/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include #include #include #include #include "i915_drv.h" #include "intel_uc.h" /** * DOC: GuC-based command submission * * i915_guc_client: * We use the term client to avoid confusion with contexts. A i915_guc_client is * equivalent to GuC object guc_context_desc. This context descriptor is * allocated from a pool of 1024 entries. Kernel driver will allocate doorbell * and workqueue for it. Also the process descriptor (guc_process_desc), which * is mapped to client space. So the client can write Work Item then ring the * doorbell. * * To simplify the implementation, we allocate one gem object that contains all * pages for doorbell, process descriptor and workqueue. * * The Scratch registers: * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes * a value to the action register (SOFT_SCRATCH_0) along with any data. It then * triggers an interrupt on the GuC via another register write (0xC4C8). * Firmware writes a success/fail code back to the action register after * processes the request. The kernel driver polls waiting for this update and * then proceeds. * See host2guc_action() * * Doorbells: * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW) * mapped into process space. * * Work Items: * There are several types of work items that the host may place into a * workqueue, each with its own requirements and limitations. Currently only * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which * represents in-order queue. The kernel driver packs ring tail pointer and an * ELSP context descriptor dword into Work Item. * See guc_wq_item_append() * */ /* * Read GuC command/status register (SOFT_SCRATCH_0) * Return true if it contains a response rather than a command */ static inline bool host2guc_action_response(struct drm_i915_private *dev_priv, u32 *status) { u32 val = I915_READ(SOFT_SCRATCH(0)); *status = val; return GUC2HOST_IS_RESPONSE(val); } static int host2guc_action(struct intel_guc *guc, u32 *data, u32 len) { struct drm_i915_private *dev_priv = guc_to_i915(guc); u32 status; int i; int ret; if (WARN_ON(len < 1 || len > 15)) return -EINVAL; mutex_lock(&guc->action_lock); intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); dev_priv->guc.action_count += 1; dev_priv->guc.action_cmd = data[0]; for (i = 0; i < len; i++) I915_WRITE(SOFT_SCRATCH(i), data[i]); POSTING_READ(SOFT_SCRATCH(i - 1)); I915_WRITE(HOST2GUC_INTERRUPT, HOST2GUC_TRIGGER); /* * Fast commands should complete in less than 10us, so sample quickly * up to that length of time, then switch to a slower sleep-wait loop. * No HOST2GUC command should ever take longer than 10ms. */ ret = wait_for_us(host2guc_action_response(dev_priv, &status), 10); if (ret) ret = wait_for(host2guc_action_response(dev_priv, &status), 10); if (status != GUC2HOST_STATUS_SUCCESS) { /* * Either the GuC explicitly returned an error (which * we convert to -EIO here) or no response at all was * received within the timeout limit (-ETIMEDOUT) */ if (ret != -ETIMEDOUT) ret = -EIO; DRM_WARN("Action 0x%X failed; ret=%d status=0x%08X response=0x%08X\n", data[0], ret, status, I915_READ(SOFT_SCRATCH(15))); dev_priv->guc.action_fail += 1; dev_priv->guc.action_err = ret; } dev_priv->guc.action_status = status; intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); mutex_unlock(&guc->action_lock); return ret; } /* * Tell the GuC to allocate or deallocate a specific doorbell */ static int host2guc_allocate_doorbell(struct intel_guc *guc, struct i915_guc_client *client) { u32 data[2]; data[0] = HOST2GUC_ACTION_ALLOCATE_DOORBELL; data[1] = client->ctx_index; return host2guc_action(guc, data, 2); } static int host2guc_release_doorbell(struct intel_guc *guc, struct i915_guc_client *client) { u32 data[2]; data[0] = HOST2GUC_ACTION_DEALLOCATE_DOORBELL; data[1] = client->ctx_index; return host2guc_action(guc, data, 2); } static int host2guc_sample_forcewake(struct intel_guc *guc, struct i915_guc_client *client) { struct drm_i915_private *dev_priv = guc_to_i915(guc); u32 data[2]; data[0] = HOST2GUC_ACTION_SAMPLE_FORCEWAKE; /* WaRsDisableCoarsePowerGating:skl,bxt */ if (!intel_enable_rc6() || NEEDS_WaRsDisableCoarsePowerGating(dev_priv)) data[1] = 0; else /* bit 0 and 1 are for Render and Media domain separately */ data[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA; return host2guc_action(guc, data, ARRAY_SIZE(data)); } static int host2guc_logbuffer_flush_complete(struct intel_guc *guc) { u32 data[1]; data[0] = HOST2GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE; return host2guc_action(guc, data, 1); } static int host2guc_force_logbuffer_flush(struct intel_guc *guc) { u32 data[2]; data[0] = HOST2GUC_ACTION_FORCE_LOG_BUFFER_FLUSH; data[1] = 0; return host2guc_action(guc, data, 2); } static int host2guc_logging_control(struct intel_guc *guc, u32 control_val) { u32 data[2]; data[0] = HOST2GUC_ACTION_UK_LOG_ENABLE_LOGGING; data[1] = control_val; return host2guc_action(guc, data, 2); } /* * Initialise, update, or clear doorbell data shared with the GuC * * These functions modify shared data and so need access to the mapped * client object which contains the page being used for the doorbell */ static int guc_update_doorbell_id(struct intel_guc *guc, struct i915_guc_client *client, u16 new_id) { struct sg_table *sg = guc->ctx_pool_vma->pages; void *doorbell_bitmap = guc->doorbell_bitmap; struct guc_doorbell_info *doorbell; struct guc_context_desc desc; size_t len; doorbell = client->vaddr + client->doorbell_offset; if (client->doorbell_id != GUC_INVALID_DOORBELL_ID && test_bit(client->doorbell_id, doorbell_bitmap)) { /* Deactivate the old doorbell */ doorbell->db_status = GUC_DOORBELL_DISABLED; (void)host2guc_release_doorbell(guc, client); __clear_bit(client->doorbell_id, doorbell_bitmap); } /* Update the GuC's idea of the doorbell ID */ len = sg_pcopy_to_buffer(sg->sgl, sg->nents, &desc, sizeof(desc), sizeof(desc) * client->ctx_index); if (len != sizeof(desc)) return -EFAULT; desc.db_id = new_id; len = sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc), sizeof(desc) * client->ctx_index); if (len != sizeof(desc)) return -EFAULT; client->doorbell_id = new_id; if (new_id == GUC_INVALID_DOORBELL_ID) return 0; /* Activate the new doorbell */ __set_bit(new_id, doorbell_bitmap); doorbell->cookie = 0; doorbell->db_status = GUC_DOORBELL_ENABLED; return host2guc_allocate_doorbell(guc, client); } static int guc_init_doorbell(struct intel_guc *guc, struct i915_guc_client *client, uint16_t db_id) { return guc_update_doorbell_id(guc, client, db_id); } static void guc_disable_doorbell(struct intel_guc *guc, struct i915_guc_client *client) { (void)guc_update_doorbell_id(guc, client, GUC_INVALID_DOORBELL_ID); /* XXX: wait for any interrupts */ /* XXX: wait for workqueue to drain */ } static uint16_t select_doorbell_register(struct intel_guc *guc, uint32_t priority) { /* * The bitmap tracks which doorbell registers are currently in use. * It is split into two halves; the first half is used for normal * priority contexts, the second half for high-priority ones. * Note that logically higher priorities are numerically less than * normal ones, so the test below means "is it high-priority?" */ const bool hi_pri = (priority <= GUC_CTX_PRIORITY_HIGH); const uint16_t half = GUC_MAX_DOORBELLS / 2; const uint16_t start = hi_pri ? half : 0; const uint16_t end = start + half; uint16_t id; id = find_next_zero_bit(guc->doorbell_bitmap, end, start); if (id == end) id = GUC_INVALID_DOORBELL_ID; DRM_DEBUG_DRIVER("assigned %s priority doorbell id 0x%x\n", hi_pri ? "high" : "normal", id); return id; } /* * Select, assign and relase doorbell cachelines * * These functions track which doorbell cachelines are in use. * The data they manipulate is protected by the host2guc lock. */ static uint32_t select_doorbell_cacheline(struct intel_guc *guc) { const uint32_t cacheline_size = cache_line_size(); uint32_t offset; /* Doorbell uses a single cache line within a page */ offset = offset_in_page(guc->db_cacheline); /* Moving to next cache line to reduce contention */ guc->db_cacheline += cacheline_size; DRM_DEBUG_DRIVER("selected doorbell cacheline 0x%x, next 0x%x, linesize %u\n", offset, guc->db_cacheline, cacheline_size); return offset; } /* * Initialise the process descriptor shared with the GuC firmware. */ static void guc_proc_desc_init(struct intel_guc *guc, struct i915_guc_client *client) { struct guc_process_desc *desc; desc = client->vaddr + client->proc_desc_offset; memset(desc, 0, sizeof(*desc)); /* * XXX: pDoorbell and WQVBaseAddress are pointers in process address * space for ring3 clients (set them as in mmap_ioctl) or kernel * space for kernel clients (map on demand instead? May make debug * easier to have it mapped). */ desc->wq_base_addr = 0; desc->db_base_addr = 0; desc->context_id = client->ctx_index; desc->wq_size_bytes = client->wq_size; desc->wq_status = WQ_STATUS_ACTIVE; desc->priority = client->priority; } /* * Initialise/clear the context descriptor shared with the GuC firmware. * * This descriptor tells the GuC where (in GGTT space) to find the important * data structures relating to this client (doorbell, process descriptor, * write queue, etc). */ static void guc_ctx_desc_init(struct intel_guc *guc, struct i915_guc_client *client) { struct drm_i915_private *dev_priv = guc_to_i915(guc); struct intel_engine_cs *engine; struct i915_gem_context *ctx = client->owner; struct guc_context_desc desc; struct sg_table *sg; unsigned int tmp; u32 gfx_addr; memset(&desc, 0, sizeof(desc)); desc.attribute = GUC_CTX_DESC_ATTR_ACTIVE | GUC_CTX_DESC_ATTR_KERNEL; desc.context_id = client->ctx_index; desc.priority = client->priority; desc.db_id = client->doorbell_id; for_each_engine_masked(engine, dev_priv, client->engines, tmp) { struct intel_context *ce = &ctx->engine[engine->id]; uint32_t guc_engine_id = engine->guc_id; struct guc_execlist_context *lrc = &desc.lrc[guc_engine_id]; /* TODO: We have a design issue to be solved here. Only when we * receive the first batch, we know which engine is used by the * user. But here GuC expects the lrc and ring to be pinned. It * is not an issue for default context, which is the only one * for now who owns a GuC client. But for future owner of GuC * client, need to make sure lrc is pinned prior to enter here. */ if (!ce->state) break; /* XXX: continue? */ lrc->context_desc = lower_32_bits(ce->lrc_desc); /* The state page is after PPHWSP */ lrc->ring_lcra = i915_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE; lrc->context_id = (client->ctx_index << GUC_ELC_CTXID_OFFSET) | (guc_engine_id << GUC_ELC_ENGINE_OFFSET); lrc->ring_begin = i915_ggtt_offset(ce->ring->vma); lrc->ring_end = lrc->ring_begin + ce->ring->size - 1; lrc->ring_next_free_location = lrc->ring_begin; lrc->ring_current_tail_pointer_value = 0; desc.engines_used |= (1 << guc_engine_id); } DRM_DEBUG_DRIVER("Host engines 0x%x => GuC engines used 0x%x\n", client->engines, desc.engines_used); WARN_ON(desc.engines_used == 0); /* * The doorbell, process descriptor, and workqueue are all parts * of the client object, which the GuC will reference via the GGTT */ gfx_addr = i915_ggtt_offset(client->vma); desc.db_trigger_phy = sg_dma_address(client->vma->pages->sgl) + client->doorbell_offset; desc.db_trigger_cpu = (uintptr_t)client->vaddr + client->doorbell_offset; desc.db_trigger_uk = gfx_addr + client->doorbell_offset; desc.process_desc = gfx_addr + client->proc_desc_offset; desc.wq_addr = gfx_addr + client->wq_offset; desc.wq_size = client->wq_size; /* * XXX: Take LRCs from an existing context if this is not an * IsKMDCreatedContext client */ desc.desc_private = (uintptr_t)client; /* Pool context is pinned already */ sg = guc->ctx_pool_vma->pages; sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc), sizeof(desc) * client->ctx_index); } static