// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2000-2005 Silicon Graphics, Inc. * All Rights Reserved. */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_inode.h" #include "xfs_rtalloc.h" #include "xfs_iwalk.h" #include "xfs_itable.h" #include "xfs_error.h" #include "xfs_attr.h" #include "xfs_bmap.h" #include "xfs_bmap_util.h" #include "xfs_fsops.h" #include "xfs_discard.h" #include "xfs_quota.h" #include "xfs_export.h" #include "xfs_trace.h" #include "xfs_icache.h" #include "xfs_trans.h" #include "xfs_acl.h" #include "xfs_btree.h" #include #include "xfs_fsmap.h" #include "scrub/xfs_scrub.h" #include "xfs_sb.h" #include "xfs_ag.h" #include "xfs_health.h" #include #include /* * xfs_find_handle maps from userspace xfs_fsop_handlereq structure to * a file or fs handle. * * XFS_IOC_PATH_TO_FSHANDLE * returns fs handle for a mount point or path within that mount point * XFS_IOC_FD_TO_HANDLE * returns full handle for a FD opened in user space * XFS_IOC_PATH_TO_HANDLE * returns full handle for a path */ int xfs_find_handle( unsigned int cmd, xfs_fsop_handlereq_t *hreq) { int hsize; xfs_handle_t handle; struct inode *inode; struct fd f = {NULL}; struct path path; int error; struct xfs_inode *ip; if (cmd == XFS_IOC_FD_TO_HANDLE) { f = fdget(hreq->fd); if (!f.file) return -EBADF; inode = file_inode(f.file); } else { error = user_lpath((const char __user *)hreq->path, &path); if (error) return error; inode = d_inode(path.dentry); } ip = XFS_I(inode); /* * We can only generate handles for inodes residing on a XFS filesystem, * and only for regular files, directories or symbolic links. */ error = -EINVAL; if (inode->i_sb->s_magic != XFS_SB_MAGIC) goto out_put; error = -EBADF; if (!S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode) && !S_ISLNK(inode->i_mode)) goto out_put; memcpy(&handle.ha_fsid, ip->i_mount->m_fixedfsid, sizeof(xfs_fsid_t)); if (cmd == XFS_IOC_PATH_TO_FSHANDLE) { /* * This handle only contains an fsid, zero the rest. */ memset(&handle.ha_fid, 0, sizeof(handle.ha_fid)); hsize = sizeof(xfs_fsid_t); } else { handle.ha_fid.fid_len = sizeof(xfs_fid_t) - sizeof(handle.ha_fid.fid_len); handle.ha_fid.fid_pad = 0; handle.ha_fid.fid_gen = inode->i_generation; handle.ha_fid.fid_ino = ip->i_ino; hsize = sizeof(xfs_handle_t); } error = -EFAULT; if (copy_to_user(hreq->ohandle, &handle, hsize) || copy_to_user(hreq->ohandlen, &hsize, sizeof(__s32))) goto out_put; error = 0; out_put: if (cmd == XFS_IOC_FD_TO_HANDLE) fdput(f); else path_put(&path); return error; } /* * No need to do permission checks on the various pathname components * as the handle operations are privileged. */ STATIC int xfs_handle_acceptable( void *context, struct dentry *dentry) { return 1; } /* * Convert userspace handle data into a dentry. */ struct dentry * xfs_handle_to_dentry( struct file *parfilp, void __user *uhandle, u32 hlen) { xfs_handle_t handle; struct xfs_fid64 fid; /* * Only allow handle opens under a directory. */ if (!S_ISDIR(file_inode(parfilp)->i_mode)) return ERR_PTR(-ENOTDIR); if (hlen != sizeof(xfs_handle_t)) return ERR_PTR(-EINVAL); if (copy_from_user(&handle, uhandle, hlen)) return ERR_PTR(-EFAULT); if (handle.ha_fid.fid_len != sizeof(handle.ha_fid) - sizeof(handle.ha_fid.fid_len)) return ERR_PTR(-EINVAL); memset(&fid, 0, sizeof(struct fid)); fid.ino = handle.ha_fid.fid_ino; fid.gen = handle.ha_fid.fid_gen; return exportfs_decode_fh(parfilp->f_path.mnt, (struct fid *)&fid, 3, FILEID_INO32_GEN | XFS_FILEID_TYPE_64FLAG, xfs_handle_acceptable, NULL); } STATIC struct dentry * xfs_handlereq_to_dentry( struct file *parfilp, xfs_fsop_handlereq_t *hreq) { return xfs_handle_to_dentry(parfilp, hreq->ihandle, hreq->ihandlen); } int xfs_open_by_handle( struct file *parfilp, xfs_fsop_handlereq_t *hreq) { const struct cred *cred = current_cred(); int error; int fd; int permflag; struct file *filp; struct inode *inode; struct dentry *dentry; fmode_t fmode; struct path path; if (!capable(CAP_SYS_ADMIN)) return -EPERM; dentry = xfs_handlereq_to_dentry(parfilp, hreq); if (IS_ERR(dentry)) return PTR_ERR(dentry); inode = d_inode(dentry); /* Restrict xfs_open_by_handle to directories & regular files. */ if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode))) { error = -EPERM; goto out_dput; } #if BITS_PER_LONG != 32 hreq->oflags |= O_LARGEFILE; #endif permflag = hreq->oflags; fmode = OPEN_FMODE(permflag); if ((!(permflag & O_APPEND) || (permflag & O_TRUNC)) && (fmode & FMODE_WRITE) && IS_APPEND(inode)) { error = -EPERM; goto out_dput; } if ((fmode & FMODE_WRITE) && IS_IMMUTABLE(inode)) { error = -EPERM; goto out_dput; } /* Can't write directories. */ if (S_ISDIR(inode->i_mode) && (fmode & FMODE_WRITE)) { error = -EISDIR; goto out_dput; } fd = get_unused_fd_flags(0); if (fd < 0) { error = fd; goto out_dput; } path.mnt = parfilp->f_path.mnt; path.dentry = dentry; filp = dentry_open(&path, hreq->oflags, cred); dput(dentry); if (IS_ERR(filp)) { put_unused_fd(fd); return PTR_ERR(filp); } if (S_ISREG(inode->i_mode)) { filp->f_flags |= O_NOATIME; filp->f_mode |= FMODE_NOCMTIME; } fd_install(fd, filp); return fd; out_dput: dput(dentry); return error; } int xfs_readlink_by_handle( struct file *parfilp, xfs_fsop_handlereq_t *hreq) { struct dentry *dentry; __u32 olen; int error; if (!capable(CAP_SYS_ADMIN)) return -EPERM; dentry = xfs_handlereq_to_dentry(parfilp, hreq); if (IS_ERR(dentry)) return PTR_ERR(dentry); /* Restrict this handle operation to symlinks only. */ if (!d_is_symlink(dentry)) { error = -EINVAL; goto out_dput; } if (copy_from_user(&olen, hreq->ohandlen, sizeof(__u32))) { error = -EFAULT; goto out_dput; } error = vfs_readlink(dentry, hreq->ohandle, olen); out_dput: dput(dentry); return error; } int xfs_set_dmattrs( xfs_inode_t *ip, uint evmask, uint16_t state) { xfs_mount_t *mp = ip->i_mount; xfs_trans_t *tp; int error; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (XFS_FORCED_SHUTDOWN(mp)) return -EIO; error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); if (error) return error; xfs_ilock(ip, XFS_ILOCK_EXCL); xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); ip->i_d.di_dmevmask = evmask; ip->i_d.di_dmstate = state; xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); error = xfs_trans_commit(tp); return error; } STATIC int xfs_fssetdm_by_handle( struct file *parfilp, void __user *arg) { int error; struct fsdmidata fsd; xfs_fsop_setdm_handlereq_t dmhreq; struct dentry *dentry; if (!capable(CAP_MKNOD)) return -EPERM; if (copy_from_user(&dmhreq, arg, sizeof(xfs_fsop_setdm_handlereq_t))) return -EFAULT; error = mnt_want_write_file(parfilp); if (error) return error; dentry = xfs_handlereq_to_dentry(parfilp, &dmhreq.hreq); if (IS_ERR(dentry)) { mnt_drop_write_file(parfilp); return PTR_ERR(dentry); } if (IS_IMMUTABLE(d_inode(dentry)) || IS_APPEND(d_inode(dentry))) { error = -EPERM; goto out; } if (copy_from_user(&fsd, dmhreq.data, sizeof(fsd))) { error = -EFAULT; goto out; } error = xfs_set_dmattrs(XFS_I(d_inode(dentry)), fsd.fsd_dmevmask, fsd.fsd_dmstate); out: mnt_drop_write_file(parfilp); dput(dentry); return error; } STATIC int xfs_attrlist_by_handle( struct file *parfilp, void __user *arg) { int error = -ENOMEM; attrlist_cursor_kern_t *cursor; struct xfs_fsop_attrlist_handlereq __user *p = arg; xfs_fsop_attrlist_handlereq_t al_hreq; struct dentry *dentry; char *kbuf; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (copy_from_user(&al_hreq, arg, sizeof(xfs_fsop_attrlist_handlereq_t))) return -EFAULT; if (al_hreq.buflen < sizeof(struct attrlist) || al_hreq.buflen > XFS_XATTR_LIST_MAX) return -EINVAL; /* * Reject flags, only allow namespaces. */ if (al_hreq.flags & ~(ATTR_ROOT | ATTR_SECURE)) return -EINVAL; dentry = xfs_handlereq_to_dentry(parfilp, &al_hreq.hreq); if (IS_ERR(dentry)) return PTR_ERR(dentry); kbuf = kmem_zalloc_large(al_hreq.buflen, KM_SLEEP); if (!kbuf) goto out_dput; cursor = (attrlist_cursor_kern_t *)&al_hreq.pos; error = xfs_attr_list(XFS_I(d_inode(dentry)), kbuf, al_hreq.buflen, al_hreq.flags, cursor); if (error) goto out_kfree; if (copy_to_user(&p->pos, cursor, sizeof(attrlist_cursor_kern_t))) { error = -EFAULT; goto out_kfree; } if (copy_to_user(al_hreq.buffer, kbuf, al_hreq.buflen)) error = -EFAULT; out_kfree: kmem_free(kbuf); out_dput: dput(dentry); return error; } int xfs_attrmulti_attr_get( struct inode *inode, unsigned char *name, unsigned char __user *ubuf, uint32_t *len, uint32_t flags) { unsigned char *kbuf; int error = -EFAULT; if (*len > XFS_XATTR_SIZE_MAX) return -EINVAL; kbuf = kmem_zalloc_large(*len, KM_SLEEP); if (!kbuf) return -ENOMEM; error = xfs_attr_get(XFS_I(inode), name, kbuf, (int *)len, flags); if (error) goto out_kfree; if (copy_to_user(ubuf, kbuf, *len)) error = -EFAULT; out_kfree: kmem_free(kbuf); return error; } int xfs_attrmulti_attr_set( struct inode *inode, unsigned char *name, const unsigned char __user *ubuf, uint32_t len, uint32_t flags) { unsigned char *kbuf; int error; if (IS_IMMUTABLE(inode) || IS_APPEND(inode)) return -EPERM; if (len > XFS_XATTR_SIZE_MAX) return -EINVAL; kbuf = memdup_user(ubuf, len); if (IS_ERR(kbuf)) return PTR_ERR(kbuf); error = xfs_attr_set(XFS_I(inode), name, kbuf, len, flags); if (!error) xfs_forget_acl(inode, name, flags); kfree(kbuf); return error; } int xfs_attrmulti_attr_remove( struct inode *inode, unsigned char *name, uint32_t flags) { int error; if (IS_IMMUTABLE(inode) || IS_APPEND(inode)) return -EPERM; error = xfs_attr_remove(XFS_I(inode), name, flags); if (!error) xfs_forget_acl(inode, name, flags); return error; } STATIC int xfs_attrmulti_by_handle( struct file *parfilp, void __user *arg) { int error; xfs_attr_multiop_t *ops; xfs_fsop_attrmulti_handlereq_t am_hreq; struct dentry *dentry; unsigned int i, size; unsigned char *attr_name; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (copy_from_user(&am_hreq, arg, sizeof(xfs_fsop_attrmulti_handlereq_t))) return -EFAULT; /* overflow check */ if (am_hreq.opcount >= INT_MAX / sizeof(xfs_attr_multiop_t)) return -E2BIG; dentry = xfs_handlereq_to_dentry(parfilp, &am_hreq.hreq); if (IS_ERR(dentry)) return PTR_ERR(dentry); error = -E2BIG; size = am_hreq.opcount * sizeof(xfs_attr_multiop_t); if (!size || size > 16 * PAGE_SIZE) goto out_dput; ops = memdup_user(am_hreq.ops, size); if (IS_ERR(ops)) { error = PTR_ERR(ops); goto out_dput; } error = -ENOMEM; attr_name = kmalloc(MAXNAMELEN, GFP_KERNEL); if (!attr_name) goto out_kfree_ops; error = 0; for (i = 0; i < am_hreq.opcount; i++) { ops[i].am_error = strncpy_from_user((char *)attr_name, ops[i].am_attrname, MAXNAMELEN); if (ops[i].am_error == 0 || ops[i].am_error == MAXNAMELEN) error = -ERANGE; if (ops[i].am_error < 0) break; switch (ops[i].am_opcode) { case ATTR_OP_GET: ops[i].am_error = xfs_attrmulti_attr_get( d_inode(dentry), attr_name, ops[i].am_attrvalue, &ops[i].am_length, ops[i].am_flags); break; case ATTR_OP_SET: ops[i].am_error = mnt_want_write_file(parfilp); if (ops[i].am_error) break; ops[i].am_error = xfs_attrmulti_attr_set( d_inode(dentry), attr_name, ops[i].am_attrvalue, ops[i].am_length, ops[i].am_flags); mnt_drop_write_file(parfilp); break; case ATTR_OP_REMOVE: ops[i].am_error = mnt_want_write_file(parfilp); if (ops[i].am_error) break; ops[i].am_error = xfs_attrmulti_attr_remove( d_inode(dentry), attr_name, ops[i].am_flags); mnt_drop_write_file(parfilp); break; default: ops[i].am_error = -EINVAL; } } if (copy_to_user(am_hreq.ops, ops, size)) error = -EFAULT; kfree(attr_name); out_kfree_ops: kfree(ops); out_dput: dput(dentry); return error; } int xfs_ioc_space( struct file *filp, unsigned int cmd, xfs_flock64_t *bf) { struct inode *inode = file_inode(filp); struct xfs_inode *ip = XFS_I(inode); struct iattr iattr; enum xfs_prealloc_flags flags = 0; uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; int error; if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) return -EPERM; if (!