/* * Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved. * Copyright (c) 2015 System Fabric Works, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include "rxe.h" #include "rxe_loc.h" #include "rxe_queue.h" enum resp_states { RESPST_NONE, RESPST_GET_REQ, RESPST_CHK_PSN, RESPST_CHK_OP_SEQ, RESPST_CHK_OP_VALID, RESPST_CHK_RESOURCE, RESPST_CHK_LENGTH, RESPST_CHK_RKEY, RESPST_EXECUTE, RESPST_READ_REPLY, RESPST_COMPLETE, RESPST_ACKNOWLEDGE, RESPST_CLEANUP, RESPST_DUPLICATE_REQUEST, RESPST_ERR_MALFORMED_WQE, RESPST_ERR_UNSUPPORTED_OPCODE, RESPST_ERR_MISALIGNED_ATOMIC, RESPST_ERR_PSN_OUT_OF_SEQ, RESPST_ERR_MISSING_OPCODE_FIRST, RESPST_ERR_MISSING_OPCODE_LAST_C, RESPST_ERR_MISSING_OPCODE_LAST_D1E, RESPST_ERR_TOO_MANY_RDMA_ATM_REQ, RESPST_ERR_RNR, RESPST_ERR_RKEY_VIOLATION, RESPST_ERR_LENGTH, RESPST_ERR_CQ_OVERFLOW, RESPST_ERROR, RESPST_RESET, RESPST_DONE, RESPST_EXIT, }; static char *resp_state_name[] = { [RESPST_NONE] = "NONE", [RESPST_GET_REQ] = "GET_REQ", [RESPST_CHK_PSN] = "CHK_PSN", [RESPST_CHK_OP_SEQ] = "CHK_OP_SEQ", [RESPST_CHK_OP_VALID] = "CHK_OP_VALID", [RESPST_CHK_RESOURCE] = "CHK_RESOURCE", [RESPST_CHK_LENGTH] = "CHK_LENGTH", [RESPST_CHK_RKEY] = "CHK_RKEY", [RESPST_EXECUTE] = "EXECUTE", [RESPST_READ_REPLY] = "READ_REPLY", [RESPST_COMPLETE] = "COMPLETE", [RESPST_ACKNOWLEDGE] = "ACKNOWLEDGE", [RESPST_CLEANUP] = "CLEANUP", [RESPST_DUPLICATE_REQUEST] = "DUPLICATE_REQUEST", [RESPST_ERR_MALFORMED_WQE] = "ERR_MALFORMED_WQE", [RESPST_ERR_UNSUPPORTED_OPCODE] = "ERR_UNSUPPORTED_OPCODE", [RESPST_ERR_MISALIGNED_ATOMIC] = "ERR_MISALIGNED_ATOMIC", [RESPST_ERR_PSN_OUT_OF_SEQ] = "ERR_PSN_OUT_OF_SEQ", [RESPST_ERR_MISSING_OPCODE_FIRST] = "ERR_MISSING_OPCODE_FIRST", [RESPST_ERR_MISSING_OPCODE_LAST_C] = "ERR_MISSING_OPCODE_LAST_C", [RESPST_ERR_MISSING_OPCODE_LAST_D1E] = "ERR_MISSING_OPCODE_LAST_D1E", [RESPST_ERR_TOO_MANY_RDMA_ATM_REQ] = "ERR_TOO_MANY_RDMA_ATM_REQ", [RESPST_ERR_RNR] = "ERR_RNR", [RESPST_ERR_RKEY_VIOLATION] = "ERR_RKEY_VIOLATION", [RESPST_ERR_LENGTH] = "ERR_LENGTH", [RESPST_ERR_CQ_OVERFLOW] = "ERR_CQ_OVERFLOW", [RESPST_ERROR] = "ERROR", [RESPST_RESET] = "RESET", [RESPST_DONE] = "DONE", [RESPST_EXIT] = "EXIT", }; /* rxe_recv calls here to add a request packet to the input queue */ void rxe_resp_queue_pkt(struct rxe_dev *rxe, struct rxe_qp *qp, struct sk_buff *skb) { int must_sched; struct rxe_pkt_info *pkt = SKB_TO_PKT(skb); skb_queue_tail(&qp->req_pkts, skb); must_sched = (pkt->opcode == IB_OPCODE_RC_RDMA_READ_REQUEST) || (skb_queue_len(&qp->req_pkts) > 1); rxe_run_task(&qp->resp.task, must_sched); } static inline enum resp_states get_req(struct rxe_qp *qp, struct rxe_pkt_info **pkt_p) { struct sk_buff *skb; if (qp->resp.state == QP_STATE_ERROR) { skb = skb_dequeue(&qp->req_pkts); if (skb) { /* drain request packet queue */ rxe_drop_ref(qp); kfree_skb(skb); return RESPST_GET_REQ; } /* go drain recv wr queue */ return RESPST_CHK_RESOURCE; } skb = skb_peek(&qp->req_pkts); if (!skb) return RESPST_EXIT; *pkt_p = SKB_TO_PKT(skb); return (qp->resp.res) ? RESPST_READ_REPLY : RESPST_CHK_PSN; } static enum resp_states check_psn(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { int diff = psn_compare(pkt->psn, qp->resp.psn); struct rxe_dev *rxe = to_rdev(qp->ibqp.device); switch (qp_type(qp)) { case IB_QPT_RC: if (diff > 0) { if (qp->resp.sent_psn_nak) return RESPST_CLEANUP; qp->resp.sent_psn_nak = 1; rxe_counter_inc(rxe, RXE_CNT_OUT_OF_SEQ_REQ); return RESPST_ERR_PSN_OUT_OF_SEQ; } else if (diff < 0) { rxe_counter_inc(rxe, RXE_CNT_DUP_REQ); return RESPST_DUPLICATE_REQUEST; } if (qp->resp.sent_psn_nak) qp->resp.sent_psn_nak = 0; break; case IB_QPT_UC: if (qp->resp.drop_msg || diff != 0) { if (pkt->mask & RXE_START_MASK) { qp->resp.drop_msg = 0; return RESPST_CHK_OP_SEQ; } qp->resp.drop_msg = 1; return RESPST_CLEANUP; } break; default: break; } return RESPST_CHK_OP_SEQ; } static enum resp_states check_op_seq(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { switch (qp_type(qp)) { case IB_QPT_RC: switch (qp->resp.opcode) { case IB_OPCODE_RC_SEND_FIRST: case IB_OPCODE_RC_SEND_MIDDLE: switch (pkt->opcode) { case IB_OPCODE_RC_SEND_MIDDLE: case IB_OPCODE_RC_SEND_LAST: case IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE: case IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE: return RESPST_CHK_OP_VALID; default: return RESPST_ERR_MISSING_OPCODE_LAST_C; } case IB_OPCODE_RC_RDMA_WRITE_FIRST: case IB_OPCODE_RC_RDMA_WRITE_MIDDLE: switch (pkt->opcode) { case IB_OPCODE_RC_RDMA_WRITE_MIDDLE: case IB_OPCODE_RC_RDMA_WRITE_LAST: case IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE: return RESPST_CHK_OP_VALID; default: return RESPST_ERR_MISSING_OPCODE_LAST_C; } default: switch (pkt->opcode) { case IB_OPCODE_RC_SEND_MIDDLE: case IB_OPCODE_RC_SEND_LAST: case IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE: case IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE: case IB_OPCODE_RC_RDMA_WRITE_MIDDLE: case IB_OPCODE_RC_RDMA_WRITE_LAST: case IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE: return RESPST_ERR_MISSING_OPCODE_FIRST; default: return RESPST_CHK_OP_VALID; } } break; case IB_QPT_UC: switch (qp->resp.opcode) { case IB_OPCODE_UC_SEND_FIRST: case IB_OPCODE_UC_SEND_MIDDLE: switch (pkt->opcode) { case IB_OPCODE_UC_SEND_MIDDLE: case IB_OPCODE_UC_SEND_LAST: case IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE: return RESPST_CHK_OP_VALID; default: return RESPST_ERR_MISSING_OPCODE_LAST_D1E; } case IB_OPCODE_UC_RDMA_WRITE_FIRST: case IB_OPCODE_UC_RDMA_WRITE_MIDDLE: switch (pkt->opcode) { case IB_OPCODE_UC_RDMA_WRITE_MIDDLE: case IB_OPCODE_UC_RDMA_WRITE_LAST: case IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE: return RESPST_CHK_OP_VALID; default: return RESPST_ERR_MISSING_OPCODE_LAST_D1E; } default: switch (pkt->opcode) { case IB_OPCODE_UC_SEND_MIDDLE: case IB_OPCODE_UC_SEND_LAST: case IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE: case IB_OPCODE_UC_RDMA_WRITE_MIDDLE: case IB_OPCODE_UC_RDMA_WRITE_LAST: case IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE: qp->resp.drop_msg = 1; return RESPST_CLEANUP; default: return RESPST_CHK_OP_VALID; } } break; default: return RESPST_CHK_OP_VALID; } } static enum resp_states check_op_valid(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { switch (qp_type(qp)) { case IB_QPT_RC: if (((pkt->mask & RXE_READ_MASK) && !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_READ)) || ((pkt->mask & RXE_WRITE_MASK) && !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_WRITE)) || ((pkt->mask & RXE_ATOMIC_MASK) && !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_ATOMIC))) { return RESPST_ERR_UNSUPPORTED_OPCODE; } break; case IB_QPT_UC: if ((pkt->mask & RXE_WRITE_MASK) && !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_WRITE)) { qp->resp.drop_msg = 1; return RESPST_CLEANUP; } break; case IB_QPT_UD: case IB_QPT_SMI: case IB_QPT_GSI: break; default: WARN_ON_ONCE(1); break; } return RESPST_CHK_RESOURCE; } static enum resp_states get_srq_wqe(struct rxe_qp *qp) { struct rxe_srq *srq = qp->srq; struct rxe_queue *q = srq->rq.queue; struct rxe_recv_wqe *wqe; struct ib_event ev; if (srq->error) return RESPST_ERR_RNR; spin_lock_bh(&srq->rq.consumer_lock); wqe = queue_head(q); if (!wqe) { spin_unlock_bh(&srq->rq.consumer_lock); return RESPST_ERR_RNR; } /* note kernel and user space recv wqes have