#include #include #include #include #include #include "../perf_event.h" enum { LBR_FORMAT_32 = 0x00, LBR_FORMAT_LIP = 0x01, LBR_FORMAT_EIP = 0x02, LBR_FORMAT_EIP_FLAGS = 0x03, LBR_FORMAT_EIP_FLAGS2 = 0x04, LBR_FORMAT_INFO = 0x05, LBR_FORMAT_TIME = 0x06, LBR_FORMAT_MAX_KNOWN = LBR_FORMAT_TIME, }; static enum { LBR_EIP_FLAGS = 1, LBR_TSX = 2, } lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = { [LBR_FORMAT_EIP_FLAGS] = LBR_EIP_FLAGS, [LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX, }; /* * Intel LBR_SELECT bits * Intel Vol3a, April 2011, Section 16.7 Table 16-10 * * Hardware branch filter (not available on all CPUs) */ #define LBR_KERNEL_BIT 0 /* do not capture at ring0 */ #define LBR_USER_BIT 1 /* do not capture at ring > 0 */ #define LBR_JCC_BIT 2 /* do not capture conditional branches */ #define LBR_REL_CALL_BIT 3 /* do not capture relative calls */ #define LBR_IND_CALL_BIT 4 /* do not capture indirect calls */ #define LBR_RETURN_BIT 5 /* do not capture near returns */ #define LBR_IND_JMP_BIT 6 /* do not capture indirect jumps */ #define LBR_REL_JMP_BIT 7 /* do not capture relative jumps */ #define LBR_FAR_BIT 8 /* do not capture far branches */ #define LBR_CALL_STACK_BIT 9 /* enable call stack */ /* * Following bit only exists in Linux; we mask it out before writing it to * the actual MSR. But it helps the constraint perf code to understand * that this is a separate configuration. */ #define LBR_NO_INFO_BIT 63 /* don't read LBR_INFO. */ #define LBR_KERNEL (1 << LBR_KERNEL_BIT) #define LBR_USER (1 << LBR_USER_BIT) #define LBR_JCC (1 << LBR_JCC_BIT) #define LBR_REL_CALL (1 << LBR_REL_CALL_BIT) #define LBR_IND_CALL (1 << LBR_IND_CALL_BIT) #define LBR_RETURN (1 << LBR_RETURN_BIT) #define LBR_REL_JMP (1 << LBR_REL_JMP_BIT) #define LBR_IND_JMP (1 << LBR_IND_JMP_BIT) #define LBR_FAR (1 << LBR_FAR_BIT) #define LBR_CALL_STACK (1 << LBR_CALL_STACK_BIT) #define LBR_NO_INFO (1ULL << LBR_NO_INFO_BIT) #define LBR_PLM (LBR_KERNEL | LBR_USER) #define LBR_SEL_MASK 0x1ff /* valid bits in LBR_SELECT */ #define LBR_NOT_SUPP -1 /* LBR filter not supported */ #define LBR_IGN 0 /* ignored */ #define LBR_ANY \ (LBR_JCC |\ LBR_REL_CALL |\ LBR_IND_CALL |\ LBR_RETURN |\ LBR_REL_JMP |\ LBR_IND_JMP |\ LBR_FAR) #define LBR_FROM_FLAG_MISPRED (1ULL << 63) #define LBR_FROM_FLAG_IN_TX (1ULL << 62) #define LBR_FROM_FLAG_ABORT (1ULL << 61) /* * x86control flow change classification * x86control flow changes include branches, interrupts, traps, faults */ enum { X86_BR_NONE = 0, /* unknown */ X86_BR_USER = 1 << 0, /* branch target is user */ X86_BR_KERNEL = 1 << 1, /* branch target is kernel */ X86_BR_CALL = 1 << 2, /* call */ X86_BR_RET = 1 << 3, /* return */ X86_BR_SYSCALL = 1 << 4, /* syscall */ X86_BR_SYSRET = 1 << 5, /* syscall return */ X86_BR_INT = 1 << 6, /* sw interrupt */ X86_BR_IRET = 1 << 7, /* return from interrupt */ X86_BR_JCC = 1 << 8, /* conditional */ X86_BR_JMP = 1 << 9, /* jump */ X86_BR_IRQ = 1 << 10,/* hw interrupt or trap or fault */ X86_BR_IND_CALL = 1 << 11,/* indirect calls */ X86_BR_ABORT = 1 << 12,/* transaction abort */ X86_BR_IN_TX = 1 << 13,/* in transaction */ X86_BR_NO_TX = 1 << 14,/* not in transaction */ X86_BR_ZERO_CALL = 1 << 15,/* zero length call */ X86_BR_CALL_STACK = 1 << 16,/* call stack */ X86_BR_IND_JMP = 1 << 17,/* indirect jump */ }; #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL) #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX) #define X86_BR_ANY \ (X86_BR_CALL |\ X86_BR_RET |\ X86_BR_SYSCALL |\ X86_BR_SYSRET |\ X86_BR_INT |\ X86_BR_IRET |\ X86_BR_JCC |\ X86_BR_JMP |\ X86_BR_IRQ |\ X86_BR_ABORT |\ X86_BR_IND_CALL |\ X86_BR_IND_JMP |\ X86_BR_ZERO_CALL) #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY) #define