(filp->f_mode & FMODE_WRITE)) return -EBADF; if (!S_ISREG(inode->i_mode)) return -EINVAL; if (filp->f_flags & O_DSYNC) flags |= XFS_PREALLOC_SYNC; if (filp->f_mode & FMODE_NOCMTIME) flags |= XFS_PREALLOC_INVISIBLE; error = mnt_want_write_file(filp); if (error) return error; xfs_ilock(ip, iolock); error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); if (error) goto out_unlock; switch (bf->l_whence) { case 0: /*SEEK_SET*/ break; case 1: /*SEEK_CUR*/ bf->l_start += filp->f_pos; break; case 2: /*SEEK_END*/ bf->l_start += XFS_ISIZE(ip); break; default: error = -EINVAL; goto out_unlock; } /* * length of <= 0 for resv/unresv/zero is invalid. length for * alloc/free is ignored completely and we have no idea what userspace * might have set it to, so set it to zero to allow range * checks to pass. */ switch (cmd) { case XFS_IOC_ZERO_RANGE: case XFS_IOC_RESVSP: case XFS_IOC_RESVSP64: case XFS_IOC_UNRESVSP: case XFS_IOC_UNRESVSP64: if (bf->l_len <= 0) { error = -EINVAL; goto out_unlock; } break; default: bf->l_len = 0; break; } if (bf->l_start < 0 || bf->l_start > inode->i_sb->s_maxbytes || bf->l_start + bf->l_len < 0 || bf->l_start + bf->l_len >= inode->i_sb->s_maxbytes) { error = -EINVAL; goto out_unlock; } switch (cmd) { case XFS_IOC_ZERO_RANGE: flags |= XFS_PREALLOC_SET; error = xfs_zero_file_space(ip, bf->l_start, bf->l_len); break; case XFS_IOC_RESVSP: case XFS_IOC_RESVSP64: flags |= XFS_PREALLOC_SET; error = xfs_alloc_file_space(ip, bf->l_start, bf->l_len, XFS_BMAPI_PREALLOC); break; case XFS_IOC_UNRESVSP: case XFS_IOC_UNRESVSP64: error = xfs_free_file_space(ip, bf->l_start, bf->l_len); break; case XFS_IOC_ALLOCSP: case XFS_IOC_ALLOCSP64: case XFS_IOC_FREESP: case XFS_IOC_FREESP64: flags |= XFS_PREALLOC_CLEAR; if (bf->l_start > XFS_ISIZE(ip)) { error = xfs_alloc_file_space(ip, XFS_ISIZE(ip), bf->l_start - XFS_ISIZE(ip), 0); if (error) goto out_unlock; } iattr.ia_valid = ATTR_SIZE; iattr.ia_size = bf->l_start; error = xfs_vn_setattr_size(file_dentry(filp), &iattr); break; default: ASSERT(0); error = -EINVAL; } if (error) goto out_unlock; error = xfs_update_prealloc_flags(ip, flags); out_unlock: xfs_iunlock(ip, iolock); mnt_drop_write_file(filp); return error; } /* Return 0 on success or positive error */ int xfs_fsbulkstat_one_fmt( struct xfs_ibulk *breq, const struct xfs_bstat *bstat) { if (copy_to_user(breq->ubuffer, bstat, sizeof(*bstat))) return -EFAULT; return xfs_ibulk_advance(breq, sizeof(struct xfs_bstat)); } int xfs_fsinumbers_fmt( struct xfs_ibulk *breq, const struct xfs_inogrp *igrp) { if (copy_to_user(breq->ubuffer, igrp, sizeof(*igrp))) return -EFAULT; return xfs_ibulk_advance(breq, sizeof(struct xfs_inogrp)); } STATIC int xfs_ioc_fsbulkstat( xfs_mount_t *mp, unsigned int cmd, void __user *arg) { struct xfs_fsop_bulkreq bulkreq; struct xfs_ibulk breq = { .mp = mp, .ocount = 0, }; xfs_ino_t lastino; int error; /* done = 1 if there are more stats to get and if bulkstat */ /* should be called again (unused here, but used in dmapi) */ if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (XFS_FORCED_SHUTDOWN(mp)) return -EIO; if (copy_from_user(&bulkreq, arg, sizeof(struct xfs_fsop_bulkreq))) return -EFAULT; if (copy_from_user(&lastino, bulkreq.lastip, sizeof(__s64))) return -EFAULT; if (bulkreq.icount <= 0) return -EINVAL; if (bulkreq.ubuffer == NULL) return -EINVAL; breq.ubuffer = bulkreq.ubuffer; breq.icount = bulkreq.icount; /* * FSBULKSTAT_SINGLE expects that *lastip contains the inode number * that we want to stat. However, FSINUMBERS and FSBULKSTAT expect * that *lastip contains either zero or the number of the last inode to * be examined by the previous call and return results starting with * the next inode after that. The new bulk request back end functions * take the inode to start with, so we have to compute the startino * parameter from lastino to maintain correct function. lastino == 0 * is a special case because it has traditionally meant "first inode * in filesystem". */ if (cmd == XFS_IOC_FSINUMBERS) { breq.startino = lastino ? lastino + 1 : 0; error = xfs_inumbers(&breq, xfs_fsinumbers_fmt); lastino = breq.startino - 1; } else if (cmd == XFS_IOC_FSBULKSTAT_SINGLE) { breq.startino = lastino; breq.icount = 1; error = xfs_bulkstat_one(&breq, xfs_fsbulkstat_one_fmt); lastino = breq.startino; } else { /* XFS_IOC_FSBULKSTAT */ breq.startino = lastino ? lastino + 1 : 0; error = xfs_bulkstat(&breq, xfs_fsbulkstat_one_fmt); lastino = breq.startino - 1; } if (error) return error; if (bulkreq.lastip != NULL && copy_to_user(bulkreq.lastip, &lastino, sizeof(xfs_ino_t))) return -EFAULT; if (bulkreq.ocount != NULL && copy_to_user(bulkreq.ocount, &breq.ocount, sizeof(__s32))) return -EFAULT; return 0; } STATIC int xfs_ioc_fsgeometry( struct xfs_mount *mp, void __user *arg, int struct_version) { struct xfs_fsop_geom fsgeo; size_t len; xfs_fs_geometry(&mp->m_sb, &fsgeo, struct_version); if (struct_version <= 3) len = sizeof(struct xfs_fsop_geom_v1); else if (struct_version == 4) len = sizeof(struct xfs_fsop_geom_v4); else { xfs_fsop_geom_health(mp, &fsgeo); len = sizeof(fsgeo); } if (copy_to_user(arg, &fsgeo, len)) return -EFAULT; return 0; } STATIC int xfs_ioc_ag_geometry( struct xfs_mount *mp, void __user *arg) { struct xfs_ag_geometry ageo; int error; if (copy_from_user(&ageo, arg, sizeof(ageo))) return -EFAULT; error = xfs_ag_get_geometry(mp, ageo.ag_number, &ageo); if (error) return error; if (copy_to_user(arg, &ageo, sizeof(ageo))) return -EFAULT; return 0; } /* * Linux extended inode flags interface. */ STATIC unsigned int xfs_merge_ioc_xflags( unsigned int flags, unsigned int start) { unsigned int xflags = start; if (flags & FS_IMMUTABLE_FL) xflags |= FS_XFLAG_IMMUTABLE; else xflags &= ~FS_XFLAG_IMMUTABLE; if (flags & FS_APPEND_FL) xflags |= FS_XFLAG_APPEND; else xflags &= ~FS_XFLAG_APPEND; if (flags & FS_SYNC_FL) xflags |= FS_XFLAG_SYNC; else xflags &= ~FS_XFLAG_SYNC; if (flags & FS_NOATIME_FL) xflags |= FS_XFLAG_NOATIME; else xflags &= ~FS_XFLAG_NOATIME; if (flags & FS_NODUMP_FL) xflags |= FS_XFLAG_NODUMP; else xflags &= ~FS_XFLAG_NODUMP; return xflags; } STATIC unsigned int xfs_di2lxflags( uint16_t di_flags) { unsigned int flags = 0; if (di_flags & XFS_DIFLAG_IMMUTABLE) flags |= FS_IMMUTABLE_FL; if (di_flags & XFS_DIFLAG_APPEND) flags |= FS_APPEND_FL; if (di_flags & XFS_DIFLAG_SYNC) flags |= FS_SYNC_FL; if (di_flags & XFS_DIFLAG_NOATIME) flags |= FS_NOATIME_FL; if (di_flags & XFS_DIFLAG_NODUMP) flags |= FS_NODUMP_FL; return flags; } STATIC int xfs_ioc_fsgetxattr( xfs_inode_t *ip, int