/* * Copyright © 2008-2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * */ #include #include #include #include #include #include #include #include #include #include #include #include #include "display/intel_display.h" #include "display/intel_frontbuffer.h" #include "gem/i915_gem_clflush.h" #include "gem/i915_gem_context.h" #include "gem/i915_gem_ioctls.h" #include "gem/i915_gem_pm.h" #include "gem/i915_gemfs.h" #include "gt/intel_gt.h" #include "gt/intel_gt_pm.h" #include "gt/intel_mocs.h" #include "gt/intel_reset.h" #include "gt/intel_workarounds.h" #include "i915_drv.h" #include "i915_scatterlist.h" #include "i915_trace.h" #include "i915_vgpu.h" #include "intel_drv.h" #include "intel_pm.h" static int insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size) { memset(node, 0, sizeof(*node)); return drm_mm_insert_node_in_range(&ggtt->vm.mm, node, size, 0, I915_COLOR_UNEVICTABLE, 0, ggtt->mappable_end, DRM_MM_INSERT_LOW); } static void remove_mappable_node(struct drm_mm_node *node) { drm_mm_remove_node(node); } int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct i915_ggtt *ggtt = &to_i915(dev)->ggtt; struct drm_i915_gem_get_aperture *args = data; struct i915_vma *vma; u64 pinned; mutex_lock(&ggtt->vm.mutex); pinned = ggtt->vm.reserved; list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link) if (i915_vma_is_pinned(vma)) pinned += vma->node.size; mutex_unlock(&ggtt->vm.mutex); args->aper_size = ggtt->vm.total; args->aper_available_size = args->aper_size - pinned; return 0; } int i915_gem_object_unbind(struct drm_i915_gem_object *obj, unsigned long flags) { struct i915_vma *vma; LIST_HEAD(still_in_list); int ret = 0; lockdep_assert_held(&obj->base.dev->struct_mutex); spin_lock(&obj->vma.lock); while (!ret && (vma = list_first_entry_or_null(&obj->vma.list, struct i915_vma, obj_link))) { list_move_tail(&vma->obj_link, &still_in_list); spin_unlock(&obj->vma.lock); ret = -EBUSY; if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE || !i915_vma_is_active(vma)) ret = i915_vma_unbind(vma); spin_lock(&obj->vma.lock); } list_splice(&still_in_list, &obj->vma.list); spin_unlock(&obj->vma.lock); return ret; } static int i915_gem_phys_pwrite(struct drm_i915_gem_object *obj, struct drm_i915_gem_pwrite *args, struct drm_file *file) { void *vaddr = obj->phys_handle->vaddr + args->offset; char __user *user_data = u64_to_user_ptr(args->data_ptr); /* We manually control the domain here and pretend that it * remains coherent i.e. in the GTT domain, like shmem_pwrite. */ intel_fb_obj_invalidate(obj, ORIGIN_CPU); if (copy_from_user(vaddr, user_data, args->size)) return -EFAULT; drm_clflush_virt_range(vaddr, args->size); intel_gt_chipset_flush(&to_i915(obj->base.dev)->gt); intel_fb_obj_flush(obj, ORIGIN_CPU); return 0; } static int i915_gem_create(struct drm_file *file, struct drm_i915_private *dev_priv, u64 *size_p, u32 *handle_p) { struct drm_i915_gem_object *obj; u32 handle; u64 size; int ret; size = round_up(*size_p, PAGE_SIZE); if (size == 0) return -EINVAL; /* Allocate the new object */ obj = i915_gem_object_create_shmem(dev_priv, size); if (IS_ERR(obj)) return PTR_ERR(obj); ret = drm_gem_handle_create(file, &obj->base, &handle); /* drop reference from allocate - handle holds it now */ i915_gem_object_put(obj); if (ret) return ret; *handle_p = handle; *size_p = size; return 0; } int i915_gem_dumb_create(struct drm_file *file, struct drm_device *dev, struct drm_mode_create_dumb *args) { int cpp = DIV_ROUND_UP(args->bpp, 8); u32 format; switch (cpp) { case 1: format = DRM_FORMAT_C8; break; case 2: format = DRM_FORMAT_RGB565; break; case 4: format = DRM_FORMAT_XRGB8888; break; default: return -EINVAL; } /* have to work out size/pitch and return them */ args->pitch = ALIGN(args->width * cpp, 64); /* align stride to page size so that we can remap */ if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format, DRM_FORMAT_MOD_LINEAR)) args->pitch = ALIGN(args->pitch, 4096); args->size = args->pitch * args->height; return i915_gem_create(file, to_i915(dev), &args->size, &args->handle); } /** * Creates a new mm object and returns a handle to it. * @dev: drm device pointer * @data: ioctl data blob * @file: drm file pointer */ int i915_gem_create_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_private *dev_priv = to_i915(dev); struct drm_i915_gem_create *args = data; i915_gem_flush_free_objects(dev_priv); return i915_gem_create(file, dev_priv, &args->size, &args->handle); } static int shmem_pread(struct page *page, int offset, int len, char __user *user_data, bool needs_clflush) { char *vaddr; int ret; vaddr = kmap(page); if (needs_clflush) drm_clflush_virt_range(vaddr + offset, len); ret = __copy_to_user(user_data, vaddr + offset, len); kunmap(page); return ret ? -EFAULT : 0; } static int i915_gem_shmem_pread(struct drm_i915_gem_object *obj, struct drm_i915_gem_pread *args) { unsigned int needs_clflush; unsigned int idx, offset; struct dma_fence *fence; char __user *user_data; u64 remain; int ret; ret = i915_gem_object_prepare_read(obj, &needs_clflush); if (ret) return ret; fence = i915_gem_object_lock_fence(obj); i915_gem_object_finish_access(obj); if (!fence) return -ENOMEM; remain = args->size; user_data = u64_to_user_ptr(args->data_ptr); offset = offset_in_page(args->offset); for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { struct page *page = i915_gem_object_get_page(obj, idx); unsigned int length = min_t(u64, remain, PAGE_SIZE - offset); ret = shmem_pread(page, offset, length, user_data, needs_clflush); if (ret) break; remain -= length; user_data += length; offset = 0; } i915_gem_object_unlock_fence(obj, fence); return ret; } static inline bool gtt_user_read(struct io_mapping *mapping, loff_t base, int offset, char __user *user_data, int length) { void __iomem *vaddr; unsigned long unwritten; /* We can use the cpu mem copy function because this is X86. */ vaddr = io_mapping_map_atomic_wc(mapping, base); unwritten = __copy_to_user_inatomic(user_data, (void __force *)vaddr + offset, length); io_mapping_unmap_atomic(vaddr); if (unwritten) { vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); unwritten = copy_to_user(user_data, (void __force *)vaddr + offset, length); io_mapping_unmap(vaddr); } return unwritten; } static int i915_gem_gtt_pread(struct drm_i915_gem_object *obj, const struct drm_i915_gem_pread *args) { struct drm_i915_private *i915 = to_i915(obj->base.dev); struct i915_ggtt *ggtt = &i915->ggtt; intel_wakeref_t wakeref; struct drm_mm_node node; struct dma_fence *fence; void __user *user_data; struct i915_vma *vma; u64 remain, offset; int ret; ret = mutex_lock_interruptible(&i915->drm.struct_mutex); if (ret) return ret; wakeref = intel_runtime_pm_get(&i915->runtime_pm); vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE | PIN_NONFAULT | PIN_NONBLOCK); if (!IS_ERR(vma)) { node.start = i915_ggtt_offset(vma); node.allocated = false; ret = i915_vma_put_fence(vma); if (ret) { i915_vma_unpin(vma); vma = ERR_PTR(ret); } } if (IS_ERR(vma)) { ret = insert_mappable_node(ggtt, &node, PAGE_SIZE); if (ret) goto out_unlock; GEM_BUG_ON(!node.allocated); } mutex_unlock(&i915->drm.struct_mutex); ret = i915_gem_object_lock_interruptible(obj); if (ret) goto out_unpin; ret = i915_gem_object_set_to_gtt_domain(obj, false); if (ret) { i915_gem_object_unlock(obj); goto out_unpin; } fence = i915_gem_object_lock_fence(obj); i915_gem_object_unlock(obj); if (!fence) { ret = -ENOMEM; goto out_unpin; } user_data = u64_to_user_ptr(args->data_ptr); remain = args->size; offset = args->offset; while (remain > 0) { /* Operation in this page * * page_base = page offset within aperture * page_offset = offset within page * page_length = bytes to copy for this page */ u32 page_base = node.start; unsigned page_offset = offset_in_page(offset); unsigned page_length = PAGE_SIZE - page_offset; page_length = remain < page_length ? remain : page_length; if (node.allocated) { wmb(); ggtt->vm.insert_page(&ggtt->vm, i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), node.start, I915_CACHE_NONE, 0); wmb(); } else { page_base += offset & PAGE_MASK; } if (gtt_user_read(&ggtt->iomap, page_base, page_offset, user_data, page_length)) { ret = -EFAULT; break; } remain -= page_length; user_data += page_length; offset += page_length; } i915_gem_object_unlock_fence(obj, fence); out_unpin: mutex_lock(&i915->drm.struct_mutex); if (node.allocated) { wmb(); ggtt->vm.clear_range(&ggtt->vm, node.start, node.size); remove_mappable_node(&node); } else { i915_vma_unpin(vma); } out_unlock: intel_runtime_pm_put(&i915->runtime_pm, wakeref); mutex_unlock(&i915->drm.struct_mutex); return ret; } /** * Reads data from the object referenced by handle. * @dev: drm device pointer * @data: ioctl data blob * @file: drm file pointer * * On error, the contents of *data are undefined. */ int i915_gem_pread_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_pread *args = data; struct drm_i915_gem_object *obj; int ret; if (args->size == 0) return 0; if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size)) return -EFAULT; obj = i915_gem_object_lookup(file, args->handle); if (!obj) return -ENOENT; /* Bounds check source. */ if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { ret = -EINVAL; goto out; } trace_i915_gem_object_pread(obj, args->offset, args->size); ret = i915_gem_object_wait(obj, I915_WAIT_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); if (ret) goto out; ret = i915_gem_object_pin_pages(obj); if (ret) goto out; ret = i915_gem_shmem_pread(obj, args); if (ret == -EFAULT || ret == -ENODEV) ret = i915_gem_gtt_pread(obj, args); i915_gem_object_unpin_pages(obj); out: i915_gem_object_put(obj); return ret; } /* This is the fast write path which cannot handle * page faults in the source data */ static inline bool ggtt_write(struct io_mapping *mapping, loff_t base, int offset, char __user *user_data, int length) { void __iomem *vaddr; unsigned long unwritten; /* We can use the cpu mem copy function because this is X86. */ vaddr = io_mapping_map_atomic_wc(mapping, base); unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset, user_data, length); io_mapping_unmap_atomic(vaddr); if (unwritten) { vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); unwritten = copy_from_user((void __force *)vaddr + offset, user_data, length); io_mapping_unmap(vaddr); } return unwritten; } /** * This is the fast pwrite path, where we copy the data directly from the * user into the GTT, uncached. * @obj: i915 GEM object * @args: pwrite arguments structure */ static int