// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include #include #include "intel_gt_debugfs.h" #include "gem/i915_gem_lmem.h" #include "i915_drv.h" #include "intel_context.h" #include "intel_gt.h" #include "intel_gt_buffer_pool.h" #include "intel_gt_clock_utils.h" #include "intel_gt_pm.h" #include "intel_gt_requests.h" #include "intel_migrate.h" #include "intel_mocs.h" #include "intel_pm.h" #include "intel_rc6.h" #include "intel_renderstate.h" #include "intel_rps.h" #include "intel_uncore.h" #include "shmem_utils.h" #include "pxp/intel_pxp.h" void __intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915) { spin_lock_init(>->irq_lock); mutex_init(>->tlb_invalidate_lock); INIT_LIST_HEAD(>->closed_vma); spin_lock_init(>->closed_lock); init_llist_head(>->watchdog.list); INIT_WORK(>->watchdog.work, intel_gt_watchdog_work); intel_gt_init_buffer_pool(gt); intel_gt_init_reset(gt); intel_gt_init_requests(gt); intel_gt_init_timelines(gt); intel_gt_pm_init_early(gt); intel_uc_init_early(>->uc); intel_rps_init_early(>->rps); } void intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915) { gt->i915 = i915; gt->uncore = &i915->uncore; } int intel_gt_probe_lmem(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; struct intel_memory_region *mem; int id; int err; mem = intel_gt_setup_lmem(gt); if (IS_ERR(mem)) { err = PTR_ERR(mem); if (err == -ENODEV) return 0; drm_err(&i915->drm, "Failed to setup region(%d) type=%d\n", err, INTEL_MEMORY_LOCAL); return err; } id = INTEL_REGION_LMEM; mem->id = id; intel_memory_region_set_name(mem, "local%u", mem->instance); GEM_BUG_ON(!HAS_REGION(i915, id)); GEM_BUG_ON(i915->mm.regions[id]); i915->mm.regions[id] = mem; return 0; } int intel_gt_assign_ggtt(struct intel_gt *gt) { gt->ggtt = drmm_kzalloc(>->i915->drm, sizeof(*gt->ggtt), GFP_KERNEL); return gt->ggtt ? 0 : -ENOMEM; } static const struct intel_mmio_range icl_l3bank_steering_table[] = { { 0x00B100, 0x00B3FF }, {}, }; static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = { { 0x004000, 0x004AFF }, { 0x00C800, 0x00CFFF }, { 0x00DD00, 0x00DDFF }, { 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */ {}, }; static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = { { 0x00B000, 0x00B0FF }, { 0x00D800, 0x00D8FF }, {}, }; static const struct intel_mmio_range dg2_lncf_steering_table[] = { { 0x00B000, 0x00B0FF }, { 0x00D880, 0x00D8FF }, {}, }; static u16 slicemask(struct intel_gt *gt, int count) { u64 dss_mask = intel_sseu_get_subslices(>->info.sseu, 0); return intel_slicemask_from_dssmask(dss_mask, count); } int intel_gt_init_mmio(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; intel_gt_init_clock_frequency(gt); intel_uc_init_mmio(>->uc); intel_sseu_info_init(gt); /* * An mslice is unavailable only if both the meml3 for the slice is * disabled *and* all of the DSS in the slice (quadrant) are disabled. */ if (HAS_MSLICES(i915)) gt->info.mslice_mask = slicemask(gt, GEN_DSS_PER_MSLICE) | (intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) & GEN12_MEML3_EN_MASK); if (IS_DG2(i915)) { gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table; gt->steering_table[LNCF] = dg2_lncf_steering_table; } else if (IS_XEHPSDV(i915)) { gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table; gt->steering_table[LNCF] = xehpsdv_lncf_steering_table; } else if (GRAPHICS_VER(i915) >= 11 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) { gt->steering_table[L3BANK] = icl_l3bank_steering_table; gt->info.l3bank_mask = ~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) & GEN10_L3BANK_MASK; } else if (HAS_MSLICES(i915)) { MISSING_CASE(INTEL_INFO(i915)->platform); } return intel_engines_init_mmio(gt); } static void init_unused_ring(struct intel_gt *gt, u32 base) { struct intel_uncore *uncore = gt->uncore; intel_uncore_write(uncore, RING_CTL(base), 0); intel_uncore_write(uncore, RING_HEAD(base), 0); intel_uncore_write(uncore, RING_TAIL(base), 0); intel_uncore_write(uncore, RING_START(base), 