feat < HEADER_LAST_FEATURE; feat++) perf_header__set_feat(&session->header, feat); perf_header__clear_feat(&session->header, HEADER_BUILD_ID); perf_header__clear_feat(&session->header, HEADER_TRACING_DATA); perf_header__clear_feat(&session->header, HEADER_BRANCH_STACK); perf_header__clear_feat(&session->header, HEADER_AUXTRACE); } static int __cmd_record(int argc, const char **argv) { struct perf_session *session; struct perf_data *data = &perf_stat.data; argc = parse_options(argc, argv, stat_options, stat_record_usage, PARSE_OPT_STOP_AT_NON_OPTION); if (output_name) data->file.path = output_name; if (run_count != 1 || forever) { pr_err("Cannot use -r option with perf stat record.\n"); return -1; } session = perf_session__new(data, false, NULL); if (session == NULL) { pr_err("Perf session creation failed.\n"); return -1; } init_features(session); session->evlist = evsel_list; perf_stat.session = session; perf_stat.record = true; return argc; } static int process_stat_round_event(struct perf_tool *tool __maybe_unused, union perf_event *event, struct perf_session *session) { struct stat_round_event *stat_round = &event->stat_round; struct perf_evsel *counter; struct timespec tsh, *ts = NULL; const char **argv = session->header.env.cmdline_argv; int argc = session->header.env.nr_cmdline; evlist__for_each_entry(evsel_list, counter) perf_stat_process_counter(&stat_config, counter); if (stat_round->type == PERF_STAT_ROUND_TYPE__FINAL) update_stats(&walltime_nsecs_stats, stat_round->time); if (stat_config.interval && stat_round->time) { tsh.tv_sec = stat_round->time / NSEC_PER_SEC; tsh.tv_nsec = stat_round->time % NSEC_PER_SEC; ts = &tsh; } print_counters(ts, argc, argv); return 0; } static int process_stat_config_event(struct perf_tool *tool, union perf_event *event, struct perf_session *session __maybe_unused) { struct perf_stat *st = container_of(tool, struct perf_stat, tool); perf_event__read_stat_config(&stat_config, &event->stat_config); if (cpu_map__empty(st->cpus)) { if (st->aggr_mode != AGGR_UNSET) pr_warning("warning: processing task data, aggregation mode not set\n"); return 0; } if (st->aggr_mode != AGGR_UNSET) stat_config.aggr_mode = st->aggr_mode; if (perf_stat.data.is_pipe) perf_stat_init_aggr_mode(); else perf_stat_init_aggr_mode_file(st); return 0; } static int set_maps(struct perf_stat *st) { if (!st->cpus || !st->threads) return 0; if (WARN_ONCE(st->maps_allocated, "stats double allocation\n")) return -EINVAL; perf_evlist__set_maps(evsel_list, st->cpus, st->threads); if (perf_evlist__alloc_stats(evsel_list, true)) return -ENOMEM; st->maps_allocated = true; return 0; } static int process_thread_map_event(struct perf_tool *tool, union perf_event *event, struct perf_session *session __maybe_unused) { struct perf_stat *st = container_of(tool, struct perf_stat, tool); if (st->threads) { pr_warning("Extra thread map event, ignoring.\n"); return 0; } st->threads = thread_map__new_event(&event->thread_map); if (!st->threads) return -ENOMEM; return set_maps(st); } static int process_cpu_map_event(struct perf_tool *tool, union perf_event *event, struct perf_session *session __maybe_unused) { struct perf_stat *st = container_of(tool, struct perf_stat, tool); struct cpu_map *cpus; if (st->cpus) { pr_warning("Extra cpu map event, ignoring.\n"); return 0; } cpus = cpu_map__new_data(&event->cpu_map.data); if (!cpus) return -ENOMEM; st->cpus = cpus; return set_maps(st); } static const char * const stat_report_usage[] = { "perf stat report []", NULL, }; static struct perf_stat perf_stat = { .tool = { .attr = perf_event__process_attr, .event_update = perf_event__process_event_update, .thread_map = process_thread_map_event, .cpu_map = process_cpu_map_event, .stat_config = process_stat_config_event, .stat = perf_event__process_stat_event, .stat_round = process_stat_round_event, }, .aggr_mode = AGGR_UNSET, }; static int __cmd_report(int argc, const char **argv) { struct perf_session *session; const struct option options[] = { OPT_STRING('i', "input", &input_name, "file", "input file name"), OPT_SET_UINT(0, "per-socket", &perf_stat.aggr_mode, "aggregate counts per