X86_BR_ANY_CALL \ (X86_BR_CALL |\ X86_BR_IND_CALL |\ X86_BR_ZERO_CALL |\ X86_BR_SYSCALL |\ X86_BR_IRQ |\ X86_BR_INT) static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc); /* * We only support LBR implementations that have FREEZE_LBRS_ON_PMI * otherwise it becomes near impossible to get a reliable stack. */ static void __intel_pmu_lbr_enable(bool pmi) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); u64 debugctl, lbr_select = 0, orig_debugctl; /* * No need to unfreeze manually, as v4 can do that as part * of the GLOBAL_STATUS ack. */ if (pmi && x86_pmu.version >= 4) return; /* * No need to reprogram LBR_SELECT in a PMI, as it * did not change. */ if (cpuc->lbr_sel) lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask; if (!pmi && cpuc->lbr_sel) wrmsrl(MSR_LBR_SELECT, lbr_select); rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); orig_debugctl = debugctl; debugctl |= DEBUGCTLMSR_LBR; /* * LBR callstack does not work well with FREEZE_LBRS_ON_PMI. * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions * may cause superfluous increase/decrease of LBR_TOS. */ if (!(lbr_select & LBR_CALL_STACK)) debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI; if (orig_debugctl != debugctl) wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); } static void __intel_pmu_lbr_disable(void) { u64 debugctl; rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI); wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); } static void intel_pmu_lbr_reset_32(void) { int i; for (i = 0; i < x86_pmu.lbr_nr; i++) wrmsrl(x86_pmu.lbr_from + i, 0); } static void intel_pmu_lbr_reset_64(void) { int i; for (i = 0; i < x86_pmu.lbr_nr; i++) { wrmsrl(x86_pmu.lbr_from + i, 0); wrmsrl(x86_pmu.lbr_to + i, 0); if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO) wrmsrl(MSR_LBR_INFO_0 + i, 0); } } void intel_pmu_lbr_reset(void) { if (!x86_pmu.lbr_nr) return; if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) intel_pmu_lbr_reset_32(); else intel_pmu_lbr_reset_64(); } /* * TOS = most recently recorded branch */ static inline u64 intel_pmu_lbr_tos(void) { u64 tos; rdmsrl(x86_pmu.lbr_tos, tos); return tos; } enum { LBR_NONE, LBR_VALID, }; static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx) { int i; unsigned lbr_idx, mask; u64 tos; if (task_ctx->lbr_callstack_users == 0 || task_ctx->lbr_stack_state == LBR_NONE) { intel_pmu_lbr_reset(); return; } mask = x86_pmu.lbr_nr - 1; tos = task_ctx->tos; for (i = 0; i < tos; i++) { lbr_idx = (tos - i) & mask; wrmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]); wrmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]); if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO) wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]); } wrmsrl(x86_pmu.lbr_tos, tos); task_ctx->lbr_stack_state = LBR_NONE; } static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx) { int i; unsigned lbr_idx, mask; u64 tos; if (task_ctx->lbr_callstack_users == 0) { task_ctx->lbr_stack_state = LBR_NONE; return; } mask = x86_pmu.lbr_nr - 1; tos = intel_pmu_lbr_tos(); for (i = 0; i < tos; i++) { lbr_idx = (tos - i) & mask; rdmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]); rdmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]); if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO) rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]); } task_ctx->tos = tos; task_ctx->lbr_stack_state = LBR_VALID; } void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct x86_perf_task_context *task_ctx; /* * If LBR callstack feature is enabled and the stack was saved when * the task was scheduled out, restore the stack. Otherwise flush * the LBR stack. */ task_ctx = ctx ? ctx->task_ctx_data : NULL; if (task_ctx) { if (sched_in) { __intel_pmu_lbr_restore(task_ctx); cpuc->lbr_context = ctx; } else { __intel_pmu_lbr_save(task_ctx); } return; } /* * When sampling the branck stack in system-wide, it may be * necessary to flush the stack on context switch. This happens * when the branch stack does not tag its entries with the pid * of the current task. Otherwise it becomes impossible to * associate a branch entry with a task. This ambiguity is more * likely to appear when the branch stack supports priv level * filtering and the user sets it to monitor only at the user * level (which could be a useful measurement in system-wide * mode). In that case, the risk is high of having a branch * stack with branch from multiple tasks. */ if (sched_in) { intel_pmu_lbr_reset(); cpuc->lbr_context = ctx; } } static inline bool branch_user_callstack(unsigned br_sel) { return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK); } void intel_pmu_lbr_enable(struct perf_event *event) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct x86_perf_task_context *task_ctx; if (!x86_pmu.lbr_nr) return; /* * Reset the LBR stack if we changed task context to * avoid data leaks. */ if (event->ctx->task && cpuc->lbr_context != event->ctx) { intel_pmu_lbr_reset(); cpuc->lbr_context = event->ctx; } cpuc->br_sel = event->hw.branch_reg.reg; if (branch_user_callstack(cpuc->br_sel) && event->ctx && event->ctx->task_ctx_data) { task_ctx = event->ctx->task_ctx_data; task_ctx->lbr_callstack_users++; } cpuc->lbr_users++; perf_sched_cb_inc(event->ctx->pmu); } void intel_pmu_lbr_disable(struct perf_event *event) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct x86_perf_task_context *task_ctx; if (!x86_pmu.lbr_nr) return; if (branch_user_callstack(cpuc->br_sel) && event->ctx && event->ctx->task_ctx_data) { task_ctx = event->ctx->task_ctx_data; task_ctx->lbr_callstack_users--; } cpuc->lbr_users--; WARN_ON_ONCE(cpuc->lbr_users < 0); perf_sched_cb_dec(event->ctx->pmu); if (cpuc->enabled && !cpuc->lbr_users) { __intel_pmu_lbr_disable(); /* avoid stale pointer */ cpuc->lbr_context = NULL; } } void intel_pmu_lbr_enable_all(bool pmi) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); if (cpuc->lbr_users) __intel_pmu_lbr_enable(pmi); } void intel_pmu_lbr_disable_all(void) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); if (cpuc->lbr_users) __intel_pmu_lbr_disable(); } static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc) { unsigned long mask = x86_pmu.lbr_nr - 1; u64 tos = intel_pmu_lbr_tos(); int i; for (i = 0; i < x86_pmu.lbr_nr; i++) { unsigned long lbr_idx = (tos - i) & mask; union { struct { u32 from; u32 to; }; u64 lbr; } msr_lastbranch; rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr); cpuc->lbr_entries[i].from = msr_lastbranch.from; cpuc->lbr_entries[i].to = msr_lastbranch.to; cpuc->lbr_entries[i].mispred = 0; cpuc->lbr_entries[i].predicted = 0; cpuc->lbr_entries[i].reserved = 0; } cpuc->lbr_stack.nr = i; } /* * Due to lack of segmentation in Linux the effective address (offset) * is the same as the linear address, allowing us to merge the LIP and EIP * LBR formats. */ static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc) { bool need_info = false; unsigned long mask = x86_pmu.lbr_nr - 1; int lbr_format = x86_pmu.intel_cap.lbr_format; u64 tos = intel_pmu_lbr_tos(); int i; int out = 0; int num = x86_pmu.lbr_nr; if (cpuc->lbr_sel) { need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO); if (cpuc->lbr_sel->config & LBR_CALL_STACK) num = tos; } for (i = 0; i < num; i++) { unsigned long lbr_idx = (tos - i) & mask; u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0; int skip = 0; u16 cycles = 0; int lbr_flags = lbr_desc[lbr_format]; rdmsrl(x86_pmu.lbr_from + lbr_idx, from); rdmsrl(x86_pmu.lbr_to + lbr_idx, to); if (lbr_format == LBR_FORMAT_INFO && need_info) { u64 info; rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info); mis = !!