i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj, const struct drm_i915_gem_pwrite *args) { struct drm_i915_private *i915 = to_i915(obj->base.dev); struct i915_ggtt *ggtt = &i915->ggtt; struct intel_runtime_pm *rpm = &i915->runtime_pm; intel_wakeref_t wakeref; struct drm_mm_node node; struct dma_fence *fence; struct i915_vma *vma; u64 remain, offset; void __user *user_data; int ret; ret = mutex_lock_interruptible(&i915->drm.struct_mutex); if (ret) return ret; if (i915_gem_object_has_struct_page(obj)) { /* * Avoid waking the device up if we can fallback, as * waking/resuming is very slow (worst-case 10-100 ms * depending on PCI sleeps and our own resume time). * This easily dwarfs any performance advantage from * using the cache bypass of indirect GGTT access. */ wakeref = intel_runtime_pm_get_if_in_use(rpm); if (!wakeref) { ret = -EFAULT; goto out_unlock; } } else { /* No backing pages, no fallback, we must force GGTT access */ wakeref = intel_runtime_pm_get(rpm); } vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE | PIN_NONFAULT | PIN_NONBLOCK); if (!IS_ERR(vma)) { node.start = i915_ggtt_offset(vma); node.allocated = false; ret = i915_vma_put_fence(vma); if (ret) { i915_vma_unpin(vma); vma = ERR_PTR(ret); } } if (IS_ERR(vma)) { ret = insert_mappable_node(ggtt, &node, PAGE_SIZE); if (ret) goto out_rpm; GEM_BUG_ON(!node.allocated); } mutex_unlock(&i915->drm.struct_mutex); ret = i915_gem_object_lock_interruptible(obj); if (ret) goto out_unpin; ret = i915_gem_object_set_to_gtt_domain(obj, true); if (ret) { i915_gem_object_unlock(obj); goto out_unpin; } fence = i915_gem_object_lock_fence(obj); i915_gem_object_unlock(obj); if (!fence) { ret = -ENOMEM; goto out_unpin; } intel_fb_obj_invalidate(obj, ORIGIN_CPU); user_data = u64_to_user_ptr(args->data_ptr); offset = args->offset; remain = args->size; while (remain) { /* Operation in this page * * page_base = page offset within aperture * page_offset = offset within page * page_length = bytes to copy for this page */ u32 page_base = node.start; unsigned int page_offset = offset_in_page(offset); unsigned int page_length = PAGE_SIZE - page_offset; page_length = remain < page_length ? remain : page_length; if (node.allocated) { wmb(); /* flush the write before we modify the GGTT */ ggtt->vm.insert_page(&ggtt->vm, i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), node.start, I915_CACHE_NONE, 0); wmb(); /* flush modifications to the GGTT (insert_page) */ } else { page_base += offset & PAGE_MASK; } /* If we get a fault while copying data, then (presumably) our * source page isn't available. Return the error and we'll * retry in the slow path. * If the object is non-shmem backed, we retry again with the * path that handles page fault. */ if (ggtt_write(&ggtt->iomap, page_base, page_offset, user_data, page_length)) { ret = -EFAULT; break; } remain -= page_length; user_data += page_length; offset += page_length; } intel_fb_obj_flush(obj, ORIGIN_CPU); i915_gem_object_unlock_fence(obj, fence); out_unpin: mutex_lock(&i915->drm.struct_mutex); if (node.allocated) { wmb(); ggtt->vm.clear_range(&ggtt->vm, node.start, node.size); remove_mappable_node(&node); } else { i915_vma_unpin(vma); } out_rpm: intel_runtime_pm_put(rpm, wakeref); out_unlock: mutex_unlock(&i915->drm.struct_mutex); return ret; } /* Per-page copy function for the shmem pwrite fastpath. * Flushes invalid cachelines before writing to the target if * needs_clflush_before is set and flushes out any written cachelines after * writing if needs_clflush is set. */ static int shmem_pwrite(struct page *page, int offset, int len, char __user *user_data, bool needs_clflush_before, bool needs_clflush_after) { char *vaddr; int ret; vaddr = kmap(page); if (needs_clflush_before) drm_clflush_virt_range(vaddr + offset, len); ret = __copy_from_user(vaddr + offset, user_data, len); if (!ret && needs_clflush_after) drm_clflush_virt_range(vaddr + offset, len); kunmap(page); return ret ? -EFAULT : 0; } static int i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj, const struct drm_i915_gem_pwrite *args) { unsigned int partial_cacheline_write; unsigned int needs_clflush; unsigned int offset, idx; struct dma_fence *fence; void __user *user_data; u64 remain; int ret; ret = i915_gem_object_prepare_write(obj, &needs_clflush); if (ret) return ret; fence = i915_gem_object_lock_fence(obj); i915_gem_object_finish_access(obj); if (!fence) return -ENOMEM; /* If we don't overwrite a cacheline completely we need to be * careful to have up-to-date data by first clflushing. Don't * overcomplicate things and flush the entire patch. */ partial_cacheline_write = 0; if (needs_clflush & CLFLUSH_BEFORE) partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1; user_data = u64_to_user_ptr(args->data_ptr); remain = args->size; offset = offset_in_page(args->offset); for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { struct page *page = i915_gem_object_get_page(obj, idx); unsigned int length = min_t(u64, remain, PAGE_SIZE - offset); ret = shmem_pwrite(page, offset, length, user_data, (offset | length) & partial_cacheline_write, needs_clflush & CLFLUSH_AFTER); if (ret) break; remain -= length; user_data += length; offset = 0; } intel_fb_obj_flush(obj, ORIGIN_CPU); i915_gem_object_unlock_fence(obj, fence); return