0); } static void init_unused_rings(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; if (IS_I830(i915)) { init_unused_ring(gt, PRB1_BASE); init_unused_ring(gt, SRB0_BASE); init_unused_ring(gt, SRB1_BASE); init_unused_ring(gt, SRB2_BASE); init_unused_ring(gt, SRB3_BASE); } else if (GRAPHICS_VER(i915) == 2) { init_unused_ring(gt, SRB0_BASE); init_unused_ring(gt, SRB1_BASE); } else if (GRAPHICS_VER(i915) == 3) { init_unused_ring(gt, PRB1_BASE); init_unused_ring(gt, PRB2_BASE); } } int intel_gt_init_hw(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; struct intel_uncore *uncore = gt->uncore; int ret; gt->last_init_time = ktime_get(); /* Double layer security blanket, see i915_gem_init() */ intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9) intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf)); if (IS_HASWELL(i915)) intel_uncore_write(uncore, MI_PREDICATE_RESULT_2, IS_HSW_GT3(i915) ? LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); /* Apply the GT workarounds... */ intel_gt_apply_workarounds(gt); /* ...and determine whether they are sticking. */ intel_gt_verify_workarounds(gt, "init"); intel_gt_init_swizzling(gt); /* * At least 830 can leave some of the unused rings * "active" (ie. head != tail) after resume which * will prevent c3 entry. Makes sure all unused rings * are totally idle. */ init_unused_rings(gt); ret = i915_ppgtt_init_hw(gt); if (ret) { DRM_ERROR("Enabling PPGTT failed (%d)\n", ret); goto out; } /* We can't enable contexts until all firmware is loaded */ ret = intel_uc_init_hw(>->uc); if (ret) { i915_probe_error(i915, "Enabling uc failed (%d)\n", ret); goto out; } intel_mocs_init(gt); out: intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); return ret; } static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set) { intel_uncore_rmw(uncore, reg, 0, set); } static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr) { intel_uncore_rmw(uncore, reg, clr, 0); } static void clear_register(struct intel_uncore *uncore, i915_reg_t reg) { intel_uncore_rmw(uncore, reg, 0, 0); } static void gen6_clear_engine_error_register(struct intel_engine_cs *engine) { GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0); GEN6_RING_FAULT_REG_POSTING_READ(engine); } void intel_gt_clear_error_registers(struct intel_gt *gt, intel_engine_mask_t engine_mask) { struct drm_i915_private *i915 = gt->i915; struct intel_uncore *uncore = gt->uncore; u32 eir; if (GRAPHICS_VER(i915) != 2) clear_register(uncore, PGTBL_ER); if (GRAPHICS_VER(i915) < 4) clear_register(uncore, IPEIR(RENDER_RING_BASE)); else clear_register(uncore, IPEIR_I965); clear_register(uncore, EIR); eir = intel_uncore_read(uncore, EIR); if (eir) { /* * some errors might have become stuck, * mask them. */ DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir); rmw_set(uncore, EMR, eir); intel_uncore_write(uncore, GEN2_IIR, I915_MASTER_ERROR_INTERRUPT); } if (GRAPHICS_VER(i915) >= 12) { rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID); intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG); } else if (GRAPHICS_VER(i915) >= 8) { rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID); intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG); } else if (GRAPHICS_VER(i915) >= 6) { struct intel_engine_cs *engine; enum intel_engine_id id; for_each_engine_masked(engine, gt, engine_mask, id) gen6_clear_engine_error_register(engine); } } static void gen6_check_faults(struct intel_gt *gt) { struct intel_engine_cs *engine; enum intel_engine_id id; u32 fault; for_each_engine(engine, gt, id) { fault = GEN6_RING_FAULT_REG_READ(engine); if (fault & RING_FAULT_VALID) { drm_dbg(&engine->i915->drm, "Unexpected fault\n" "\tAddr: 0x%08lx\n" "\tAddress space: %s\n" "\tSource ID: %d\n" "\tType: %d\n", fault & PAGE_MASK, fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT", RING_FAULT_SRCID(fault), RING_FAULT_FAULT_TYPE(fault)); } } } static void gen8_check_faults(struct intel_gt *gt) { struct