same size */ memcpy(&qp->resp.srq_wqe, wqe, sizeof(qp->resp.srq_wqe)); qp->resp.wqe = &qp->resp.srq_wqe.wqe; advance_consumer(q); if (srq->limit && srq->ibsrq.event_handler && (queue_count(q) < srq->limit)) { srq->limit = 0; goto event; } spin_unlock_bh(&srq->rq.consumer_lock); return RESPST_CHK_LENGTH; event: spin_unlock_bh(&srq->rq.consumer_lock); ev.device = qp->ibqp.device; ev.element.srq = qp->ibqp.srq; ev.event = IB_EVENT_SRQ_LIMIT_REACHED; srq->ibsrq.event_handler(&ev, srq->ibsrq.srq_context); return RESPST_CHK_LENGTH; } static enum resp_states check_resource(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { struct rxe_srq *srq = qp->srq; if (qp->resp.state == QP_STATE_ERROR) { if (qp->resp.wqe) { qp->resp.status = IB_WC_WR_FLUSH_ERR; return RESPST_COMPLETE; } else if (!srq) { qp->resp.wqe = queue_head(qp->rq.queue); if (qp->resp.wqe) { qp->resp.status = IB_WC_WR_FLUSH_ERR; return RESPST_COMPLETE; } else { return RESPST_EXIT; } } else { return RESPST_EXIT; } } if (pkt->mask & RXE_READ_OR_ATOMIC) { /* it is the requesters job to not send * too many read/atomic ops, we just * recycle the responder resource queue */ if (likely(qp->attr.max_dest_rd_atomic > 0)) return RESPST_CHK_LENGTH; else return RESPST_ERR_TOO_MANY_RDMA_ATM_REQ; } if (pkt->mask & RXE_RWR_MASK) { if (srq) return get_srq_wqe(qp); qp->resp.wqe = queue_head(qp->rq.queue); return (qp->resp.wqe) ? RESPST_CHK_LENGTH : RESPST_ERR_RNR; } return RESPST_CHK_LENGTH; } static enum resp_states check_length(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { switch (qp_type(qp)) { case IB_QPT_RC: return RESPST_CHK_RKEY; case IB_QPT_UC: return RESPST_CHK_RKEY; default: return RESPST_CHK_RKEY; } } static enum resp_states check_rkey(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { struct rxe_mem *mem = NULL; u64 va; u32 rkey; u32 resid; u32 pktlen; int mtu = qp->mtu; enum resp_states state; int access; if (pkt->mask & (RXE_READ_MASK | RXE_WRITE_MASK)) { if (pkt->mask & RXE_RETH_MASK) { qp->resp.va = reth_va(pkt); qp->resp.rkey = reth_rkey(pkt); qp->resp.resid = reth_len(pkt); } access = (pkt->mask & RXE_READ_MASK) ? IB_ACCESS_REMOTE_READ : IB_ACCESS_REMOTE_WRITE; } else if (pkt->mask & RXE_ATOMIC_MASK) { qp->resp.va = atmeth_va(pkt); qp->resp.rkey = atmeth_rkey(pkt); qp->resp.resid = sizeof(u64); access = IB_ACCESS_REMOTE_ATOMIC; } else { return RESPST_EXECUTE; } /* A zero-byte op is not required to set an addr or rkey. */ if ((pkt->mask & (RXE_READ_MASK | RXE_WRITE_OR_SEND)) && (pkt->mask & RXE_RETH_MASK) && reth_len(pkt) == 0) { return RESPST_EXECUTE; } va = qp->resp.va; rkey = qp->resp.rkey; resid = qp->resp.resid; pktlen = payload_size(pkt); mem = lookup_mem(qp->pd, access, rkey, lookup_remote); if (!mem) { state = RESPST_ERR_RKEY_VIOLATION; goto err; } if (unlikely(mem->state == RXE_MEM_STATE_FREE)) { state = RESPST_ERR_RKEY_VIOLATION; goto err; } if (mem_check_range(mem, va, resid)) { state = RESPST_ERR_RKEY_VIOLATION; goto err; } if (pkt->mask & RXE_WRITE_MASK) { if (resid > mtu) { if (pktlen != mtu || bth_pad(pkt)) { state = RESPST_ERR_LENGTH; goto err; } } else { if (pktlen != resid) { state = RESPST_ERR_LENGTH; goto err; } if ((bth_pad(pkt) != (0x3 & (-resid)))) { /* This case may not be exactly that * but nothing else fits. */ state = RESPST_ERR_LENGTH; goto err; } } } WARN_ON_ONCE(qp->resp.mr); qp->resp.mr = mem; return RESPST_EXECUTE; err: if (mem) rxe_drop_ref(mem); return state; } static enum resp_states send_data_in(struct rxe_qp *qp, void *data_addr, int data_len) { int err; err = copy_data(qp->pd, IB_ACCESS_LOCAL_WRITE, &qp->resp.wqe->dma, data_addr, data_len, to_mem_obj, NULL); if (unlikely(err)) return (err == -ENOSPC) ? RESPST_ERR_LENGTH : RESPST_ERR_MALFORMED_WQE; return RESPST_NONE; } static enum resp_states write_data_in(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { enum resp_states rc = RESPST_NONE; int err; int data_len = payload_size(pkt); err = rxe_mem_copy(qp->resp.mr, qp->resp.va, payload_addr(pkt), data_len, to_mem_obj, NULL); if (err) { rc = RESPST_ERR_RKEY_VIOLATION; goto out; } qp->resp.va += data_len; qp->resp.resid -= data_len; out: return rc; } /* Guarantee atomicity of atomic operations at the machine level. */ static DEFINE_SPINLOCK(atomic_ops_lock); static enum resp_states process_atomic(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { u64 iova = atmeth_va(pkt); u64 *vaddr; enum resp_states ret; struct rxe_mem *mr = qp->resp.mr; if (mr->state != RXE_MEM_STATE_VALID) { ret = RESPST_ERR_RKEY_VIOLATION; goto out; } vaddr = iova_to_vaddr(mr, iova, sizeof(u64)); /* check vaddr is 8 bytes aligned. */ if (!vaddr || (uintptr_t)vaddr & 7) { ret = RESPST_ERR_MISALIGNED_ATOMIC; goto out; } spin_lock_bh(&atomic_ops_lock); qp->resp.atomic_orig = *vaddr; if (pkt->opcode == IB_OPCODE_RC_COMPARE_SWAP || pkt->opcode == IB_OPCODE_RD_COMPARE_SWAP) { if (*vaddr == atmeth_comp(pkt)) *vaddr = atmeth_swap_add(pkt); } else { *vaddr += atmeth_swap_add(pkt); } spin_unlock_bh(&atomic_ops_lock); ret = RESPST_NONE; out: return ret; } static struct sk_buff *prepare_ack_packet(struct rxe_qp *qp, struct rxe_pkt_info *pkt, struct rxe_pkt_info *ack, int opcode, int payload, u32 psn, u8 syndrome, u32 *crcp) { struct rxe_dev *rxe = to_rdev(qp->ibqp.device); struct sk_buff *skb; u32 crc = 0; u32 *p; int paylen; int pad; int err; /* * allocate packet */ pad = (-payload) & 0x3; paylen = rxe_opcode[opcode].length + payload + pad + RXE_ICRC_SIZE; skb = rxe_init_packet(rxe, &qp->pri_av, paylen, ack); if (!skb) return NULL; ack->qp = qp; ack->opcode = opcode; ack->mask = rxe_opcode[opcode].mask; ack->offset = pkt->offset; ack->paylen = paylen; /* fill in bth using the request packet headers */ memcpy(ack->hdr, pkt->hdr, pkt->offset + RXE_BTH_BYTES); bth_set_opcode(ack, opcode); bth_set_qpn(ack, qp->attr.dest_qp_num); bth_set_pad(ack, pad); bth_set_se(ack, 0); bth_set_psn(ack, psn); bth_set_ack(ack, 0); ack->psn = psn; if (ack->mask & RXE_AETH_MASK) { aeth_set_syn(ack, syndrome); aeth_set_msn(ack, qp->resp.msn); } if (ack->mask & RXE_ATMACK_MASK) atmack_set_orig(ack, qp->resp.atomic_orig); err = rxe_prepare(rxe, ack, skb, &crc); if (err) { kfree_skb(skb); return NULL; } if (crcp) { /* CRC computation will be continued by the caller */ *crcp = crc; } else { p = payload_addr(ack) + payload + bth_pad(ack); *p = ~crc; } return skb; } /* RDMA read response. If res is not NULL, then we have a current RDMA request * being processed or replayed. */ static enum resp_states read_reply(struct rxe_qp *qp, struct rxe_pkt_info *req_pkt) { struct rxe_dev *rxe = to_rdev(qp->ibqp.device); struct rxe_pkt_info ack_pkt; struct sk_buff *skb; int mtu = qp->mtu; enum resp_states state; int payload; int opcode; int err; struct resp_res *res = qp->resp.res; u32 icrc; u32 *p; if (!res) { /* This is the first time we process that request. Get a * resource */ res = &qp->resp.resources[qp->resp.res_head]; free_rd_atomic_resource(qp, res); rxe_advance_resp_resource(qp); res->type = RXE_READ_MASK; res->read.va = qp->resp.va; res->read.va_org = qp->resp.va; res->first_psn = req_pkt->psn; if (reth_len(req_pkt)) { res->last_psn = (req_pkt->psn + (reth_len(req_pkt) + mtu - 1) / mtu - 1) & BTH_PSN_MASK; } else { res->last_psn = res->first_psn; } res->cur_psn = req_pkt->psn; res->read.resid = qp->resp.resid; res->read.length = qp->resp.resid; res->read.rkey = qp->resp.rkey; /* note res inherits the reference to mr from qp */ res->read.mr = qp->resp.mr; qp->resp.mr = NULL; qp->resp.res = res; res->state = rdatm_res_state_new; } if (res->state == rdatm_res_state_new) { if (res->read.resid <= mtu) opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY; else opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST; } else { if (res->read.resid > mtu) opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE; else opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST; } res->state = rdatm_res_state_next; payload = min_t(int, res->read.resid, mtu); skb = prepare_ack_packet(qp, req_pkt, &ack_pkt, opcode, payload, res->cur_psn, AETH_ACK_UNLIMITED, &icrc); if (!skb) return RESPST_ERR_RNR; err = rxe_mem_copy(res->read.mr, res->read.va, payload_addr(&ack_pkt), payload, from_mem_obj, &icrc); if (err) pr_err("Failed copying memory\n"); p = payload_addr(&ack_pkt) + payload + bth_pad(&ack_pkt); *p = ~icrc; err = rxe_xmit_packet(rxe, qp, &ack_pkt, skb); if (err) { pr_err("Failed sending RDMA reply.\n"); return RESPST_ERR_RNR; } res->read.va += payload; res->read.resid -= payload; res->cur_psn = (res->cur_psn + 1) & BTH_PSN_MASK; if (res->read.resid > 0) { state = RESPST_DONE; } else { qp->resp.res = NULL; qp->resp.opcode = -1; if (psn_compare(res->cur_psn, qp->resp.psn) >= 0) qp->resp.psn = res->cur_psn; state = RESPST_CLEANUP; } return state; } static void build_rdma_network_hdr(union rdma_network_hdr *hdr, struct rxe_pkt_info *pkt) { struct sk_buff *skb = PKT_TO_SKB(pkt); memset(hdr, 0, sizeof(*hdr)); if (skb->protocol == htons(ETH_P_IP)) memcpy(&hdr->roce4grh, ip_hdr(skb), sizeof(hdr->roce4grh)); else if (skb->protocol == htons(ETH_P_IPV6)) memcpy(&hdr->ibgrh, ipv6_hdr(skb), sizeof(hdr->ibgrh)); } /* Executes a new request. A retried request never reach that function (send * and writes are discarded, and reads and atomics are retried elsewhere. */ static enum resp_states execute(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { enum resp_states err; if (pkt->mask & RXE_SEND_MASK) { if (qp_type(qp) == IB_QPT_UD || qp_type(qp) == IB_QPT_SMI || qp_type(qp) == IB_QPT_GSI) { union rdma_network_hdr hdr; build_rdma_network_hdr(&hdr, pkt); err = send_data_in(qp, &hdr, sizeof(hdr)); if (err) return err; } err = send_data_in(qp, payload_addr(pkt), payload_size(pkt)); if (err) return err; } else if (pkt->mask & RXE_WRITE_MASK) { err = write_data_in(qp, pkt); if (err) return err; } else if (pkt->mask & RXE_READ_MASK) { /* For RDMA Read we can increment the msn now. See C9-148. */ qp->resp.msn++; return RESPST_READ_REPLY; } else if (pkt->mask & RXE_ATOMIC_MASK) { err = process_atomic(qp, pkt); if (err) return err; } else { /* Unreachable */ WARN_ON_ONCE(1); } /* next expected psn, read handles this separately */ qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK; qp->resp.opcode = pkt->opcode; qp->resp.status = IB_WC_SUCCESS; if (pkt->mask & RXE_COMP_MASK) { /* We successfully processed this new request. */ qp->resp.msn++; return RESPST_COMPLETE; } else if (qp_type(qp) == IB_QPT_RC) return RESPST_ACKNOWLEDGE; else return RESPST_CLEANUP; } static enum resp_states do_complete(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { struct rxe_cqe cqe; struct ib_wc *wc = &cqe.ibwc; struct ib_uverbs_wc *uwc = &cqe.uibwc; struct rxe_recv_wqe *wqe = qp->resp.wqe; if (unlikely(!wqe)) return RESPST_CLEANUP; memset(&cqe, 0, sizeof(cqe)); wc->wr_id = wqe->wr_id; wc->status = qp->resp.status; wc->qp = &qp->ibqp; /* fields after status are not required for errors */ if (wc->status == IB_WC_SUCCESS) { wc->opcode = (pkt->mask & RXE_IMMDT_MASK && pkt->mask & RXE_WRITE_MASK) ? IB_WC_RECV_RDMA_WITH_IMM : IB_WC_RECV; wc->vendor_err = 0; wc->byte_len = wqe->dma.length - wqe->dma.resid; /* fields after byte_len are different between kernel and user * space */ if (qp->rcq->is_user) { uwc->wc_flags = IB_WC_GRH; if (pkt->mask & RXE_IMMDT_MASK) { uwc->wc_flags |= IB_WC_WITH_IMM; uwc->ex.imm_data = immdt_imm(pkt); } if (pkt->mask & RXE_IETH_MASK) { uwc->wc_flags |= IB_WC_WITH_INVALIDATE; uwc->ex.invalidate_rkey = ieth_rkey(pkt); } uwc->qp_num = qp->ibqp.qp_num; if (pkt->mask & RXE_DETH_MASK) uwc->src_qp = deth_sqp(pkt); uwc->port_num = qp->attr.port_num; } else { struct sk_buff *skb = PKT_TO_SKB(pkt); wc->wc_flags = IB_WC_GRH | IB_WC_WITH_NETWORK_HDR_TYPE; if (skb->protocol == htons(ETH_P_IP)) wc->network_hdr_type = RDMA_NETWORK_IPV4; else wc->network_hdr_type = RDMA_NETWORK_IPV6; if (is_vlan_dev(skb->dev)) { wc->wc_flags |= IB_WC_WITH_VLAN; wc->vlan_id = vlan_dev_vlan_id(skb->dev); } if (pkt->mask & RXE_IMMDT_MASK) { wc->wc_flags |= IB_WC_WITH_IMM; wc->ex.imm_data = immdt_imm(pkt); } if (pkt->mask & RXE_IETH_MASK) { struct rxe_dev *rxe = to_rdev(qp->ibqp.device); struct rxe_mem *rmr; wc->wc_flags |= IB_WC_WITH_INVALIDATE; wc->ex.invalidate_rkey = ieth_rkey(pkt); rmr = rxe_pool_get_index(&rxe->mr_pool, wc->ex.invalidate_rkey >> 8); if (unlikely(!rmr)) { pr_err("Bad rkey %#x invalidation\n", wc->ex.invalidate_rkey); return RESPST_ERROR; } rmr->state = RXE_MEM_STATE_FREE; rxe_drop_ref(rmr); } wc->qp = &qp->ibqp; if (pkt->mask & RXE_DETH_MASK) wc->src_qp = deth_sqp(pkt); wc->port_num = qp->attr.port_num; } } /* have copy for srq and reference for !srq */ if (!qp->srq) advance_consumer(qp->rq.queue); qp->resp.wqe = NULL; if (rxe_cq_post(qp->rcq, &cqe, pkt ? bth_se(pkt) : 1)) return RESPST_ERR_CQ_OVERFLOW; if (qp->resp.state == QP_STATE_ERROR) return RESPST_CHK_RESOURCE; if (!pkt) return RESPST_DONE; else if (qp_type(qp) == IB_QPT_RC) return RESPST_ACKNOWLEDGE; else return RESPST_CLEANUP; } static int send_ack(struct rxe_qp *qp, struct rxe_pkt_info *pkt, u8 syndrome, u32 psn) { int err = 0; struct rxe_pkt_info ack_pkt; struct sk_buff *skb; struct rxe_dev *rxe = to_rdev(qp->ibqp.device); skb = prepare_ack_packet(qp, pkt, &ack_pkt, IB_OPCODE_RC_ACKNOWLEDGE, 0, psn, syndrome, NULL); if (!skb) { err = -ENOMEM; goto err1; } err = rxe_xmit_packet(rxe, qp, &ack_pkt, skb); if (err) pr_err_ratelimited("Failed sending ack\n"); err1: return err; } static int send_atomic_ack(struct rxe_qp *qp, struct rxe_pkt_info *pkt, u8 syndrome) { int rc = 0; struct rxe_pkt_info ack_pkt; struct sk_buff *skb; struct rxe_dev *rxe = to_rdev(qp->ibqp.device); struct resp_res *res; skb = prepare_ack_packet(qp, pkt, &ack_pkt, IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE, 0, pkt->psn, syndrome, NULL); if (!skb) { rc = -ENOMEM; goto out; } rxe_add_ref(qp); res = &qp->resp.resources[qp->resp.res_head]; free_rd_atomic_resource(qp, res); rxe_advance_resp_resource(qp); memcpy(SKB_TO_PKT(skb), &ack_pkt, sizeof(ack_pkt)); memset((unsigned char *)SKB_TO_PKT(skb) + sizeof(ack_pkt), 0, sizeof(skb->cb) - sizeof(ack_pkt)); skb_get(skb); res->type = RXE_ATOMIC_MASK; res->atomic.skb = skb; res->first_psn = ack_pkt.psn; res->last_psn = ack_pkt.psn; res->cur_psn = ack_pkt.psn; rc = rxe_xmit_packet(rxe, qp, &ack_pkt, skb); if (rc) { pr_err_ratelimited("Failed sending ack\n"); rxe_drop_ref(qp); } out: return rc; } static enum resp_states acknowledge(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { if (qp_type(qp) != IB_QPT_RC) return RESPST_CLEANUP; if (qp->resp.aeth_syndrome != AETH_ACK_UNLIMITED) send_ack(qp, pkt, qp->resp.aeth_syndrome, pkt->psn); else if (pkt->mask & RXE_ATOMIC_MASK) send_atomic_ack(qp, pkt, AETH_ACK_UNLIMITED); else if (bth_ack(pkt)) send_ack(qp, pkt, AETH_ACK_UNLIMITED, pkt->psn); return RESPST_CLEANUP; } static enum resp_states cleanup(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { struct sk_buff *skb; if (pkt) { skb = skb_dequeue(&qp->req_pkts); rxe_drop_ref(qp); kfree_skb(skb); } if (qp->resp.mr) { rxe_drop_ref(qp->resp.mr); qp->resp.mr = NULL; } return RESPST_DONE; } static struct resp_res *find_resource(struct rxe_qp *qp, u32 psn) { int i; for (i = 0; i < qp->attr.max_dest_rd_atomic; i++) { struct resp_res *res = &qp->resp.resources[i]; if (res->type == 0) continue; if (psn_compare(psn, res->first_psn) >= 0 && psn_compare(psn, res->last_psn) <= 0) { return res; } } return NULL; } static enum resp_states duplicate_request(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { enum resp_states rc; u32 prev_psn = (qp->resp.psn - 1) & BTH_PSN_MASK; if (pkt->mask & RXE_SEND_MASK || pkt->mask & RXE_WRITE_MASK) { /* SEND. Ack again and cleanup. C9-105. */ if (bth_ack(pkt)) send_ack(qp, pkt, AETH_ACK_UNLIMITED, prev_psn); rc = RESPST_CLEANUP; goto out; } else if (pkt->mask & RXE_READ_MASK) { struct resp_res *res; res = find_resource(qp, pkt->psn); if (!res) { /* Resource not found. Class D error. Drop the * request. */ rc = RESPST_CLEANUP; goto out; } else { /* Ensure this new request is the same as the previous * one or a subset of it. */ u64 iova = reth_va(pkt); u32 resid = reth_len(pkt); if (iova < res->read.va_org || resid > res->read.length || (iova + resid) > (res->read.va_org + res->read.length)) { rc = RESPST_CLEANUP; goto out; } if (reth_rkey(pkt) != res->read.rkey) { rc = RESPST_CLEANUP; goto out; } res->cur_psn = pkt->psn; res->state = (pkt->psn == res->first_psn) ? rdatm_res_state_new : rdatm_res_state_replay; /* Reset the resource, except length. */ res->read.va_org = iova; res->read.va = iova; res->read.resid = resid; /* Replay the RDMA read reply. */ qp->resp.res = res; rc = RESPST_READ_REPLY; goto out; } } else { struct resp_res *res; /* Find the operation in our list of responder resources. */ res = find_resource(qp, pkt->psn); if (res) { skb_get(res->atomic.skb); /* Resend the result. */ rc = rxe_xmit_packet(to_rdev(qp->ibqp.device), qp, pkt, res->atomic.skb); if (rc) { pr_err("Failed resending result. This flow is not handled - skb ignored\n"); rc = RESPST_CLEANUP; goto out; } } /* Resource not found. Class D error. Drop the request. */ rc = RESPST_CLEANUP; goto out; } out: return rc; } /* Process a class A or C. Both are treated the same in this implementation. */ static void do_class_ac_error(struct rxe_qp *qp, u8 syndrome, enum ib_wc_status status) { qp->resp.aeth_syndrome = syndrome; qp->resp.status = status; /* indicate that we should go through the ERROR state */ qp->resp.goto_error = 1; } static enum resp_states do_class_d1e_error(struct rxe_qp *qp) { /* UC */ if (qp->srq) { /* Class E */ qp->resp.drop_msg = 1; if (qp->resp.wqe) { qp->resp.status = IB_WC_REM_INV_REQ_ERR; return RESPST_COMPLETE; } else { return RESPST_CLEANUP; } } else { /* Class D1. This packet may be the start of a * new message and could be valid. The previous * message is invalid and ignored. reset the * recv wr to its original state */ if (qp->resp.wqe) { qp->resp.wqe->dma.resid = qp->resp.wqe->dma.length; qp->resp.wqe->dma.cur_sge = 0; qp->resp.wqe->dma.sge_offset = 0; qp->resp.opcode = -1; } if (qp->resp.mr) { rxe_drop_ref(qp->resp.mr); qp->resp.mr = NULL; } return RESPST_CLEANUP; } } static void rxe_drain_req_pkts(struct rxe_qp *qp, bool notify) { struct sk_buff *skb; while ((skb = skb_dequeue(&qp->req_pkts))) { rxe_drop_ref(qp); kfree_skb(skb); } if (notify) return; while (!qp->srq && qp->rq.queue && queue_head(qp->rq.queue)) advance_consumer(qp->rq.queue); } int rxe_responder(void *arg) { struct rxe_qp *qp = (struct rxe_qp *)arg; struct rxe_dev *rxe = to_rdev(qp->ibqp.device); enum resp_states state; struct rxe_pkt_info *pkt = NULL; int ret = 0; rxe_add_ref(qp); qp->resp.aeth_syndrome = AETH_ACK_UNLIMITED; if (!qp->valid) { ret = -EINVAL; goto done; } switch (qp->resp.state) { case QP_STATE_RESET: state = RESPST_RESET; break; default: state = RESPST_GET_REQ; break; } while (1) { pr_debug("qp#%d state = %s\n", qp_num(qp), resp_state_name[state]); switch (state) { case RESPST_GET_REQ: state = get_req(qp, &pkt); break; case RESPST_CHK_PSN: state = check_psn(qp, pkt); break; case RESPST_CHK_OP_SEQ: state = check_op_seq(qp, pkt); break; case RESPST_CHK_OP_VALID: state = check_op_valid(qp, pkt); break; case RESPST_CHK_RESOURCE: state = check_resource(qp, pkt); break; case RESPST_CHK_LENGTH: state = check_length(qp, pkt); break; case RESPST_CHK_RKEY: state = check_rkey(qp, pkt); break; case RESPST_EXECUTE: state = execute(qp, pkt); break; case RESPST_COMPLETE: state = do_complete(qp, pkt); break; case RESPST_READ_REPLY: state = read_reply(qp, pkt); break; case RESPST_ACKNOWLEDGE: state = acknowledge(qp, pkt); break; case RESPST_CLEANUP: state = cleanup(qp, pkt); break; case RESPST_DUPLICATE_REQUEST: state = duplicate_request(qp, pkt); break; case RESPST_ERR_PSN_OUT_OF_SEQ: /* RC only - Class B. Drop packet. */ send_ack(qp, pkt, AETH_NAK_PSN_SEQ_ERROR, qp->resp.psn); state = RESPST_CLEANUP; break; case RESPST_ERR_TOO_MANY_RDMA_ATM_REQ: case RESPST_ERR_MISSING_OPCODE_FIRST: case RESPST_ERR_MISSING_OPCODE_LAST_C: case RESPST_ERR_UNSUPPORTED_OPCODE: case RESPST_ERR_MISALIGNED_ATOMIC: /* RC Only - Class C. */ do_class_ac_error(qp, AETH_NAK_INVALID_REQ, IB_WC_REM_INV_REQ_ERR); state = RESPST_COMPLETE; break; case RESPST_ERR_MISSING_OPCODE_LAST_D1E: state = do_class_d1e_error(qp); break; case RESPST_ERR_RNR: if (qp_type(qp) == IB_QPT_RC) { rxe_counter_inc(rxe, RXE_CNT_SND_RNR); /* RC - class B */ send_ack(qp, pkt, AETH_RNR_NAK | (~AETH_TYPE_MASK & qp->attr.min_rnr_timer), pkt->psn); } else { /* UD/UC - class D */ qp->resp.drop_msg = 1; } state = RESPST_CLEANUP; break; case RESPST_ERR_RKEY_VIOLATION: if (qp_type(qp) == IB_QPT_RC) { /* Class C */ do_class_ac_error(qp, AETH_NAK_REM_ACC_ERR, IB_WC_REM_ACCESS_ERR); state = RESPST_COMPLETE; } else { qp->resp.drop_msg = 1; if (qp->srq) { /* UC/SRQ Class D */ qp->resp.status = IB_WC_REM_ACCESS_ERR; state = RESPST_COMPLETE; } else { /* UC/non-SRQ Class E. */ state = RESPST_CLEANUP; } } break; case RESPST_ERR_LENGTH: if (qp_type(qp) == IB_QPT_RC) { /* Class C */ do_class_ac_error(qp, AETH_NAK_INVALID_REQ, IB_WC_REM_INV_REQ_ERR); state = RESPST_COMPLETE; } else if (qp->srq) { /* UC/UD - class E */ qp->resp.status = IB_WC_REM_INV_REQ_ERR; state = RESPST_COMPLETE; } else { /* UC/UD - class D */ qp->resp.drop_msg = 1; state = RESPST_CLEANUP; } break; case RESPST_ERR_MALFORMED_WQE: /* All, Class A. */ do_class_ac_error(qp, AETH_NAK_REM_OP_ERR, IB_WC_LOC_QP_OP_ERR); state = RESPST_COMPLETE; break; case RESPST_ERR_CQ_OVERFLOW: /* All - Class G */ state = RESPST_ERROR; break; case RESPST_DONE: if (qp->resp.goto_error) { state = RESPST_ERROR; break; } goto done; case RESPST_EXIT: if (qp->resp.goto_error) { state = RESPST_ERROR; break; } goto exit; case RESPST_RESET: rxe_drain_req_pkts(qp, false); qp->resp.wqe = NULL; goto exit; case RESPST_ERROR: qp->resp.goto_error = 0; pr_warn("qp#%d moved to error state\n", qp_num(qp)); rxe_qp_error(qp); goto exit; default: WARN_ON_ONCE(1); } } exit: ret = -EAGAIN; done: rxe_drop_ref(qp); return ret; }