void guc_ctx_desc_fini(struct intel_guc *guc, struct i915_guc_client *client) { struct guc_context_desc desc; struct sg_table *sg; memset(&desc, 0, sizeof(desc)); sg = guc->ctx_pool_vma->pages; sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc), sizeof(desc) * client->ctx_index); } /** * i915_guc_wq_reserve() - reserve space in the GuC's workqueue * @request: request associated with the commands * * Return: 0 if space is available * -EAGAIN if space is not currently available * * This function must be called (and must return 0) before a request * is submitted to the GuC via i915_guc_submit() below. Once a result * of 0 has been returned, it must be balanced by a corresponding * call to submit(). * * Reservation allows the caller to determine in advance that space * will be available for the next submission before committing resources * to it, and helps avoid late failures with complicated recovery paths. */ int i915_guc_wq_reserve(struct drm_i915_gem_request *request) { const size_t wqi_size = sizeof(struct guc_wq_item); struct i915_guc_client *gc = request->i915->guc.execbuf_client; struct guc_process_desc *desc = gc->vaddr + gc->proc_desc_offset; u32 freespace; int ret; spin_lock(&gc->wq_lock); freespace = CIRC_SPACE(gc->wq_tail, desc->head, gc->wq_size); freespace -= gc->wq_rsvd; if (likely(freespace >= wqi_size)) { gc->wq_rsvd += wqi_size; ret = 0; } else { gc->no_wq_space++; ret = -EAGAIN; } spin_unlock(&gc->wq_lock); return ret; } void i915_guc_wq_unreserve(struct drm_i915_gem_request *request) { const size_t wqi_size = sizeof(struct guc_wq_item); struct i915_guc_client *gc = request->i915->guc.execbuf_client; GEM_BUG_ON(READ_ONCE(gc->wq_rsvd) < wqi_size); spin_lock(&gc->wq_lock); gc->wq_rsvd -= wqi_size; spin_unlock(&gc->wq_lock); } /* Construct a Work Item and append it to the GuC's Work Queue */ static void guc_wq_item_append(struct i915_guc_client *gc, struct drm_i915_gem_request *rq) { /* wqi_len is in DWords, and does not include the one-word header */ const size_t wqi_size = sizeof(struct guc_wq_item); const u32 wqi_len = wqi_size/sizeof(u32) - 1; struct intel_engine_cs *engine = rq->engine; struct guc_process_desc *desc; struct guc_wq_item *wqi; u32 freespace, tail, wq_off; desc = gc->vaddr + gc->proc_desc_offset; /* Free space is guaranteed, see i915_guc_wq_reserve() above */ freespace = CIRC_SPACE(gc->wq_tail, desc->head, gc->wq_size); GEM_BUG_ON(freespace < wqi_size); /* The GuC firmware wants the tail index in QWords, not bytes */ tail = rq->tail; GEM_BUG_ON(tail & 7); tail >>= 3; GEM_BUG_ON(tail > WQ_RING_TAIL_MAX); /* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we * should not have the case where structure wqi is across page, neither * wrapped to the beginning. This simplifies the implementation below. * * XXX: if not the case, we need save data to a temp wqi and copy it to * workqueue buffer dw by dw. */ BUILD_BUG_ON(wqi_size != 16); GEM_BUG_ON(gc->wq_rsvd < wqi_size); /* postincrement WQ tail for next time */ wq_off = gc->wq_tail; GEM_BUG_ON(wq_off & (wqi_size - 1)); gc->wq_tail += wqi_size; gc->wq_tail &= gc->wq_size - 1; gc->wq_rsvd -= wqi_size; /* WQ starts from the page after doorbell / process_desc */ wqi = gc->vaddr + wq_off + GUC_DB_SIZE; /* Now fill in the 4-word work queue item */ wqi->header = WQ_TYPE_INORDER | (wqi_len << WQ_LEN_SHIFT) | (engine->guc_id << WQ_TARGET_SHIFT) | WQ_NO_WCFLUSH_WAIT; /* The GuC wants only the low-order word of the context descriptor */ wqi->context_desc = (u32)intel_lr_context_descriptor(rq->ctx, engine); wqi->ring_tail = tail << WQ_RING_TAIL_SHIFT; wqi->fence_id = rq->global_seqno; } static int guc_ring_doorbell(struct i915_guc_client *gc) { struct guc_process_desc *desc; union guc_doorbell_qw db_cmp, db_exc, db_ret; union guc_doorbell_qw *db; int attempt = 2, ret = -EAGAIN; desc = gc->vaddr + gc->proc_desc_offset; /* Update the tail so it is visible to GuC */ desc->tail = gc->wq_tail; /* current cookie */ db_cmp.db_status = GUC_DOORBELL_ENABLED; db_cmp.cookie = gc->cookie; /* cookie to be updated */ db_exc.db_status = GUC_DOORBELL_ENABLED; db_exc.cookie = gc->cookie + 1; if (db_exc.cookie == 0) db_exc.cookie = 1; /* pointer of current doorbell cacheline */ db = gc->vaddr + gc->doorbell_offset; while (attempt--) { /* lets ring the doorbell */ db_ret.value_qw = atomic64_cmpxchg((atomic64_t *)db, db_cmp.value_qw, db_exc.value_qw); /* if the exchange was successfully executed */ if (db_ret.value_qw == db_cmp.value_qw) { /* db was successfully rung */ gc->cookie = db_exc.cookie; ret = 0; break; } /* XXX: doorbell was lost and need to acquire it again */ if (db_ret.db_status == GUC_DOORBELL_DISABLED) break; DRM_WARN("Cookie mismatch. Expected %d, found %d\n", db_cmp.cookie, db_ret.cookie); /* update the cookie to newly read cookie from GuC */ db_cmp.cookie = db_ret.cookie; db_exc.cookie = db_ret.cookie + 1; if (db_exc.cookie == 0) db_exc.cookie = 1; } return ret; } /** * i915_guc_submit() - Submit commands through GuC * @rq: request associated with the commands * * Return: 0 on success, otherwise an errno. * (Note: nonzero really shouldn't happen!) * * The caller must have already called i915_guc_wq_reserve() above with * a result of 0 (success), guaranteeing that there is space in the work * queue for the new request, so enqueuing the item cannot fail. * * Bad Things Will Happen if the caller violates this protocol e.g. calls * submit() when _reserve() says there's no space, or calls _submit() * a different number of times from (successful) calls to _reserve(). * * The only error here arises if the doorbell hardware isn't functioning * as expected, which really shouln't happen. */ static void i915_guc_submit(struct drm_i915_gem_request *rq) { struct drm_i915_private *dev_priv = rq->i915; struct intel_engine_cs *engine = rq->engine; unsigned int