// SPDX-License-Identifier: GPL-2.0-only /**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2012-2013 Solarflare Communications Inc. */ #include "net_driver.h" #include "rx_common.h" #include "tx_common.h" #include "ef10_regs.h" #include "io.h" #include "mcdi.h" #include "mcdi_pcol.h" #include "mcdi_port.h" #include "mcdi_port_common.h" #include "mcdi_functions.h" #include "nic.h" #include "mcdi_filters.h" #include "workarounds.h" #include "selftest.h" #include "ef10_sriov.h" #include #include #include #include #include /* Hardware control for EF10 architecture including 'Huntington'. */ #define EFX_EF10_DRVGEN_EV 7 enum { EFX_EF10_TEST = 1, EFX_EF10_REFILL, }; /* VLAN list entry */ struct efx_ef10_vlan { struct list_head list; u16 vid; }; static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading); static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels; static int efx_ef10_get_warm_boot_count(struct efx_nic *efx) { efx_dword_t reg; efx_readd(efx, ®, ER_DZ_BIU_MC_SFT_STATUS); return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ? EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO; } /* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for * I/O space and BAR 2(&3) for memory. On SFC9250 (Medford2), there is no I/O * bar; PFs use BAR 0/1 for memory. */ static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx) { switch (efx->pci_dev->device) { case 0x0b03: /* SFC9250 PF */ return 0; default: return 2; } } /* All VFs use BAR 0/1 for memory */ static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx) { return 0; } static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx) { int bar; bar = efx->type->mem_bar(efx); return resource_size(&efx->pci_dev->resource[bar]); } static bool efx_ef10_is_vf(struct efx_nic *efx) { return efx->type->is_vf; } #ifdef CONFIG_SFC_SRIOV static int efx_ef10_get_vf_index(struct efx_nic *efx) { MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN); struct efx_ef10_nic_data *nic_data = efx->nic_data; size_t outlen; int rc; rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf, sizeof(outbuf), &outlen); if (rc) return rc; if (outlen < sizeof(outbuf)) return -EIO; nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF); return 0; } #endif static int efx_ef10_init_datapath_caps(struct efx_nic *efx) { MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN); struct efx_ef10_nic_data *nic_data = efx->nic_data; size_t outlen; int rc; BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0); rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0, outbuf, sizeof(outbuf), &outlen); if (rc) return rc; if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) { netif_err(efx, drv, efx->net_dev, "unable to read datapath firmware capabilities\n"); return -EIO; } nic_data->datapath_caps = MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1); if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) { nic_data->datapath_caps2 = MCDI_DWORD(outbuf, GET_CAPABILITIES_V2_OUT_FLAGS2); nic_data->piobuf_size = MCDI_WORD(outbuf, GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF); } else { nic_data->datapath_caps2 = 0; nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE; } /* record the DPCPU firmware IDs to determine VEB vswitching support. */ nic_data->rx_dpcpu_fw_id = MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID); nic_data->tx_dpcpu_fw_id = MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID); if (!(nic_data->datapath_caps & (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) { netif_err(efx, probe, efx->net_dev, "current firmware does not support an RX prefix\n"); return -ENODEV; } if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) { u8 vi_window_mode = MCDI_BYTE(outbuf, GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE); rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode); if (rc) return rc; } else { /* keep default VI stride */ netif_dbg(efx, probe, efx->net_dev, "firmware did not report VI window mode, assuming vi_stride = %u\n", efx->vi_stride); } if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) { efx->num_mac_stats = MCDI_WORD(outbuf, GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS); netif_dbg(efx, probe, efx->net_dev, "firmware reports num_mac_stats = %u\n", efx->num_mac_stats); } else { /* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */ netif_dbg(efx, probe, efx->net_dev, "firmware did not report num_mac_stats, assuming %u\n", efx->num_mac_stats); } return 0; } static void efx_ef10_read_licensed_features(struct efx_nic *efx) { MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN); struct efx_ef10_nic_data *nic_data = efx->nic_data; size_t outlen; int rc; MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP, MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE); rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN)) return; nic_data->licensed_features = MCDI_QWORD(outbuf, LICENSING_V3_OUT_LICENSED_FEATURES); } static int efx_ef10_get_sysclk_freq(struct efx_nic *efx) { MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN); int rc; rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0, outbuf, sizeof(outbuf), NULL); if (rc) return rc; rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ); return rc > 0 ? rc : -ERANGE; } static int efx_ef10_get_timer_workarounds(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; unsigned int implemented; unsigned int enabled; int rc; nic_data->workaround_35388 = false; nic_data->workaround_61265 = false; rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled); if (rc == -ENOSYS) { /* Firmware without GET_WORKAROUNDS - not a problem. */ rc = 0; } else if (rc == 0) { /* Bug61265 workaround is always enabled if implemented. */ if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265) nic_data->workaround_61265 = true; if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) { nic_data->workaround_35388 = true; } else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) { /* Workaround is implemented but not enabled. * Try to enable it. */ rc = efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG35388, true, NULL); if (rc == 0) nic_data->workaround_35388 = true; /* If we failed to set the workaround just carry on. */ rc = 0; } } netif_dbg(efx, probe, efx->net_dev, "workaround for bug 35388 is %sabled\n", nic_data->workaround_35388 ? "en" : "dis"); netif_dbg(efx, probe, efx->net_dev, "workaround for bug 61265 is %sabled\n", nic_data->workaround_61265 ? "en" : "dis"); return rc; } static void efx_ef10_process_timer_config(struct efx_nic *efx, const efx_dword_t *data) { unsigned int max_count; if (EFX_EF10_WORKAROUND_61265(efx)) { efx->timer_quantum_ns = MCDI_DWORD(data, GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS); efx->timer_max_ns = MCDI_DWORD(data, GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS); } else if (EFX_EF10_WORKAROUND_35388(efx)) { efx->timer_quantum_ns = MCDI_DWORD(data, GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT); max_count = MCDI_DWORD(data, GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT); efx->timer_max_ns = max_count * efx->timer_quantum_ns; } else { efx->timer_quantum_ns = MCDI_DWORD(data, GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT); max_count = MCDI_DWORD(data, GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT); efx->timer_max_ns = max_count * efx->timer_quantum_ns; } netif_dbg(efx, probe, efx->net_dev, "got timer properties from MC: quantum %u ns; max %u ns\n", efx->timer_quantum_ns, efx->timer_max_ns); } static int efx_ef10_get_timer_config(struct efx_nic *efx) { MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN); int rc; rc = efx_ef10_get_timer_workarounds(efx); if (rc) return rc; rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0, outbuf, sizeof(outbuf), NULL); if (rc == 0) { efx_ef10_process_timer_config(efx, outbuf); } else if (rc == -ENOSYS || rc == -EPERM) { /* Not available - fall back to Huntington defaults. */ unsigned int quantum; rc = efx_ef10_get_sysclk_freq(efx); if (rc < 0) return rc; quantum = 1536000 / rc; /* 1536 cycles */ efx->timer_quantum_ns = quantum; efx->timer_max_ns = efx->type->timer_period_max * quantum; rc = 0; } else { efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN, NULL, 0, rc); } return rc; } static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address) { MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN); size_t outlen; int rc; BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0); rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0, outbuf, sizeof(outbuf), &outlen); if (rc) return rc; if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN) return -EIO; ether_addr_copy(mac_address, MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE)); return 0; } static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address) { MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX); size_t outlen; int num_addrs, rc; MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID, EVB_PORT_ID_ASSIGNED); rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); if (rc) return rc; if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN) return -EIO; num_addrs = MCDI_DWORD(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT); WARN_ON(num_addrs != 1); ether_addr_copy(mac_address, MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR)); return 0; } static ssize_t link_control_flag_show(struct device *dev, struct device_attribute *attr, char *buf) { struct efx_nic *efx = dev_get_drvdata(dev); return sprintf(buf, "%d\n", ((efx->mcdi->fn_flags) & (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL)) ? 1 : 0); } static ssize_t primary_flag_show(struct device *dev, struct device_attribute *attr, char *buf) { struct efx_nic *efx = dev_get_drvdata(dev); return sprintf(buf, "%d\n", ((efx->mcdi->fn_flags) & (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) ? 1 : 0); } static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid) { struct efx_ef10_nic_data *nic_data = efx->nic_data; struct efx_ef10_vlan *vlan; WARN_ON(!mutex_is_locked(&nic_data->vlan_lock)); list_for_each_entry(vlan, &nic_data->vlan_list, list) { if (vlan->vid == vid) return vlan; } return NULL; } static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid) { struct efx_ef10_nic_data *nic_data = efx->nic_data; struct efx_ef10_vlan *vlan; int rc; mutex_lock(&nic_data->vlan_lock); vlan = efx_ef10_find_vlan(efx, vid); if (vlan) { /* We add VID 0 on init. 8021q adds it on module init * for all interfaces with VLAN filtring feature. */ if (vid == 0) goto done_unlock; netif_warn(efx, drv, efx->net_dev, "VLAN %u already added\n", vid); rc = -EALREADY; goto fail_exist; } rc = -ENOMEM; vlan = kzalloc(sizeof(*vlan), GFP_KERNEL); if (!vlan) goto fail_alloc; vlan->vid = vid; list_add_tail(&vlan->list, &nic_data->vlan_list); if (efx->filter_state) { mutex_lock(&efx->mac_lock); down_write(&efx->filter_sem); rc = efx_mcdi_filter_add_vlan(efx, vlan->vid); up_write(&efx->filter_sem); mutex_unlock(&efx->mac_lock); if (rc) goto fail_filter_add_vlan; } done_unlock: mutex_unlock(&nic_data->vlan_lock); return 0; fail_filter_add_vlan: list_del(&vlan->list); kfree(vlan); fail_alloc: fail_exist: mutex_unlock(&nic_data->vlan_lock); return rc; } static void efx_ef10_del_vlan_internal(struct efx_nic *efx, struct efx_ef10_vlan *vlan) { struct efx_ef10_nic_data *nic_data = efx->nic_data; WARN_ON(!mutex_is_locked(&nic_data->vlan_lock)); if (efx->filter_state) { down_write(&efx->filter_sem); efx_mcdi_filter_del_vlan(efx, vlan->vid); up_write(&efx->filter_sem); } list_del(&vlan->list); kfree(vlan); } static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid) { struct efx_ef10_nic_data *nic_data = efx->nic_data; struct efx_ef10_vlan *vlan; int rc = 0; /* 8021q removes VID 0 on module unload for all interfaces * with VLAN filtering feature. We need to keep it to receive * untagged traffic. */ if (vid == 0) return 0; mutex_lock(&nic_data->vlan_lock); vlan = efx_ef10_find_vlan(efx, vid); if (!vlan) { netif_err(efx, drv, efx->net_dev, "VLAN %u to be deleted not found\n", vid); rc = -ENOENT; } else { efx_ef10_del_vlan_internal(efx, vlan); } mutex_unlock(&nic_data->vlan_lock); return rc; } static void efx_ef10_cleanup_vlans(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; struct efx_ef10_vlan *vlan, *next_vlan; mutex_lock(&nic_data->vlan_lock); list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list) efx_ef10_del_vlan_internal(efx, vlan); mutex_unlock(&nic_data->vlan_lock); } static DEVICE_ATTR_RO(link_control_flag); static DEVICE_ATTR_RO(primary_flag); static int efx_ef10_probe(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data; int i, rc; nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL); if (!nic_data) return -ENOMEM; efx->nic_data = nic_data; /* we assume later that we can copy from this buffer in dwords */ BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4); rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf, 8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL); if (rc) goto fail1; /* Get the MC's warm boot count. In case it's rebooting right * now, be prepared to retry. */ i = 0; for (;;) { rc = efx_ef10_get_warm_boot_count(efx); if (rc >= 0) break; if (++i == 5) goto fail2; ssleep(1); } nic_data->warm_boot_count = rc; /* In case we're recovering from a crash (kexec), we want to * cancel any outstanding request by the previous user of this * function. We send a special message using the least * significant bits of the 'high' (doorbell) register. */ _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD); rc = efx_mcdi_init(efx); if (rc) goto fail2; mutex_init(&nic_data->udp_tunnels_lock); for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) nic_data->udp_tunnels[i].type = TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID; /* Reset (most) configuration for this function */ rc = efx_mcdi_reset(efx, RESET_TYPE_ALL); if (rc) goto fail3; /* Enable event logging */ rc = efx_mcdi_log_ctrl(efx, true, false, 0); if (rc) goto fail3; rc = device_create_file(&efx->pci_dev->dev, &dev_attr_link_control_flag); if (rc) goto fail3; rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag); if (rc) goto fail4; rc = efx_get_pf_index(efx, &nic_data->pf_index); if (rc) goto fail5; rc = efx_ef10_init_datapath_caps(efx); if (rc < 0) goto fail5; efx_ef10_read_licensed_features(efx); /* We can have one VI for each vi_stride-byte region. * However, until we use TX option descriptors we need up to four * TX queues per channel for different checksumming combinations. */ if (nic_data->datapath_caps & (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)) efx->tx_queues_per_channel = 4; else efx->tx_queues_per_channel = 2; efx->max_vis = efx_ef10_mem_map_size(efx) / efx->vi_stride; if (!efx->max_vis) { netif_err(efx, drv, efx->net_dev, "error determining max VIs\n"); rc = -EIO; goto fail5; } efx->max_channels = min_t(unsigned int, EFX_MAX_CHANNELS, efx->max_vis / efx->tx_queues_per_channel); efx->max_tx_channels = efx->max_channels; if (WARN_ON(efx->max_channels == 0)) { rc = -EIO; goto fail5; } efx->rx_packet_len_offset = ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE; if (nic_data->datapath_caps & (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN)) efx->net_dev->hw_features |= NETIF_F_RXFCS; rc = efx_mcdi_port_get_number(efx); if (rc < 0) goto fail5; efx->port_num = rc; rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr); if (rc) goto fail5; rc = efx_ef10_get_timer_config(efx); if (rc < 0) goto fail5; rc = efx_mcdi_mon_probe(efx); if (rc && rc != -EPERM) goto fail5; efx_ptp_defer_probe_with_channel(efx); #ifdef CONFIG_SFC_SRIOV if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) { struct pci_dev *pci_dev_pf = efx->pci_dev->physfn; struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf); efx_pf->type->get_mac_address(efx_pf, nic_data->port_id); } else #endif ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr); INIT_LIST_HEAD(&nic_data->vlan_list); mutex_init(&nic_data->vlan_lock); /* Add unspecified VID to support VLAN filtering being disabled */ rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC); if (rc) goto fail_add_vid_unspec; /* If VLAN filtering is enabled, we need VID 0 to get untagged * traffic. It is added automatically if 8021q module is loaded, * but we can't rely on it since module may be not loaded. */ rc = efx_ef10_add_vlan(efx, 0); if (rc) goto fail_add_vid_0; if (nic_data->datapath_caps & (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) && efx->mcdi->fn_flags & (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED)) efx->net_dev->udp_tunnel_nic_info = &efx_ef10_udp_tunnels; return 0; fail_add_vid_0: efx_ef10_cleanup_vlans(efx); fail_add_vid_unspec: mutex_destroy(&nic_data->vlan_lock); efx_ptp_remove(efx); efx_mcdi_mon_remove(efx); fail5: device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag); fail4: device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag); fail3: efx_mcdi_detach(efx); mutex_lock(&nic_data->udp_tunnels_lock); memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels)); (void)efx_ef10_set_udp_tnl_ports(efx, true); mutex_unlock(&nic_data->udp_tunnels_lock); mutex_destroy(&nic_data->udp_tunnels_lock); efx_mcdi_fini(efx); fail2: efx_nic_free_buffer(efx, &nic_data->mcdi_buf); fail1: kfree(nic_data); efx->nic_data = NULL; return rc; } #ifdef EFX_USE_PIO static void efx_ef10_free_piobufs(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN); unsigned int i; int rc; BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0); for (i = 0; i < nic_data->n_piobufs; i++) { MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE, nic_data->piobuf_handle[i]); rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf), NULL, 0, NULL); WARN_ON(rc); } nic_data->n_piobufs = 0; } static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n) { struct efx_ef10_nic_data *nic_data = efx->nic_data; MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN); unsigned int i; size_t outlen; int rc = 0; BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0); for (i = 0; i < n; i++) { rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0, outbuf, sizeof(outbuf), &outlen); if (rc) { /* Don't display the MC error if we didn't have space * for a VF. */ if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC)) efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF, 0, outbuf, outlen, rc); break; } if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) { rc = -EIO; break; } nic_data->piobuf_handle[i] = MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE); netif_dbg(efx, probe, efx->net_dev, "allocated PIO buffer %u handle %x\n", i, nic_data->piobuf_handle[i]); } nic_data->n_piobufs = i; if (rc) efx_ef10_free_piobufs(efx); return rc; } static int efx_ef10_link_piobufs(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN); struct efx_channel *channel; struct efx_tx_queue *tx_queue; unsigned int offset, index; int rc; BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0); BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0); /* Link a buffer to each VI in the write-combining mapping */ for (index = 0; index < nic_data->n_piobufs; ++index) { MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE, nic_data->piobuf_handle[index]); MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE, nic_data->pio_write_vi_base + index); rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF, inbuf, MC_CMD_LINK_PIOBUF_IN_LEN, NULL, 0, NULL); if (rc) { netif_err(efx, drv, efx->net_dev, "failed to link VI %u to PIO buffer %u (%d)\n", nic_data->pio_write_vi_base + index, index, rc); goto fail; } netif_dbg(efx, probe, efx->net_dev, "linked VI %u to PIO buffer %u\n", nic_data->pio_write_vi_base + index, index); } /* Link a buffer to each TX queue */ efx_for_each_channel(channel, efx) { /* Extra channels, even those with TXQs (PTP), do not require * PIO resources. */ if (!channel->type->want_pio || channel->channel >= efx->xdp_channel_offset) continue; efx_for_each_channel_tx_queue(tx_queue, channel) { /* We assign the PIO buffers to queues in * reverse order to allow for the following * special case. */ offset = ((efx->tx_channel_offset + efx->n_tx_channels - tx_queue->channel->channel - 1) * efx_piobuf_size); index = offset / nic_data->piobuf_size; offset = offset % nic_data->piobuf_size; /* When the host page size is 4K, the first * host page in the WC mapping may be within * the same VI page as the last TX queue. We * can only link one buffer to each VI. */ if (tx_queue->queue == nic_data->pio_write_vi_base) { BUG_ON(index != 0); rc = 0; } else { MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE, nic_data->piobuf_handle[index]); MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE, tx_queue->queue); rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF, inbuf, MC_CMD_LINK_PIOBUF_IN_LEN, NULL, 0, NULL); } if (rc) { /* This is non-fatal; the TX path just * won't use PIO for this queue */ netif_err(efx, drv, efx->net_dev, "failed to link VI %u to PIO buffer %u (%d)\n", tx_queue->queue, index, rc); tx_queue->piobuf = NULL; } else { tx_queue->piobuf = nic_data->pio_write_base + index * efx->vi_stride + offset; tx_queue->piobuf_offset = offset; netif_dbg(efx, probe, efx->net_dev, "linked VI %u to PIO buffer %u offset %x addr %p\n", tx_queue->queue, index, tx_queue->piobuf_offset, tx_queue->piobuf); } } } return 0; fail: /* inbuf was defined for MC_CMD_LINK_PIOBUF. We can use the same * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter. */ BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN); while (index--) { MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE, nic_data->pio_write_vi_base + index); efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF, inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN, NULL, 0, NULL); } return rc; } static void efx_ef10_forget_old_piobufs(struct efx_nic *efx) { struct efx_channel *channel; struct efx_tx_queue *tx_queue; /* All our existing PIO buffers went away */ efx_for_each_channel(channel, efx) efx_for_each_channel_tx_queue(tx_queue, channel) tx_queue->piobuf = NULL; } #else /* !EFX_USE_PIO */ static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n) { return n == 0 ? 0 : -ENOBUFS; } static int efx_ef10_link_piobufs(struct efx_nic *efx) { return 0; } static void efx_ef10_free_piobufs(struct efx_nic *efx) { } static void efx_ef10_forget_old_piobufs(struct efx_nic *efx) { } #endif /* EFX_USE_PIO */ static void efx_ef10_remove(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; int rc; #ifdef CONFIG_SFC_SRIOV struct efx_ef10_nic_data *nic_data_pf; struct pci_dev *pci_dev_pf; struct efx_nic *efx_pf; struct ef10_vf *vf; if (efx->pci_dev->is_virtfn) { pci_dev_pf = efx->pci_dev->physfn; if (pci_dev_pf) { efx_pf = pci_get_drvdata(pci_dev_pf); nic_data_pf = efx_pf->nic_data; vf = nic_data_pf->vf + nic_data->vf_index; vf->efx = NULL; } else netif_info(efx, drv, efx->net_dev, "Could not get the PF id from VF\n"); } #endif efx_ef10_cleanup_vlans(efx); mutex_destroy(&nic_data->vlan_lock); efx_ptp_remove(efx); efx_mcdi_mon_remove(efx); efx_mcdi_rx_free_indir_table(efx); if (nic_data->wc_membase) iounmap(nic_data->wc_membase); rc = efx_mcdi_free_vis(efx); WARN_ON(rc != 0); if (!nic_data->must_restore_piobufs) efx_ef10_free_piobufs(efx); device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag); device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag); efx_mcdi_detach(efx); memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels)); mutex_lock(&nic_data->udp_tunnels_lock); (void)efx_ef10_set_udp_tnl_ports(efx, true); mutex_unlock(&nic_data->udp_tunnels_lock); mutex_destroy(&nic_data->udp_tunnels_lock); efx_mcdi_fini(efx); efx_nic_free_buffer(efx, &nic_data->mcdi_buf); kfree(nic_data); } static int efx_ef10_probe_pf(struct efx_nic *efx) { return efx_ef10_probe(efx); } int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id, u32 *port_flags, u32 *vadaptor_flags, unsigned int *vlan_tags) { struct efx_ef10_nic_data *nic_data = efx->nic_data; MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN); size_t outlen; int rc; if (nic_data->datapath_caps & (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) { MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID, port_id); rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); if (rc) return rc; if (outlen < sizeof(outbuf)) { rc = -EIO; return rc; } } if (port_flags) *port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS); if (vadaptor_flags) *vadaptor_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS); if (vlan_tags) *vlan_tags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS); return 0; } int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id) { MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN); MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id); return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf), NULL, 0, NULL); } int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id) { MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN); MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id); return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf), NULL, 0, NULL); } int efx_ef10_vport_add_mac(struct efx_nic *efx, unsigned int port_id, const u8 *mac) { MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN); MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id); ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac); return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf, sizeof(inbuf), NULL, 0, NULL); } int efx_ef10_vport_del_mac(struct efx_nic *efx, unsigned int port_id, const u8 *mac) { MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN); MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id); ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac); return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf, sizeof(inbuf), NULL, 0, NULL); } #ifdef CONFIG_SFC_SRIOV static int efx_ef10_probe_vf(struct efx_nic *efx) { int rc; struct pci_dev *pci_dev_pf; /* If the parent PF has no VF data structure, it doesn't know about this * VF so fail probe. The VF needs to be re-created. This can happen * if the PF driver was unloaded while any VF was assigned to a guest * (using Xen, only). */ pci_dev_pf = efx->pci_dev->physfn; if (pci_dev_pf) { struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf); struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data; if (!nic_data_pf->vf) { netif_info(efx, drv, efx->net_dev, "The VF cannot link to its parent PF; " "please destroy and re-create the VF\n"); return -EBUSY; } } rc = efx_ef10_probe(efx); if (rc) return rc; rc = efx_ef10_get_vf_index(efx); if (rc) goto fail; if (efx->pci_dev->is_virtfn) { if (efx->pci_dev->physfn) { struct efx_nic *efx_pf = pci_get_drvdata(efx->pci_dev->physfn); struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data; struct efx_ef10_nic_data *nic_data = efx->nic_data; nic_data_p->vf[nic_data->vf_index].efx = efx; nic_data_p->vf[nic_data->vf_index].pci_dev = efx->pci_dev; } else netif_info(efx, drv, efx->net_dev, "Could not get the PF id from VF\n"); } return 0; fail: efx_ef10_remove(efx); return rc; } #else static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused))) { return 0; } #endif static int efx_ef10_alloc_vis(struct efx_nic *efx, unsigned int min_vis, unsigned int max_vis) { struct efx_ef10_nic_data *nic_data = efx->nic_data; return efx_mcdi_alloc_vis(efx, min_vis, max_vis, &nic_data->vi_base, &nic_data->n_allocated_vis); } /* Note that the failure path of this function does not free * resources, as this will be done by efx_ef10_remove(). */ static int efx_ef10_dimension_resources(struct efx_nic *efx) { unsigned int min_vis = max_t(unsigned int, efx->tx_queues_per_channel, efx_separate_tx_channels ? 2 : 1); unsigned int channel_vis, pio_write_vi_base, max_vis; struct efx_ef10_nic_data *nic_data = efx->nic_data; unsigned int uc_mem_map_size, wc_mem_map_size; void __iomem *membase; int rc; channel_vis = max(efx->n_channels, ((efx->n_tx_channels + efx->n_extra_tx_channels) * efx->tx_queues_per_channel) + efx->n_xdp_channels * efx->xdp_tx_per_channel); if (efx->max_vis && efx->max_vis < channel_vis) { netif_dbg(efx, drv, efx->net_dev, "Reducing channel VIs from %u to %u\n", channel_vis, efx->max_vis); channel_vis = efx->max_vis; } #ifdef EFX_USE_PIO /* Try to allocate PIO buffers if wanted and if the full * number of PIO buffers would be sufficient to allocate one * copy-buffer per TX channel. Failure is non-fatal, as there * are only a small number of PIO buffers shared between all * functions of the controller. */ if (efx_piobuf_size != 0 && nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >= efx->n_tx_channels) { unsigned int n_piobufs = DIV_ROUND_UP(efx->n_tx_channels, nic_data->piobuf_size / efx_piobuf_size); rc = efx_ef10_alloc_piobufs(efx, n_piobufs); if (rc == -ENOSPC) netif_dbg(efx, probe, efx->net_dev, "out of PIO buffers; cannot allocate more\n"); else if (rc == -EPERM) netif_dbg(efx, probe, efx->net_dev, "not permitted to allocate PIO buffers\n"); else if (rc) netif_err(efx, probe, efx->net_dev, "failed to allocate PIO buffers (%d)\n", rc); else netif_dbg(efx, probe, efx->net_dev, "allocated %u PIO buffers\n", n_piobufs); } #else nic_data->n_piobufs = 0; #endif /* PIO buffers should be mapped with write-combining enabled, * and we want to make single UC and WC mappings rather than * several of each (in fact that's the only option if host * page size is >4K). So we may allocate some extra VIs just * for writing PIO buffers through. * * The UC mapping contains (channel_vis - 1) complete VIs and the * first 4K of the next VI. Then the WC mapping begins with * the remainder of this last VI. */ uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride + ER_DZ_TX_PIOBUF); if (nic_data->n_piobufs) { /* pio_write_vi_base rounds down to give the number of complete * VIs inside the UC mapping. */ pio_write_vi_base = uc_mem_map_size / efx->vi_stride; wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base + nic_data->n_piobufs) * efx->vi_stride) - uc_mem_map_size); max_vis = pio_write_vi_base + nic_data->n_piobufs; } else { pio_write_vi_base = 0; wc_mem_map_size = 0; max_vis = channel_vis; } /* In case the last attached driver failed to free VIs, do it now */ rc = efx_mcdi_free_vis(efx); if (rc != 0) return rc; rc = efx_ef10_alloc_vis(efx, min_vis, max_vis); if (rc != 0) return rc; if (nic_data->n_allocated_vis < channel_vis) { netif_info(efx, drv, efx->net_dev, "Could not allocate enough VIs to satisfy RSS" " requirements. Performance may not be optimal.