ret; } /** * Writes data to the object referenced by handle. * @dev: drm device * @data: ioctl data blob * @file: drm file * * On error, the contents of the buffer that were to be modified are undefined. */ int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_pwrite *args = data; struct drm_i915_gem_object *obj; int ret; if (args->size == 0) return 0; if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size)) return -EFAULT; obj = i915_gem_object_lookup(file, args->handle); if (!obj) return -ENOENT; /* Bounds check destination. */ if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { ret = -EINVAL; goto err; } /* Writes not allowed into this read-only object */ if (i915_gem_object_is_readonly(obj)) { ret = -EINVAL; goto err; } trace_i915_gem_object_pwrite(obj, args->offset, args->size); ret = -ENODEV; if (obj->ops->pwrite) ret = obj->ops->pwrite(obj, args); if (ret != -ENODEV) goto err; ret = i915_gem_object_wait(obj, I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL, MAX_SCHEDULE_TIMEOUT); if (ret) goto err; ret = i915_gem_object_pin_pages(obj); if (ret) goto err; ret = -EFAULT; /* We can only do the GTT pwrite on untiled buffers, as otherwise * it would end up going through the fenced access, and we'll get * different detiling behavior between reading and writing. * pread/pwrite currently are reading and writing from the CPU * perspective, requiring manual detiling by the client. */ if (!i915_gem_object_has_struct_page(obj) || cpu_write_needs_clflush(obj)) /* Note that the gtt paths might fail with non-page-backed user * pointers (e.g. gtt mappings when moving data between * textures). Fallback to the shmem path in that case. */ ret = i915_gem_gtt_pwrite_fast(obj, args); if (ret == -EFAULT || ret == -ENOSPC) { if (obj->phys_handle) ret = i915_gem_phys_pwrite(obj, args, file); else ret = i915_gem_shmem_pwrite(obj, args); } i915_gem_object_unpin_pages(obj); err: i915_gem_object_put(obj); return ret; } /** * Called when user space has done writes to this buffer * @dev: drm device * @data: ioctl data blob * @file: drm file */ int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_sw_finish *args = data; struct drm_i915_gem_object *obj; obj = i915_gem_object_lookup(file, args->handle); if (!obj) return -ENOENT; /* * Proxy objects are barred from CPU access, so there is no * need to ban sw_finish as it is a nop. */ /* Pinned buffers may be scanout, so flush the cache */ i915_gem_object_flush_if_display(obj); i915_gem_object_put(obj); return 0; } void i915_gem_runtime_suspend(struct drm_i915_private *i915) { struct drm_i915_gem_object *obj, *on; int i; /* * Only called during RPM suspend. All users of the userfault_list * must be holding an RPM wakeref to ensure that this can not * run concurrently with themselves (and use the struct_mutex for * protection between themselves). */ list_for_each_entry_safe(obj, on, &i915->ggtt.userfault_list, userfault_link) __i915_gem_object_release_mmap(obj); /* * The fence will be lost when the device powers down. If any were * in use by hardware (i.e. they are pinned), we should not be powering * down! All other fences will be reacquired by the user upon waking. */ for (i = 0; i < i915->ggtt.num_fences; i++) { struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i]; /* * Ideally we want to assert that the fence register is not * live at this point (i.e. that no piece of code will be * trying to write through fence + GTT, as that both violates * our tracking of activity and associated locking/barriers, * but also is illegal given that the hw is powered down). * * Previously we used reg->pin_count as a "liveness" indicator. * That is not sufficient, and we need a more fine-grained * tool if we want to have a sanity check here. */ if (!reg->vma) continue; GEM_BUG_ON(i915_vma_has_userfault(reg->vma)); reg->dirty = true; } } static int wait_for_engines(struct intel_gt *gt) { if (wait_for(intel_engines_are_idle(gt), I915_IDLE_ENGINES_TIMEOUT)) { dev_err(gt->i915->drm.dev, "Failed to idle engines, declaring wedged!\n"); GEM_TRACE_DUMP(); intel_gt_set_wedged(gt); return -EIO; } return 0; } static long wait_for_timelines(struct drm_i915_private *i915, unsigned int flags, long timeout) { struct intel_gt_timelines *gt = &i915->gt.timelines; struct intel_timeline *tl; mutex_lock(>->mutex); list_for_each_entry(tl, >->active_list, link) { struct i915_request *rq; rq = i915_active_request_get_unlocked(&tl->last_request); if (!rq) continue; mutex_unlock(>->mutex); /* * "Race-to-idle". * * Switching to the kernel context is often used a synchronous * step prior to idling, e.g. in suspend for flushing all * current operations to memory before sleeping. These we * want to complete as quickly as possible to avoid prolonged * stalls, so allow the gpu to boost to maximum clocks. */ if (flags & I915_WAIT_FOR_IDLE_BOOST) gen6_rps_boost(rq); timeout = i915_request_wait(rq, flags, timeout); i915_request_put(rq); if (timeout < 0) return timeout; /* restart after reacquiring the lock */ mutex_lock(>->mutex); tl = list_entry(>->active_list, typeof(*tl), link); } mutex_unlock(>->mutex); return timeout; } int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags, long timeout) { GEM_TRACE("flags=%x (%s), timeout=%ld%s, awake?