engine_id = engine->id; struct intel_guc *guc = &rq->i915->guc; struct i915_guc_client *client = guc->execbuf_client; int b_ret; /* We keep the previous context alive until we retire the following * request. This ensures that any the context object is still pinned * for any residual writes the HW makes into it on the context switch * into the next object following the breadcrumb. Otherwise, we may * retire the context too early. */ rq->previous_context = engine->last_context; engine->last_context = rq->ctx; i915_gem_request_submit(rq); spin_lock(&client->wq_lock); guc_wq_item_append(client, rq); /* WA to flush out the pending GMADR writes to ring buffer. */ if (i915_vma_is_map_and_fenceable(rq->ring->vma)) POSTING_READ_FW(GUC_STATUS); b_ret = guc_ring_doorbell(client); client->submissions[engine_id] += 1; client->retcode = b_ret; if (b_ret) client->b_fail += 1; guc->submissions[engine_id] += 1; guc->last_seqno[engine_id] = rq->global_seqno; spin_unlock(&client->wq_lock); } /* * Everything below here is concerned with setup & teardown, and is * therefore not part of the somewhat time-critical batch-submission * path of i915_guc_submit() above. */ /** * guc_allocate_vma() - Allocate a GGTT VMA for GuC usage * @guc: the guc * @size: size of area to allocate (both virtual space and memory) * * This is a wrapper to create an object for use with the GuC. In order to * use it inside the GuC, an object needs to be pinned lifetime, so we allocate * both some backing storage and a range inside the Global GTT. We must pin * it in the GGTT somewhere other than than [0, GUC_WOPCM_TOP) because that * range is reserved inside GuC. * * Return: A i915_vma if successful, otherwise an ERR_PTR. */ static struct i915_vma *guc_allocate_vma(struct intel_guc *guc, u32 size) { struct drm_i915_private *dev_priv = guc_to_i915(guc); struct drm_i915_gem_object *obj; struct i915_vma *vma; int ret; obj = i915_gem_object_create(&dev_priv->drm, size); if (IS_ERR(obj)) return ERR_CAST(obj); vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL); if (IS_ERR(vma)) goto err; ret = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_OFFSET_BIAS | GUC_WOPCM_TOP); if (ret) { vma = ERR_PTR(ret); goto err; } /* Invalidate GuC TLB to let GuC take the latest updates to GTT. */ I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE); return vma; err: i915_gem_object_put(obj); return vma; } static void guc_client_free(struct drm_i915_private *dev_priv, struct i915_guc_client *client) { struct intel_guc *guc = &dev_priv->guc; if (!client) return; /* * XXX: wait for any outstanding submissions before freeing memory. * Be sure to drop any locks */ if (client->vaddr) { /* * If we got as far as setting up a doorbell, make sure we * shut it down before unmapping & deallocating the memory. */ guc_disable_doorbell(guc, client); i915_gem_object_unpin_map(client->vma->obj); } i915_vma_unpin_and_release(&client->vma); if (client->ctx_index != GUC_INVALID_CTX_ID) { guc_ctx_desc_fini(guc, client); ida_simple_remove(&guc->ctx_ids, client->ctx_index); } kfree(client); } /* Check that a doorbell register is in the expected state */ static bool guc_doorbell_check(struct intel_guc *guc, uint16_t db_id) { struct drm_i915_private *dev_priv = guc_to_i915(guc); i915_reg_t drbreg = GEN8_DRBREGL(db_id); uint32_t value = I915_READ(drbreg); bool enabled = (value & GUC_DOORBELL_ENABLED) != 0; bool expected = test_bit(db_id, guc->doorbell_bitmap); if (enabled == expected) return true; DRM_DEBUG_DRIVER("Doorbell %d (reg 0x%x) 0x%x, should be %s\n", db_id, drbreg.reg, value, expected ? "active" : "inactive"); return false; } /* * Borrow the first client to set up & tear down each unused doorbell * in turn, to ensure that all doorbell h/w is (re)initialised. */ static void guc_init_doorbell_hw(struct intel_guc *guc) { struct i915_guc_client *client = guc->execbuf_client; uint16_t db_id; int i, err; /* Save client's original doorbell selection */ db_id = client->doorbell_id; for (i = 0; i < GUC_MAX_DOORBELLS; ++i) { /* Skip if doorbell is OK */ if (guc_doorbell_check(guc, i)) continue; err = guc_update_doorbell_id(guc, client, i); if (err) DRM_DEBUG_DRIVER("Doorbell %d update failed, err %d\n", i, err); } /* Restore to original value */ err = guc_update_doorbell_id(guc, client, db_id); if (err) DRM_WARN("Failed to restore doorbell to %d, err %d\n", db_id, err); /* Read back & verify all doorbell registers */ for (i = 0; i < GUC_MAX_DOORBELLS; ++i) (void)guc_doorbell_check(guc, i); } /** * guc_client_alloc() - Allocate an i915_guc_client * @dev_priv: driver private data structure * @engines: The set of engines to enable for this client * @priority: four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW * The kernel client to replace ExecList submission is created with * NORMAL priority. Priority of a client for scheduler can be HIGH, * while a preemption context can use CRITICAL. * @ctx: the context that owns the client (we use the default render * context) * * Return: An i915_guc_client object if success, else NULL. */ static struct i915_guc_client * guc_client_alloc(struct drm_i915_private *dev_priv, uint32_t engines, uint32_t priority, struct i915_gem_context *ctx) { struct i915_guc_client *client; struct intel_guc *guc = &dev_priv->guc; struct i915_vma *vma; void *vaddr; uint16_t db_id; client = kzalloc(sizeof(*client), GFP_KERNEL); if (!client) return NULL; client->owner = ctx; client->guc = guc; client->engines = engines; client->priority = priority; client->doorbell_id = GUC_INVALID_DOORBELL_ID; client->ctx_index = (uint32_t)ida_simple_get(&guc->ctx_ids, 0, GUC_MAX_GPU_CONTEXTS, GFP_KERNEL); if (client->ctx_index >= GUC_MAX_GPU_CONTEXTS) { client->ctx_index = GUC_INVALID_CTX_ID; goto err; } /* The first page is doorbell/proc_desc. Two followed pages are wq. */ vma = guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE); if (IS_ERR(vma)) goto