attr, void __user *arg) { struct fsxattr fa; memset(&fa, 0, sizeof(struct fsxattr)); xfs_ilock(ip, XFS_ILOCK_SHARED); fa.fsx_xflags = xfs_ip2xflags(ip); fa.fsx_extsize = ip->i_d.di_extsize << ip->i_mount->m_sb.sb_blocklog; fa.fsx_cowextsize = ip->i_d.di_cowextsize << ip->i_mount->m_sb.sb_blocklog; fa.fsx_projid = xfs_get_projid(ip); if (attr) { if (ip->i_afp) { if (ip->i_afp->if_flags & XFS_IFEXTENTS) fa.fsx_nextents = xfs_iext_count(ip->i_afp); else fa.fsx_nextents = ip->i_d.di_anextents; } else fa.fsx_nextents = 0; } else { if (ip->i_df.if_flags & XFS_IFEXTENTS) fa.fsx_nextents = xfs_iext_count(&ip->i_df); else fa.fsx_nextents = ip->i_d.di_nextents; } xfs_iunlock(ip, XFS_ILOCK_SHARED); if (copy_to_user(arg, &fa, sizeof(fa))) return -EFAULT; return 0; } STATIC uint16_t xfs_flags2diflags( struct xfs_inode *ip, unsigned int xflags) { /* can't set PREALLOC this way, just preserve it */ uint16_t di_flags = (ip->i_d.di_flags & XFS_DIFLAG_PREALLOC); if (xflags & FS_XFLAG_IMMUTABLE) di_flags |= XFS_DIFLAG_IMMUTABLE; if (xflags & FS_XFLAG_APPEND) di_flags |= XFS_DIFLAG_APPEND; if (xflags & FS_XFLAG_SYNC) di_flags |= XFS_DIFLAG_SYNC; if (xflags & FS_XFLAG_NOATIME) di_flags |= XFS_DIFLAG_NOATIME; if (xflags & FS_XFLAG_NODUMP) di_flags |= XFS_DIFLAG_NODUMP; if (xflags & FS_XFLAG_NODEFRAG) di_flags |= XFS_DIFLAG_NODEFRAG; if (xflags & FS_XFLAG_FILESTREAM) di_flags |= XFS_DIFLAG_FILESTREAM; if (S_ISDIR(VFS_I(ip)->i_mode)) { if (xflags & FS_XFLAG_RTINHERIT) di_flags |= XFS_DIFLAG_RTINHERIT; if (xflags & FS_XFLAG_NOSYMLINKS) di_flags |= XFS_DIFLAG_NOSYMLINKS; if (xflags & FS_XFLAG_EXTSZINHERIT) di_flags |= XFS_DIFLAG_EXTSZINHERIT; if (xflags & FS_XFLAG_PROJINHERIT) di_flags |= XFS_DIFLAG_PROJINHERIT; } else if (S_ISREG(VFS_I(ip)->i_mode)) { if (xflags & FS_XFLAG_REALTIME) di_flags |= XFS_DIFLAG_REALTIME; if (xflags & FS_XFLAG_EXTSIZE) di_flags |= XFS_DIFLAG_EXTSIZE; } return di_flags; } STATIC uint64_t xfs_flags2diflags2( struct xfs_inode *ip, unsigned int xflags) { uint64_t di_flags2 = (ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK); if (xflags & FS_XFLAG_DAX) di_flags2 |= XFS_DIFLAG2_DAX; if (xflags & FS_XFLAG_COWEXTSIZE) di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; return di_flags2; } STATIC void xfs_diflags_to_linux( struct xfs_inode *ip) { struct inode *inode = VFS_I(ip); unsigned int xflags = xfs_ip2xflags(ip); if (xflags & FS_XFLAG_IMMUTABLE) inode->i_flags |= S_IMMUTABLE; else inode->i_flags &= ~S_IMMUTABLE; if (xflags & FS_XFLAG_APPEND) inode->i_flags |= S_APPEND; else inode->i_flags &= ~S_APPEND; if (xflags & FS_XFLAG_SYNC) inode->i_flags |= S_SYNC; else inode->i_flags &= ~S_SYNC; if (xflags & FS_XFLAG_NOATIME) inode->i_flags |= S_NOATIME; else inode->i_flags &= ~S_NOATIME; #if 0 /* disabled until the flag switching races are sorted out */ if (xflags & FS_XFLAG_DAX) inode->i_flags |= S_DAX; else inode->i_flags &= ~S_DAX; #endif } static int xfs_ioctl_setattr_xflags( struct xfs_trans *tp, struct xfs_inode *ip, struct fsxattr *fa) { struct xfs_mount *mp = ip->i_mount; uint64_t di_flags2; /* Can't change realtime flag if any extents are allocated. */ if ((ip->i_d.di_nextents || ip->i_delayed_blks) && XFS_IS_REALTIME_INODE(ip) != (fa->fsx_xflags & FS_XFLAG_REALTIME)) return -EINVAL; /* If realtime flag is set then must have realtime device */ if (fa->fsx_xflags & FS_XFLAG_REALTIME) { if (mp->m_sb.sb_rblocks == 0 || mp->m_sb.sb_rextsize == 0 || (ip->i_d.di_extsize % mp->m_sb.sb_rextsize)) return -EINVAL; } /* Clear reflink if we are actually able to set the rt flag. */ if ((fa->fsx_xflags & FS_XFLAG_REALTIME) && xfs_is_reflink_inode(ip)) ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; /* Don't allow us to set DAX mode for a reflinked file for now. */ if ((fa->fsx_xflags & FS_XFLAG_DAX) && xfs_is_reflink_inode(ip)) return -EINVAL; /* * Can't modify an immutable/append-only file unless * we have appropriate permission. */ if (((ip->i_d.di_flags & (XFS_DIFLAG_IMMUTABLE | XFS_DIFLAG_APPEND)) || (fa->fsx_xflags & (FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND))) && !capable(CAP_LINUX_IMMUTABLE)) return -EPERM; /* diflags2 only valid for v3 inodes. */ di_flags2 = xfs_flags2diflags2(ip, fa->fsx_xflags); if (di_flags2 && ip->i_d.di_version < 3) return -EINVAL; ip->i_d.di_flags = xfs_flags2diflags(ip, fa->fsx_xflags); ip->i_d.di_flags2 = di_flags2; xfs_diflags_to_linux(ip); xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); XFS_STATS_INC(mp, xs_ig_attrchg); return 0; } /* * If we are changing DAX flags, we have to ensure the file is clean and any * cached objects in the address space are invalidated and removed. This * requires us to lock out other IO and page faults similar to a truncate * operation. The locks need to be held until the transaction has been committed * so that the cache invalidation is atomic with respect to the DAX flag * manipulation. */ static int xfs_ioctl_setattr_dax_invalidate( struct xfs_inode *ip, struct fsxattr *fa, int *join_flags) { struct inode *inode = VFS_I(ip); struct super_block *sb = inode->i_sb; int error; *join_flags = 0; /* * It is only valid to set the DAX flag on regular files and * directories on filesystems where the block size is equal to the page * size. On directories it serves as an inherited hint so we don't * have to check the device for dax support or flush pagecache. */ if (fa->fsx_xflags & FS_XFLAG_DAX) { if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode))) return -EINVAL; if (S_ISREG(inode->i_mode) && !bdev_dax_supported(xfs_find_bdev_for_inode(VFS_I(ip)), sb->s_blocksize)) return -EINVAL; } /* If the DAX state is not changing, we have nothing to do here. */ if ((fa->fsx_xflags & FS_XFLAG_DAX) && IS_DAX(inode)) return 0; if (!