\n"); /* We didn't get the VIs to populate our channels. * We could keep what we got but then we'd have more * interrupts than we need. * Instead calculate new max_channels and restart */ efx->max_channels = nic_data->n_allocated_vis; efx->max_tx_channels = nic_data->n_allocated_vis / efx->tx_queues_per_channel; efx_mcdi_free_vis(efx); return -EAGAIN; } /* If we didn't get enough VIs to map all the PIO buffers, free the * PIO buffers */ if (nic_data->n_piobufs && nic_data->n_allocated_vis < pio_write_vi_base + nic_data->n_piobufs) { netif_dbg(efx, probe, efx->net_dev, "%u VIs are not sufficient to map %u PIO buffers\n", nic_data->n_allocated_vis, nic_data->n_piobufs); efx_ef10_free_piobufs(efx); } /* Shrink the original UC mapping of the memory BAR */ membase = ioremap(efx->membase_phys, uc_mem_map_size); if (!membase) { netif_err(efx, probe, efx->net_dev, "could not shrink memory BAR to %x\n", uc_mem_map_size); return -ENOMEM; } iounmap(efx->membase); efx->membase = membase; /* Set up the WC mapping if needed */ if (wc_mem_map_size) { nic_data->wc_membase = ioremap_wc(efx->membase_phys + uc_mem_map_size, wc_mem_map_size); if (!nic_data->wc_membase) { netif_err(efx, probe, efx->net_dev, "could not allocate WC mapping of size %x\n", wc_mem_map_size); return -ENOMEM; } nic_data->pio_write_vi_base = pio_write_vi_base; nic_data->pio_write_base = nic_data->wc_membase + (pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF - uc_mem_map_size); rc = efx_ef10_link_piobufs(efx); if (rc) efx_ef10_free_piobufs(efx); } netif_dbg(efx, probe, efx->net_dev, "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n", &efx->membase_phys, efx->membase, uc_mem_map_size, nic_data->wc_membase, wc_mem_map_size); return 0; } static void efx_ef10_fini_nic(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; kfree(nic_data->mc_stats); nic_data->mc_stats = NULL; } static int efx_ef10_init_nic(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; netdev_features_t hw_enc_features = 0; int rc; if (nic_data->must_check_datapath_caps) { rc = efx_ef10_init_datapath_caps(efx); if (rc) return rc; nic_data->must_check_datapath_caps = false; } if (efx->must_realloc_vis) { /* We cannot let the number of VIs change now */ rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis, nic_data->n_allocated_vis); if (rc) return rc; efx->must_realloc_vis = false; } nic_data->mc_stats = kmalloc(efx->num_mac_stats * sizeof(__le64), GFP_KERNEL); if (!nic_data->mc_stats) return -ENOMEM; if (nic_data->must_restore_piobufs && nic_data->n_piobufs) { rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs); if (rc == 0) { rc = efx_ef10_link_piobufs(efx); if (rc) efx_ef10_free_piobufs(efx); } /* Log an error on failure, but this is non-fatal. * Permission errors are less important - we've presumably * had the PIO buffer licence removed. */ if (rc == -EPERM) netif_dbg(efx, drv, efx->net_dev, "not permitted to restore PIO buffers\n"); else if (rc) netif_err(efx, drv, efx->net_dev, "failed to restore PIO buffers (%d)\n", rc); nic_data->must_restore_piobufs = false; } /* add encapsulated checksum offload features */ if (efx_has_cap(efx, VXLAN_NVGRE) && !efx_ef10_is_vf(efx)) hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; /* add encapsulated TSO features */ if (efx_has_cap(efx, TX_TSO_V2_ENCAP)) { netdev_features_t encap_tso_features; encap_tso_features = NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM; hw_enc_features |= encap_tso_features | NETIF_F_TSO; efx->net_dev->features |= encap_tso_features; } efx->net_dev->hw_enc_features = hw_enc_features; /* don't fail init if RSS setup doesn't work */ rc = efx->type->rx_push_rss_config(efx, false, efx->rss_context.rx_indir_table, NULL); return 0; } static void efx_ef10_table_reset_mc_allocations(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; #ifdef CONFIG_SFC_SRIOV unsigned int i; #endif /* All our allocations have been reset */ efx->must_realloc_vis = true; efx_mcdi_filter_table_reset_mc_allocations(efx); nic_data->must_restore_piobufs = true; efx_ef10_forget_old_piobufs(efx); efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID; /* Driver-created vswitches and vports must be re-created */ nic_data->must_probe_vswitching = true; efx->vport_id = EVB_PORT_ID_ASSIGNED; #ifdef CONFIG_SFC_SRIOV if (nic_data->vf) for (i = 0; i < efx->vf_count; i++) nic_data->vf[i].vport_id = 0; #endif } static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason) { if (reason == RESET_TYPE_MC_FAILURE) return RESET_TYPE_DATAPATH; return efx_mcdi_map_reset_reason(reason); } static int efx_ef10_map_reset_flags(u32 *flags) { enum { EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) << ETH_RESET_SHARED_SHIFT), EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER | ETH_RESET_OFFLOAD | ETH_RESET_MAC | ETH_RESET_PHY | ETH_RESET_MGMT) << ETH_RESET_SHARED_SHIFT) }; /* We assume for now that our PCI function is permitted to * reset everything. */ if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) { *flags &= ~EF10_RESET_MC; return RESET_TYPE_WORLD; } if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) { *flags &= ~EF10_RESET_PORT; return RESET_TYPE_ALL; } /* no invisible reset implemented */ return -EINVAL; } static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type) { int rc = efx_mcdi_reset(efx, reset_type); /* Unprivileged functions return -EPERM, but need to return success * here so that the datapath is brought back up. */ if (reset_type == RESET_TYPE_WORLD && rc == -EPERM) rc = 0; /* If it was a port reset, trigger reallocation of MC resources. * Note that on an MC reset nothing needs to be done now because we'll * detect the MC reset later and handle it then. * For an FLR, we never get an MC reset event, but the MC has reset all * resources assigned to us, so we have to trigger reallocation now. */ if ((reset_type == RESET_TYPE_ALL || reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc) efx_ef10_table_reset_mc_allocations(efx); return rc; } #define EF10_DMA_STAT(ext_name, mcdi_name) \ [EF10_STAT_ ## ext_name] = \ { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name } #define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \ [EF10_STAT_ ## int_name] = \ { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name } #define EF10_OTHER_STAT(ext_name) \ [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 } static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = { EF10_DMA_STAT(port_tx_bytes, TX_BYTES), EF10_DMA_STAT(port_tx_packets, TX_PKTS), EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS), EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS), EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS), EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS), EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS), EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS), EF10_DMA_STAT(port_tx_64, TX_64_PKTS), EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS), EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS), EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS), EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS), EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS), EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS), EF10_DMA_STAT(port_rx_bytes, RX_BYTES), EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES), EF10_OTHER_STAT(port_rx_good_bytes), EF10_OTHER_STAT(port_rx_bad_bytes), EF10_DMA_STAT(port_rx_packets, RX_PKTS), EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS), EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS), EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS), EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS), EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS), EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS), EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS), EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS), EF10_DMA_STAT(port_rx_64, RX_64_PKTS), EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS), EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS), EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS), EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS), EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS), EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS), EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS), EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS), EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS), EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS), EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS), EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS), EFX_GENERIC_SW_STAT(rx_nodesc_trunc), EFX_GENERIC_SW_STAT(rx_noskb_drops), EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW), EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW), EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL), EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL), EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB), EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB), EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING), EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS), EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS), EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS), EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS), EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS), EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS), EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES), EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS), EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES), EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS), EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES), EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS), EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES), EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW), EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS), EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES), EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS), EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES), EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS), EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES), EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS), EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES), EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW), EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS), EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS), EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0), EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1), EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2), EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3), EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK), EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS), EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL), EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL), EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL), EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL), EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL), EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL), EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL), EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK), EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK), EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK), EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS), EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK), EF10_DMA_STAT(ctpio_poison, CTPIO_POISON), EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE), }; #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) | \ (1ULL << EF10_STAT_port_tx_packets) | \ (1ULL << EF10_STAT_port_tx_pause) | \ (1ULL << EF10_STAT_port_tx_unicast) | \ (1ULL << EF10_STAT_port_tx_multicast) | \ (1ULL << EF10_STAT_port_tx_broadcast) | \ (1ULL << EF10_STAT_port_rx_bytes) | \ (1ULL << \ EF10_STAT_port_rx_bytes_minus_good_bytes) | \ (1ULL << EF10_STAT_port_rx_good_bytes) | \ (1ULL << EF10_STAT_port_rx_bad_bytes) | \ (1ULL << EF10_STAT_port_rx_packets) | \ (1ULL << EF10_STAT_port_rx_good) | \ (1ULL << EF10_STAT_port_rx_bad) | \ (1ULL << EF10_STAT_port_rx_pause) | \ (1ULL << EF10_STAT_port_rx_control) | \ (1ULL << EF10_STAT_port_rx_unicast) | \ (1ULL << EF10_STAT_port_rx_multicast) | \ (1ULL << EF10_STAT_port_rx_broadcast) | \ (1ULL << EF10_STAT_port_rx_lt64) | \ (1ULL << EF10_STAT_port_rx_64) | \ (1ULL << EF10_STAT_port_rx_65_to_127) | \ (1ULL << EF10_STAT_port_rx_128_to_255) | \ (1ULL << EF10_STAT_port_rx_256_to_511) | \ (1ULL << EF10_STAT_port_rx_512_to_1023) |\ (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\ (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\ (1ULL << EF10_STAT_port_rx_gtjumbo) | \ (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\ (1ULL << EF10_STAT_port_rx_overflow) | \ (1ULL << EF10_STAT_port_rx_nodesc_drops) |\ (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \ (1ULL << GENERIC_STAT_rx_noskb_drops)) /* On 7000 series NICs, these statistics are only provided by the 10G MAC. * For a 10G/40G switchable port we do not expose these because they might * not include all the packets they should. * On 8000 series NICs these statistics are always provided. */ #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) | \ (1ULL << EF10_STAT_port_tx_lt64) | \ (1ULL << EF10_STAT_port_tx_64) | \ (1ULL << EF10_STAT_port_tx_65_to_127) |\ (1ULL << EF10_STAT_port_tx_128_to_255) |\ (1ULL << EF10_STAT_port_tx_256_to_511) |\ (1ULL << EF10_STAT_port_tx_512_to_1023) |\ (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\ (1ULL << EF10_STAT_port_tx_15xx_to_jumbo)) /* These statistics are only provided by the 40G MAC. For a 10G/40G * switchable port we do expose these because the errors will otherwise * be silent. */ #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\ (1ULL << EF10_STAT_port_rx_length_error)) /* These statistics are only provided if the firmware supports the * capability PM_AND_RXDP_COUNTERS. */ #define HUNT_PM_AND_RXDP_STAT_MASK ( \ (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) | \ (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) | \ (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) | \ (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) | \ (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) | \ (1ULL << EF10_STAT_port_rx_pm_discard_qbb) | \ (1ULL << EF10_STAT_port_rx_pm_discard_mapping) | \ (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) | \ (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) | \ (1ULL << EF10_STAT_port_rx_dp_streaming_packets) | \ (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) | \ (1ULL << EF10_STAT_port_rx_dp_hlb_wait)) /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2, * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS. * These bits are in the second u64 of the raw mask. */ #define EF10_FEC_STAT_MASK ( \ (1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) | \ (1ULL << (EF10_STAT_fec_corrected_errors - 64)) | \ (1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) | \ (1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) | \ (1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) | \ (1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64))) /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3, * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS. * These bits are in the second u64 of the raw mask. */ #define EF10_CTPIO_STAT_MASK ( \ (1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) | \ (1ULL << (EF10_STAT_ctpio_long_write_success - 64)) | \ (1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) | \ (1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) | \ (1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) | \ (1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) | \ (1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) | \ (1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) | \ (1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) | \ (1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) | \ (1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) | \ (1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) | \ (1ULL << (EF10_STAT_ctpio_success - 64)) | \ (1ULL << (EF10_STAT_ctpio_fallback - 64)) | \ (1ULL << (EF10_STAT_ctpio_poison - 64)) | \ (1ULL << (EF10_STAT_ctpio_erase - 64))) static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx) { u64 raw_mask = HUNT_COMMON_STAT_MASK; u32 port_caps = efx_mcdi_phy_get_caps(efx); struct efx_ef10_nic_data *nic_data = efx->nic_data; if (!