intel_uncore *uncore = gt->uncore; i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg; u32 fault; if (GRAPHICS_VER(gt->i915) >= 12) { fault_reg = GEN12_RING_FAULT_REG; fault_data0_reg = GEN12_FAULT_TLB_DATA0; fault_data1_reg = GEN12_FAULT_TLB_DATA1; } else { fault_reg = GEN8_RING_FAULT_REG; fault_data0_reg = GEN8_FAULT_TLB_DATA0; fault_data1_reg = GEN8_FAULT_TLB_DATA1; } fault = intel_uncore_read(uncore, fault_reg); if (fault & RING_FAULT_VALID) { u32 fault_data0, fault_data1; u64 fault_addr; fault_data0 = intel_uncore_read(uncore, fault_data0_reg); fault_data1 = intel_uncore_read(uncore, fault_data1_reg); fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) | ((u64)fault_data0 << 12); drm_dbg(&uncore->i915->drm, "Unexpected fault\n" "\tAddr: 0x%08x_%08x\n" "\tAddress space: %s\n" "\tEngine ID: %d\n" "\tSource ID: %d\n" "\tType: %d\n", upper_32_bits(fault_addr), lower_32_bits(fault_addr), fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT", GEN8_RING_FAULT_ENGINE_ID(fault), RING_FAULT_SRCID(fault), RING_FAULT_FAULT_TYPE(fault)); } } void intel_gt_check_and_clear_faults(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; /* From GEN8 onwards we only have one 'All Engine Fault Register' */ if (GRAPHICS_VER(i915) >= 8) gen8_check_faults(gt); else if (GRAPHICS_VER(i915) >= 6) gen6_check_faults(gt); else return; intel_gt_clear_error_registers(gt, ALL_ENGINES); } void intel_gt_flush_ggtt_writes(struct intel_gt *gt) { struct intel_uncore *uncore = gt->uncore; intel_wakeref_t wakeref; /* * No actual flushing is required for the GTT write domain for reads * from the GTT domain. Writes to it "immediately" go to main memory * as far as we know, so there's no chipset flush. It also doesn't * land in the GPU render cache. * * However, we do have to enforce the order so that all writes through * the GTT land before any writes to the device, such as updates to * the GATT itself. * * We also have to wait a bit for the writes to land from the GTT. * An uncached read (i.e. mmio) seems to be ideal for the round-trip * timing. This issue has only been observed when switching quickly * between GTT writes and CPU reads from inside the kernel on recent hw, * and it appears to only affect discrete GTT blocks (i.e. on LLC * system agents we cannot reproduce this behaviour, until Cannonlake * that was!). */ wmb(); if (INTEL_INFO(gt->i915)->has_coherent_ggtt) return; intel_gt_chipset_flush(gt); with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) { unsigned long flags; spin_lock_irqsave(&uncore->lock, flags); intel_uncore_posting_read_fw(uncore, RING_HEAD(RENDER_RING_BASE)); spin_unlock_irqrestore(&uncore->lock, flags); } } void intel_gt_chipset_flush(struct intel_gt *gt) { wmb(); if (GRAPHICS_VER(gt->i915) < 6) intel_gtt_chipset_flush(); } void intel_gt_driver_register(struct intel_gt *gt) { intel_rps_driver_register(>->rps); intel_gt_debugfs_register(gt); } static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size) { struct drm_i915_private *i915 = gt->i915; struct drm_i915_gem_object *obj; struct i915_vma *vma; int ret; obj = i915_gem_object_create_lmem(i915, size, I915_BO_ALLOC_VOLATILE); if (IS_ERR(obj)) obj = i915_gem_object_create_stolen(i915, size); if (IS_ERR(obj)) obj = i915_gem_object_create_internal(i915, size); if (IS_ERR(obj)) { drm_err(&i915->drm, "Failed to allocate scratch page\n"); return PTR_ERR(obj); } vma = i915_vma_instance(obj, >->ggtt->vm, NULL); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto err_unref; } ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH); if (ret) goto err_unref; gt->scratch = i915_vma_make_unshrinkable(vma); return 0; err_unref: i915_gem_object_put(obj); return ret; } static void intel_gt_fini_scratch(struct intel_gt *gt) { i915_vma_unpin_and_release(>->scratch, 0); } static struct i915_address_space *kernel_vm(struct intel_gt *gt) { if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING) return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm; else