processor socket", AGGR_SOCKET), OPT_SET_UINT(0, "per-core", &perf_stat.aggr_mode, "aggregate counts per physical processor core", AGGR_CORE), OPT_SET_UINT('A', "no-aggr", &perf_stat.aggr_mode, "disable CPU count aggregation", AGGR_NONE), OPT_END() }; struct stat st; int ret; argc = parse_options(argc, argv, options, stat_report_usage, 0); if (!input_name || !strlen(input_name)) { if (!fstat(STDIN_FILENO, &st) && S_ISFIFO(st.st_mode)) input_name = "-"; else input_name = "perf.data"; } perf_stat.data.file.path = input_name; perf_stat.data.mode = PERF_DATA_MODE_READ; session = perf_session__new(&perf_stat.data, false, &perf_stat.tool); if (session == NULL) return -1; perf_stat.session = session; stat_config.output = stderr; evsel_list = session->evlist; ret = perf_session__process_events(session); if (ret) return ret; perf_session__delete(session); return 0; } static void setup_system_wide(int forks) { /* * Make system wide (-a) the default target if * no target was specified and one of following * conditions is met: * * - there's no workload specified * - there is workload specified but all requested * events are system wide events */ if (!target__none(&target)) return; if (!forks) target.system_wide = true; else { struct perf_evsel *counter; evlist__for_each_entry(evsel_list, counter) { if (!counter->system_wide) return; } if (evsel_list->nr_entries) target.system_wide = true; } } int cmd_stat(int argc, const char **argv) { const char * const stat_usage[] = { "perf stat [] []", NULL }; int status = -EINVAL, run_idx; const char *mode; FILE *output = stderr; unsigned int interval; const char * const stat_subcommands[] = { "record", "report" }; setlocale(LC_ALL, ""); evsel_list = perf_evlist__new(); if (evsel_list == NULL) return -ENOMEM; parse_events__shrink_config_terms(); argc = parse_options_subcommand(argc, argv, stat_options, stat_subcommands, (const char **) stat_usage, PARSE_OPT_STOP_AT_NON_OPTION); perf_stat__collect_metric_expr(evsel_list); perf_stat__init_shadow_stats(); if (csv_sep) { csv_output = true; if (!strcmp(csv_sep, "\\t")) csv_sep = "\t"; } else csv_sep = DEFAULT_SEPARATOR; if (argc && !strncmp(argv[0], "rec", 3)) { argc = __cmd_record(argc, argv); if (argc < 0) return -1; } else if (argc && !strncmp(argv[0], "rep", 3)) return __cmd_report(argc, argv); interval = stat_config.interval; /* * For record command the -o is already taken care of. */ if (!STAT_RECORD && output_name && strcmp(output_name, "-")) output = NULL; if (output_name && output_fd) { fprintf(stderr, "cannot use both --output and --log-fd\n"); parse_options_usage(stat_usage, stat_options, "o", 1); parse_options_usage(NULL, stat_options, "log-fd", 0); goto out; } if (metric_only && stat_config.aggr_mode == AGGR_THREAD) { fprintf(stderr, "--metric-only is not supported with --per-thread\n"); goto out; } if (metric_only && run_count > 1) { fprintf(stderr, "--metric-only is not supported with -r\n"); goto out; } if (output_fd < 0) { fprintf(stderr, "argument to --log-fd must be a > 0\n"); parse_options_usage(stat_usage, stat_options, "log-fd", 0); goto out; } if (!output) { struct timespec tm; mode = append_file ? "a" : "w"; output = fopen(output_name, mode); if (!output) { perror("failed to create output file"); return -1; } clock_gettime(CLOCK_REALTIME, &tm); fprintf(output, "# started on %s\n", ctime(&tm.tv_sec)); } else if (output_fd > 0) { mode = append_file ? "a" : "w"; output = fdopen(output_fd, mode); if (!output) { perror("Failed opening logfd"); return -errno; } } stat_config.output = output; /* * let the spreadsheet do the pretty-printing */ if (csv_output) { /* User explicitly passed -B? */ if (big_num_opt == 1) { fprintf(stderr, "-B option not supported with -x\n"); parse_options_usage(stat_usage, stat_options, "B", 1); parse_options_usage(NULL, stat_options, "x", 1); goto out; } else /* Nope, so disable big number formatting */ big_num = false; } else if (big_num_opt == 0) /* User passed --no-big-num */ big_num = false; setup_system_wide(argc); if (run_count < 0) { pr_err("Run count must be a positive number\n"); parse_options_usage(stat_usage, stat_options, "r", 1); goto out; } else if (run_count == 0) { forever = true; run_count = 1; } if ((stat_config.aggr_mode == AGGR_THREAD) && !target__has_task(&target)) { fprintf(stderr, "The --per-thread option is only available " "when monitoring via -p -t options.