(efx->mcdi->fn_flags & 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL)) return 0; if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) { raw_mask |= HUNT_40G_EXTRA_STAT_MASK; /* 8000 series have everything even at 40G */ if (nic_data->datapath_caps2 & (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN)) raw_mask |= HUNT_10G_ONLY_STAT_MASK; } else { raw_mask |= HUNT_10G_ONLY_STAT_MASK; } if (nic_data->datapath_caps & (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN)) raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK; return raw_mask; } static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask) { struct efx_ef10_nic_data *nic_data = efx->nic_data; u64 raw_mask[2]; raw_mask[0] = efx_ef10_raw_stat_mask(efx); /* Only show vadaptor stats when EVB capability is present */ if (nic_data->datapath_caps & (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) { raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1); raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1; } else { raw_mask[1] = 0; } /* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */ if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2) raw_mask[1] |= EF10_FEC_STAT_MASK; /* CTPIO stats appear in V3. Only show them on devices that actually * support CTPIO. Although this driver doesn't use CTPIO others might, * and we may be reporting the stats for the underlying port. */ if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 && (nic_data->datapath_caps2 & (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN))) raw_mask[1] |= EF10_CTPIO_STAT_MASK; #if BITS_PER_LONG == 64 BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2); mask[0] = raw_mask[0]; mask[1] = raw_mask[1]; #else BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3); mask[0] = raw_mask[0] & 0xffffffff; mask[1] = raw_mask[0] >> 32; mask[2] = raw_mask[1] & 0xffffffff; #endif } static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names) { DECLARE_BITMAP(mask, EF10_STAT_COUNT); efx_ef10_get_stat_mask(efx, mask); return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask, names); } static void efx_ef10_get_fec_stats(struct efx_nic *efx, struct ethtool_fec_stats *fec_stats) { DECLARE_BITMAP(mask, EF10_STAT_COUNT); struct efx_ef10_nic_data *nic_data = efx->nic_data; u64 *stats = nic_data->stats; efx_ef10_get_stat_mask(efx, mask); if (test_bit(EF10_STAT_fec_corrected_errors, mask)) fec_stats->corrected_blocks.total = stats[EF10_STAT_fec_corrected_errors]; if (test_bit(EF10_STAT_fec_uncorrected_errors, mask)) fec_stats->uncorrectable_blocks.total = stats[EF10_STAT_fec_uncorrected_errors]; } static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats, struct rtnl_link_stats64 *core_stats) { DECLARE_BITMAP(mask, EF10_STAT_COUNT); struct efx_ef10_nic_data *nic_data = efx->nic_data; u64 *stats = nic_data->stats; size_t stats_count = 0, index; efx_ef10_get_stat_mask(efx, mask); if (full_stats) { for_each_set_bit(index, mask, EF10_STAT_COUNT) { if (efx_ef10_stat_desc[index].name) { *full_stats++ = stats[index]; ++stats_count; } } } if (!core_stats) return stats_count; if (nic_data->datapath_caps & 1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) { /* Use vadaptor stats. */ core_stats->rx_packets = stats[EF10_STAT_rx_unicast] + stats[EF10_STAT_rx_multicast] + stats[EF10_STAT_rx_broadcast]; core_stats->tx_packets = stats[EF10_STAT_tx_unicast] + stats[EF10_STAT_tx_multicast] + stats[EF10_STAT_tx_broadcast]; core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] + stats[EF10_STAT_rx_multicast_bytes] + stats[EF10_STAT_rx_broadcast_bytes]; core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] + stats[EF10_STAT_tx_multicast_bytes] + stats[EF10_STAT_tx_broadcast_bytes]; core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] + stats[GENERIC_STAT_rx_noskb_drops]; core_stats->multicast = stats[EF10_STAT_rx_multicast]; core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad]; core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow]; core_stats->rx_errors = core_stats->rx_crc_errors; core_stats->tx_errors = stats[EF10_STAT_tx_bad]; } else { /* Use port stats. */ core_stats->rx_packets = stats[EF10_STAT_port_rx_packets]; core_stats->tx_packets = stats[EF10_STAT_port_tx_packets]; core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes]; core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes]; core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] + stats[GENERIC_STAT_rx_nodesc_trunc] + stats[GENERIC_STAT_rx_noskb_drops]; core_stats->multicast = stats[EF10_STAT_port_rx_multicast]; core_stats->rx_length_errors = stats[EF10_STAT_port_rx_gtjumbo] + stats[EF10_STAT_port_rx_length_error]; core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad]; core_stats->rx_frame_errors = stats[EF10_STAT_port_rx_align_error]; core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow]; core_stats->rx_errors = (core_stats->rx_length_errors + core_stats->rx_crc_errors + core_stats->rx_frame_errors); } return stats_count; } static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats, struct rtnl_link_stats64 *core_stats) { struct efx_ef10_nic_data *nic_data = efx->nic_data; DECLARE_BITMAP(mask, EF10_STAT_COUNT); u64 *stats = nic_data->stats; efx_ef10_get_stat_mask(efx, mask); efx_nic_copy_stats(efx, nic_data->mc_stats); efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask, stats, nic_data->mc_stats, false); /* Update derived statistics */ efx_nic_fix_nodesc_drop_stat(efx, &stats[EF10_STAT_port_rx_nodesc_drops]); /* MC Firmware reads RX_BYTES and RX_GOOD_BYTES from the MAC. * It then calculates RX_BAD_BYTES and DMAs it to us with RX_BYTES. * We report these as port_rx_ stats. We are not given RX_GOOD_BYTES. * Here we calculate port_rx_good_bytes. */ stats[EF10_STAT_port_rx_good_bytes] = stats[EF10_STAT_port_rx_bytes] - stats[EF10_STAT_port_rx_bytes_minus_good_bytes]; /* The asynchronous reads used to calculate RX_BAD_BYTES in * MC Firmware are done such that we should not see an increase in * RX_BAD_BYTES when a good packet has arrived. Unfortunately this * does mean that the stat can decrease at times. Here we do not * update the stat unless it has increased or has gone to zero * (In the case of the NIC rebooting). * Please see Bug 33781 for a discussion of why things work this way. */ efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes], stats[EF10_STAT_port_rx_bytes_minus_good_bytes]); efx_update_sw_stats(efx, stats); return efx_ef10_update_stats_common(efx, full_stats, core_stats); } static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx) __must_hold(&efx->stats_lock) { MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN); struct efx_ef10_nic_data *nic_data = efx->nic_data; DECLARE_BITMAP(mask, EF10_STAT_COUNT); __le64 generation_start, generation_end; u64 *stats = nic_data->stats; u32 dma_len = efx->num_mac_stats * sizeof(u64); struct efx_buffer stats_buf; __le64 *dma_stats; int rc; spin_unlock_bh(&efx->stats_lock); efx_ef10_get_stat_mask(efx, mask); rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_KERNEL); if (rc) { spin_lock_bh(&efx->stats_lock); return rc; } dma_stats = stats_buf.addr; dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID; MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr); MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD, MAC_STATS_IN_DMA, 1); MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len); MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED); rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf), NULL, 0, NULL); spin_lock_bh(&efx->stats_lock); if (rc) { /* Expect ENOENT if DMA queues have not been set up */ if (rc != -ENOENT || atomic_read(&efx->active_queues)) efx_mcdi_display_error(efx, MC_CMD_MAC_STATS, sizeof(inbuf), NULL, 0, rc); goto out; } generation_end = dma_stats[efx->num_mac_stats - 1]; if (generation_end == EFX_MC_STATS_GENERATION_INVALID) { WARN_ON_ONCE(1); goto out; } rmb(); efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask, stats, stats_buf.addr, false); rmb(); generation_start = dma_stats[MC_CMD_MAC_GENERATION_START]; if (generation_end != generation_start) { rc = -EAGAIN; goto out; } efx_update_sw_stats(efx, stats); out: efx_nic_free_buffer(efx, &stats_buf); return rc; } static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats, struct rtnl_link_stats64 *core_stats) { if (efx_ef10_try_update_nic_stats_vf(efx)) return 0; return efx_ef10_update_stats_common(efx, full_stats, core_stats); } static size_t efx_ef10_update_stats_atomic_vf(struct efx_nic *efx, u64 *full_stats, struct rtnl_link_stats64 *core_stats) { struct efx_ef10_nic_data *nic_data = efx->nic_data; /* In atomic context, cannot update HW stats. Just update the * software stats and return so the caller can continue. */ efx_update_sw_stats(efx, nic_data->stats); return efx_ef10_update_stats_common(efx, full_stats, core_stats); } static void efx_ef10_push_irq_moderation(struct efx_channel *channel) { struct efx_nic *efx = channel->efx; unsigned int mode, usecs; efx_dword_t timer_cmd; if (channel->irq_moderation_us) { mode = 3; usecs = channel->irq_moderation_us; } else { mode = 0; usecs = 0; } if (EFX_EF10_WORKAROUND_61265(efx)) { MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN); unsigned int ns = usecs * 1000; MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE, channel->channel); MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns); MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns); MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode); efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR, inbuf, sizeof(inbuf), 0, NULL, 0); } else if (EFX_EF10_WORKAROUND_35388(efx)) { unsigned int ticks = efx_usecs_to_ticks(efx, usecs); EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS, EFE_DD_EVQ_IND_TIMER_FLAGS, ERF_DD_EVQ_IND_TIMER_MODE, mode, ERF_DD_EVQ_IND_TIMER_VAL, ticks); efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT, channel->channel); } else { unsigned int ticks = efx_usecs_to_ticks(efx, usecs); EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode, ERF_DZ_TC_TIMER_VAL, ticks, ERF_FZ_TC_TMR_REL_VAL, ticks); efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR, channel->channel); } } static void efx_ef10_get_wol_vf(struct efx_nic *efx, struct ethtool_wolinfo *wol) {} static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type) { return -EOPNOTSUPP; } static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol) { wol->supported = 0; wol->wolopts = 0; memset(&wol->sopass, 0, sizeof(wol->sopass)); } static int efx_ef10_set_wol(struct efx_nic *efx, u32 type) { if (type != 0) return -EINVAL; return 0; } static void efx_ef10_mcdi_request(struct efx_nic *efx, const efx_dword_t *hdr, size_t hdr_len, const efx_dword_t *sdu, size_t sdu_len) { struct efx_ef10_nic_data *nic_data = efx->nic_data; u8 *pdu = nic_data->mcdi_buf.addr; memcpy(pdu, hdr, hdr_len); memcpy(pdu + hdr_len, sdu, sdu_len); wmb(); /* The hardware provides 'low' and 'high' (doorbell) registers * for passing the 64-bit address of an MCDI request to * firmware. However the dwords are swapped by firmware. The * least significant bits of the doorbell are then 0 for all * MCDI requests due to alignment. */ _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32), ER_DZ_MC_DB_LWRD); _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr), ER_DZ_MC_DB_HWRD); } static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr; rmb(); return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE); } static void efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf, size_t offset, size_t outlen) { struct efx_ef10_nic_data *nic_data = efx->nic_data; const u8 *pdu = nic_data->mcdi_buf.addr; memcpy(outbuf, pdu + offset, outlen); } static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; /* All our allocations have been reset */ efx_ef10_table_reset_mc_allocations(efx); /* The datapath firmware might have been changed */ nic_data->must_check_datapath_caps = true; /* MAC statistics have been cleared on the NIC; clear the local * statistic that we update with efx_update_diff_stat(). */ nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0; } static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; int rc; rc = efx_ef10_get_warm_boot_count(efx); if (rc < 0) { /* The firmware is presumably in the process of * rebooting. However, we are supposed to report each * reboot just once, so we must only do that once we * can read and store the updated warm boot count. */ return 0; } if (rc == nic_data->warm_boot_count) return 0; nic_data->warm_boot_count = rc; efx_ef10_mcdi_reboot_detected(efx); return -EIO; } /* Handle an MSI interrupt * * Handle an MSI hardware interrupt. This routine schedules event * queue processing. No interrupt acknowledgement cycle is necessary. * Also, we never need to check that the interrupt is for us, since * MSI interrupts cannot be shared. */ static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id) { struct efx_msi_context *context = dev_id; struct efx_nic *efx = context->efx; netif_vdbg(efx, intr, efx->net_dev, "IRQ %d on CPU %d\n", irq, raw_smp_processor_id()); if (likely(READ_ONCE(efx->irq_soft_enabled))) { /* Note test interrupts */ if (context->index == efx->irq_level) efx->last_irq_cpu = raw_smp_processor_id(); /* Schedule processing of the channel */ efx_schedule_channel_irq(efx->channel[context->index]); } return IRQ_HANDLED; } static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id) { struct