(info & LBR_INFO_MISPRED); pred = !mis; in_tx = !!(info & LBR_INFO_IN_TX); abort = !!(info & LBR_INFO_ABORT); cycles = (info & LBR_INFO_CYCLES); } if (lbr_format == LBR_FORMAT_TIME) { mis = !!(from & LBR_FROM_FLAG_MISPRED); pred = !mis; skip = 1; cycles = ((to >> 48) & LBR_INFO_CYCLES); to = (u64)((((s64)to) << 16) >> 16); } if (lbr_flags & LBR_EIP_FLAGS) { mis = !!(from & LBR_FROM_FLAG_MISPRED); pred = !mis; skip = 1; } if (lbr_flags & LBR_TSX) { in_tx = !!(from & LBR_FROM_FLAG_IN_TX); abort = !!(from & LBR_FROM_FLAG_ABORT); skip = 3; } from = (u64)((((s64)from) << skip) >> skip); /* * Some CPUs report duplicated abort records, * with the second entry not having an abort bit set. * Skip them here. This loop runs backwards, * so we need to undo the previous record. * If the abort just happened outside the window * the extra entry cannot be removed. */ if (abort && x86_pmu.lbr_double_abort && out > 0) out--; cpuc->lbr_entries[out].from = from; cpuc->lbr_entries[out].to = to; cpuc->lbr_entries[out].mispred = mis; cpuc->lbr_entries[out].predicted = pred; cpuc->lbr_entries[out].in_tx = in_tx; cpuc->lbr_entries[out].abort = abort; cpuc->lbr_entries[out].cycles = cycles; cpuc->lbr_entries[out].reserved = 0; out++; } cpuc->lbr_stack.nr = out; } void intel_pmu_lbr_read(void) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); if (!cpuc->lbr_users) return; if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) intel_pmu_lbr_read_32(cpuc); else intel_pmu_lbr_read_64(cpuc); intel_pmu_lbr_filter(cpuc); } /* * SW filter is used: * - in case there is no HW filter * - in case the HW filter has errata or limitations */ static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event) { u64 br_type = event->attr.branch_sample_type; int mask = 0; if (br_type & PERF_SAMPLE_BRANCH_USER) mask |= X86_BR_USER; if (br_type & PERF_SAMPLE_BRANCH_KERNEL) mask |= X86_BR_KERNEL; /* we ignore BRANCH_HV here */ if (br_type & PERF_SAMPLE_BRANCH_ANY) mask |= X86_BR_ANY; if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL) mask |= X86_BR_ANY_CALL; if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN) mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET; if (br_type & PERF_SAMPLE_BRANCH_IND_CALL) mask |= X86_BR_IND_CALL; if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX) mask |= X86_BR_ABORT; if (br_type & PERF_SAMPLE_BRANCH_IN_TX) mask |= X86_BR_IN_TX; if (br_type & PERF_SAMPLE_BRANCH_NO_TX) mask |= X86_BR_NO_TX; if (br_type & PERF_SAMPLE_BRANCH_COND) mask |= X86_BR_JCC; if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) { if (!x86_pmu_has_lbr_callstack()) return -EOPNOTSUPP; if (mask & ~(X86_BR_USER | X86_BR_KERNEL)) return -EINVAL; mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET | X86_BR_CALL_STACK; } if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP) mask |= X86_BR_IND_JMP; if (br_type & PERF_SAMPLE_BRANCH_CALL) mask |= X86_BR_CALL | X86_BR_ZERO_CALL; /* * stash actual user request into reg, it may * be used by fixup code for some CPU */ event->hw.branch_reg.reg = mask; return 0; } /* * setup the HW LBR filter * Used only when available, may not be enough to disambiguate * all branches, may need the help of the SW filter */ static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event) { struct hw_perf_event_extra *reg; u64 br_type = event->attr.branch_sample_type; u64 mask = 0, v; int i; for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) { if (!