\n"); parse_options_usage(NULL, stat_options, "p", 1); parse_options_usage(NULL, stat_options, "t", 1); goto out; } /* * no_aggr, cgroup are for system-wide only * --per-thread is aggregated per thread, we dont mix it with cpu mode */ if (((stat_config.aggr_mode != AGGR_GLOBAL && stat_config.aggr_mode != AGGR_THREAD) || nr_cgroups) && !target__has_cpu(&target)) { fprintf(stderr, "both cgroup and no-aggregation " "modes only available in system-wide mode\n"); parse_options_usage(stat_usage, stat_options, "G", 1); parse_options_usage(NULL, stat_options, "A", 1); parse_options_usage(NULL, stat_options, "a", 1); goto out; } if (add_default_attributes()) goto out; target__validate(&target); if (perf_evlist__create_maps(evsel_list, &target) < 0) { if (target__has_task(&target)) { pr_err("Problems finding threads of monitor\n"); parse_options_usage(stat_usage, stat_options, "p", 1); parse_options_usage(NULL, stat_options, "t", 1); } else if (target__has_cpu(&target)) { perror("failed to parse CPUs map"); parse_options_usage(stat_usage, stat_options, "C", 1); parse_options_usage(NULL, stat_options, "a", 1); } goto out; } /* * Initialize thread_map with comm names, * so we could print it out on output. */ if (stat_config.aggr_mode == AGGR_THREAD) thread_map__read_comms(evsel_list->threads); if (interval && interval < 100) { if (interval < 10) { pr_err("print interval must be >= 10ms\n"); parse_options_usage(stat_usage, stat_options, "I", 1); goto out; } else pr_warning("print interval < 100ms. " "The overhead percentage could be high in some cases. " "Please proceed with caution.\n"); } if (perf_evlist__alloc_stats(evsel_list, interval)) goto out; if (perf_stat_init_aggr_mode()) goto out; /* * We dont want to block the signals - that would cause * child tasks to inherit that and Ctrl-C would not work. * What we want is for Ctrl-C to work in the exec()-ed * task, but being ignored by perf stat itself: */ atexit(sig_atexit); if (!forever) signal(SIGINT, skip_signal); signal(SIGCHLD, skip_signal); signal(SIGALRM, skip_signal); signal(SIGABRT, skip_signal); status = 0; for (run_idx = 0; forever || run_idx < run_count; run_idx++) { if (run_count != 1 && verbose > 0) fprintf(output, "[ perf stat: executing run #%d ... ]\n", run_idx + 1); status = run_perf_stat(argc, argv); if (forever && status != -1) { print_counters(NULL, argc, argv); perf_stat__reset_stats(); } } if (!forever && status != -1 && !interval) print_counters(NULL, argc, argv); if (STAT_RECORD) { /* * We synthesize the kernel mmap record just so that older tools * don't emit warnings about not being able to resolve symbols * due to /proc/sys/kernel/kptr_restrict settings and instear provide * a saner message about no samples being in the perf.data file. * * This also serves to suppress a warning about f_header.data.size == 0 * in header.c at the moment 'perf stat record' gets introduced, which * is not really needed once we start adding the stat specific PERF_RECORD_ * records, but the need to suppress the kptr_restrict messages in older * tools remain -acme */ int fd = perf_data__fd(&perf_stat.data); int err = perf_event__synthesize_kernel_mmap((void *)&perf_stat, process_synthesized_event, &perf_stat.session->machines.host); if (err) { pr_warning("Couldn't synthesize the kernel mmap record, harmless, " "older tools may produce warnings about this file\n."); } if (!interval) { if (WRITE_STAT_ROUND_EVENT(walltime_nsecs_stats.max, FINAL)) pr_err("failed to write stat round event\n"); } if (!perf_stat.data.is_pipe) { perf_stat.session->header.data_size += perf_stat.bytes_written; perf_session__write_header(perf_stat.session, evsel_list, fd, true); } perf_session__delete(perf_stat.session); } perf_stat__exit_aggr_mode(); perf_evlist__free_stats(evsel_list); out: if (smi_cost && smi_reset) sysfs__write_int(FREEZE_ON_SMI_PATH, 0); perf_evlist__delete(evsel_list); return status; }