err; /* We'll keep just the first (doorbell/proc) page permanently kmap'd. */ client->vma = vma; vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB); if (IS_ERR(vaddr)) goto err; client->vaddr = vaddr; spin_lock_init(&client->wq_lock); client->wq_offset = GUC_DB_SIZE; client->wq_size = GUC_WQ_SIZE; db_id = select_doorbell_register(guc, client->priority); if (db_id == GUC_INVALID_DOORBELL_ID) /* XXX: evict a doorbell instead? */ goto err; client->doorbell_offset = select_doorbell_cacheline(guc); /* * Since the doorbell only requires a single cacheline, we can save * space by putting the application process descriptor in the same * page. Use the half of the page that doesn't include the doorbell. */ if (client->doorbell_offset >= (GUC_DB_SIZE / 2)) client->proc_desc_offset = 0; else client->proc_desc_offset = (GUC_DB_SIZE / 2); guc_proc_desc_init(guc, client); guc_ctx_desc_init(guc, client); if (guc_init_doorbell(guc, client, db_id)) goto err; DRM_DEBUG_DRIVER("new priority %u client %p for engine(s) 0x%x: ctx_index %u\n", priority, client, client->engines, client->ctx_index); DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%x\n", client->doorbell_id, client->doorbell_offset); return client; err: guc_client_free(dev_priv, client); return NULL; } /* * Sub buffer switch callback. Called whenever relay has to switch to a new * sub buffer, relay stays on the same sub buffer if 0 is returned. */ static int subbuf_start_callback(struct rchan_buf *buf, void *subbuf, void *prev_subbuf, size_t prev_padding) { /* Use no-overwrite mode by default, where relay will stop accepting * new data if there are no empty sub buffers left. * There is no strict synchronization enforced by relay between Consumer * and Producer. In overwrite mode, there is a possibility of getting * inconsistent/garbled data, the producer could be writing on to the * same sub buffer from which Consumer is reading. This can't be avoided * unless Consumer is fast enough and can always run in tandem with * Producer. */ if (relay_buf_full(buf)) return 0; return 1; } /* * file_create() callback. Creates relay file in debugfs. */ static struct dentry *create_buf_file_callback(const char *filename, struct dentry *parent, umode_t mode, struct rchan_buf *buf, int *is_global) { struct dentry *buf_file; /* This to enable the use of a single buffer for the relay channel and * correspondingly have a single file exposed to User, through which * it can collect the logs in order without any post-processing. * Need to set 'is_global' even if parent is NULL for early logging. */ *is_global = 1; if (!parent) return NULL; /* Not using the channel filename passed as an argument, since for each * channel relay appends the corresponding CPU number to the filename * passed in relay_open(). This should be fine as relay just needs a * dentry of the file associated with the channel buffer and that file's * name need not be same as the filename passed as an argument. */ buf_file = debugfs_create_file("guc_log", mode, parent, buf, &relay_file_operations); return buf_file; } /* * file_remove() default callback. Removes relay file in debugfs. */ static int remove_buf_file_callback(struct dentry *dentry) { debugfs_remove(dentry); return 0; } /* relay channel callbacks */ static struct rchan_callbacks relay_callbacks = { .subbuf_start = subbuf_start_callback, .create_buf_file = create_buf_file_callback, .remove_buf_file = remove_buf_file_callback, }; static void guc_log_remove_relay_file(struct intel_guc *guc) { relay_close(guc->log.relay_chan); } static int guc_log_create_relay_channel(struct intel_guc *guc) { struct drm_i915_private *dev_priv = guc_to_i915(guc); struct rchan *guc_log_relay_chan; size_t n_subbufs, subbuf_size; /* Keep the size of sub buffers same as shared log buffer */ subbuf_size = guc->log.vma->obj->base.size; /* Store up to 8 snapshots, which is large enough to buffer sufficient * boot time logs and provides enough leeway to User, in terms of * latency, for consuming the logs from relay. Also doesn't take * up too much memory. */ n_subbufs = 8; guc_log_relay_chan = relay_open(NULL, NULL, subbuf_size, n_subbufs, &relay_callbacks, dev_priv); if (!guc_log_relay_chan) { DRM_ERROR("Couldn't create relay chan for GuC logging\n"); return -ENOMEM; } GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size); guc->log.relay_chan = guc_log_relay_chan; return 0; } static int guc_log_create_relay_file(struct intel_guc *guc) { struct drm_i915_private *dev_priv = guc_to_i915(guc); struct dentry *log_dir; int ret; /* For now create the log file in /sys/kernel/debug/dri/0 dir */ log_dir = dev_priv->drm.primary->debugfs_root; /* If /sys/kernel/debug/dri/0 location do not exist, then debugfs is * not mounted and so can't create the relay file. * The relay API seems to fit well with debugfs only, for availing relay * there are 3 requirements which can be met for debugfs file only in a * straightforward/clean manner :- * i) Need the associated dentry pointer of the file, while opening the * relay channel. * ii) Should be able to use 'relay_file_operations' fops for the file. * iii) Set the 'i_private' field of file's inode to the pointer of * relay channel buffer. */ if (!log_dir) { DRM_ERROR("Debugfs dir not available yet for GuC log file\n"); return -ENODEV; } ret = relay_late_setup_files(guc->log.relay_chan, "guc_log", log_dir); if (ret) { DRM_ERROR("Couldn't associate relay chan with file %d\n", ret); return ret; } return 0; } static void guc_move_to_next_buf(struct intel_guc *guc) { /* Make sure the updates made in the sub buffer are visible when * Consumer sees the following update to offset inside the sub buffer. */ smp_wmb(); /* All data has been written, so now move the offset of sub buffer. */ relay_reserve(guc->log.relay_chan, guc->log.vma->obj->base.size); /* Switch to the next sub buffer */ relay_flush(guc->log.relay_chan); } static