=%s\n", flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked", timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "", yesno(i915->gt.awake)); /* If the device is asleep, we have no requests outstanding */ if (!READ_ONCE(i915->gt.awake)) return 0; timeout = wait_for_timelines(i915, flags, timeout); if (timeout < 0) return timeout; if (flags & I915_WAIT_LOCKED) { int err; lockdep_assert_held(&i915->drm.struct_mutex); err = wait_for_engines(&i915->gt); if (err) return err; i915_retire_requests(i915); } return 0; } struct i915_vma * i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, const struct i915_ggtt_view *view, u64 size, u64 alignment, u64 flags) { struct drm_i915_private *dev_priv = to_i915(obj->base.dev); struct i915_address_space *vm = &dev_priv->ggtt.vm; struct i915_vma *vma; int ret; lockdep_assert_held(&obj->base.dev->struct_mutex); if (flags & PIN_MAPPABLE && (!view || view->type == I915_GGTT_VIEW_NORMAL)) { /* If the required space is larger than the available * aperture, we will not able to find a slot for the * object and unbinding the object now will be in * vain. Worse, doing so may cause us to ping-pong * the object in and out of the Global GTT and * waste a lot of cycles under the mutex. */ if (obj->base.size > dev_priv->ggtt.mappable_end) return ERR_PTR(-E2BIG); /* If NONBLOCK is set the caller is optimistically * trying to cache the full object within the mappable * aperture, and *must* have a fallback in place for * situations where we cannot bind the object. We * can be a little more lax here and use the fallback * more often to avoid costly migrations of ourselves * and other objects within the aperture. * * Half-the-aperture is used as a simple heuristic. * More interesting would to do search for a free * block prior to making the commitment to unbind. * That caters for the self-harm case, and with a * little more heuristics (e.g. NOFAULT, NOEVICT) * we could try to minimise harm to others. */ if (flags & PIN_NONBLOCK && obj->base.size > dev_priv->ggtt.mappable_end / 2) return ERR_PTR(-ENOSPC); } vma = i915_vma_instance(obj, vm, view); if (IS_ERR(vma)) return vma; if (i915_vma_misplaced(vma, size, alignment, flags)) { if (flags & PIN_NONBLOCK) { if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) return ERR_PTR(-ENOSPC); if (flags & PIN_MAPPABLE && vma->fence_size > dev_priv->ggtt.mappable_end / 2) return ERR_PTR(-ENOSPC); } WARN(i915_vma_is_pinned(vma), "bo is already pinned in ggtt with incorrect alignment:" " offset=%08x, req.alignment=%llx," " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n", i915_ggtt_offset(vma), alignment, !!(flags & PIN_MAPPABLE), i915_vma_is_map_and_fenceable(vma)); ret = i915_vma_unbind(vma); if (ret) return ERR_PTR(ret); } ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL); if (ret) return ERR_PTR(ret); return vma; } int i915_gem_madvise_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_i915_private *i915 = to_i915(dev); struct drm_i915_gem_madvise *args = data; struct drm_i915_gem_object *obj; int err; switch (args->madv) { case I915_MADV_DONTNEED: case I915_MADV_WILLNEED: break; default: return -EINVAL; } obj = i915_gem_object_lookup(file_priv, args->handle); if (!obj) return -ENOENT; err = mutex_lock_interruptible(&obj->mm.lock); if (err) goto out; if (i915_gem_object_has_pages(obj) && i915_gem_object_is_tiled(obj) && i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) { if (obj->mm.madv == I915_MADV_WILLNEED) { GEM_BUG_ON(!obj->mm.quirked); __i915_gem_object_unpin_pages(obj); obj->mm.quirked = false; } if (args->madv == I915_MADV_WILLNEED) { GEM_BUG_ON(obj->mm.quirked); __i915_gem_object_pin_pages(obj); obj->mm.quirked = true; } } if (obj->mm.madv != __I915_MADV_PURGED) obj->mm.madv = args->madv; if (i915_gem_object_has_pages(obj)) { struct list_head *list; if (i915_gem_object_is_shrinkable(obj)) { unsigned long flags; spin_lock_irqsave(&i915->mm.obj_lock, flags); if (obj->mm.madv != I915_MADV_WILLNEED) list = &i915->mm.purge_list; else list = &i915->mm.shrink_list; list_move_tail(&obj->mm.link, list); spin_unlock_irqrestore(&i915->mm.obj_lock, flags); } } /* if the object is no longer attached, discard its backing storage */ if (obj->mm.madv == I915_MADV_DONTNEED && !i915_gem_object_has_pages(obj)) i915_gem_object_truncate(obj); args->retained = obj->mm.madv != __I915_MADV_PURGED; mutex_unlock(&obj->mm.lock); out: i915_gem_object_put(obj); return err; } void i915_gem_sanitize(struct drm_i915_private *i915) { intel_wakeref_t wakeref; GEM_TRACE("\n"); wakeref = intel_runtime_pm_get(&i915->runtime_pm); intel_uncore_forcewake_get(&i915->uncore, FORCEWAKE_ALL); /* * As we have just resumed the machine and woken the device up from * deep PCI sleep (presumably D3_cold), assume the HW has been reset * back to defaults, recovering from whatever wedged state we left it * in and so worth trying to use the device once more. */ if (intel_gt_is_wedged(&i915->gt)) intel_gt_unset_wedged(&i915->gt); /* * If we inherit context state from the BIOS or earlier occupants * of the GPU, the GPU may be in an inconsistent state when we * try to take over. The only way to remove the earlier state * is by resetting. However, resetting on earlier gen is tricky as * it may impact the display and we are uncertain about the stability * of the reset, so