(fa->fsx_xflags & FS_XFLAG_DAX) && !IS_DAX(inode)) return 0; if (S_ISDIR(inode->i_mode)) return 0; /* lock, flush and invalidate mapping in preparation for flag change */ xfs_ilock(ip, XFS_MMAPLOCK_EXCL | XFS_IOLOCK_EXCL); error = filemap_write_and_wait(inode->i_mapping); if (error) goto out_unlock; error = invalidate_inode_pages2(inode->i_mapping); if (error) goto out_unlock; *join_flags = XFS_MMAPLOCK_EXCL | XFS_IOLOCK_EXCL; return 0; out_unlock: xfs_iunlock(ip, XFS_MMAPLOCK_EXCL | XFS_IOLOCK_EXCL); return error; } /* * Set up the transaction structure for the setattr operation, checking that we * have permission to do so. On success, return a clean transaction and the * inode locked exclusively ready for further operation specific checks. On * failure, return an error without modifying or locking the inode. * * The inode might already be IO locked on call. If this is the case, it is * indicated in @join_flags and we take full responsibility for ensuring they * are unlocked from now on. Hence if we have an error here, we still have to * unlock them. Otherwise, once they are joined to the transaction, they will * be unlocked on commit/cancel. */ static struct xfs_trans * xfs_ioctl_setattr_get_trans( struct xfs_inode *ip, int join_flags) { struct xfs_mount *mp = ip->i_mount; struct xfs_trans *tp; int error = -EROFS; if (mp->m_flags & XFS_MOUNT_RDONLY) goto out_unlock; error = -EIO; if (XFS_FORCED_SHUTDOWN(mp)) goto out_unlock; error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); if (error) goto out_unlock; xfs_ilock(ip, XFS_ILOCK_EXCL); xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL | join_flags); join_flags = 0; /* * CAP_FOWNER overrides the following restrictions: * * The user ID of the calling process must be equal to the file owner * ID, except in cases where the CAP_FSETID capability is applicable. */ if (!inode_owner_or_capable(VFS_I(ip))) { error = -EPERM; goto out_cancel; } if (mp->m_flags & XFS_MOUNT_WSYNC) xfs_trans_set_sync(tp); return tp; out_cancel: xfs_trans_cancel(tp); out_unlock: if (join_flags) xfs_iunlock(ip, join_flags); return ERR_PTR(error); } /* * extent size hint validation is somewhat cumbersome. Rules are: * * 1. extent size hint is only valid for directories and regular files * 2. FS_XFLAG_EXTSIZE is only valid for regular files * 3. FS_XFLAG_EXTSZINHERIT is only valid for directories. * 4. can only be changed on regular files if no extents are allocated * 5. can be changed on directories at any time * 6. extsize hint of 0 turns off hints, clears inode flags. * 7. Extent size must be a multiple of the appropriate block size. * 8. for non-realtime files, the extent size hint must be limited * to half the AG size to avoid alignment extending the extent beyond the * limits of the AG. * * Please keep this function in sync with xfs_scrub_inode_extsize. */ static int xfs_ioctl_setattr_check_extsize( struct xfs_inode *ip, struct fsxattr *fa) { struct xfs_mount *mp = ip->i_mount; if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(VFS_I(ip)->i_mode)) return -EINVAL; if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) && !S_ISDIR(VFS_I(ip)->i_mode)) return -EINVAL; if (S_ISREG(VFS_I(ip)->i_mode) && ip->i_d.di_nextents && ((ip->i_d.di_extsize << mp->m_sb.sb_blocklog) != fa->fsx_extsize)) return -EINVAL; if (fa->fsx_extsize != 0) { xfs_extlen_t size; xfs_fsblock_t extsize_fsb; extsize_fsb = XFS_B_TO_FSB(mp, fa->fsx_extsize); if (extsize_fsb > MAXEXTLEN) return -EINVAL; if (XFS_IS_REALTIME_INODE(ip) || (fa->fsx_xflags & FS_XFLAG_REALTIME)) { size = mp->m_sb.sb_rextsize << mp->m_sb.sb_blocklog; } else { size = mp->m_sb.sb_blocksize; if (extsize_fsb > mp->m_sb.sb_agblocks / 2) return -EINVAL; } if (fa->fsx_extsize % size) return -EINVAL; } else fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT); return 0; } /* * CoW extent size hint validation rules are: * * 1. CoW extent size hint can only be set if reflink is enabled on the fs. * The inode does not have to have any shared blocks, but it must be a v3. * 2. FS_XFLAG_COWEXTSIZE is only valid for directories and regular files; * for a directory, the hint is propagated to new files. * 3. Can be changed on files & directories at any time. * 4. CoW extsize hint of 0 turns off hints, clears inode flags. * 5. Extent size must be a multiple of the appropriate block size. * 6. The extent size hint must be limited to half the AG size to avoid * alignment extending the extent beyond the limits of the AG. * * Please keep this function in sync with xfs_scrub_inode_cowextsize. */ static int xfs_ioctl_setattr_check_cowextsize( struct xfs_inode *ip, struct fsxattr *fa) { struct xfs_mount *mp = ip->i_mount; if (!(fa->fsx_xflags & FS_XFLAG_COWEXTSIZE)) return 0; if (!xfs_sb_version_hasreflink(&ip->i_mount->m_sb) || ip->i_d.di_version != 3) return -EINVAL; if (!S_ISREG(VFS_I(ip)->i_mode) && !S_ISDIR(VFS_I(ip)->i_mode)) return -EINVAL; if (fa->fsx_cowextsize != 0) { xfs_extlen_t size; xfs_fsblock_t cowextsize_fsb; cowextsize_fsb = XFS_B_TO_FSB(mp, fa->fsx_cowextsize); if (cowextsize_fsb > MAXEXTLEN) return -EINVAL; size = mp->m_sb.sb_blocksize; if (cowextsize_fsb > mp->m_sb.sb_agblocks / 2) return -EINVAL; if (fa->fsx_cowextsize % size) return -EINVAL; } else fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE; return 0; } static int xfs_ioctl_setattr_check_projid( struct xfs_inode *ip, struct fsxattr *fa) { /* Disallow 32bit project ids if projid32bit feature is not enabled. */ if (fa->fsx_projid > (uint16_t)-1 && !xfs_sb_version_hasprojid32bit(&ip->i_mount->m_sb)) return -EINVAL; /* * Project Quota ID state is only allowed to change from within the init * namespace. Enforce that restriction only if we are trying to change * the quota ID state. Everything else is allowed in user namespaces. */ if (current_user_ns() == &init_user_ns) return 0; if (xfs_get_projid(ip) != fa->fsx_projid) return -EINVAL; if ((fa->fsx_xflags & FS_XFLAG_PROJINHERIT) != (ip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)) return -EINVAL; return 0; } STATIC int xfs_ioctl_setattr( xfs_inode_t *ip, struct fsxattr *fa) { struct xfs_mount *mp = ip->i_mount; struct xfs_trans *tp; struct xfs_dquot *udqp = NULL; struct xfs_dquot *pdqp = NULL; struct xfs_dquot *olddquot = NULL; int code; int join_flags = 0; trace_xfs_ioctl_setattr(ip); code = xfs_ioctl_setattr_check_projid(ip, fa); if (code) return code; /* * If disk quotas is on, we make sure that the dquots do exist on disk, * before we start any other transactions. Trying to do this later * is messy. We don't care to take a readlock to look at the ids * in inode here, because we can't hold it across the trans_reserve. * If the IDs do change before we take the ilock, we're covered * because the i_*dquot fields will get updated anyway. */ if (XFS_IS_QUOTA_ON(mp)) { code = xfs_qm_vop_dqalloc(ip, ip->i_d.di_uid, ip->i_d.di_gid, fa->fsx_projid, XFS_QMOPT_PQUOTA, &udqp, NULL, &pdqp); if (code) return code; } /* * Changing DAX config may require inode locking for mapping * invalidation. These need to be held all the way to transaction commit * or cancel time, so need to be passed through to * xfs_ioctl_setattr_get_trans() so it can apply them to the join call * appropriately. */ code = xfs_ioctl_setattr_dax_invalidate(ip, fa, &join_flags); if (code) goto error_free_dquots; tp = xfs_ioctl_setattr_get_trans(ip, join_flags); if (IS_ERR(tp)) { code = PTR_ERR(tp); goto error_free_dquots; } if (XFS_IS_QUOTA_RUNNING(mp) && XFS_IS_PQUOTA_ON(mp) && xfs_get_projid(ip) != fa->fsx_projid) { code = xfs_qm_vop_chown_reserve(tp, ip, udqp, NULL, pdqp, capable(CAP_FOWNER) ? XFS_QMOPT_FORCE_RES : 0); if (code) /* out of quota */ goto error_trans_cancel; } code = xfs_ioctl_setattr_check_extsize(ip, fa); if (code) goto error_trans_cancel; code = xfs_ioctl_setattr_check_cowextsize(ip, fa); if (code) goto error_trans_cancel; code = xfs_ioctl_setattr_xflags(tp, ip, fa); if (code) goto error_trans_cancel; /* * Change file ownership. Must be the owner or privileged. CAP_FSETID * overrides the following restrictions: * * The set-user-ID and set-group-ID bits of a file will be cleared upon * successful return from chown() */ if ((VFS_I(ip)->i_mode & (S_ISUID|S_ISGID)) && !capable_wrt_inode_uidgid(VFS_I(ip), CAP_FSETID)) VFS_I(ip)->i_mode &= ~(S_ISUID|S_ISGID); /* Change the ownerships and register project quota modifications */ if (xfs_get_projid(ip) != fa->fsx_projid) { if (XFS_IS_QUOTA_RUNNING(mp) && XFS_IS_PQUOTA_ON(mp)) { olddquot = xfs_qm_vop_chown(tp, ip, &ip->i_pdquot, pdqp); } ASSERT(ip->i_d.di_version > 1); xfs_set_projid(ip, fa->fsx_projid); } /* * Only set the extent size hint if we've already determined that the * extent size hint should be set on the inode. If no extent size flags * are set on the inode then unconditionally clear the extent size hint. */ if (ip->i_d.di_flags & (XFS_DIFLAG_EXTSIZE | XFS_DIFLAG_EXTSZINHERIT)) ip->i_d.di_extsize = fa->fsx_extsize >> mp->m_sb.sb_blocklog; else ip->i_d.di_extsize = 0; if (ip->i_d.di_version == 3 && (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)) ip->i_d.di_cowextsize = fa->fsx_cowextsize >> mp->m_sb.sb_blocklog; else ip->i_d.di_cowextsize = 0; code = xfs_trans_commit(tp); /* * Release any dquot(s) the inode had kept before chown. */ xfs_qm_dqrele(olddquot); xfs_qm_dqrele(udqp); xfs_qm_dqrele(pdqp); return code; error_trans_cancel: xfs_trans_cancel(tp); error_free_dquots: xfs_qm_dqrele(udqp); xfs_qm_dqrele(pdqp); return code; } STATIC int xfs_ioc_fssetxattr( xfs_inode_t *ip, struct file *filp, void __user *arg) { struct fsxattr fa; int error; if (copy_from_user(&fa, arg, sizeof(fa))) return -EFAULT; error = mnt_want_write_file(filp); if (error) return error; error = xfs_ioctl_setattr(ip, &fa); mnt_drop_write_file(filp); return error; } STATIC int xfs_ioc_getxflags( xfs_inode_t *ip, void __user *arg) { unsigned int flags; flags = xfs_di2lxflags(ip->i_d.di_flags); if (copy_to_user(arg, &flags, sizeof(flags))) return -EFAULT; return 0; } STATIC int xfs_ioc_setxflags( struct xfs_inode *ip, struct file *filp, void __user *arg) { struct xfs_trans *tp; struct fsxattr fa; unsigned int flags; int join_flags = 0; int error; if (copy_from_user(&flags, arg, sizeof(flags))) return -EFAULT; if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ FS_NOATIME_FL | FS_NODUMP_FL | \ FS_SYNC_FL)) return -EOPNOTSUPP; fa.fsx_xflags = xfs_merge_ioc_xflags(flags, xfs_ip2xflags(ip)); error = mnt_want_write_file(filp); if (error) return error; /* * Changing DAX config may require inode locking for mapping * invalidation. These need to be held all the way to transaction commit * or cancel time, so need to be passed through to * xfs_ioctl_setattr_get_trans() so it can apply them to the join call * appropriately. */ error = xfs_ioctl_setattr_dax_invalidate(ip, &fa, &join_flags); if (error) goto out_drop_write; tp = xfs_ioctl_setattr_get_trans(ip, join_flags); if (IS_ERR(tp)) { error = PTR_ERR(tp); goto out_drop_write; } error = xfs_ioctl_setattr_xflags(tp, ip, &fa); if (error) { xfs_trans_cancel(tp); goto out_drop_write; } error = xfs_trans_commit(tp); out_drop_write: mnt_drop_write_file(filp); return error; } static bool xfs_getbmap_format( struct kgetbmap *p, struct getbmapx __user *u, size_t recsize) { if (put_user(p->bmv_offset, &u->bmv_offset) || put_user(p->bmv_block, &u->bmv_block) || put_user(p->bmv_length, &u->bmv_length) || put_user(0, &u->bmv_count) || put_user(0, &u->bmv_entries)) return false; if (recsize < sizeof(struct getbmapx)) return true; if (put_user(0, &u->bmv_iflags) || put_user(p->bmv_oflags, &u->bmv_oflags) || put_user(0, &u->bmv_unused1) || put_user(0, &u->bmv_unused2)) return false; return true; } STATIC int xfs_ioc_getbmap( struct file *file, unsigned int cmd, void __user *arg) { struct getbmapx bmx = { 0 }; struct kgetbmap *buf; size_t recsize; int error, i; switch (cmd) { case XFS_IOC_GETBMAPA: bmx.bmv_iflags = BMV_IF_ATTRFORK; /*FALLTHRU*/ case XFS_IOC_GETBMAP: if (file->f_mode & FMODE_NOCMTIME) bmx.bmv_iflags |= BMV_IF_NO_DMAPI_READ; /* struct getbmap is a strict subset of struct getbmapx. */ recsize = sizeof(struct getbmap); break; case XFS_IOC_GETBMAPX: recsize = sizeof(struct getbmapx); break; default: return -EINVAL; } if (copy_from_user(&bmx, arg, recsize)) return -EFAULT; if (bmx.bmv_count < 2) return -EINVAL; if (bmx.bmv_count > ULONG_MAX / recsize) return -ENOMEM; buf = kmem_zalloc_large(bmx.bmv_count * sizeof(*buf), 0); if (!buf) return -ENOMEM; error = xfs_getbmap(XFS_I(file_inode(file)), &bmx, buf); if (error) goto out_free_buf; error = -EFAULT; if (copy_to_user(arg, &bmx, recsize)) goto out_free_buf; arg += recsize; for (i = 0; i < bmx.bmv_entries; i++) { if (!xfs_getbmap_format(buf + i, arg, recsize)) goto out_free_buf; arg += recsize; } error = 0; out_free_buf: kmem_free(buf); return error; } struct getfsmap_info { struct xfs_mount *mp; struct fsmap_head __user *data; unsigned int idx; __u32 last_flags; }; STATIC int xfs_getfsmap_format(struct xfs_fsmap *xfm, void *priv) { struct getfsmap_info *info = priv; struct fsmap fm; trace_xfs_getfsmap_mapping(info->mp, xfm); info->last_flags = xfm->fmr_flags; xfs_fsmap_from_internal(&fm, xfm); if (copy_to_user(&info->data->fmh_recs[info->idx++], &fm, sizeof(struct fsmap))) return -EFAULT; return 0; } STATIC int xfs_ioc_getfsmap( struct xfs_inode *ip, struct fsmap_head __user *arg) { struct getfsmap_info info = { NULL }; struct xfs_fsmap_head xhead = {0}; struct fsmap_head head; bool aborted = false; int error; if (copy_from_user(&head, arg, sizeof(struct fsmap_head))) return -EFAULT; if (memchr_inv(head.fmh_reserved, 0, sizeof(head.fmh_reserved)) || memchr_inv(head.fmh_keys[0].fmr_reserved, 0, sizeof(head.fmh_keys[0].fmr_reserved)) || memchr_inv(head.fmh_keys[1].fmr_reserved, 0, sizeof(head.fmh_keys[1].fmr_reserved))) return -EINVAL; xhead.fmh_iflags = head.fmh_iflags; xhead.fmh_count = head.fmh_count; xfs_fsmap_to_internal(&xhead.fmh_keys[0], &head.fmh_keys[0]); xfs_fsmap_to_internal(&xhead.fmh_keys[1], &head.fmh_keys[1]); trace_xfs_getfsmap_low_key(ip->i_mount, &xhead.fmh_keys[0]); trace_xfs_getfsmap_high_key(ip->i_mount, &xhead.fmh_keys[1]); info.mp = ip->i_mount; info.data = arg; error = xfs_getfsmap(ip->i_mount, &xhead, xfs_getfsmap_format, &info); if (error == XFS_BTREE_QUERY_RANGE_ABORT) { error = 0; aborted = true; } else if (error) return error; /* If we didn't abort, set the "last" flag in the last fmx */ if (!aborted && info.idx) { info.last_flags |= FMR_OF_LAST; if (copy_to_user(&info.data->fmh_recs[info.idx - 1].fmr_flags, &info.last_flags, sizeof(info.last_flags))) return -EFAULT; } /* copy back header */ head.fmh_entries = xhead.fmh_entries; head.fmh_oflags = xhead.fmh_oflags; if (copy_to_user(arg, &head, sizeof(struct fsmap_head))) return -EFAULT; return 0; } STATIC int xfs_ioc_scrub_metadata( struct xfs_inode *ip, void __user *arg) { struct xfs_scrub_metadata scrub; int error; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (copy_from_user(&scrub, arg, sizeof(scrub))) return -EFAULT; error = xfs_scrub_metadata(ip, &scrub); if (error) return error; if (copy_to_user(arg, &scrub, sizeof(scrub))) return -EFAULT; return 0; } int xfs_ioc_swapext( xfs_swapext_t *sxp) { xfs_inode_t *ip, *tip; struct fd f, tmp; int error = 0; /* Pull information for the target fd */ f = fdget((int)sxp->sx_fdtarget); if (!f.file) { error = -EINVAL; goto out; } if (!(f.file->f_mode & FMODE_WRITE) || !(f.file->f_mode & FMODE_READ) || (f.file->f_flags & O_APPEND)) { error = -EBADF; goto out_put_file; } tmp = fdget((int)sxp->sx_fdtmp); if (!tmp.file) { error = -EINVAL; goto out_put_file; } if (!(tmp.file->f_mode & FMODE_WRITE) || !(tmp.file->f_mode & FMODE_READ) || (tmp.file->f_flags & O_APPEND)) { error = -EBADF; goto out_put_tmp_file; } if (IS_SWAPFILE(file_inode(f.file)) || IS_SWAPFILE(file_inode(tmp.file))) { error = -EINVAL; goto out_put_tmp_file; } /* * We need to ensure that the fds passed in point to XFS inodes * before we cast and access them as XFS structures as we have no * control over what the user passes us here. */ if (f.file->f_op != &xfs_file_operations || tmp.file->f_op != &xfs_file_operations) { error = -EINVAL; goto out_put_tmp_file; } ip = XFS_I(file_inode(f.file)); tip = XFS_I(file_inode(tmp.file)); if (ip->i_mount != tip->i_mount) { error = -EINVAL; goto out_put_tmp_file; } if (ip->i_ino == tip->i_ino) { error = -EINVAL; goto out_put_tmp_file; } if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { error = -EIO; goto out_put_tmp_file; } error = xfs_swap_extents(ip, tip, sxp); out_put_tmp_file: fdput(tmp); out_put_file: fdput(f); out: return error; } static int xfs_ioc_getlabel( struct xfs_mount *mp, char __user *user_label) { struct xfs_sb *sbp = &mp->m_sb; char label[XFSLABEL_MAX + 1]; /* Paranoia */ BUILD_BUG_ON(sizeof(sbp->sb_fname) > FSLABEL_MAX); /* 1 larger than sb_fname, so this ensures a trailing NUL char */ memset(label, 0, sizeof(label)); spin_lock(&mp->m_sb_lock); strncpy(label, sbp->sb_fname, XFSLABEL_MAX); spin_unlock(&mp->m_sb_lock); if (copy_to_user(user_label, label, sizeof(label))) return -EFAULT; return 0; } static int xfs_ioc_setlabel( struct file *filp, struct xfs_mount *mp, char __user *newlabel) { struct xfs_sb *sbp = &mp->m_sb; char label[XFSLABEL_MAX + 1]; size_t len; int error; if (!capable(CAP_SYS_ADMIN)) return -EPERM; /* * The generic ioctl allows up to FSLABEL_MAX chars, but XFS is much * smaller, at 12 bytes. We copy one more to be sure we find the * (required) NULL character to test the incoming label length. * NB: The on disk label doesn't need to be null terminated. */ if (copy_from_user(label, newlabel, XFSLABEL_MAX + 1)) return -EFAULT; len = strnlen(label, XFSLABEL_MAX + 1); if (len > sizeof(sbp->sb_fname)) return -EINVAL; error = mnt_want_write_file(filp); if (error) return error; spin_lock(&mp->m_sb_lock); memset(sbp->sb_fname, 0, sizeof(sbp->sb_fname)); memcpy(sbp->sb_fname, label, len); spin_unlock(&mp->m_sb_lock); /* * Now we do several things to satisfy userspace. * In addition to normal logging of the primary superblock, we also * immediately write these changes to sector zero for the primary, then * update all backup supers (as xfs_db does for a label change), then * invalidate the block device page cache. This is so that any prior * buffered reads from userspace (i.e. from blkid) are invalidated, * and userspace will see the newly-written label. */ error = xfs_sync_sb_buf(mp); if (error) goto out; /* * growfs also updates backup supers so lock against that. */ mutex_lock(&mp->m_growlock); error = xfs_update_secondary_sbs(mp); mutex_unlock(&mp->m_growlock); invalidate_bdev(mp->m_ddev_targp->bt_bdev); out: mnt_drop_write_file(filp); return error; } /* * Note: some of the ioctl's return positive numbers as a * byte count indicating success, such