void *guc_get_write_buffer(struct intel_guc *guc) { if (!guc->log.relay_chan) return NULL; /* Just get the base address of a new sub buffer and copy data into it * ourselves. NULL will be returned in no-overwrite mode, if all sub * buffers are full. Could have used the relay_write() to indirectly * copy the data, but that would have been bit convoluted, as we need to * write to only certain locations inside a sub buffer which cannot be * done without using relay_reserve() along with relay_write(). So its * better to use relay_reserve() alone. */ return relay_reserve(guc->log.relay_chan, 0); } static bool guc_check_log_buf_overflow(struct intel_guc *guc, enum guc_log_buffer_type type, unsigned int full_cnt) { unsigned int prev_full_cnt = guc->log.prev_overflow_count[type]; bool overflow = false; if (full_cnt != prev_full_cnt) { overflow = true; guc->log.prev_overflow_count[type] = full_cnt; guc->log.total_overflow_count[type] += full_cnt - prev_full_cnt; if (full_cnt < prev_full_cnt) { /* buffer_full_cnt is a 4 bit counter */ guc->log.total_overflow_count[type] += 16; } DRM_ERROR_RATELIMITED("GuC log buffer overflow\n"); } return overflow; } static unsigned int guc_get_log_buffer_size(enum guc_log_buffer_type type) { switch (type) { case GUC_ISR_LOG_BUFFER: return (GUC_LOG_ISR_PAGES + 1) * PAGE_SIZE; case GUC_DPC_LOG_BUFFER: return (GUC_LOG_DPC_PAGES + 1) * PAGE_SIZE; case GUC_CRASH_DUMP_LOG_BUFFER: return (GUC_LOG_CRASH_PAGES + 1) * PAGE_SIZE; default: MISSING_CASE(type); } return 0; } static void guc_read_update_log_buffer(struct intel_guc *guc) { unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt; struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state; struct guc_log_buffer_state log_buf_state_local; enum guc_log_buffer_type type; void *src_data, *dst_data; bool new_overflow; if (WARN_ON(!guc->log.buf_addr)) return; /* Get the pointer to shared GuC log buffer */ log_buf_state = src_data = guc->log.buf_addr; /* Get the pointer to local buffer to store the logs */ log_buf_snapshot_state = dst_data = guc_get_write_buffer(guc); /* Actual logs are present from the 2nd page */ src_data += PAGE_SIZE; dst_data += PAGE_SIZE; for (type = GUC_ISR_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) { /* Make a copy of the state structure, inside GuC log buffer * (which is uncached mapped), on the stack to avoid reading * from it multiple times. */ memcpy(&log_buf_state_local, log_buf_state, sizeof(struct guc_log_buffer_state)); buffer_size = guc_get_log_buffer_size(type); read_offset = log_buf_state_local.read_ptr; write_offset = log_buf_state_local.sampled_write_ptr; full_cnt = log_buf_state_local.buffer_full_cnt; /* Bookkeeping stuff */ guc->log.flush_count[type] += log_buf_state_local.flush_to_file; new_overflow = guc_check_log_buf_overflow(guc, type, full_cnt); /* Update the state of shared log buffer */ log_buf_state->read_ptr = write_offset; log_buf_state->flush_to_file = 0; log_buf_state++; if (unlikely(!log_buf_snapshot_state)) continue; /* First copy the state structure in snapshot buffer */ memcpy(log_buf_snapshot_state, &log_buf_state_local, sizeof(struct guc_log_buffer_state)); /* The write pointer could have been updated by GuC firmware, * after sending the flush interrupt to Host, for consistency * set write pointer value to same value of sampled_write_ptr * in the snapshot buffer. */ log_buf_snapshot_state->write_ptr = write_offset; log_buf_snapshot_state++; /* Now copy the actual logs. */ if (unlikely(new_overflow)) { /* copy the whole buffer in case of overflow */ read_offset = 0; write_offset = buffer_size; } else if (unlikely((read_offset > buffer_size) || (write_offset > buffer_size))) { DRM_ERROR("invalid log buffer state\n"); /* copy whole buffer as offsets are unreliable */ read_offset = 0; write_offset = buffer_size; } /* Just copy the newly written data */ if (read_offset > write_offset) { i915_memcpy_from_wc(dst_data, src_data, write_offset); bytes_to_copy = buffer_size - read_offset; } else { bytes_to_copy = write_offset - read_offset; } i915_memcpy_from_wc(dst_data + read_offset, src_data + read_offset, bytes_to_copy); src_data += buffer_size; dst_data += buffer_size; } if (log_buf_snapshot_state) guc_move_to_next_buf(guc); else { /* Used rate limited to avoid deluge of messages, logs might be * getting consumed by User at a slow rate. */ DRM_ERROR_RATELIMITED("no sub-buffer to capture logs\n"); guc->log.capture_miss_count++; } } static void guc_capture_logs_work(struct work_struct *work) { struct drm_i915_private *dev_priv = container_of(work, struct drm_i915_private, guc.log.flush_work); i915_guc_capture_logs(dev_priv); } static void guc_log_cleanup(struct intel_guc *guc) { struct drm_i915_private *dev_priv = guc_to_i915(guc); lockdep_assert_held(&dev_priv->drm.struct_mutex); /* First disable the flush interrupt */ gen9_disable_guc_interrupts(dev_priv); if (guc->log.flush_wq) destroy_workqueue(guc->log.flush_wq); guc->log.flush_wq = NULL; if (guc->log.relay_chan) guc_log_remove_relay_file(guc); guc->log.relay_chan = NULL; if (guc->log.buf_addr) i915_gem_object_unpin_map(guc->log.vma->obj); guc->log.buf_addr = NULL; } static int guc_log_create_extras(struct intel_guc *guc) { struct drm_i915_private *dev_priv = guc_to_i915(guc); void *vaddr; int ret; lockdep_assert_held(&dev_priv->drm.struct_mutex); /* Nothing to do */ if (i915.guc_log_level < 0) return 0; if (!guc->log.buf_addr) { /* Create a WC (Uncached for read) vmalloc mapping of log * buffer pages, so that we can directly get the data * (up-to-date) from memory. */ vaddr = i915_gem_object_pin_map(guc->log.vma->obj, I915_MAP_WC); if (IS_ERR(vaddr)) { ret = PTR_ERR(vaddr); DRM_ERROR("Couldn't map log buffer pages %d\n", ret); return ret; } guc->log.buf_addr = vaddr; } if (!guc->log.relay_chan) { /* Create a relay channel, so that we have buffers for storing * the GuC