(br_type & (1ULL << i))) continue; v = x86_pmu.lbr_sel_map[i]; if (v == LBR_NOT_SUPP) return -EOPNOTSUPP; if (v != LBR_IGN) mask |= v; } reg = &event->hw.branch_reg; reg->idx = EXTRA_REG_LBR; /* * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate * in suppress mode. So LBR_SELECT should be set to * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK) */ reg->config = mask ^ x86_pmu.lbr_sel_mask; if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) && (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) && (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)) reg->config |= LBR_NO_INFO; return 0; } int intel_pmu_setup_lbr_filter(struct perf_event *event) { int ret = 0; /* * no LBR on this PMU */ if (!x86_pmu.lbr_nr) return -EOPNOTSUPP; /* * setup SW LBR filter */ ret = intel_pmu_setup_sw_lbr_filter(event); if (ret) return ret; /* * setup HW LBR filter, if any */ if (x86_pmu.lbr_sel_map) ret = intel_pmu_setup_hw_lbr_filter(event); return ret; } /* * return the type of control flow change at address "from" * instruction is not necessarily a branch (in case of interrupt). * * The branch type returned also includes the priv level of the * target of the control flow change (X86_BR_USER, X86_BR_KERNEL). * * If a branch type is unknown OR the instruction cannot be * decoded (e.g., text page not present), then X86_BR_NONE is * returned. */ static int branch_type(unsigned long from, unsigned long to, int abort) { struct insn insn; void *addr; int bytes_read, bytes_left; int ret = X86_BR_NONE; int ext, to_plm, from_plm; u8 buf[MAX_INSN_SIZE]; int is64 = 0; to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER; from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER; /* * maybe zero if lbr did not fill up after a reset by the time * we get a PMU interrupt */ if (from == 0 || to == 0) return X86_BR_NONE; if (abort) return X86_BR_ABORT | to_plm; if (from_plm == X86_BR_USER) { /* * can happen if measuring at the user level only * and we interrupt in a kernel thread, e.g., idle. */ if (!current->mm) return X86_BR_NONE; /* may fail if text not present */ bytes_left = copy_from_user_nmi(buf, (void __user *)from, MAX_INSN_SIZE); bytes_read = MAX_INSN_SIZE - bytes_left; if (!bytes_read) return X86_BR_NONE; addr = buf; } else { /* * The LBR logs any address in the IP, even if the IP just * faulted. This means userspace can control the from address. * Ensure we don't blindy read any address by validating it is * a known text address. */ if (kernel_text_address(from)) { addr = (void *)from; /* * Assume we can get the maximum possible size * when grabbing kernel data. This is not * _strictly_ true since we could possibly be * executing up next to a memory hole, but * it is very unlikely to be a problem. */ bytes_read = MAX_INSN_SIZE; } else { return X86_BR_NONE; } } /* * decoder needs to know the ABI especially * on 64-bit systems running 32-bit apps */ #ifdef CONFIG_X86_64 is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32); #endif insn_init(&insn, addr, bytes_read, is64); insn_get_opcode(&insn); if (!insn.opcode.got) return X86_BR_ABORT; switch (insn.opcode.bytes[0]) { case 0xf: switch (insn.opcode.bytes[1]) { case 0x05: /* syscall */ case 0x34: /* sysenter */ ret = X86_BR_SYSCALL; break; case 0x07: /* sysret */ case 0x35: /* sysexit */ ret = X86_BR_SYSRET; break; case 0x80 ... 0x8f: /* conditional */ ret = X86_BR_JCC; break; default: ret = X86_BR_NONE; } break; case 0x70 ... 0x7f: /* conditional */ ret = X86_BR_JCC; break; case 0xc2: /* near ret */ case 0xc3: /* near ret */ case 0xca: /* far ret */ case 0xcb: /* far ret */ ret = X86_BR_RET; break; case 0xcf: /* iret */ ret = X86_BR_IRET; break; case 0xcc ... 