/* SPDX-License-Identifier: GPL-2.0 */ #ifndef BLK_INTERNAL_H #define BLK_INTERNAL_H #include #include /* for max_pfn/max_low_pfn */ #include #include "blk-crypto-internal.h" struct elevator_type; /* Max future timer expiry for timeouts */ #define BLK_MAX_TIMEOUT (5 * HZ) extern struct dentry *blk_debugfs_root; struct blk_flush_queue { unsigned int flush_pending_idx:1; unsigned int flush_running_idx:1; blk_status_t rq_status; unsigned long flush_pending_since; struct list_head flush_queue[2]; struct list_head flush_data_in_flight; struct request *flush_rq; spinlock_t mq_flush_lock; }; extern struct kmem_cache *blk_requestq_cachep; extern struct kmem_cache *blk_requestq_srcu_cachep; extern struct kobj_type blk_queue_ktype; extern struct ida blk_queue_ida; static inline void __blk_get_queue(struct request_queue *q) { kobject_get(&q->kobj); } bool is_flush_rq(struct request *req); struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, gfp_t flags); void blk_free_flush_queue(struct blk_flush_queue *q); void blk_freeze_queue(struct request_queue *q); void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic); void blk_queue_start_drain(struct request_queue *q); int __bio_queue_enter(struct request_queue *q, struct bio *bio); void submit_bio_noacct_nocheck(struct bio *bio); static inline bool blk_try_enter_queue(struct request_queue *q, bool pm) { rcu_read_lock(); if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter)) goto fail; /* * The code that increments the pm_only counter must ensure that the * counter is globally visible before the queue is unfrozen. */ if (blk_queue_pm_only(q) && (!pm || queue_rpm_status(q) == RPM_SUSPENDED)) goto fail_put; rcu_read_unlock(); return true; fail_put: blk_queue_exit(q); fail: rcu_read_unlock(); return false; } static inline int bio_queue_enter(struct bio *bio) { struct request_queue *q = bdev_get_queue(bio->bi_bdev); if (blk_try_enter_queue(q, false)) return 0; return __bio_queue_enter(q, bio); } #define BIO_INLINE_VECS 4 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, gfp_t gfp_mask); void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs); static inline bool biovec_phys_mergeable(struct request_queue *q, struct bio_vec *vec1, struct bio_vec *vec2) { unsigned long mask = queue_segment_boundary(q); phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset; phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset; if (addr1 + vec1->bv_len != addr2) return false; if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page)) return false; if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask)) return false; return true; } static inline bool __bvec_gap_to_prev(struct request_queue *q, struct bio_vec *bprv, unsigned int offset) { return (offset & queue_virt_boundary(q)) || ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q)); } /* * Check if adding a bio_vec after bprv with offset would create a gap in * the SG list. Most drivers don't care about this, but some do. */ static inline bool bvec_gap_to_prev(struct request_queue *q, struct bio_vec *bprv, unsigned int offset) { if (!queue_virt_boundary(q)) return false; return __bvec_gap_to_prev(q, bprv, offset); } static inline bool rq_mergeable(struct request *rq) { if (blk_rq_is_passthrough(rq)) return false; if (req_op(rq) == REQ_OP_FLUSH) return false; if (req_op(rq) == REQ_OP_WRITE_ZEROES) return false; if (req_op(rq) == REQ_OP_ZONE_APPEND) return false; if (rq->cmd_flags & REQ_NOMERGE_FLAGS) return false; if (rq->rq_flags & RQF_NOMERGE_FLAGS) return false; return true; } /* * There are two different ways to handle DISCARD merges: * 1) If max_discard_segments > 1, the driver treats every bio as a range and * send the bios to controller together. The ranges don't need to be * contiguous. * 2) Otherwise, the request will be normal read/write requests. The ranges * need to be contiguous. */ static inline bool blk_discard_mergable(struct request *req) { if (req_op(req) == REQ_OP_DISCARD && queue_max_discard_segments(req->q) > 1) return true; return false; } static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, int op) { if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) return min(q->limits.max_discard_sectors, UINT_MAX >> SECTOR_SHIFT); if (unlikely(op == REQ_OP_WRITE_ZEROES)) return q->limits.max_write_zeroes_sectors; return q->limits.max_sectors; } #ifdef CONFIG_BLK_DEV_INTEGRITY void blk_flush_integrity(void); bool __bio_integrity_endio(struct bio *); void bio_integrity_free(struct bio *bio); static inline bool bio_integrity_endio(struct bio *bio) { if (bio_integrity(bio)) return __bio_integrity_endio(bio); return true; } bool blk_integrity_merge_rq(struct request_queue *, struct request *, struct request *); bool blk_integrity_merge_bio(struct request_queue *, struct request *, struct bio *); static inline bool integrity_req_gap_back_merge(struct request *req, struct bio *next) { struct bio_integrity_payload *bip = bio_integrity(req->bio); struct bio_integrity_payload *bip_next = bio_integrity(next); return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], bip_next->bip_vec[0].bv_offset); } static inline bool integrity_req_gap_front_merge(struct request *req, struct bio *bio) { struct bio_integrity_payload *bip = bio_integrity(bio); struct bio_integrity_payload *bip_next = bio_integrity(req->bio); return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], bip_next->bip_vec[0].bv_offset); } int blk_integrity_add(struct gendisk *disk); void blk_integrity_del(struct gendisk *); #else /* CONFIG_BLK_DEV_INTEGRITY */ static inline bool blk_integrity_merge_rq(struct request_queue *rq, struct request *r1, struct request *r2) { return true; } static inline bool blk_integrity_merge_bio(struct request_queue *rq, struct request *r, struct bio *b) { return true; } static inline bool integrity_req_gap_back_merge(struct request *req, struct bio *next) { return false; } static inline bool integrity_req_gap_front_merge(struct request *req, struct bio *bio) { return false; } static inline void blk_flush_integrity(void) { } static inline bool bio_integrity_endio(struct bio *bio) { return true; } static inline void bio_integrity_free(struct bio *bio) { } static inline int blk_integrity_add(struct gendisk *disk) { return 0; } static inline void blk_integrity_del(struct gendisk *disk) { } #endif /* CONFIG_BLK_DEV_INTEGRITY */ unsigned long blk_rq_timeout(unsigned long timeout); void blk_add_timer(struct request *req); const char *blk_status_to_str(blk_status_t status); bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, unsigned int nr_segs); bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, struct bio *bio, unsigned int nr_segs); /* * Plug flush limits */ #define BLK_MAX_REQUEST_COUNT 32 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) /* * Internal elevator interface */ #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED) void blk_insert_flush(struct request *rq); int elevator_switch_mq(struct request_queue *q, struct elevator_type *new_e); void elevator_exit(struct request_queue *q); int elv_register_queue(struct request_queue *q, bool uevent); void elv_unregister_queue(struct request_queue *q); ssize_t part_size_show(struct device *dev, struct device_attribute *attr, char *buf); ssize_t part_stat_show(struct device *dev, struct device_attribute *attr, char *buf); ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr, char *buf); ssize_t part_fail_show(struct device *dev, struct device_attribute *attr, char *buf); ssize_t part_fail_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); ssize_t part_timeout_show(struct device *, struct device_attribute *, char *); ssize_t part_timeout_store(struct device *, struct device_attribute *, const char *, size_t); static inline bool blk_may_split(struct request_queue *q, struct bio *bio) { switch (bio_op(bio)) { case REQ_OP_DISCARD: case REQ_OP_SECURE_ERASE: case REQ_OP_WRITE_ZEROES: return true; /* non-trivial splitting decisions */ default: break; } /* * All drivers must accept single-segments bios that are <= PAGE_SIZE. * This is a quick and dirty check that relies on the fact that * bi_io_vec[0] is always valid if a bio has data. The check might * lead to occasional false negatives when bios are cloned, but compared * to the performance impact of cloned bios themselves the loop below * doesn't matter anyway. */ return q->limits.chunk_sectors || bio->bi_vcnt != 1 || bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset > PAGE_SIZE; } void __blk_queue_split(struct request_queue *q, struct bio **bio, unsigned int *nr_segs); int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs); bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, struct request *next); unsigned int blk_recalc_rq_segments(struct request *rq); void blk_rq_set_mixed_merge(struct request *rq); bool blk_rq_merge_ok(struct request *rq, struct bio *bio); enum elv_merge blk_try_merge(struct request *rq, struct bio *bio); int blk_dev_init(void); /* * Contribute to IO statistics IFF: * * a) it's attached to a gendisk, and * b) the queue had IO stats enabled when this request was started */ static inline bool blk_do_io_stat(struct request *rq) { return (rq->rq_flags & RQF_IO_STAT) && !blk_rq_is_passthrough(rq); } void update_io_ticks(struct block_device *part, unsigned long now, bool end); static inline void req_set_nomerge(struct request_queue *q, struct request *req) { req->cmd_flags |= REQ_NOMERGE; if (req == q->last_merge) q->last_merge = NULL; } /* * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size * is defined as 'unsigned int', meantime it has to aligned to with logical * block size which is the minimum accepted unit by hardware. */ static inline unsigned int bio_allowed_max_sectors(struct request_queue *q) { return round_down(UINT_MAX, queue_logical_block_size(q)) >> 9; } /* * Internal io_context interface */ struct io_cq *ioc_find_get_icq(struct request_queue *q); struct io_cq *ioc_lookup_icq(struct request_queue *q); #ifdef CONFIG_BLK_ICQ void ioc_clear_queue(struct request_queue *q); #else static inline void ioc_clear_queue(struct request_queue *q) { } #endif /* CONFIG_BLK_ICQ */ #ifdef CONFIG_BLK_DEV_THROTTLING_LOW extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page); extern ssize_t blk_throtl_sample_time_store(struct request_queue *q, const char *page, size_t count); extern void blk_throtl_bio_endio(struct bio *bio); extern void blk_throtl_stat_add(struct request *rq, u64 time); #else static inline void blk_throtl_bio_endio(struct bio *bio) { } static inline void blk_throtl_stat_add(struct request *rq, u64 time) { } #endif void __blk_queue_bounce(struct request_queue *q, struct bio **bio); static inline bool blk_queue_may_bounce(struct request_queue *q) { return IS_ENABLED(CONFIG_BOUNCE) && q->limits.bounce == BLK_BOUNCE_HIGH && max_low_pfn >= max_pfn; } static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio) { if (unlikely(blk_queue_may_bounce(q) && bio_has_data(*bio))) __blk_queue_bounce(q, bio); } #ifdef CONFIG_BLK_CGROUP_IOLATENCY extern int blk_iolatency_init(struct request_queue *q); #else static inline int blk_iolatency_init(struct request_queue *q) { return 0; } #endif #ifdef CONFIG_BLK_DEV_ZONED void blk_queue_free_zone_bitmaps(struct request_queue *q); void blk_queue_clear_zone_settings(struct request_queue *q); #else static inline void blk_queue_free_zone_bitmaps(struct request_queue *q) {} static inline void blk_queue_clear_zone_settings(struct request_queue *q) {} #endif int blk_alloc_ext_minor(void); void blk_free_ext_minor(unsigned int minor); #define ADDPART_FLAG_NONE 0 #define ADDPART_FLAG_RAID 1 #define ADDPART_FLAG_WHOLEDISK 2 int bdev_add_partition(struct gendisk *disk, int partno, sector_t start, sector_t length); int bdev_del_partition(struct gendisk *disk, int partno); int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start, sector_t length); void blk_drop_partitions(struct gendisk *disk); struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id, struct lock_class_key *lkclass); int bio_add_hw_page(struct request_queue *q, struct bio *bio, struct page *page, unsigned int len, unsigned int offset, unsigned int max_sectors, bool *same_page); static inline struct kmem_cache *blk_get_queue_kmem_cache(bool srcu) { if (srcu) return blk_requestq_srcu_cachep; return blk_requestq_cachep; } struct request_queue *blk_alloc_queue(int node_id, bool alloc_srcu); int disk_scan_partitions(struct gendisk *disk, fmode_t mode); int disk_alloc_events(struct gendisk *disk); void disk_add_events(struct gendisk *disk); void disk_del_events(struct gendisk *disk); void disk_release_events(struct gendisk *disk); void disk_block_events(struct gendisk *disk); void disk_unblock_events(struct gendisk *disk); void disk_flush_events(struct gendisk *disk, unsigned int mask); extern struct device_attribute dev_attr_events; extern struct device_attribute dev_attr_events_async; extern struct device_attribute dev_attr_events_poll_msecs; long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); extern const struct address_space_operations def_blk_aops; int disk_register_independent_access_ranges(struct gendisk *disk, struct blk_independent_access_ranges *new_iars); void disk_unregister_independent_access_ranges(struct gendisk *disk); #ifdef CONFIG_FAIL_MAKE_REQUEST bool should_fail_request(struct block_device *part, unsigned int bytes); #else /* CONFIG_FAIL_MAKE_REQUEST */ static inline bool should_fail_request(struct block_device *part, unsigned int bytes) { return false; } #endif /* CONFIG_FAIL_MAKE_REQUEST */ /* * Optimized request reference counting. Ideally we'd make timeouts be more * clever, as that's the only reason we need references at all... But until * this happens, this is faster than using refcount_t. Also see: * * abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count") */ #define req_ref_zero_or_close_to_overflow(req) \ ((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u) static inline bool req_ref_inc_not_zero(struct request *req) { return atomic_inc_not_zero(&req->ref); } static inline bool req_ref_put_and_test(struct request *req) { WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req)); return atomic_dec_and_test(&req->ref); } static inline void req_ref_set(struct request *req, int value) { atomic_set(&req->ref, value); } static inline int req_ref_read(struct request *req) { return atomic_read(&req->ref); } #endif /* BLK_INTERNAL_H */