efx_nic *efx = dev_id; bool soft_enabled = READ_ONCE(efx->irq_soft_enabled); struct efx_channel *channel; efx_dword_t reg; u32 queues; /* Read the ISR which also ACKs the interrupts */ efx_readd(efx, ®, ER_DZ_BIU_INT_ISR); queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG); if (queues == 0) return IRQ_NONE; if (likely(soft_enabled)) { /* Note test interrupts */ if (queues & (1U << efx->irq_level)) efx->last_irq_cpu = raw_smp_processor_id(); efx_for_each_channel(channel, efx) { if (queues & 1) efx_schedule_channel_irq(channel); queues >>= 1; } } netif_vdbg(efx, intr, efx->net_dev, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n", irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg)); return IRQ_HANDLED; } static int efx_ef10_irq_test_generate(struct efx_nic *efx) { MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN); if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true, NULL) == 0) return -ENOTSUPP; BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0); MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level); return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT, inbuf, sizeof(inbuf), NULL, 0, NULL); } static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue) { /* low two bits of label are what we want for type */ BUILD_BUG_ON((EFX_TXQ_TYPE_OUTER_CSUM | EFX_TXQ_TYPE_INNER_CSUM) != 3); tx_queue->type = tx_queue->label & 3; return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf, (tx_queue->ptr_mask + 1) * sizeof(efx_qword_t), GFP_KERNEL); } /* This writes to the TX_DESC_WPTR and also pushes data */ static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue, const efx_qword_t *txd) { unsigned int write_ptr; efx_oword_t reg; write_ptr = tx_queue->write_count & tx_queue->ptr_mask; EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr); reg.qword[0] = *txd; efx_writeo_page(tx_queue->efx, ®, ER_DZ_TX_DESC_UPD, tx_queue->queue); } /* Add Firmware-Assisted TSO v2 option descriptors to a queue. */ int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue, struct sk_buff *skb, bool *data_mapped) { struct efx_tx_buffer *buffer; u16 inner_ipv4_id = 0; u16 outer_ipv4_id = 0; struct tcphdr *tcp; struct iphdr *ip; u16 ip_tot_len; u32 seqnum; u32 mss; EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2); mss = skb_shinfo(skb)->gso_size; if (unlikely(mss < 4)) { WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss); return -EINVAL; } if (skb->encapsulation) { if (!tx_queue->tso_encap) return -EINVAL; ip = ip_hdr(skb); if (ip->version == 4) outer_ipv4_id = ntohs(ip->id); ip = inner_ip_hdr(skb); tcp = inner_tcp_hdr(skb); } else { ip = ip_hdr(skb); tcp = tcp_hdr(skb); } /* 8000-series EF10 hardware requires that IP Total Length be * greater than or equal to the value it will have in each segment * (which is at most mss + 208 + TCP header length), but also less * than (0x10000 - inner_network_header). Otherwise the TCP * checksum calculation will be broken for encapsulated packets. * We fill in ip->tot_len with 0xff30, which should satisfy the * first requirement unless the MSS is ridiculously large (which * should be impossible as the driver max MTU is 9216); it is * guaranteed to satisfy the second as we only attempt TSO if * inner_network_header <= 208. */ ip_tot_len = 0x10000 - EFX_TSO2_MAX_HDRLEN; EFX_WARN_ON_ONCE_PARANOID(mss + EFX_TSO2_MAX_HDRLEN + (tcp->doff << 2u) > ip_tot_len); if (ip->version == 4) { ip->tot_len = htons(ip_tot_len); ip->check = 0; inner_ipv4_id = ntohs(ip->id); } else { ((struct ipv6hdr *)ip)->payload_len = htons(ip_tot_len); } seqnum = ntohl(tcp->seq); buffer = efx_tx_queue_get_insert_buffer(tx_queue); buffer->flags = EFX_TX_BUF_OPTION; buffer->len = 0; buffer->unmap_len = 0; EFX_POPULATE_QWORD_5(buffer->option, ESF_DZ_TX_DESC_IS_OPT, 1, ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO, ESF_DZ_TX_TSO_OPTION_TYPE, ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A, ESF_DZ_TX_TSO_IP_ID, inner_ipv4_id, ESF_DZ_TX_TSO_TCP_SEQNO, seqnum ); ++tx_queue->insert_count; buffer = efx_tx_queue_get_insert_buffer(tx_queue); buffer->flags = EFX_TX_BUF_OPTION; buffer->len = 0; buffer->unmap_len = 0; EFX_POPULATE_QWORD_5(buffer->option, ESF_DZ_TX_DESC_IS_OPT, 1, ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO, ESF_DZ_TX_TSO_OPTION_TYPE, ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B, ESF_DZ_TX_TSO_OUTER_IPID, outer_ipv4_id, ESF_DZ_TX_TSO_TCP_MSS, mss ); ++tx_queue->insert_count; return 0; } static u32 efx_ef10_tso_versions(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; u32 tso_versions = 0; if (nic_data->datapath_caps & (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) tso_versions |= BIT(1); if (nic_data->datapath_caps2 & (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN)) tso_versions |= BIT(2); return tso_versions; } static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue) { bool csum_offload = tx_queue->type & EFX_TXQ_TYPE_OUTER_CSUM; bool inner_csum = tx_queue->type & EFX_TXQ_TYPE_INNER_CSUM; struct efx_channel *channel = tx_queue->channel; struct efx_nic *efx = tx_queue->efx; struct efx_ef10_nic_data *nic_data; efx_qword_t *txd; int rc; nic_data = efx->nic_data; /* Only attempt to enable TX timestamping if we have the license for it, * otherwise TXQ init will fail */ if (!(nic_data->licensed_features & (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) { tx_queue->timestamping = false; /* Disable sync events on this channel. */ if (efx->type->ptp_set_ts_sync_events) efx->type->ptp_set_ts_sync_events(efx, false, false); } /* TSOv2 is a limited resource that can only be configured on a limited * number of queues. TSO without checksum offload is not really a thing, * so we only enable it for those queues. * TSOv2 cannot be used with Hardware timestamping, and is never needed * for XDP tx. */ if (efx_has_cap(efx, TX_TSO_V2)) { if ((csum_offload || inner_csum) && !tx_queue->timestamping && !tx_queue->xdp_tx) { tx_queue->tso_version = 2; netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n", channel->channel); } } else if (efx_has_cap(efx, TX_TSO)) { tx_queue->tso_version = 1; } rc = efx_mcdi_tx_init(tx_queue); if (rc) goto fail; /* A previous user of this TX queue might have set us up the * bomb by writing a descriptor to the TX push collector but * not the doorbell. (Each collector belongs to a port, not a * queue or function, so cannot easily be reset.) We must * attempt to push a no-op descriptor in its place. */ tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION; tx_queue->insert_count = 1; txd = efx_tx_desc(tx_queue, 0); EFX_POPULATE_QWORD_7(*txd, ESF_DZ_TX_DESC_IS_OPT, true, ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_CRC_CSUM, ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload, ESF_DZ_TX_OPTION_IP_CSUM, csum_offload && tx_queue->tso_version != 2, ESF_DZ_TX_OPTION_INNER_UDP_TCP_CSUM, inner_csum, ESF_DZ_TX_OPTION_INNER_IP_CSUM, inner_csum && tx_queue->tso_version != 2, ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping); tx_queue->write_count = 1; if (tx_queue->tso_version == 2 && efx_has_cap(efx, TX_TSO_V2_ENCAP)) tx_queue->tso_encap = true; wmb(); efx_ef10_push_tx_desc(tx_queue, txd); return; fail: netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n", tx_queue->queue); } /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */ static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue) { unsigned int write_ptr; efx_dword_t reg; write_ptr = tx_queue->write_count & tx_queue->ptr_mask; EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr); efx_writed_page(tx_queue->efx, ®, ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue); } #define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue, dma_addr_t dma_addr, unsigned int len) { if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) { /* If we need to break across multiple descriptors we should * stop at a page boundary. This assumes the length limit is * greater than the page size. */ dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN; BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE); len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr; } return len; } static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue) { unsigned int old_write_count = tx_queue->write_count; struct efx_tx_buffer *buffer; unsigned int write_ptr; efx_qword_t *txd; tx_queue->xmit_pending = false; if (unlikely(tx_queue->write_count == tx_queue->insert_count)) return; do { write_ptr = tx_queue->write_count & tx_queue->ptr_mask; buffer = &tx_queue->buffer[write_ptr]; txd = efx_tx_desc(tx_queue, write_ptr); ++tx_queue->write_count; /* Create TX descriptor ring entry */ if (buffer->flags & EFX_TX_BUF_OPTION) { *txd = buffer->option; if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1) /* PIO descriptor */ tx_queue->packet_write_count = tx_queue->write_count; } else { tx_queue->packet_write_count = tx_queue->write_count; BUILD_BUG_ON(EFX_TX_BUF_CONT != 1); EFX_POPULATE_QWORD_3( *txd, ESF_DZ_TX_KER_CONT, buffer->flags & EFX_TX_BUF_CONT, ESF_DZ_TX_KER_BYTE_CNT, buffer->len, ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr); } } while (tx_queue->write_count != tx_queue->insert_count); wmb(); /* Ensure descriptors are written before they are fetched */ if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) { txd = efx_tx_desc(tx_queue, old_write_count & tx_queue->ptr_mask); efx_ef10_push_tx_desc(tx_queue, txd); ++tx_queue->pushes; } else { efx_ef10_notify_tx_desc(tx_queue); } } static int efx_ef10_probe_multicast_chaining(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; unsigned int enabled, implemented; bool want_workaround_26807; int rc; rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled); if (rc == -ENOSYS) { /* GET_WORKAROUNDS was implemented before this workaround, * thus it must be unavailable in this firmware. */ nic_data->workaround_26807 = false; return 0; } if (rc) return rc; want_workaround_26807 = implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807; nic_data->workaround_26807 = !!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807); if (want_workaround_26807 && !nic_data->workaround_26807) { unsigned int flags; rc = efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG26807, true, &flags); if (!rc) { if (flags & 1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) { netif_info(efx, drv, efx->net_dev, "other functions on NIC have been reset\n"); /* With MCFW v4.6.x and earlier, the * boot count will have incremented, * so re-read the warm_boot_count * value now to ensure this function * doesn't think it has changed next * time it checks. */ rc = efx_ef10_get_warm_boot_count(efx); if (rc >= 0) { nic_data->warm_boot_count = rc; rc = 0; } } nic_data->workaround_26807 = true; } else if (rc == -EPERM) { rc = 0; } } return rc; } static int efx_ef10_filter_table_probe(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; int rc = efx_ef10_probe_multicast_chaining(efx); struct efx_mcdi_filter_vlan *vlan; if (rc) return rc; rc = efx_mcdi_filter_table_probe(efx, nic_data->workaround_26807); if (rc) return rc; list_for_each_entry(vlan, &nic_data->vlan_list, list) { rc = efx_mcdi_filter_add_vlan(efx, vlan->vid); if (rc) goto fail_add_vlan; } return 0; fail_add_vlan: efx_mcdi_filter_table_remove(efx); return rc; } /* This creates an entry in the RX descriptor queue */ static inline void efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index) { struct efx_rx_buffer *rx_buf; efx_qword_t *rxd; rxd = efx_rx_desc(rx_queue, index); rx_buf = efx_rx_buffer(rx_queue, index); EFX_POPULATE_QWORD_2(*rxd, ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len, ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr); } static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue) { struct efx_nic *efx = rx_queue->efx; unsigned int write_count; efx_dword_t reg; /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */ write_count = rx_queue->added_count & ~7; if (rx_queue->notified_count == write_count) return; do efx_ef10_build_rx_desc( rx_queue, rx_queue->notified_count & rx_queue->ptr_mask); while (++rx_queue->notified_count != write_count); wmb(); EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR, write_count & rx_queue->ptr_mask); efx_writed_page(efx, ®, ER_DZ_RX_DESC_UPD, efx_rx_queue_index(rx_queue)); } static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete; static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue) { struct efx_channel *channel = efx_rx_queue_channel(rx_queue); MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN); efx_qword_t event; EFX_POPULATE_QWORD_2(event, ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV, ESF_DZ_EV_DATA, EFX_EF10_REFILL); MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel); /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has * already swapped the data to little-endian order. */ memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0], sizeof(efx_qword_t)); efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf), 0, efx_ef10_rx_defer_refill_complete, 0); } static void efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie, int rc, efx_dword_t *outbuf, size_t outlen_actual) { /* nothing to do */ } static int efx_ef10_ev_init(struct efx_channel *channel) { struct efx_nic *efx = channel->efx; struct efx_ef10_nic_data *nic_data; bool use_v2, cut_thru; nic_data = efx->nic_data; use_v2 = nic_data->datapath_caps2 & 1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN; cut_thru = !(nic_data->datapath_caps & 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN); return efx_mcdi_ev_init(channel, cut_thru, use_v2); } static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue, unsigned int rx_queue_label) { struct efx_nic *efx = rx_queue->efx; netif_info(efx, hw, efx->net_dev, "rx event arrived on queue %d labeled as queue %u\n", efx_rx_queue_index(rx_queue), rx_queue_label); efx_schedule_reset(efx, RESET_TYPE_DISABLE); } static void efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue, unsigned int actual, unsigned int expected) { unsigned int dropped = (actual - expected) & rx_queue->ptr_mask; struct efx_nic *efx = rx_queue->efx; netif_info(efx, hw, efx->net_dev, "dropped %d events (index=%d expected=%d)\n", dropped, actual, expected); efx_schedule_reset(efx, RESET_TYPE_DISABLE); } /* partially received RX was aborted. clean up. */ static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue) { unsigned int rx_desc_ptr; netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev, "scattered RX aborted (dropping %u buffers)\n", rx_queue->scatter_n); rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask; efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD); rx_queue->removed_count += rx_queue->scatter_n; rx_queue->scatter_n = 0; rx_queue->scatter_len = 0; ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc; } static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel, unsigned int n_packets, unsigned int rx_encap_hdr, unsigned int rx_l3_class, unsigned int rx_l4_class, const efx_qword_t *event) { struct efx_nic *efx = channel->efx; bool handled = false; if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) { if (!