0xce: /* int */ ret = X86_BR_INT; break; case 0xe8: /* call near rel */ insn_get_immediate(&insn); if (insn.immediate1.value == 0) { /* zero length call */ ret = X86_BR_ZERO_CALL; break; } case 0x9a: /* call far absolute */ ret = X86_BR_CALL; break; case 0xe0 ... 0xe3: /* loop jmp */ ret = X86_BR_JCC; break; case 0xe9 ... 0xeb: /* jmp */ ret = X86_BR_JMP; break; case 0xff: /* call near absolute, call far absolute ind */ insn_get_modrm(&insn); ext = (insn.modrm.bytes[0] >> 3) & 0x7; switch (ext) { case 2: /* near ind call */ case 3: /* far ind call */ ret = X86_BR_IND_CALL; break; case 4: case 5: ret = X86_BR_IND_JMP; break; } break; default: ret = X86_BR_NONE; } /* * interrupts, traps, faults (and thus ring transition) may * occur on any instructions. Thus, to classify them correctly, * we need to first look at the from and to priv levels. If they * are different and to is in the kernel, then it indicates * a ring transition. If the from instruction is not a ring * transition instr (syscall, systenter, int), then it means * it was a irq, trap or fault. * * we have no way of detecting kernel to kernel faults. */ if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL && ret != X86_BR_SYSCALL && ret != X86_BR_INT) ret = X86_BR_IRQ; /* * branch priv level determined by target as * is done by HW when LBR_SELECT is implemented */ if (ret != X86_BR_NONE) ret |= to_plm; return ret; } /* * implement actual branch filter based on user demand. * Hardware may not exactly satisfy that request, thus * we need to inspect opcodes. Mismatched branches are * discarded. Therefore, the number of branches returned * in PERF_SAMPLE_BRANCH_STACK sample may vary. */ static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc) { u64 from, to; int br_sel = cpuc->br_sel; int i, j, type; bool compress = false; /* if sampling all branches, then nothing to filter */ if ((br_sel & X86_BR_ALL) == X86_BR_ALL) return; for (i = 0; i < cpuc->lbr_stack.nr; i++) { from = cpuc->lbr_entries[i].from; to = cpuc->lbr_entries[i].to; type = branch_type(from, to, cpuc->lbr_entries[i].abort); if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) { if (cpuc->lbr_entries[i].in_tx) type |= X86_BR_IN_TX; else type |= X86_BR_NO_TX; } /* if type does not correspond, then discard */ if (type == X86_BR_NONE || (br_sel & type) != type) { cpuc->lbr_entries[i].from = 0; compress = true; } } if (!compress) return; /* remove all entries with from=0 */ for (i = 0; i < cpuc->lbr_stack.nr; ) { if (!cpuc->lbr_entries[i].from) { j = i; while (++j < cpuc->lbr_stack.nr) cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j]; cpuc->lbr_stack.nr--; if (!cpuc->lbr_entries[i].from) continue; } i++; } } /* * Map interface branch filters onto LBR filters */ static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = { [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY, [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER, [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL, [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN, [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR, /* * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches */ [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR, /* * NHM/WSM erratum: must include IND_JMP to capture IND_CALL */ [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP, [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC, [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP, }; static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = { [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY, [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER, [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL, [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN, [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR, [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL | LBR_FAR, [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL, [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC, [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP, [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL, }; static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = { [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY, [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER, [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL, [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN, [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR, [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL | LBR_FAR, [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL, [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC, [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_REL_CALL | LBR_IND_CALL | LBR_RETURN | LBR_CALL_STACK, [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP, [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL, }; /* core */ void __init intel_pmu_lbr_init_core(void) { x86_pmu.lbr_nr = 4; x86_pmu.lbr_tos = MSR_LBR_TOS; x86_pmu.lbr_from = MSR_LBR_CORE_FROM; x86_pmu.lbr_to = MSR_LBR_CORE_TO; /* * SW branch filter usage: * - compensate for lack of HW filter */ pr_cont("4-deep LBR, "); } /* nehalem/westmere */ void __init intel_pmu_lbr_init_nhm(void) { x86_pmu.lbr_nr = 16; x86_pmu.lbr_tos = MSR_LBR_TOS; x86_pmu.lbr_from = MSR_LBR_NHM_FROM; x86_pmu.lbr_to = MSR_LBR_NHM_TO; x86_pmu.lbr_sel_mask = LBR_SEL_MASK; x86_pmu.lbr_sel_map = nhm_lbr_sel_map; /* * SW branch filter usage: * - workaround LBR_SEL errata (see above) * - support syscall, sysret capture. * That requires LBR_FAR but that means far * jmp need to be filtered out */ pr_cont("16-deep LBR, "); } /* sandy bridge */ void __init intel_pmu_lbr_init_snb(void) { x86_pmu.lbr_nr = 16; x86_pmu.lbr_tos = MSR_LBR_TOS; x86_pmu.lbr_from = MSR_LBR_NHM_FROM; x86_pmu.lbr_to = MSR_LBR_NHM_TO; x86_pmu.lbr_sel_mask = LBR_SEL_MASK; x86_pmu.lbr_sel_map = snb_lbr_sel_map; /* * SW branch filter usage: * - support syscall, sysret capture. * That requires LBR_FAR but that means far * jmp need to be filtered out */ pr_cont("16-deep LBR, "); } /* haswell */ void intel_pmu_lbr_init_hsw(void) { x86_pmu.lbr_nr = 16; x86_pmu.lbr_tos = MSR_LBR_TOS; x86_pmu.lbr_from = MSR_LBR_NHM_FROM; x86_pmu.lbr_to = MSR_LBR_NHM_TO; x86_pmu.lbr_sel_mask = LBR_SEL_MASK; x86_pmu.lbr_sel_map = hsw_lbr_sel_map; pr_cont("16-deep LBR, "); } /* skylake */ __init void intel_pmu_lbr_init_skl(void) { x86_pmu.lbr_nr = 32; x86_pmu.lbr_tos = MSR_LBR_TOS; x86_pmu.lbr_from = MSR_LBR_NHM_FROM; x86_pmu.lbr_to = MSR_LBR_NHM_TO; x86_pmu.lbr_sel_mask = LBR_SEL_MASK; x86_pmu.lbr_sel_map = hsw_lbr_sel_map; /* * SW branch filter usage: * - support syscall, sysret capture. * That requires LBR_FAR but that means far * jmp need to be filtered out */ pr_cont("32-deep LBR, "); } /* atom */ void __init intel_pmu_lbr_init_atom(void) { /* * only models starting at stepping 10 seems * to have an operational LBR which can freeze * on PMU interrupt */ if (boot_cpu_data.x86_model == 28 && boot_cpu_data.x86_mask < 10) { pr_cont("LBR disabled due to erratum"); return; } x86_pmu.lbr_nr = 8; x86_pmu.lbr_tos = MSR_LBR_TOS; x86_pmu.lbr_from = MSR_LBR_CORE_FROM; x86_pmu.lbr_to = MSR_LBR_CORE_TO; /* * SW branch filter usage: * - compensate for lack of HW filter */ pr_cont("8-deep LBR, "); } /* Knights Landing */ void intel_pmu_lbr_init_knl(void) { x86_pmu.lbr_nr = 8; x86_pmu.lbr_tos = MSR_LBR_TOS; x86_pmu.lbr_from = MSR_LBR_NHM_FROM; x86_pmu.lbr_to = MSR_LBR_NHM_TO; x86_pmu.lbr_sel_mask = LBR_SEL_MASK; x86_pmu.lbr_sel_map = snb_lbr_sel_map; pr_cont("8-deep LBR, "); }