return i915_vm_get(>->ggtt->vm); } static int __engines_record_defaults(struct intel_gt *gt) { struct i915_request *requests[I915_NUM_ENGINES] = {}; struct intel_engine_cs *engine; enum intel_engine_id id; int err = 0; /* * As we reset the gpu during very early sanitisation, the current * register state on the GPU should reflect its defaults values. * We load a context onto the hw (with restore-inhibit), then switch * over to a second context to save that default register state. We * can then prime every new context with that state so they all start * from the same default HW values. */ for_each_engine(engine, gt, id) { struct intel_renderstate so; struct intel_context *ce; struct i915_request *rq; /* We must be able to switch to something! */ GEM_BUG_ON(!engine->kernel_context); ce = intel_context_create(engine); if (IS_ERR(ce)) { err = PTR_ERR(ce); goto out; } err = intel_renderstate_init(&so, ce); if (err) goto err; rq = i915_request_create(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto err_fini; } err = intel_engine_emit_ctx_wa(rq); if (err) goto err_rq; err = intel_renderstate_emit(&so, rq); if (err) goto err_rq; err_rq: requests[id] = i915_request_get(rq); i915_request_add(rq); err_fini: intel_renderstate_fini(&so, ce); err: if (err) { intel_context_put(ce); goto out; } } /* Flush the default context image to memory, and enable powersaving. */ if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) { err = -EIO; goto out; } for (id = 0; id < ARRAY_SIZE(requests); id++) { struct i915_request *rq; struct file *state; rq = requests[id]; if (!rq) continue; if (rq->fence.error) { err = -EIO; goto out; } GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags)); if (!rq->context->state) continue; /* Keep a copy of the state's backing pages; free the obj */ state = shmem_create_from_object(rq->context->state->obj); if (IS_ERR(state)) { err = PTR_ERR(state); goto out; } rq->engine->default_state = state; } out: /* * If we have to abandon now, we expect the engines to be idle * and ready to be torn-down. The quickest way we can accomplish * this is by declaring ourselves wedged. */ if (err) intel_gt_set_wedged(gt); for (id = 0; id < ARRAY_SIZE(requests); id++) { struct intel_context *ce; struct i915_request *rq; rq = requests[id]; if (!rq) continue; ce = rq->context; i915_request_put(rq); intel_context_put(ce); } return err; } static int __engines_verify_workarounds(struct intel_gt *gt) { struct intel_engine_cs *engine; enum intel_engine_id id; int err = 0; if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) return 0; for_each_engine(engine, gt, id) { if (intel_engine_verify_workarounds(engine, "load")) err = -EIO; } /* Flush and restore the kernel context for safety */ if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) err = -EIO; return err; } static void __intel_gt_disable(struct intel_gt *gt) { intel_gt_set_wedged_on_fini(gt); intel_gt_suspend_prepare(gt); intel_gt_suspend_late(gt); GEM_BUG_ON(intel_gt_pm_is_awake(gt)); } int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout) { long remaining_timeout; /* If the device is asleep, we have no requests outstanding */ if (!intel_gt_pm_is_awake(gt)) return 0; while ((timeout = intel_gt_retire_requests_timeout(gt, timeout, &remaining_timeout)) > 0) { cond_resched(); if (signal_pending(current)) return -EINTR; } return timeout ? timeout : intel_uc_wait_for_idle(>->uc, remaining_timeout); } int intel_gt_init(struct intel_gt *gt) { int err; err = i915_inject_probe_error(gt->i915, -ENODEV); if (err) return err; intel_gt_init_workarounds(gt); /* * This is just a security blanket to placate dragons. * On some systems, we very sporadically observe that the first TLBs * used by the CS may be stale, despite us poking the TLB reset. If * we hold the forcewake during initialisation these problems * just magically go away. */ intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); err = intel_gt_init_scratch(gt, GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K); if (err) goto out_fw; intel_gt_pm_init(gt); gt->vm = kernel_vm(gt); if (!gt->vm) { err = -ENOMEM; goto err_pm; } intel_set_mocs_index(gt); err = intel_engines_init(gt); if (err) goto err_engines; err = intel_uc_init(>->uc); if (err) goto err_engines; err = intel_gt_resume(gt); if (err) goto err_uc_init; err = __engines_record_defaults(gt); if (err) goto err_gt; err = __engines_verify_workarounds(gt); if (err) goto err_gt; intel_uc_init_late(>->uc); err = i915_inject_probe_error(gt->i915, -EIO); if (err) goto err_gt; intel_migrate_init(>->migrate, gt); intel_pxp_init(>->pxp); goto out_fw; err_gt: __intel_gt_disable(gt); intel_uc_fini_hw(>->uc); err_uc_init: intel_uc_fini(>->uc); err_engines: intel_engines_release(gt); i915_vm_put(fetch_and_zero(>->vm)); err_pm: intel_gt_pm_fini(gt); intel_gt_fini_scratch(gt); out_fw: if (err) intel_gt_set_wedged_on_init(gt); intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); return err; } void intel_gt_driver_remove(struct intel_gt *gt) { __intel_gt_disable(gt); intel_migrate_fini(>->migrate); intel_uc_driver_remove(>->uc); intel_engines_release(gt); intel_gt_flush_buffer_pool(gt); } void intel_gt_driver_unregister(struct intel_gt *gt) { intel_wakeref_t wakeref; intel_rps_driver_unregister(>->rps); intel_pxp_fini(>->pxp); /* * Upon unregistering the device to prevent any new users, cancel * all in-flight requests so that we can quickly unbind the active * resources. */ intel_gt_set_wedged_on_fini(gt); /* Scrub all HW state upon release */ with_intel_runtime_pm(gt->uncore->rpm, wakeref) __intel_gt_reset(gt, ALL_ENGINES); } void intel_gt_driver_release(struct intel_gt *gt) { struct i915_address_space *vm; vm = fetch_and_zero(>->vm); if (vm) /* FIXME being called twice on error paths :( */ i915_vm_put(vm); intel_wa_list_free(>->wa_list); intel_gt_pm_fini(gt); intel_gt_fini_scratch(gt); intel_gt_fini_buffer_pool(gt); } void intel_gt_driver_late_release(struct intel_gt *gt) { /* We need to wait for inflight RCU frees to release their grip */ rcu_barrier(); intel_uc_driver_late_release(>->uc); intel_gt_fini_requests(gt); intel_gt_fini_reset(gt); intel_gt_fini_timelines(gt); intel_engines_free(gt); } /** * intel_gt_reg_needs_read_steering - determine whether a register read * requires explicit steering * @gt: GT structure * @reg: the register to check steering requirements for * @type: type of multicast steering to check * * Determines whether @reg needs explicit steering of a specific type for * reads. * * Returns false if @reg does not belong to a register range of the given * steering type, or if the default (subslice-based) steering IDs are suitable * for @type steering too. */ static bool intel_gt_reg_needs_read_steering(struct intel_gt *gt, i915_reg_t reg, enum intel_steering_type type) { const u32 offset = i915_mmio_reg_offset(reg); const struct intel_mmio_range *entry; if (likely(!intel_gt_needs_read_steering(gt, type))) return false; for (entry = gt->steering_table[type]; entry->end; entry++) { if (offset >= entry->start && offset <= entry->end) return true; } return false; } /** * intel_gt_get_valid_steering - determines valid IDs for a class of MCR steering * @gt: GT structure * @type: multicast register type * @sliceid: Slice ID returned * @subsliceid: Subslice ID returned * * Determines sliceid and subsliceid values that will steer reads * of a specific multicast register class to a valid value. */ static void intel_gt_get_valid_steering(struct intel_gt *gt, enum intel_steering_type type, u8 *sliceid, u8 *subsliceid) { switch (type) { case L3BANK: GEM_DEBUG_WARN_ON(!gt->info.l3bank_mask); /* should be impossible! */ *sliceid = 0; /* unused */ *subsliceid = __ffs(gt->info.l3bank_mask); break; case MSLICE: GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */ *sliceid = __ffs(gt->info.mslice_mask); *subsliceid = 0; /* unused */ break; case LNCF: GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */ /* * An LNCF is always present if its mslice is present, so we * can safely just steer to LNCF 0 in all cases. */ *sliceid = __ffs(gt->info.mslice_mask) << 1; *subsliceid = 0; /* unused */ break; default: MISSING_CASE(type); *sliceid = 0; *subsliceid = 0; } } /** * intel_gt_read_register_fw - reads a GT register with support for multicast * @gt: GT structure * @reg: register to read * * This function will read a GT register. If the register is a multicast * register, the read will be steered to a valid instance (i.e., one that * isn't fused off or powered down by power gating). * * Returns the value from a valid instance of @reg. */ u32 intel_gt_read_register_fw(struct intel_gt *gt, i915_reg_t reg) { int type; u8 sliceid, subsliceid; for (type = 0; type < NUM_STEERING_TYPES; type++) { if (intel_gt_reg_needs_read_steering(gt, reg, type)) { intel_gt_get_valid_steering(gt, type, &sliceid, &subsliceid); return intel_uncore_read_with_mcr_steering_fw(gt->uncore, reg, sliceid, subsliceid); } } return intel_uncore_read_fw(gt->uncore, reg); } void intel_gt_info_print(const struct intel_gt_info *info, struct drm_printer *p) { drm_printf(p, "available engines: %x\n", info->engine_mask); intel_sseu_dump(&info->sseu, p); } struct reg_and_bit { i915_reg_t reg; u32 bit; }; static struct reg_and_bit get_reg_and_bit(const struct intel_engine_cs *engine, const bool gen8, const i915_reg_t *regs, const unsigned int num) { const unsigned int class = engine->class; struct reg_and_bit rb = { }; if (drm_WARN_ON_ONCE(&engine->i915->drm, class >= num || !regs[class].reg)) return rb; rb.reg = regs[class]; if (gen8 && class == VIDEO_DECODE_CLASS) rb.reg.reg += 4 * engine->instance; /* GEN8_M2TCR */ else rb.bit = engine->instance; rb.bit = BIT(rb.bit); return rb; } void intel_gt_invalidate_tlbs(struct intel_gt *gt) { static const i915_reg_t gen8_regs[] = { [RENDER_CLASS] = GEN8_RTCR, [VIDEO_DECODE_CLASS] = GEN8_M1TCR, /* , GEN8_M2TCR */ [VIDEO_ENHANCEMENT_CLASS] = GEN8_VTCR, [COPY_ENGINE_CLASS] = GEN8_BTCR, }; static const i915_reg_t gen12_regs[] = { [RENDER_CLASS] = GEN12_GFX_TLB_INV_CR, [VIDEO_DECODE_CLASS] = GEN12_VD_TLB_INV_CR, [VIDEO_ENHANCEMENT_CLASS] = GEN12_VE_TLB_INV_CR, [COPY_ENGINE_CLASS] = GEN12_BLT_TLB_INV_CR, }; struct drm_i915_private *i915 = gt->i915; struct intel_uncore *uncore = gt->uncore; struct intel_engine_cs *engine; enum intel_engine_id id; const i915_reg_t *regs; unsigned int num = 0; if (I915_SELFTEST_ONLY(gt->awake == -ENODEV)) return; if (GRAPHICS_VER(i915) == 12) { regs = gen12_regs; num = ARRAY_SIZE(gen12_regs); } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) { regs = gen8_regs; num = ARRAY_SIZE(gen8_regs); } else if (GRAPHICS_VER(i915) < 8) { return; } if (drm_WARN_ONCE(&i915->drm, !num, "Platform does not implement TLB invalidation!")) return; GEM_TRACE("\n"); assert_rpm_wakelock_held(&i915->runtime_pm); mutex_lock(>->tlb_invalidate_lock); intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); for_each_engine(engine, gt, id) { /* * HW architecture suggest typical invalidation time at 40us, * with pessimistic cases up to 100us and a recommendation to * cap at 1ms. We go a bit higher just in case. */ const unsigned int timeout_us = 100; const unsigned int timeout_ms = 4; struct reg_and_bit rb; rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num); if (!i915_mmio_reg_offset(rb.reg)) continue; intel_uncore_write_fw(uncore, rb.reg, rb.bit); if (__intel_wait_for_register_fw(uncore, rb.reg, rb.bit, 0, timeout_us, timeout_ms, NULL)) drm_err_ratelimited(>->i915->drm, "%s TLB invalidation did not complete in %ums!\n", engine->name, timeout_ms); } /* * Use delayed put since a) we mostly expect a flurry of TLB * invalidations so it is good to avoid paying the forcewake cost and * b) it works around a bug in Icelake which cannot cope with too rapid * transitions. */ intel_uncore_forcewake_put_delayed(uncore, FORCEWAKE_ALL); mutex_unlock(>->tlb_invalidate_lock); }