(efx->net_dev->features & NETIF_F_RXALL)) { if (!efx->loopback_selftest) channel->n_rx_eth_crc_err += n_packets; return EFX_RX_PKT_DISCARD; } handled = true; } if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) { if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN && rx_l3_class != ESE_DZ_L3_CLASS_IP4 && rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG && rx_l3_class != ESE_DZ_L3_CLASS_IP6 && rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG)) netdev_WARN(efx->net_dev, "invalid class for RX_IPCKSUM_ERR: event=" EFX_QWORD_FMT "\n", EFX_QWORD_VAL(*event)); if (!efx->loopback_selftest) *(rx_encap_hdr ? &channel->n_rx_outer_ip_hdr_chksum_err : &channel->n_rx_ip_hdr_chksum_err) += n_packets; return 0; } if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) { if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN && ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 && rx_l3_class != ESE_DZ_L3_CLASS_IP6) || (rx_l4_class != ESE_FZ_L4_CLASS_TCP && rx_l4_class != ESE_FZ_L4_CLASS_UDP)))) netdev_WARN(efx->net_dev, "invalid class for RX_TCPUDP_CKSUM_ERR: event=" EFX_QWORD_FMT "\n", EFX_QWORD_VAL(*event)); if (!efx->loopback_selftest) *(rx_encap_hdr ? &channel->n_rx_outer_tcp_udp_chksum_err : &channel->n_rx_tcp_udp_chksum_err) += n_packets; return 0; } if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) { if (unlikely(!rx_encap_hdr)) netdev_WARN(efx->net_dev, "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event=" EFX_QWORD_FMT "\n", EFX_QWORD_VAL(*event)); else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 && rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG && rx_l3_class != ESE_DZ_L3_CLASS_IP6 && rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG)) netdev_WARN(efx->net_dev, "invalid class for RX_IP_INNER_CHKSUM_ERR: event=" EFX_QWORD_FMT "\n", EFX_QWORD_VAL(*event)); if (!efx->loopback_selftest) channel->n_rx_inner_ip_hdr_chksum_err += n_packets; return 0; } if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) { if (unlikely(!rx_encap_hdr)) netdev_WARN(efx->net_dev, "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event=" EFX_QWORD_FMT "\n", EFX_QWORD_VAL(*event)); else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 && rx_l3_class != ESE_DZ_L3_CLASS_IP6) || (rx_l4_class != ESE_FZ_L4_CLASS_TCP && rx_l4_class != ESE_FZ_L4_CLASS_UDP))) netdev_WARN(efx->net_dev, "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event=" EFX_QWORD_FMT "\n", EFX_QWORD_VAL(*event)); if (!efx->loopback_selftest) channel->n_rx_inner_tcp_udp_chksum_err += n_packets; return 0; } WARN_ON(!handled); /* No error bits were recognised */ return 0; } static int efx_ef10_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event) { unsigned int rx_bytes, next_ptr_lbits, rx_queue_label; unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr; unsigned int n_descs, n_packets, i; struct efx_nic *efx = channel->efx; struct efx_ef10_nic_data *nic_data = efx->nic_data; struct efx_rx_queue *rx_queue; efx_qword_t errors; bool rx_cont; u16 flags = 0; if (unlikely(READ_ONCE(efx->reset_pending))) return 0; /* Basic packet information */ rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES); next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS); rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL); rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS); rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS); rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT); rx_encap_hdr = nic_data->datapath_caps & (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ? EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) : ESE_EZ_ENCAP_HDR_NONE; if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT)) netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event=" EFX_QWORD_FMT "\n", EFX_QWORD_VAL(*event)); rx_queue = efx_channel_get_rx_queue(channel); if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue))) efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label); n_descs = ((next_ptr_lbits - rx_queue->removed_count) & ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1)); if (n_descs != rx_queue->scatter_n + 1) { struct efx_ef10_nic_data *nic_data = efx->nic_data; /* detect rx abort */ if (unlikely(n_descs == rx_queue->scatter_n)) { if (rx_queue->scatter_n == 0 || rx_bytes != 0) netdev_WARN(efx->net_dev, "invalid RX abort: scatter_n=%u event=" EFX_QWORD_FMT "\n", rx_queue->scatter_n, EFX_QWORD_VAL(*event)); efx_ef10_handle_rx_abort(rx_queue); return 0; } /* Check that RX completion merging is valid, i.e. * the current firmware supports it and this is a * non-scattered packet. */ if (!(nic_data->datapath_caps & (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) || rx_queue->scatter_n != 0 || rx_cont) { efx_ef10_handle_rx_bad_lbits( rx_queue, next_ptr_lbits, (rx_queue->removed_count + rx_queue->scatter_n + 1) & ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1)); return 0; } /* Merged completion for multiple non-scattered packets */ rx_queue->scatter_n = 1; rx_queue->scatter_len = 0; n_packets = n_descs; ++channel->n_rx_merge_events; channel->n_rx_merge_packets += n_packets; flags |= EFX_RX_PKT_PREFIX_LEN; } else { ++rx_queue->scatter_n; rx_queue->scatter_len += rx_bytes; if (rx_cont) return 0; n_packets = 1; } EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1, ESF_DZ_RX_IPCKSUM_ERR, 1, ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1, ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1); EFX_AND_QWORD(errors, *event, errors); if (unlikely(!EFX_QWORD_IS_ZERO(errors))) { flags |= efx_ef10_handle_rx_event_errors(channel, n_packets, rx_encap_hdr, rx_l3_class, rx_l4_class, event); } else { bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP || rx_l4_class == ESE_FZ_L4_CLASS_UDP; switch (rx_encap_hdr) { case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */ flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */ if (tcpudp) flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */ break; case ESE_EZ_ENCAP_HDR_GRE: case ESE_EZ_ENCAP_HDR_NONE: if (tcpudp) flags |= EFX_RX_PKT_CSUMMED; break; default: netdev_WARN(efx->net_dev, "unknown encapsulation type: event=" EFX_QWORD_FMT "\n", EFX_QWORD_VAL(*event)); } } if (rx_l4_class == ESE_FZ_L4_CLASS_TCP) flags |= EFX_RX_PKT_TCP; channel->irq_mod_score += 2 * n_packets; /* Handle received packet(s) */ for (i = 0; i < n_packets; i++) { efx_rx_packet(rx_queue, rx_queue->removed_count & rx_queue->ptr_mask, rx_queue->scatter_n, rx_queue->scatter_len, flags); rx_queue->removed_count += rx_queue->scatter_n; } rx_queue->scatter_n = 0; rx_queue->scatter_len = 0; return n_packets; } static u32 efx_ef10_extract_event_ts(efx_qword_t *event) { u32 tstamp; tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI); tstamp <<= 16; tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO); return tstamp; } static void efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event) { struct efx_nic *efx = channel->efx; struct efx_tx_queue *tx_queue; unsigned int tx_ev_desc_ptr; unsigned int tx_ev_q_label; unsigned int tx_ev_type; u64 ts_part; if (unlikely(READ_ONCE(efx->reset_pending))) return; if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT))) return; /* Get the transmit queue */ tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL); tx_queue = channel->tx_queue + (tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL); if (!tx_queue->timestamping) { /* Transmit completion */ tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX); efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask); return; } /* Transmit timestamps are only available for 8XXX series. They result * in up to three events per packet. These occur in order, and are: * - the normal completion event (may be omitted) * - the low part of the timestamp * - the high part of the timestamp * * It's possible for multiple completion events to appear before the * corresponding timestamps. So we can for example get: * COMP N * COMP N+1 * TS_LO N * TS_HI N * TS_LO N+1 * TS_HI N+1 * * In addition it's also possible for the adjacent completions to be * merged, so we may not see COMP N above. As such, the completion * events are not very useful here. * * Each part of the timestamp is itself split across two 16 bit * fields in the event. */ tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1); switch (tx_ev_type) { case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION: /* Ignore this event - see above. */ break; case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO: ts_part = efx_ef10_extract_event_ts(event); tx_queue->completed_timestamp_minor = ts_part; break; case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI: ts_part = efx_ef10_extract_event_ts(event); tx_queue->completed_timestamp_major = ts_part; efx_xmit_done_single(tx_queue); break; default: netif_err(efx, hw, efx->net_dev, "channel %d unknown tx event type %d (data " EFX_QWORD_FMT ")\n", channel->channel, tx_ev_type, EFX_QWORD_VAL(*event)); break; } } static void efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event) { struct efx_nic *efx = channel->efx; int subcode; subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE); switch (subcode) { case ESE_DZ_DRV_TIMER_EV: case ESE_DZ_DRV_WAKE_UP_EV: break; case ESE_DZ_DRV_START_UP_EV: /* event queue init complete. ok. */ break; default: netif_err(efx, hw, efx->net_dev, "channel %d unknown driver event type %d" " (data " EFX_QWORD_FMT ")\n", channel->channel, subcode, EFX_QWORD_VAL(*event)); } } static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel, efx_qword_t *event) { struct efx_nic *efx = channel->efx; u32 subcode; subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0); switch (subcode) { case EFX_EF10_TEST: channel->event_test_cpu = raw_smp_processor_id(); break; case EFX_EF10_REFILL: /* The queue must be empty, so we won't receive any rx * events, so efx_process_channel() won't refill the * queue. Refill it here */ efx_fast_push_rx_descriptors(&channel->rx_queue, true); break; default: netif_err(efx, hw, efx->net_dev, "channel %d unknown driver event type %u" " (data " EFX_QWORD_FMT ")\n", channel->channel, (unsigned) subcode, EFX_QWORD_VAL(*event)); } } static int efx_ef10_ev_process(struct efx_channel *channel, int quota) { struct efx_nic *efx = channel->efx; efx_qword_t event, *p_event; unsigned int read_ptr; int ev_code; int spent = 0; if (quota <= 0) return spent; read_ptr = channel->eventq_read_ptr; for (;;) { p_event = efx_event(channel, read_ptr); event = *p_event; if (!efx_event_present(&event)) break; EFX_SET_QWORD(*p_event); ++read_ptr; ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE); netif_vdbg(efx, drv, efx->net_dev, "processing event on %d " EFX_QWORD_FMT "\n", channel->channel, EFX_QWORD_VAL(event)); switch (ev_code) { case ESE_DZ_EV_CODE_MCDI_EV: efx_mcdi_process_event(channel, &event); break; case ESE_DZ_EV_CODE_RX_EV: spent += efx_ef10_handle_rx_event(channel, &event); if (spent >= quota) { /* XXX can we split a merged event to * avoid going over-quota? */ spent = quota; goto out; } break; case ESE_DZ_EV_CODE_TX_EV: efx_ef10_handle_tx_event(channel, &event); break; case ESE_DZ_EV_CODE_DRIVER_EV: efx_ef10_handle_driver_event(channel, &event); if (++spent == quota) goto out; break; case EFX_EF10_DRVGEN_EV: efx_ef10_handle_driver_generated_event(channel, &event); break; default: netif_err(efx, hw, efx->net_dev, "channel %d unknown event type %d" " (data " EFX_QWORD_FMT ")\n", channel->channel, ev_code, EFX_QWORD_VAL(event)); } } out: channel->eventq_read_ptr = read_ptr; return spent; } static void efx_ef10_ev_read_ack(struct efx_channel *channel) { struct efx_nic *efx = channel->efx; efx_dword_t rptr; if (EFX_EF10_WORKAROUND_35388(efx)) { BUILD_BUG_ON(EFX_MIN_EVQ_SIZE < (1 << ERF_DD_EVQ_IND_RPTR_WIDTH)); BUILD_BUG_ON(EFX_MAX_EVQ_SIZE > (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH)); EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS, EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH, ERF_DD_EVQ_IND_RPTR, (channel->eventq_read_ptr & channel->eventq_mask) >> ERF_DD_EVQ_IND_RPTR_WIDTH); efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT, channel->channel); EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS, EFE_DD_EVQ_IND_RPTR_FLAGS_LOW, ERF_DD_EVQ_IND_RPTR, channel->eventq_read_ptr & ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1)); efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT, channel->channel); } else { EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR, channel->eventq_read_ptr & channel->eventq_mask); efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel); } } static void efx_ef10_ev_test_generate(struct efx_channel *channel) { MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN); struct efx_nic *efx = channel->efx; efx_qword_t event; int rc; EFX_POPULATE_QWORD_2(event, ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV, ESF_DZ_EV_DATA, EFX_EF10_TEST); MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel); /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has * already swapped the data to little-endian order. */ memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0], sizeof(efx_qword_t)); rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf), NULL, 0, NULL); if (rc != 0) goto fail; return; fail: WARN_ON(true); netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); } static void efx_ef10_prepare_flr(struct efx_nic *efx) { atomic_set(&efx->active_queues, 0); } static int efx_ef10_vport_set_mac_address(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; u8 mac_old[ETH_ALEN]; int rc, rc2; /* Only reconfigure a PF-created vport */ if (is_zero_ether_addr(nic_data->vport_mac)) return 0; efx_device_detach_sync(efx); efx_net_stop(efx->net_dev); down_write(&efx->filter_sem); efx_mcdi_filter_table_remove(efx); up_write(&efx->filter_sem); rc = efx_ef10_vadaptor_free(efx, efx->vport_id); if (rc) goto restore_filters; ether_addr_copy(mac_old, nic_data->vport_mac); rc = efx_ef10_vport_del_mac(efx, efx->vport_id, nic_data->vport_mac); if (rc) goto restore_vadaptor; rc = efx_ef10_vport_add_mac(efx, efx->vport_id, efx->net_dev->dev_addr); if (!rc) { ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr); } else { rc2 = efx_ef10_vport_add_mac(efx, efx->vport_id, mac_old); if (rc2) { /* Failed to add original MAC, so clear vport_mac */ eth_zero_addr(nic_data->vport_mac); goto reset_nic; } } restore_vadaptor: rc2 = efx_ef10_vadaptor_alloc(efx, efx->vport_id); if (rc2) goto reset_nic; restore_filters: down_write(&efx->filter_sem); rc2 = efx_ef10_filter_table_probe(efx); up_write(&efx->filter_sem); if (rc2) goto reset_nic; rc2 = efx_net_open(efx->net_dev); if (rc2) goto reset_nic; efx_device_attach_if_not_resetting(efx); return rc; reset_nic: netif_err(efx, drv, efx->net_dev, "Failed to restore when changing MAC address - scheduling reset\n"); efx_schedule_reset(efx, RESET_TYPE_DATAPATH); return rc ? rc : rc2; } static int efx_ef10_set_mac_address(struct efx_nic *efx) { MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN); bool was_enabled = efx->port_enabled; int rc; efx_device_detach_sync(efx); efx_net_stop(efx->net_dev); mutex_lock(&efx->mac_lock); down_write(&efx->filter_sem); efx_mcdi_filter_table_remove(efx); ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR), efx->net_dev->dev_addr); MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID, efx->vport_id); rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf, sizeof(inbuf), NULL, 0, NULL); efx_ef10_filter_table_probe(efx); up_write(&efx->filter_sem); mutex_unlock(&efx->mac_lock); if (was_enabled) efx_net_open(efx->net_dev); efx_device_attach_if_not_resetting(efx); #ifdef CONFIG_SFC_SRIOV if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) { struct efx_ef10_nic_data *nic_data = efx->nic_data; struct pci_dev *pci_dev_pf = efx->pci_dev->physfn; if (rc == -EPERM) { struct efx_nic *efx_pf; /* Switch to PF and change MAC address on vport */ efx_pf = pci_get_drvdata(pci_dev_pf); rc = efx_ef10_sriov_set_vf_mac(efx_pf, nic_data->vf_index, efx->net_dev->dev_addr); } else if (!rc) { struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf); struct efx_ef10_nic_data *nic_data = efx_pf->nic_data; unsigned int i; /* MAC address successfully changed by VF (with MAC * spoofing) so update the parent PF if possible. */ for (i = 0; i < efx_pf->vf_count; ++i) { struct ef10_vf *vf = nic_data->vf + i; if (vf->efx == efx) { ether_addr_copy(vf->mac, efx->net_dev->dev_addr); return 0; } } } } else #endif if (rc == -EPERM) { netif_err(efx, drv, efx->net_dev, "Cannot change MAC address; use sfboot to enable" " mac-spoofing on this interface\n"); } else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) { /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC * fall-back to the method of changing the MAC address on the * vport. This only applies to PFs because such versions of * MCFW do not support VFs. */ rc = efx_ef10_vport_set_mac_address(efx); } else if (rc) { efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC, sizeof(inbuf), NULL, 0, rc); } return rc; } static int efx_ef10_mac_reconfigure(struct efx_nic *efx, bool mtu_only) { WARN_ON(!mutex_is_locked(&efx->mac_lock)); efx_mcdi_filter_sync_rx_mode(efx); if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED)) return efx_mcdi_set_mtu(efx); return efx_mcdi_set_mac(efx); } static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type) { MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN); MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type); return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf), NULL, 0, NULL); } /* MC BISTs follow a different poll mechanism to phy BISTs. * The BIST is done in the poll handler on the MC, and the MCDI command * will block until the BIST is done. */ static int efx_ef10_poll_bist(struct efx_nic *efx) { int rc; MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN); size_t outlen; u32 result; rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0, outbuf, sizeof(outbuf), &outlen); if (rc != 0) return rc; if (outlen < MC_CMD_POLL_BIST_OUT_LEN) return -EIO; result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT); switch (result) { case MC_CMD_POLL_BIST_PASSED: netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n"); return 0; case MC_CMD_POLL_BIST_TIMEOUT: netif_err(efx, hw, efx->net_dev, "BIST timed out\n"); return -EIO; case MC_CMD_POLL_BIST_FAILED: netif_err(efx, hw, efx->net_dev, "BIST failed.\n"); return -EIO; default: netif_err(efx, hw, efx->net_dev, "BIST returned unknown result %u", result); return -EIO; } } static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type) { int rc; netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type); rc = efx_ef10_start_bist(efx, bist_type); if (rc != 0) return rc; return efx_ef10_poll_bist(efx); } static int efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests) { int rc, rc2; efx_reset_down(efx, RESET_TYPE_WORLD); rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST, NULL, 0, NULL, 0, NULL); if (rc != 0) goto out; tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1; tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1; rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD); out: if (rc == -EPERM) rc = 0; rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0); return rc ? rc : rc2; } #ifdef CONFIG_SFC_MTD struct efx_ef10_nvram_type_info { u16 type, type_mask; u8 port; const char *name; }; static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = { { NVRAM_PARTITION_TYPE_MC_FIRMWARE, 0, 0, "sfc_mcfw" }, { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0, 0, "sfc_mcfw_backup" }, { NVRAM_PARTITION_TYPE_EXPANSION_ROM, 0, 0, "sfc_exp_rom" }, { NVRAM_PARTITION_TYPE_STATIC_CONFIG, 0, 0, "sfc_static_cfg" }, { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 0, 0, "sfc_dynamic_cfg" }, { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0, 0, "sfc_exp_rom_cfg" }, { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0, 1, "sfc_exp_rom_cfg" }, { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0, 2, "sfc_exp_rom_cfg" }, { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0, 3, "sfc_exp_rom_cfg" }, { NVRAM_PARTITION_TYPE_LICENSE, 0, 0, "sfc_license" }, { NVRAM_PARTITION_TYPE_PHY_MIN, 0xff, 0, "sfc_phy_fw" }, { NVRAM_PARTITION_TYPE_MUM_FIRMWARE, 0, 0, "sfc_mumfw" }, { NVRAM_PARTITION_TYPE_EXPANSION_UEFI, 0, 0, "sfc_uefi" }, { NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS, 0, 0, "sfc_dynamic_cfg_dflt" }, { NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS, 0, 0, "sfc_exp_rom_cfg_dflt" }, { NVRAM_PARTITION_TYPE_STATUS, 0, 0, "sfc_status" }, { NVRAM_PARTITION_TYPE_BUNDLE, 0, 0, "sfc_bundle" }, { NVRAM_PARTITION_TYPE_BUNDLE_METADATA, 0, 0, "sfc_bundle_metadata" }, }; #define EF10_NVRAM_PARTITION_COUNT ARRAY_SIZE(efx_ef10_nvram_types) static int efx_ef10_mtd_probe_partition(struct efx_nic *efx, struct efx_mcdi_mtd_partition *part, unsigned int type, unsigned long *found) { MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX); const struct efx_ef10_nvram_type_info *info; size_t size, erase_size, outlen; int type_idx = 0; bool protected; int rc; for (type_idx = 0; ; type_idx++) { if (type_idx == EF10_NVRAM_PARTITION_COUNT) return -ENODEV; info = efx_ef10_nvram_types + type_idx; if ((type & ~info->type_mask) == info->type) break; } if (info->port != efx_port_num(efx)) return -ENODEV; rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected); if (rc) return rc; if (protected && (type != NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS && type != NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS)) /* Hide protected partitions that don't provide defaults. */ return -ENODEV; if (protected) /* Protected partitions are read only. */ erase_size = 0; /* If we've already exposed a partition of this type, hide this * duplicate. All operations on MTDs are keyed by the type anyway, * so we can't act on the duplicate. */ if (__test_and_set_bit(type_idx, found)) return -EEXIST; part->nvram_type = type; MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type); rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); if (rc) return rc; if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN) return -EIO; if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) & (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN)) part->fw_subtype = MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_SUBTYPE); part->common.dev_type_name = "EF10 NVRAM manager"; part->common.type_name = info->name; part->common.mtd.type = MTD_NORFLASH; part->common.mtd.flags = MTD_CAP_NORFLASH; part->common.mtd.size = size; part->common.mtd.erasesize = erase_size; /* sfc_status is read-only */ if (!erase_size) part->common.mtd.flags |= MTD_NO_ERASE; return 0; } static int efx_ef10_mtd_probe(struct efx_nic *efx) { MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX); DECLARE_BITMAP(found, EF10_NVRAM_PARTITION_COUNT) = { 0 }; struct efx_mcdi_mtd_partition *parts; size_t outlen, n_parts_total, i, n_parts; unsigned int type; int rc; ASSERT_RTNL(); BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0); rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0, outbuf, sizeof(outbuf), &outlen); if (rc) return rc; if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN) return -EIO; n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS); if (n_parts_total > MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID)) return -EIO; parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL); if (!parts) return -ENOMEM; n_parts = 0; for (i = 0; i < n_parts_total; i++) { type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID, i); rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type, found); if (rc == -EEXIST || rc == -ENODEV) continue; if (rc) goto fail; n_parts++; } if (!n_parts) { kfree(parts); return 0; } rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts)); fail: if (rc) kfree(parts); return rc; } #endif /* CONFIG_SFC_MTD */ static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time) { _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD); } static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx, u32 host_time) {} static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel, bool temp) { MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN); int rc; if (channel->sync_events_state == SYNC_EVENTS_REQUESTED || channel->sync_events_state == SYNC_EVENTS_VALID || (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED)) return 0; channel->sync_events_state = SYNC_EVENTS_REQUESTED; MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE); MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE, channel->channel); rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP, inbuf, sizeof(inbuf), NULL, 0, NULL); if (rc != 0) channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT : SYNC_EVENTS_DISABLED; return rc; } static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel, bool temp) { MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN); int rc; if (channel->sync_events_state == SYNC_EVENTS_DISABLED || (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT)) return 0; if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) { channel->sync_events_state = SYNC_EVENTS_DISABLED; return 0; } channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT : SYNC_EVENTS_DISABLED; MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE); MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE); MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE, channel->channel); rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP, inbuf, sizeof(inbuf), NULL, 0, NULL); return rc; } static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en, bool temp) { int (*set)(struct efx_channel *channel, bool temp); struct efx_channel *channel; set = en ? efx_ef10_rx_enable_timestamping : efx_ef10_rx_disable_timestamping; channel = efx_ptp_channel(efx); if (channel) { int rc = set(channel, temp); if (en && rc != 0) { efx_ef10_ptp_set_ts_sync_events(efx, false, temp); return rc; } } return 0; } static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx, struct hwtstamp_config *init) { return -EOPNOTSUPP; } static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx, struct hwtstamp_config *init) { int rc; switch (init->rx_filter) { case HWTSTAMP_FILTER_NONE: efx_ef10_ptp_set_ts_sync_events(efx, false, false); /* if TX timestamping is still requested then leave PTP on */ return efx_ptp_change_mode(efx, init->tx_type != HWTSTAMP_TX_OFF, 0); case HWTSTAMP_FILTER_ALL: case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_EVENT: case HWTSTAMP_FILTER_PTP_V2_SYNC: case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: case HWTSTAMP_FILTER_NTP_ALL: init->rx_filter = HWTSTAMP_FILTER_ALL; rc = efx_ptp_change_mode(efx, true, 0); if (!rc) rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false); if (rc) efx_ptp_change_mode(efx, false, 0); return rc; default: return -ERANGE; } } static int efx_ef10_get_phys_port_id(struct efx_nic *efx, struct netdev_phys_item_id *ppid) { struct efx_ef10_nic_data *nic_data = efx->nic_data; if (!is_valid_ether_addr(nic_data->port_id)) return -EOPNOTSUPP; ppid->id_len = ETH_ALEN; memcpy(ppid->id, nic_data->port_id, ppid->id_len); return 0; } static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid) { if (proto != htons(ETH_P_8021Q)) return -EINVAL; return efx_ef10_add_vlan(efx, vid); } static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid) { if (proto != htons(ETH_P_8021Q)) return -EINVAL; return efx_ef10_del_vlan(efx, vid); } /* We rely on the MCDI wiping out our TX rings if it made any changes to the * ports table, ensuring that any TSO descriptors that were made on a now- * removed tunnel port will be blown away and won't break things when we try * to transmit them using the new ports table. */ static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading) { struct efx_ef10_nic_data *nic_data = efx->nic_data; MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX); MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN); bool will_reset = false; size_t num_entries = 0; size_t inlen, outlen; size_t i; int rc; efx_dword_t flags_and_num_entries; WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock)); nic_data->udp_tunnels_dirty = false; if (!(nic_data->datapath_caps & (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) { efx_device_attach_if_not_resetting(efx); return 0; } BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) > MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM); for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) { if (nic_data->udp_tunnels[i].type != TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID) { efx_dword_t entry; EFX_POPULATE_DWORD_2(entry, TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT, ntohs(nic_data->udp_tunnels[i].port), TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL, nic_data->udp_tunnels[i].type); *_MCDI_ARRAY_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES, num_entries++) = entry; } } BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST - MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 != EFX_WORD_1_LBN); BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 != EFX_WORD_1_WIDTH); EFX_POPULATE_DWORD_2(flags_and_num_entries, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING, !!unloading, EFX_WORD_1, num_entries); *_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) = flags_and_num_entries; inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries); rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS, inbuf, inlen, outbuf, sizeof(outbuf), &outlen); if (rc == -EIO) { /* Most likely the MC rebooted due to another function also * setting its tunnel port list. Mark the tunnel port list as * dirty, so it will be pushed upon coming up from the reboot. */ nic_data->udp_tunnels_dirty = true; return 0; } if (rc) { /* expected not available on unprivileged functions */ if (rc != -EPERM) netif_warn(efx, drv, efx->net_dev, "Unable to set UDP tunnel ports; rc=%d.