this could be applied to even earlier gen. */ intel_gt_sanitize(&i915->gt, false); intel_uncore_forcewake_put(&i915->uncore, FORCEWAKE_ALL); intel_runtime_pm_put(&i915->runtime_pm, wakeref); } static void init_unused_ring(struct intel_gt *gt, u32 base) { struct intel_uncore *uncore = gt->uncore; intel_uncore_write(uncore, RING_CTL(base), 0); intel_uncore_write(uncore, RING_HEAD(base), 0); intel_uncore_write(uncore, RING_TAIL(base), 0); intel_uncore_write(uncore, RING_START(base), 0); } static void init_unused_rings(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; if (IS_I830(i915)) { init_unused_ring(gt, PRB1_BASE); init_unused_ring(gt, SRB0_BASE); init_unused_ring(gt, SRB1_BASE); init_unused_ring(gt, SRB2_BASE); init_unused_ring(gt, SRB3_BASE); } else if (IS_GEN(i915, 2)) { init_unused_ring(gt, SRB0_BASE); init_unused_ring(gt, SRB1_BASE); } else if (IS_GEN(i915, 3)) { init_unused_ring(gt, PRB1_BASE); init_unused_ring(gt, PRB2_BASE); } } int i915_gem_init_hw(struct drm_i915_private *i915) { struct intel_uncore *uncore = &i915->uncore; struct intel_gt *gt = &i915->gt; int ret; BUG_ON(!i915->kernel_context); ret = intel_gt_terminally_wedged(gt); if (ret) return ret; gt->last_init_time = ktime_get(); /* Double layer security blanket, see i915_gem_init() */ intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); if (HAS_EDRAM(i915) && INTEL_GEN(i915) < 9) intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf)); if (IS_HASWELL(i915)) intel_uncore_write(uncore, MI_PREDICATE_RESULT_2, IS_HSW_GT3(i915) ? LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); /* Apply the GT workarounds... */ intel_gt_apply_workarounds(gt); /* ...and determine whether they are sticking. */ intel_gt_verify_workarounds(gt, "init"); intel_gt_init_swizzling(gt); /* * At least 830 can leave some of the unused rings * "active" (ie. head != tail) after resume which * will prevent c3 entry. Makes sure all unused rings * are totally idle. */ init_unused_rings(gt); ret = i915_ppgtt_init_hw(gt); if (ret) { DRM_ERROR("Enabling PPGTT failed (%d)\n", ret); goto out; } ret = intel_wopcm_init_hw(&i915->wopcm, gt); if (ret) { DRM_ERROR("Enabling WOPCM failed (%d)\n", ret); goto out; } /* We can't enable contexts until all firmware is loaded */ ret = intel_uc_init_hw(i915); if (ret) { DRM_ERROR("Enabling uc failed (%d)\n", ret); goto out; } intel_mocs_init_l3cc_table(gt); intel_engines_set_scheduler_caps(i915); out: intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); return ret; } static int __intel_engines_record_defaults(struct drm_i915_private *i915) { struct intel_engine_cs *engine; struct i915_gem_context *ctx; struct i915_gem_engines *e; enum intel_engine_id id; int err = 0; /* * As we reset the gpu during very early sanitisation, the current * register state on the GPU should reflect its defaults values. * We load a context onto the hw (with restore-inhibit), then switch * over to a second context to save that default register state. We * can then prime every new context with that state so they all start * from the same default HW values. */ ctx = i915_gem_context_create_kernel(i915, 0); if (IS_ERR(ctx)) return PTR_ERR(ctx); e = i915_gem_context_lock_engines(ctx); for_each_engine(engine, i915, id) { struct intel_context *ce = e->engines[id]; struct i915_request *rq; rq = intel_context_create_request(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto err_active; } err = 0; if (rq->engine->init_context) err = rq->engine->init_context(rq); i915_request_add(rq); if (err) goto err_active; } /* Flush the default context image to memory, and enable powersaving. */ if (!i915_gem_load_power_context(i915)) { err = -EIO; goto err_active; } for_each_engine(engine, i915, id) { struct intel_context *ce = e->engines[id]; struct i915_vma *state = ce->state; void *vaddr; if (!state) continue; GEM_BUG_ON(intel_context_is_pinned(ce)); /* * As we will hold a reference to the logical state, it will * not be torn down with the context, and importantly the * object will hold onto its vma (making it possible for a * stray GTT write to corrupt our defaults). Unmap the vma * from the GTT to prevent such accidents and reclaim the * space. */ err = i915_vma_unbind(state); if (err) goto err_active; i915_gem_object_lock(state->obj); err = i915_gem_object_set_to_cpu_domain(state->obj, false); i915_gem_object_unlock(state->obj); if (err) goto err_active; engine->default_state = i915_gem_object_get(state->obj); i915_gem_object_set_cache_coherency(engine->default_state, I915_CACHE_LLC); /* Check we can acquire the image of the context state */ vaddr = i915_gem_object_pin_map(engine->default_state, I915_MAP_FORCE_WB); if (IS_ERR(vaddr)) { err = PTR_ERR(vaddr); goto err_active; } i915_gem_object_unpin_map(engine->default_state); } if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) { unsigned int found = intel_engines_has_context_isolation(i915); /* * Make sure that classes with multiple engine instances all * share the same basic configuration. */ for_each_engine(engine, i915, id) { unsigned int bit = BIT(engine->uabi_class); unsigned int expected = engine->default_state ? bit : 0; if ((found & bit) != expected) { DRM_ERROR("mismatching default context state for class %d on engine %s\n", engine->uabi_class, engine->name); } } } out_ctx: i915_gem_context_unlock_engines(ctx); i915_gem_context_set_closed(ctx); i915_gem_context_put(ctx); return err; err_active: /* * If we have to abandon now, we expect the engines to be idle * and ready to be torn-down. The quickest way we can accomplish * this is by declaring ourselves wedged. */ intel_gt_set_wedged(&i915->gt); goto out_ctx; } static int i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size) { return intel_gt_init_scratch(&i915->gt, size); } static void i915_gem_fini_scratch(struct drm_i915_private *i915) { intel_gt_fini_scratch(&i915->gt); } static int intel_engines_verify_workarounds(struct drm_i915_private *i915) { struct intel_engine_cs *engine; enum intel_engine_id id; int err = 0; if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) return 0; for_each_engine(engine, i915, id) { if (intel_engine_verify_workarounds(engine, "load")) err = -EIO; } return err; } int i915_gem_init(struct drm_i915_private *dev_priv) { int ret; /* We need to fallback to 4K pages if host doesn't support huge gtt. */ if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv)) mkwrite_device_info(dev_priv)->page_sizes = I915_GTT_PAGE_SIZE_4K; dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1); intel_timelines_init(dev_priv); ret = i915_gem_init_userptr(dev_priv); if (ret) return ret; intel_uc_fetch_firmwares(dev_priv); ret = intel_wopcm_init(&dev_priv->wopcm); if (ret) goto err_uc_fw; /* This is just a security blanket to placate dragons. * On some systems, we very sporadically observe that the first TLBs * used by the CS may be stale, despite us poking the TLB reset. If * we hold the forcewake during initialisation these problems * just magically go away. */ mutex_lock(&dev_priv->drm.struct_mutex); intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL); ret = i915_init_ggtt(dev_priv); if (ret) { GEM_BUG_ON(ret == -EIO); goto err_unlock; } ret = i915_gem_init_scratch(dev_priv, IS_GEN(dev_priv, 2) ? SZ_256K : PAGE_SIZE); if (ret) { GEM_BUG_ON(ret == -EIO); goto err_ggtt; } ret = intel_engines_setup(dev_priv); if (ret) { GEM_BUG_ON(ret == -EIO); goto err_unlock; } ret = i915_gem_contexts_init(dev_priv); if (ret) { GEM_BUG_ON(ret == -EIO); goto err_scratch; } ret = intel_engines_init(dev_priv); if (ret) { GEM_BUG_ON(ret == -EIO); goto err_context; } intel_init_gt_powersave(dev_priv); ret = intel_uc_init(dev_priv); if (ret) goto err_pm; ret = i915_gem_init_hw(dev_priv); if (ret) goto err_uc_init; /* Only when the HW is re-initialised, can we replay the requests */ ret = intel_gt_resume(&dev_priv->gt); if (ret) goto err_init_hw; /* * Despite its name intel_init_clock_gating applies both display * clock gating workarounds; GT mmio workarounds and the occasional * GT power context workaround. Worse, sometimes it includes a context * register workaround which we need to apply before we record the * default HW state for all contexts. * * FIXME: break up the workarounds and apply them at the right time! */ intel_init_clock_gating(dev_priv); ret = intel_engines_verify_workarounds(dev_priv); if (ret) goto err_gt; ret = __intel_engines_record_defaults(dev_priv); if (ret) goto err_gt; if (i915_inject_probe_failure()) { ret = -ENODEV; goto err_gt; } if (i915_inject_probe_failure()) { ret = -EIO; goto err_gt; } intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL); mutex_unlock(&dev_priv->drm.struct_mutex); return 0; /* * Unwinding is complicated by that we want to handle -EIO to mean * disable GPU submission but keep KMS alive. We want to mark the * HW as irrevisibly wedged, but keep enough state around that the * driver doesn't explode during runtime. */ err_gt: mutex_unlock(&dev_priv->drm.struct_mutex); intel_gt_set_wedged(&dev_priv->gt); i915_gem_suspend(dev_priv); i915_gem_suspend_late(dev_priv); i915_gem_drain_workqueue(dev_priv); mutex_lock(&dev_priv->drm.struct_mutex); err_init_hw: intel_uc_fini_hw(dev_priv); err_uc_init: intel_uc_fini(dev_priv); err_pm: if (ret != -EIO) { intel_cleanup_gt_powersave(dev_priv); intel_engines_cleanup(dev_priv); } err_context: if (ret != -EIO) i915_gem_contexts_fini(dev_priv); err_scratch: i915_gem_fini_scratch(dev_priv); err_ggtt: err_unlock: intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL); mutex_unlock(&dev_priv->drm.struct_mutex); err_uc_fw: intel_uc_cleanup_firmwares(dev_priv); if (ret != -EIO) { i915_gem_cleanup_userptr(dev_priv); intel_timelines_fini(dev_priv); } if (ret == -EIO) { mutex_lock(&dev_priv->drm.struct_mutex); /* * Allow engine initialisation to fail by marking the GPU as * wedged. But we only want to do this where the GPU is angry, * for all other failure, such as an allocation failure, bail. */ if (!intel_gt_is_wedged(&dev_priv->gt)) { i915_probe_error(dev_priv, "Failed to initialize GPU, declaring it wedged!