as readlink_by_handle. * So we don't "sign flip" like most other routines. This means * true errors need to be returned as a negative value. */ long xfs_file_ioctl( struct file *filp, unsigned int cmd, unsigned long p) { struct inode *inode = file_inode(filp); struct xfs_inode *ip = XFS_I(inode); struct xfs_mount *mp = ip->i_mount; void __user *arg = (void __user *)p; int error; trace_xfs_file_ioctl(ip); switch (cmd) { case FITRIM: return xfs_ioc_trim(mp, arg); case FS_IOC_GETFSLABEL: return xfs_ioc_getlabel(mp, arg); case FS_IOC_SETFSLABEL: return xfs_ioc_setlabel(filp, mp, arg); case XFS_IOC_ALLOCSP: case XFS_IOC_FREESP: case XFS_IOC_RESVSP: case XFS_IOC_UNRESVSP: case XFS_IOC_ALLOCSP64: case XFS_IOC_FREESP64: case XFS_IOC_RESVSP64: case XFS_IOC_UNRESVSP64: case XFS_IOC_ZERO_RANGE: { xfs_flock64_t bf; if (copy_from_user(&bf, arg, sizeof(bf))) return -EFAULT; return xfs_ioc_space(filp, cmd, &bf); } case XFS_IOC_DIOINFO: { struct dioattr da; xfs_buftarg_t *target = XFS_IS_REALTIME_INODE(ip) ? mp->m_rtdev_targp : mp->m_ddev_targp; da.d_mem = da.d_miniosz = target->bt_logical_sectorsize; da.d_maxiosz = INT_MAX & ~(da.d_miniosz - 1); if (copy_to_user(arg, &da, sizeof(da))) return -EFAULT; return 0; } case XFS_IOC_FSBULKSTAT_SINGLE: case XFS_IOC_FSBULKSTAT: case XFS_IOC_FSINUMBERS: return xfs_ioc_fsbulkstat(mp, cmd, arg); case XFS_IOC_FSGEOMETRY_V1: return xfs_ioc_fsgeometry(mp, arg, 3); case XFS_IOC_FSGEOMETRY_V4: return xfs_ioc_fsgeometry(mp, arg, 4); case XFS_IOC_FSGEOMETRY: return xfs_ioc_fsgeometry(mp, arg, 5); case XFS_IOC_AG_GEOMETRY: return xfs_ioc_ag_geometry(mp, arg); case XFS_IOC_GETVERSION: return put_user(inode->i_generation, (int __user *)arg); case XFS_IOC_FSGETXATTR: return xfs_ioc_fsgetxattr(ip, 0, arg); case XFS_IOC_FSGETXATTRA: return xfs_ioc_fsgetxattr(ip, 1, arg); case XFS_IOC_FSSETXATTR: return xfs_ioc_fssetxattr(ip, filp, arg); case XFS_IOC_GETXFLAGS: return xfs_ioc_getxflags(ip, arg); case XFS_IOC_SETXFLAGS: return xfs_ioc_setxflags(ip, filp, arg); case XFS_IOC_FSSETDM: { struct fsdmidata dmi; if (copy_from_user(&dmi, arg, sizeof(dmi))) return -EFAULT; error = mnt_want_write_file(filp); if (error) return error; error = xfs_set_dmattrs(ip, dmi.fsd_dmevmask, dmi.fsd_dmstate); mnt_drop_write_file(filp); return error; } case XFS_IOC_GETBMAP: case XFS_IOC_GETBMAPA: case XFS_IOC_GETBMAPX: return xfs_ioc_getbmap(filp, cmd, arg); case FS_IOC_GETFSMAP: return xfs_ioc_getfsmap(ip, arg); case XFS_IOC_SCRUB_METADATA: return xfs_ioc_scrub_metadata(ip, arg); case XFS_IOC_FD_TO_HANDLE: case XFS_IOC_PATH_TO_HANDLE: case XFS_IOC_PATH_TO_FSHANDLE: { xfs_fsop_handlereq_t hreq; if (copy_from_user(&hreq, arg, sizeof(hreq))) return -EFAULT; return xfs_find_handle(cmd, &hreq); } case XFS_IOC_OPEN_BY_HANDLE: { xfs_fsop_handlereq_t hreq; if (copy_from_user(&hreq, arg, sizeof(xfs_fsop_handlereq_t))) return -EFAULT; return xfs_open_by_handle(filp, &hreq); } case XFS_IOC_FSSETDM_BY_HANDLE: return xfs_fssetdm_by_handle(filp, arg); case XFS_IOC_READLINK_BY_HANDLE: { xfs_fsop_handlereq_t hreq; if (copy_from_user(&hreq, arg, sizeof(xfs_fsop_handlereq_t))) return -EFAULT; return xfs_readlink_by_handle(filp, &hreq); } case XFS_IOC_ATTRLIST_BY_HANDLE: return xfs_attrlist_by_handle(filp, arg); case XFS_IOC_ATTRMULTI_BY_HANDLE: return xfs_attrmulti_by_handle(filp, arg); case XFS_IOC_SWAPEXT: { struct xfs_swapext sxp; if (copy_from_user(&sxp, arg, sizeof(xfs_swapext_t))) return -EFAULT; error = mnt_want_write_file(filp); if (error) return error; error = xfs_ioc_swapext(&sxp); mnt_drop_write_file(filp); return error; } case XFS_IOC_FSCOUNTS: { xfs_fsop_counts_t out; xfs_fs_counts(mp, &out); if (copy_to_user(arg, &out, sizeof(out))) return -EFAULT; return 0; } case XFS_IOC_SET_RESBLKS: { xfs_fsop_resblks_t inout; uint64_t in; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (mp->m_flags & XFS_MOUNT_RDONLY) return -EROFS; if (copy_from_user(&inout, arg, sizeof(inout))) return -EFAULT; error = mnt_want_write_file(filp); if (error) return error; /* input parameter is passed in resblks field of structure */ in = inout.resblks; error = xfs_reserve_blocks(mp, &in, &inout); mnt_drop_write_file(filp); if (error) return error; if (copy_to_user(arg, &inout, sizeof(inout))) return -EFAULT; return 0; } case XFS_IOC_GET_RESBLKS: { xfs_fsop_resblks_t out; if (!capable(CAP_SYS_ADMIN)) return -EPERM; error = xfs_reserve_blocks(mp, NULL, &out); if (error) return error; if (copy_to_user(arg, &out, sizeof(out))) return -EFAULT; return 0; } case XFS_IOC_FSGROWFSDATA: { xfs_growfs_data_t in; if (copy_from_user(&in, arg, sizeof(in))) return -EFAULT; error = mnt_want_write_file(filp); if (error) return error; error = xfs_growfs_data(mp, &in); mnt_drop_write_file(filp); return error; } case XFS_IOC_FSGROWFSLOG: { xfs_growfs_log_t in; if (copy_from_user(&in, arg, sizeof(in))) return -EFAULT; error = mnt_want_write_file(filp); if (error) return error; error = xfs_growfs_log(mp, &in); mnt_drop_write_file(filp); return error; } case XFS_IOC_FSGROWFSRT: { xfs_growfs_rt_t in; if (copy_from_user(&in, arg, sizeof(in))) return -EFAULT; error = mnt_want_write_file(filp); if (error) return error; error = xfs_growfs_rt(mp, &in); mnt_drop_write_file(filp); return error; } case XFS_IOC_GOINGDOWN: { uint32_t in; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (get_user(in, (uint32_t __user *)arg)) return -EFAULT; return xfs_fs_goingdown(mp, in); } case XFS_IOC_ERROR_INJECTION: { xfs_error_injection_t in; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (copy_from_user(&in, arg, sizeof(in))) return -EFAULT; return xfs_errortag_add(mp, in.errtag); } case XFS_IOC_ERROR_CLEARALL: if (!capable(CAP_SYS_ADMIN)) return -EPERM; return xfs_errortag_clearall(mp); case XFS_IOC_FREE_EOFBLOCKS: { struct xfs_fs_eofblocks eofb; struct xfs_eofblocks keofb; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (mp->m_flags & XFS_MOUNT_RDONLY) return -EROFS; if (copy_from_user(&eofb, arg, sizeof(eofb))) return -EFAULT; error = xfs_fs_eofblocks_from_user(&eofb, &keofb); if (error) return error; return xfs_icache_free_eofblocks(mp, &keofb); } default: return -ENOTTY; } }