\n", rc); } else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) & (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) { netif_info(efx, drv, efx->net_dev, "Rebooting MC due to UDP tunnel port list change\n"); will_reset = true; if (unloading) /* Delay for the MC reset to complete. This will make * unloading other functions a bit smoother. This is a * race, but the other unload will work whichever way * it goes, this just avoids an unnecessary error * message. */ msleep(100); } if (!will_reset && !unloading) { /* The caller will have detached, relying on the MC reset to * trigger a re-attach. Since there won't be an MC reset, we * have to do the attach ourselves. */ efx_device_attach_if_not_resetting(efx); } return rc; } static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; int rc = 0; mutex_lock(&nic_data->udp_tunnels_lock); if (nic_data->udp_tunnels_dirty) { /* Make sure all TX are stopped while we modify the table, else * we might race against an efx_features_check(). */ efx_device_detach_sync(efx); rc = efx_ef10_set_udp_tnl_ports(efx, false); } mutex_unlock(&nic_data->udp_tunnels_lock); return rc; } static int efx_ef10_udp_tnl_set_port(struct net_device *dev, unsigned int table, unsigned int entry, struct udp_tunnel_info *ti) { struct efx_nic *efx = efx_netdev_priv(dev); struct efx_ef10_nic_data *nic_data; int efx_tunnel_type, rc; if (ti->type == UDP_TUNNEL_TYPE_VXLAN) efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN; else efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE; nic_data = efx->nic_data; if (!(nic_data->datapath_caps & (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) return -EOPNOTSUPP; mutex_lock(&nic_data->udp_tunnels_lock); /* Make sure all TX are stopped while we add to the table, else we * might race against an efx_features_check(). */ efx_device_detach_sync(efx); nic_data->udp_tunnels[entry].type = efx_tunnel_type; nic_data->udp_tunnels[entry].port = ti->port; rc = efx_ef10_set_udp_tnl_ports(efx, false); mutex_unlock(&nic_data->udp_tunnels_lock); return rc; } /* Called under the TX lock with the TX queue running, hence no-one can be * in the middle of updating the UDP tunnels table. However, they could * have tried and failed the MCDI, in which case they'll have set the dirty * flag before dropping their locks. */ static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port) { struct efx_ef10_nic_data *nic_data = efx->nic_data; size_t i; if (!(nic_data->datapath_caps & (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) return false; if (nic_data->udp_tunnels_dirty) /* SW table may not match HW state, so just assume we can't * use any UDP tunnel offloads. */ return false; for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) if (nic_data->udp_tunnels[i].type != TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID && nic_data->udp_tunnels[i].port == port) return true; return false; } static int efx_ef10_udp_tnl_unset_port(struct net_device *dev, unsigned int table, unsigned int entry, struct udp_tunnel_info *ti) { struct efx_nic *efx = efx_netdev_priv(dev); struct efx_ef10_nic_data *nic_data; int rc; nic_data = efx->nic_data; mutex_lock(&nic_data->udp_tunnels_lock); /* Make sure all TX are stopped while we remove from the table, else we * might race against an efx_features_check(). */ efx_device_detach_sync(efx); nic_data->udp_tunnels[entry].type = TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID; nic_data->udp_tunnels[entry].port = 0; rc = efx_ef10_set_udp_tnl_ports(efx, false); mutex_unlock(&nic_data->udp_tunnels_lock); return rc; } static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels = { .set_port = efx_ef10_udp_tnl_set_port, .unset_port = efx_ef10_udp_tnl_unset_port, .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP, .tables = { { .n_entries = 16, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN | UDP_TUNNEL_TYPE_GENEVE, }, }, }; /* EF10 may have multiple datapath firmware variants within a * single version. Report which variants are running. */ static size_t efx_ef10_print_additional_fwver(struct efx_nic *efx, char *buf, size_t len) { struct efx_ef10_nic_data *nic_data = efx->nic_data; return scnprintf(buf, len, " rx%x tx%x", nic_data->rx_dpcpu_fw_id, nic_data->tx_dpcpu_fw_id); } static unsigned int ef10_check_caps(const struct efx_nic *efx, u8 flag, u32 offset) { const struct efx_ef10_nic_data *nic_data = efx->nic_data; switch (offset) { case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS1_OFST): return nic_data->datapath_caps & BIT_ULL(flag); case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS2_OFST): return nic_data->datapath_caps2 & BIT_ULL(flag); default: return 0; } } static unsigned int efx_ef10_recycle_ring_size(const struct efx_nic *efx) { unsigned int ret = EFX_RECYCLE_RING_SIZE_10G; /* There is no difference between PFs and VFs. The side is based on * the maximum link speed of a given NIC. */ switch (efx->pci_dev->device & 0xfff) { case 0x0903: /* Farmingdale can do up to 10G */ break; case 0x0923: /* Greenport can do up to 40G */ case 0x0a03: /* Medford can do up to 40G */ ret *= 4; break; default: /* Medford2 can do up to 100G */ ret *= 10; } if (IS_ENABLED(CONFIG_PPC64)) ret *= 4; return ret; } #define EF10_OFFLOAD_FEATURES \ (NETIF_F_IP_CSUM | \ NETIF_F_HW_VLAN_CTAG_FILTER | \ NETIF_F_IPV6_CSUM | \ NETIF_F_RXHASH | \ NETIF_F_NTUPLE) const struct efx_nic_type efx_hunt_a0_vf_nic_type = { .is_vf = true, .mem_bar = efx_ef10_vf_mem_bar, .mem_map_size = efx_ef10_mem_map_size, .probe = efx_ef10_probe_vf, .remove = efx_ef10_remove, .dimension_resources = efx_ef10_dimension_resources, .init = efx_ef10_init_nic, .fini = efx_ef10_fini_nic, .map_reset_reason = efx_ef10_map_reset_reason, .map_reset_flags = efx_ef10_map_reset_flags, .reset = efx_ef10_reset, .probe_port = efx_mcdi_port_probe, .remove_port = efx_mcdi_port_remove, .fini_dmaq = efx_fini_dmaq, .prepare_flr = efx_ef10_prepare_flr, .finish_flr = efx_port_dummy_op_void, .describe_stats = efx_ef10_describe_stats, .update_stats = efx_ef10_update_stats_vf, .update_stats_atomic = efx_ef10_update_stats_atomic_vf, .start_stats = efx_port_dummy_op_void, .pull_stats = efx_port_dummy_op_void, .stop_stats = efx_port_dummy_op_void, .push_irq_moderation = efx_ef10_push_irq_moderation, .reconfigure_mac = efx_ef10_mac_reconfigure, .check_mac_fault = efx_mcdi_mac_check_fault, .reconfigure_port = efx_mcdi_port_reconfigure, .get_wol = efx_ef10_get_wol_vf, .set_wol = efx_ef10_set_wol_vf, .resume_wol = efx_port_dummy_op_void, .mcdi_request = efx_ef10_mcdi_request, .mcdi_poll_response = efx_ef10_mcdi_poll_response, .mcdi_read_response = efx_ef10_mcdi_read_response, .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot, .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected, .irq_enable_master = efx_port_dummy_op_void, .irq_test_generate = efx_ef10_irq_test_generate, .irq_disable_non_ev = efx_port_dummy_op_void, .irq_handle_msi = efx_ef10_msi_interrupt, .irq_handle_legacy = efx_ef10_legacy_interrupt, .tx_probe = efx_ef10_tx_probe, .tx_init = efx_ef10_tx_init, .tx_remove = efx_mcdi_tx_remove, .tx_write = efx_ef10_tx_write, .tx_limit_len = efx_ef10_tx_limit_len, .tx_enqueue = __efx_enqueue_skb, .rx_push_rss_config = efx_mcdi_vf_rx_push_rss_config, .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config, .rx_probe = efx_mcdi_rx_probe, .rx_init = efx_mcdi_rx_init, .rx_remove = efx_mcdi_rx_remove, .rx_write = efx_ef10_rx_write, .rx_defer_refill = efx_ef10_rx_defer_refill, .rx_packet = __efx_rx_packet, .ev_probe = efx_mcdi_ev_probe, .ev_init = efx_ef10_ev_init, .ev_fini = efx_mcdi_ev_fini, .ev_remove = efx_mcdi_ev_remove, .ev_process = efx_ef10_ev_process, .ev_read_ack = efx_ef10_ev_read_ack, .ev_test_generate = efx_ef10_ev_test_generate, .filter_table_probe = efx_ef10_filter_table_probe, .filter_table_restore = efx_mcdi_filter_table_restore, .filter_table_remove = efx_mcdi_filter_table_remove, .filter_update_rx_scatter = efx_mcdi_update_rx_scatter, .filter_insert = efx_mcdi_filter_insert, .filter_remove_safe = efx_mcdi_filter_remove_safe, .filter_get_safe = efx_mcdi_filter_get_safe, .filter_clear_rx = efx_mcdi_filter_clear_rx, .filter_count_rx_used = efx_mcdi_filter_count_rx_used, .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit, .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids, #ifdef CONFIG_RFS_ACCEL .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one, #endif #ifdef CONFIG_SFC_MTD .mtd_probe = efx_port_dummy_op_int, #endif .ptp_write_host_time = efx_ef10_ptp_write_host_time_vf, .ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf, .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid, .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid, #ifdef CONFIG_SFC_SRIOV .vswitching_probe = efx_ef10_vswitching_probe_vf, .vswitching_restore = efx_ef10_vswitching_restore_vf, .vswitching_remove = efx_ef10_vswitching_remove_vf, #endif .get_mac_address = efx_ef10_get_mac_address_vf, .set_mac_address = efx_ef10_set_mac_address, .get_phys_port_id = efx_ef10_get_phys_port_id, .revision = EFX_REV_HUNT_A0, .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH), .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE, .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST, .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST, .can_rx_scatter = true, .always_rx_scatter = true, .min_interrupt_mode = EFX_INT_MODE_MSIX, .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH, .offload_features = EF10_OFFLOAD_FEATURES, .mcdi_max_ver = 2, .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS, .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE | 1 << HWTSTAMP_FILTER_ALL, .rx_hash_key_size = 40, .check_caps = ef10_check_caps, .print_additional_fwver = efx_ef10_print_additional_fwver, .sensor_event = efx_mcdi_sensor_event, .rx_recycle_ring_size = efx_ef10_recycle_ring_size, }; const struct efx_nic_type efx_hunt_a0_nic_type = { .is_vf = false, .mem_bar = efx_ef10_pf_mem_bar, .mem_map_size = efx_ef10_mem_map_size, .probe = efx_ef10_probe_pf, .remove = efx_ef10_remove, .dimension_resources = efx_ef10_dimension_resources, .init = efx_ef10_init_nic, .fini = efx_ef10_fini_nic, .map_reset_reason = efx_ef10_map_reset_reason, .map_reset_flags = efx_ef10_map_reset_flags, .reset = efx_ef10_reset, .probe_port = efx_mcdi_port_probe, .remove_port = efx_mcdi_port_remove, .fini_dmaq = efx_fini_dmaq, .prepare_flr = efx_ef10_prepare_flr, .finish_flr = efx_port_dummy_op_void, .describe_stats = efx_ef10_describe_stats, .update_stats = efx_ef10_update_stats_pf, .start_stats = efx_mcdi_mac_start_stats, .pull_stats = efx_mcdi_mac_pull_stats, .stop_stats = efx_mcdi_mac_stop_stats, .push_irq_moderation = efx_ef10_push_irq_moderation, .reconfigure_mac = efx_ef10_mac_reconfigure, .check_mac_fault = efx_mcdi_mac_check_fault, .reconfigure_port = efx_mcdi_port_reconfigure, .get_wol = efx_ef10_get_wol, .set_wol = efx_ef10_set_wol, .resume_wol = efx_port_dummy_op_void, .get_fec_stats = efx_ef10_get_fec_stats, .test_chip = efx_ef10_test_chip, .test_nvram = efx_mcdi_nvram_test_all, .mcdi_request = efx_ef10_mcdi_request, .mcdi_poll_response = efx_ef10_mcdi_poll_response, .mcdi_read_response = efx_ef10_mcdi_read_response, .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot, .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected, .irq_enable_master = efx_port_dummy_op_void, .irq_test_generate = efx_ef10_irq_test_generate, .irq_disable_non_ev = efx_port_dummy_op_void, .irq_handle_msi = efx_ef10_msi_interrupt, .irq_handle_legacy = efx_ef10_legacy_interrupt, .tx_probe = efx_ef10_tx_probe, .tx_init = efx_ef10_tx_init, .tx_remove = efx_mcdi_tx_remove, .tx_write = efx_ef10_tx_write, .tx_limit_len = efx_ef10_tx_limit_len, .tx_enqueue = __efx_enqueue_skb, .rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config, .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config, .rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config, .rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config, .rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts, .rx_probe = efx_mcdi_rx_probe, .rx_init = efx_mcdi_rx_init, .rx_remove = efx_mcdi_rx_remove, .rx_write = efx_ef10_rx_write, .rx_defer_refill = efx_ef10_rx_defer_refill, .rx_packet = __efx_rx_packet, .ev_probe = efx_mcdi_ev_probe, .ev_init = efx_ef10_ev_init, .ev_fini = efx_mcdi_ev_fini, .ev_remove = efx_mcdi_ev_remove, .ev_process = efx_ef10_ev_process, .ev_read_ack = efx_ef10_ev_read_ack, .ev_test_generate = efx_ef10_ev_test_generate, .filter_table_probe = efx_ef10_filter_table_probe, .filter_table_restore = efx_mcdi_filter_table_restore, .filter_table_remove = efx_mcdi_filter_table_remove, .filter_update_rx_scatter = efx_mcdi_update_rx_scatter, .filter_insert = efx_mcdi_filter_insert, .filter_remove_safe = efx_mcdi_filter_remove_safe, .filter_get_safe = efx_mcdi_filter_get_safe, .filter_clear_rx = efx_mcdi_filter_clear_rx, .filter_count_rx_used = efx_mcdi_filter_count_rx_used, .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit, .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids, #ifdef CONFIG_RFS_ACCEL .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one, #endif #ifdef CONFIG_SFC_MTD .mtd_probe = efx_ef10_mtd_probe, .mtd_rename = efx_mcdi_mtd_rename, .mtd_read = efx_mcdi_mtd_read, .mtd_erase = efx_mcdi_mtd_erase, .mtd_write = efx_mcdi_mtd_write, .mtd_sync = efx_mcdi_mtd_sync, #endif .ptp_write_host_time = efx_ef10_ptp_write_host_time, .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events, .ptp_set_ts_config = efx_ef10_ptp_set_ts_config, .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid, .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid, .udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports, .udp_tnl_has_port = efx_ef10_udp_tnl_has_port, #ifdef CONFIG_SFC_SRIOV .sriov_configure = efx_ef10_sriov_configure, .sriov_init = efx_ef10_sriov_init, .sriov_fini = efx_ef10_sriov_fini, .sriov_wanted = efx_ef10_sriov_wanted, .sriov_reset = efx_ef10_sriov_reset, .sriov_flr = efx_ef10_sriov_flr, .sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac, .sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan, .sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk, .sriov_get_vf_config = efx_ef10_sriov_get_vf_config, .sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state, .vswitching_probe = efx_ef10_vswitching_probe_pf, .vswitching_restore = efx_ef10_vswitching_restore_pf, .vswitching_remove = efx_ef10_vswitching_remove_pf, #endif .get_mac_address = efx_ef10_get_mac_address_pf, .set_mac_address = efx_ef10_set_mac_address, .tso_versions = efx_ef10_tso_versions, .get_phys_port_id = efx_ef10_get_phys_port_id, .revision = EFX_REV_HUNT_A0, .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH), .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE, .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST, .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST, .can_rx_scatter = true, .always_rx_scatter = true, .option_descriptors = true, .min_interrupt_mode = EFX_INT_MODE_LEGACY, .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH, .offload_features = EF10_OFFLOAD_FEATURES, .mcdi_max_ver = 2, .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS, .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE | 1 << HWTSTAMP_FILTER_ALL, .rx_hash_key_size = 40, .check_caps = ef10_check_caps, .print_additional_fwver = efx_ef10_print_additional_fwver, .sensor_event = efx_mcdi_sensor_event, .rx_recycle_ring_size = efx_ef10_recycle_ring_size, };