\n"); intel_gt_set_wedged(&dev_priv->gt); } /* Minimal basic recovery for KMS */ ret = i915_ggtt_enable_hw(dev_priv); i915_gem_restore_gtt_mappings(dev_priv); i915_gem_restore_fences(dev_priv); intel_init_clock_gating(dev_priv); mutex_unlock(&dev_priv->drm.struct_mutex); } i915_gem_drain_freed_objects(dev_priv); return ret; } void i915_gem_driver_remove(struct drm_i915_private *dev_priv) { GEM_BUG_ON(dev_priv->gt.awake); intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref); i915_gem_suspend_late(dev_priv); intel_disable_gt_powersave(dev_priv); /* Flush any outstanding unpin_work. */ i915_gem_drain_workqueue(dev_priv); mutex_lock(&dev_priv->drm.struct_mutex); intel_uc_fini_hw(dev_priv); intel_uc_fini(dev_priv); mutex_unlock(&dev_priv->drm.struct_mutex); i915_gem_drain_freed_objects(dev_priv); } void i915_gem_driver_release(struct drm_i915_private *dev_priv) { mutex_lock(&dev_priv->drm.struct_mutex); intel_engines_cleanup(dev_priv); i915_gem_contexts_fini(dev_priv); i915_gem_fini_scratch(dev_priv); mutex_unlock(&dev_priv->drm.struct_mutex); intel_wa_list_free(&dev_priv->gt_wa_list); intel_cleanup_gt_powersave(dev_priv); intel_uc_cleanup_firmwares(dev_priv); i915_gem_cleanup_userptr(dev_priv); intel_timelines_fini(dev_priv); i915_gem_drain_freed_objects(dev_priv); WARN_ON(!list_empty(&dev_priv->contexts.list)); } void i915_gem_init_mmio(struct drm_i915_private *i915) { i915_gem_sanitize(i915); } static void i915_gem_init__mm(struct drm_i915_private *i915) { spin_lock_init(&i915->mm.obj_lock); spin_lock_init(&i915->mm.free_lock); init_llist_head(&i915->mm.free_list); INIT_LIST_HEAD(&i915->mm.purge_list); INIT_LIST_HEAD(&i915->mm.shrink_list); i915_gem_init__objects(i915); } int i915_gem_init_early(struct drm_i915_private *dev_priv) { int err; i915_gem_init__mm(dev_priv); i915_gem_init__pm(dev_priv); atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0); spin_lock_init(&dev_priv->fb_tracking.lock); err = i915_gemfs_init(dev_priv); if (err) DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err); return 0; } void i915_gem_cleanup_early(struct drm_i915_private *dev_priv) { i915_gem_drain_freed_objects(dev_priv); GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list)); GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count)); WARN_ON(dev_priv->mm.shrink_count); intel_gt_cleanup_early(&dev_priv->gt); i915_gemfs_fini(dev_priv); } int i915_gem_freeze(struct drm_i915_private *dev_priv) { /* Discard all purgeable objects, let userspace recover those as * required after resuming. */ i915_gem_shrink_all(dev_priv); return 0; } int i915_gem_freeze_late(struct drm_i915_private *i915) { struct drm_i915_gem_object *obj; intel_wakeref_t wakeref; /* * Called just before we write the hibernation image. * * We need to update the domain tracking to reflect that the CPU * will be accessing all the pages to create and restore from the * hibernation, and so upon restoration those pages will be in the * CPU domain. * * To make sure the hibernation image contains the latest state, * we update that state just before writing out the image. * * To try and reduce the hibernation image, we manually shrink * the objects as well, see i915_gem_freeze() */ wakeref = intel_runtime_pm_get(&i915->runtime_pm); i915_gem_shrink(i915, -1UL, NULL, ~0); i915_gem_drain_freed_objects(i915); list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) { i915_gem_object_lock(obj); WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true)); i915_gem_object_unlock(obj); } intel_runtime_pm_put(&i915->runtime_pm, wakeref); return 0; } void i915_gem_release(struct drm_device *dev, struct drm_file *file) { struct drm_i915_file_private *file_priv = file->driver_priv; struct i915_request *request; /* Clean up our request list when the client is going away, so that * later retire_requests won't dereference our soon-to-be-gone * file_priv. */ spin_lock(&file_priv->mm.lock); list_for_each_entry(request, &file_priv->mm.request_list, client_link) request->file_priv = NULL; spin_unlock(&file_priv->mm.lock); } int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file) { struct drm_i915_file_private *file_priv; int ret; DRM_DEBUG("\n"); file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); if (!file_priv) return -ENOMEM; file->driver_priv = file_priv; file_priv->dev_priv = i915; file_priv->file = file; spin_lock_init(&file_priv->mm.lock); INIT_LIST_HEAD(&file_priv->mm.request_list); file_priv->bsd_engine = -1; file_priv->hang_timestamp = jiffies; ret = i915_gem_context_open(i915, file); if (ret) kfree(file_priv); return ret; } /** * i915_gem_track_fb - update frontbuffer tracking * @old: current GEM buffer for the frontbuffer slots * @new: new GEM buffer for the frontbuffer slots * @frontbuffer_bits: bitmask of frontbuffer slots * * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them * from @old and setting them in @new. Both @old and @new can be NULL. */ void i915_gem_track_fb(struct drm_i915_gem_object *old, struct drm_i915_gem_object *new, unsigned frontbuffer_bits) { /* Control of individual bits within the mask are guarded by * the owning plane->mutex, i.e. we can never see concurrent * manipulation of individual bits. But since the bitfield as a whole * is updated using RMW, we need to use atomics in order to update * the bits. */ BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > BITS_PER_TYPE(atomic_t)); if (old) { WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits)); atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits); } if (new) { WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits); atomic_or(frontbuffer_bits, &new->frontbuffer_bits); } } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftests/mock_gem_device.c" #include "selftests/i915_gem.c" #endif