firmware logs, the channel will be linked with a file * later on when debugfs is registered. */ ret = guc_log_create_relay_channel(guc); if (ret) return ret; } if (!guc->log.flush_wq) { INIT_WORK(&guc->log.flush_work, guc_capture_logs_work); /* * GuC log buffer flush work item has to do register access to * send the ack to GuC and this work item, if not synced before * suspend, can potentially get executed after the GFX device is * suspended. * By marking the WQ as freezable, we don't have to bother about * flushing of this work item from the suspend hooks, the pending * work item if any will be either executed before the suspend * or scheduled later on resume. This way the handling of work * item can be kept same between system suspend & rpm suspend. */ guc->log.flush_wq = alloc_ordered_workqueue("i915-guc_log", WQ_HIGHPRI | WQ_FREEZABLE); if (guc->log.flush_wq == NULL) { DRM_ERROR("Couldn't allocate the wq for GuC logging\n"); return -ENOMEM; } } return 0; } static void guc_log_create(struct intel_guc *guc) { struct i915_vma *vma; unsigned long offset; uint32_t size, flags; if (i915.guc_log_level > GUC_LOG_VERBOSITY_MAX) i915.guc_log_level = GUC_LOG_VERBOSITY_MAX; /* The first page is to save log buffer state. Allocate one * extra page for others in case for overlap */ size = (1 + GUC_LOG_DPC_PAGES + 1 + GUC_LOG_ISR_PAGES + 1 + GUC_LOG_CRASH_PAGES + 1) << PAGE_SHIFT; vma = guc->log.vma; if (!vma) { /* We require SSE 4.1 for fast reads from the GuC log buffer and * it should be present on the chipsets supporting GuC based * submisssions. */ if (WARN_ON(!i915_memcpy_from_wc(NULL, NULL, 0))) { /* logging will not be enabled */ i915.guc_log_level = -1; return; } vma = guc_allocate_vma(guc, size); if (IS_ERR(vma)) { /* logging will be off */ i915.guc_log_level = -1; return; } guc->log.vma = vma; if (guc_log_create_extras(guc)) { guc_log_cleanup(guc); i915_vma_unpin_and_release(&guc->log.vma); i915.guc_log_level = -1; return; } } /* each allocated unit is a page */ flags = GUC_LOG_VALID | GUC_LOG_NOTIFY_ON_HALF_FULL | (GUC_LOG_DPC_PAGES << GUC_LOG_DPC_SHIFT) | (GUC_LOG_ISR_PAGES << GUC_LOG_ISR_SHIFT) | (GUC_LOG_CRASH_PAGES << GUC_LOG_CRASH_SHIFT); offset = i915_ggtt_offset(vma) >> PAGE_SHIFT; /* in pages */ guc->log.flags = (offset << GUC_LOG_BUF_ADDR_SHIFT) | flags; } static int guc_log_late_setup(struct intel_guc *guc) { struct drm_i915_private *dev_priv = guc_to_i915(guc); int ret; lockdep_assert_held(&dev_priv->drm.struct_mutex); if (i915.guc_log_level < 0) return -EINVAL; /* If log_level was set as -1 at boot time, then setup needed to * handle log buffer flush interrupts would not have been done yet, * so do that now. */ ret = guc_log_create_extras(guc); if (ret) goto err; ret = guc_log_create_relay_file(guc); if (ret) goto err; return 0; err: guc_log_cleanup(guc); /* logging will remain off */ i915.guc_log_level = -1; return ret; } static void guc_policies_init(struct guc_policies *policies) { struct guc_policy *policy; u32 p, i; policies->dpc_promote_time = 500000; policies->max_num_work_items = POLICY_MAX_NUM_WI; for (p = 0; p < GUC_CTX_PRIORITY_NUM; p++) { for (i = GUC_RENDER_ENGINE; i < GUC_MAX_ENGINES_NUM; i++) { policy = &policies->policy[p][i]; policy->execution_quantum = 1000000; policy->preemption_time = 500000; policy->fault_time = 250000; policy->policy_flags = 0; } } policies->is_valid = 1; } static void guc_addon_create(struct intel_guc *guc) { struct drm_i915_private *dev_priv = guc_to_i915(guc); struct i915_vma *vma; struct guc_ads *ads; struct guc_policies *policies; struct guc_mmio_reg_state *reg_state; struct intel_engine_cs *engine; enum intel_engine_id id; struct page *page; u32 size; /* The ads obj includes the struct itself and buffers passed to GuC */ size = sizeof(struct guc_ads) + sizeof(struct guc_policies) + sizeof(struct guc_mmio_reg_state) + GUC_S3_SAVE_SPACE_PAGES * PAGE_SIZE; vma = guc->ads_vma; if (!vma) { vma = guc_allocate_vma(guc, PAGE_ALIGN(size)); if (IS_ERR(vma)) return; guc->ads_vma = vma; } page = i915_vma_first_page(vma); ads = kmap(page); /* * The GuC requires a "Golden Context" when it reinitialises * engines after a reset. Here we use the Render ring default * context, which must already exist and be pinned in the GGTT, * so its address won't change after we've told the GuC where * to find it. */ engine = dev_priv->engine[RCS]; ads->golden_context_lrca = engine->status_page.ggtt_offset; for_each_engine(engine, dev_priv, id) ads->eng_state_size[engine->guc_id] = intel_lr_context_size(engine); /* GuC scheduling policies */ policies = (void *)ads + sizeof(struct guc_ads); guc_policies_init(policies); ads->scheduler_policies = i915_ggtt_offset(vma) + sizeof(struct guc_ads); /* MMIO reg state */ reg_state = (void *)policies + sizeof(struct guc_policies); for_each_engine(engine, dev_priv, id) { reg_state->mmio_white_list[engine->guc_id].mmio_start = engine->mmio_base + GUC_MMIO_WHITE_LIST_START; /* Nothing to be saved or restored for now. */ reg_state->mmio_white_list[engine->guc_id].count = 0; } ads->reg_state_addr = ads->scheduler_policies + sizeof(struct guc_policies); ads->reg_state_buffer = ads->reg_state_addr + sizeof(struct guc_mmio_reg_state); kunmap(page); } /* * Set up the memory resources to be shared with the GuC. At this point, * we require just one object that can be mapped through the GGTT. */ int i915_guc_submission_init(struct drm_i915_private *dev_priv) { const size_t ctxsize = sizeof(struct guc_context_desc); const size_t poolsize = GUC_MAX_GPU_CONTEXTS * ctxsize; const size_t gemsize = round_up(poolsize, PAGE_SIZE); struct intel_guc *guc = &dev_priv->guc; struct i915_vma *vma; /* Wipe bitmap & delete client in case of reinitialisation */ bitmap_clear(guc->doorbell_bitmap, 0, GUC_MAX_DOORBELLS); i915_guc_submission_disable(dev_priv); if (!i915.enable_guc_submission) return 0; /* not enabled */ if (guc->ctx_pool_vma) return 0; /* already allocated */ vma = guc_allocate_vma(guc, gemsize); if (IS_ERR(vma)) return PTR_ERR(vma); guc->ctx_pool_vma = vma; ida_init(&guc->ctx_ids); mutex_init(&guc->action_lock); guc_log_create(guc); guc_addon_create(guc); return 0; } int i915_guc_submission_enable(struct drm_i915_private *dev_priv) { struct intel_guc *guc = &dev_priv->guc; struct drm_i915_gem_request *request; struct i915_guc_client *client; struct intel_engine_cs *engine; enum intel_engine_id id; /* client for execbuf submission */ client = guc_client_alloc(dev_priv, INTEL_INFO(dev_priv)->ring_mask, GUC_CTX_PRIORITY_KMD_NORMAL, dev_priv->kernel_context); if (!client) { DRM_ERROR("Failed to create normal GuC client!\n"); return -ENOMEM; } guc->execbuf_client = client; host2guc_sample_forcewake(guc, client); guc_init_doorbell_hw(guc); /* Take over from manual control of ELSP (execlists) */ for_each_engine(engine, dev_priv, id) { engine->submit_request = i915_guc_submit; engine->schedule = NULL; /* Replay the current set of previously submitted requests */ list_for_each_entry(request, &engine->timeline->requests, link) { client->wq_rsvd += sizeof(struct guc_wq_item); if (i915_sw_fence_done(&request->submit)) i915_guc_submit(request); } } return 0; } void i915_guc_submission_disable(struct drm_i915_private *dev_priv) { struct intel_guc *guc = &dev_priv->guc; if (!guc->execbuf_client) return; /* Revert back to manual ELSP submission */ intel_execlists_enable_submission(dev_priv); guc_client_free(dev_priv, guc->execbuf_client); guc->execbuf_client = NULL; } void i915_guc_submission_fini(struct drm_i915_private *dev_priv) { struct intel_guc *guc = &dev_priv->guc; i915_vma_unpin_and_release(&guc->ads_vma); i915_vma_unpin_and_release(&guc->log.vma); if (guc->ctx_pool_vma) ida_destroy(&guc->ctx_ids); i915_vma_unpin_and_release(&guc->ctx_pool_vma); } /** * intel_guc_suspend() - notify GuC entering suspend state * @dev: drm device */ int intel_guc_suspend(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct intel_guc *guc = &dev_priv->guc; struct i915_gem_context *ctx; u32 data[3]; if (guc->guc_fw.guc_fw_load_status != GUC_FIRMWARE_SUCCESS) return 0; gen9_disable_guc_interrupts(dev_priv); ctx = dev_priv->kernel_context; data[0] = HOST2GUC_ACTION_ENTER_S_STATE; /* any value greater than GUC_POWER_D0 */ data[1] = GUC_POWER_D1; /* first page is shared data with GuC */ data[2] = i915_ggtt_offset(ctx->engine[RCS].state); return host2guc_action(guc, data, ARRAY_SIZE(data)); } /** * intel_guc_resume() - notify GuC resuming from suspend state * @dev: drm device */ int intel_guc_resume(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct intel_guc *guc = &dev_priv->guc; struct i915_gem_context *ctx; u32 data[3]; if (guc->guc_fw.guc_fw_load_status != GUC_FIRMWARE_SUCCESS) return 0; if (i915.guc_log_level >= 0) gen9_enable_guc_interrupts(dev_priv); ctx = dev_priv->kernel_context; data[0] = HOST2GUC_ACTION_EXIT_S_STATE; data[1] = GUC_POWER_D0; /* first page is shared data with GuC */ data[2] = i915_ggtt_offset(ctx->engine[RCS].state); return host2guc_action(guc, data, ARRAY_SIZE(data)); } void i915_guc_capture_logs(struct drm_i915_private *dev_priv) { guc_read_update_log_buffer(&dev_priv->guc); /* Generally device is expected to be active only at this * time, so get/put should be really quick. */ intel_runtime_pm_get(dev_priv); host2guc_logbuffer_flush_complete(&dev_priv->guc); intel_runtime_pm_put(dev_priv); } void i915_guc_flush_logs(struct drm_i915_private *dev_priv) { if (!i915.enable_guc_submission || (i915.guc_log_level < 0)) return; /* First disable the interrupts, will be renabled afterwards */ gen9_disable_guc_interrupts(dev_priv); /* Before initiating the forceful flush, wait for any pending/ongoing * flush to complete otherwise forceful flush may not actually happen. */ flush_work(&dev_priv->guc.log.flush_work); /* Ask GuC to update the log buffer state */ host2guc_force_logbuffer_flush(&dev_priv->guc); /* GuC would have updated log buffer by now, so capture it */ i915_guc_capture_logs(dev_priv); } void i915_guc_unregister(struct drm_i915_private *dev_priv) { if (!i915.enable_guc_submission) return; mutex_lock(&dev_priv->drm.struct_mutex); guc_log_cleanup(&dev_priv->guc); mutex_unlock(&dev_priv->drm.struct_mutex); } void i915_guc_register(struct drm_i915_private *dev_priv) { if (!i915.enable_guc_submission) return; mutex_lock(&dev_priv->drm.struct_mutex); guc_log_late_setup(&dev_priv->guc); mutex_unlock(&dev_priv->drm.struct_mutex); } int i915_guc_log_control(struct drm_i915_private *dev_priv, u64 control_val) { union guc_log_control log_param; int ret; log_param.value = control_val; if (log_param.verbosity < GUC_LOG_VERBOSITY_MIN || log_param.verbosity > GUC_LOG_VERBOSITY_MAX) return -EINVAL; /* This combination doesn't make sense & won't have any effect */ if (!log_param.logging_enabled && (i915.guc_log_level < 0)) return 0; ret = host2guc_logging_control(&dev_priv->guc, log_param.value); if (ret < 0) { DRM_DEBUG_DRIVER("host2guc action failed %d\n", ret); return ret; } i915.guc_log_level = log_param.verbosity; /* If log_level was set as -1 at boot time, then the relay channel file * wouldn't have been created by now and interrupts also would not have * been enabled. */ if (!dev_priv->guc.log.relay_chan) { ret = guc_log_late_setup(&dev_priv->guc); if (!ret) gen9_enable_guc_interrupts(dev_priv); } else if (!log_param.logging_enabled) { /* Once logging is disabled, GuC won't generate logs & send an * interrupt. But there could be some data in the log buffer * which is yet to be captured. So request GuC to update the log * buffer state and then collect the left over logs. */ i915_guc_flush_logs(dev_priv); /* As logging is disabled, update log level to reflect that */ i915.guc_log_level = -1; } else { /* In case interrupts were disabled, enable them now */ gen9_enable_guc_interrupts(dev_priv); } return ret; }