/* * Copyright (c) 2010 Broadcom Corporation * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* Toplevel file. Relies on dhd_linux.c to send commands to the dongle. */ #include #include #include #include #include #include #include #include #include #include "core.h" #include "debug.h" #include "tracepoint.h" #include "fwil_types.h" #include "p2p.h" #include "btcoex.h" #include "cfg80211.h" #include "feature.h" #include "fwil.h" #include "proto.h" #include "vendor.h" #include "bus.h" #include "common.h" #define BRCMF_SCAN_IE_LEN_MAX 2048 #define BRCMF_PNO_VERSION 2 #define BRCMF_PNO_TIME 30 #define BRCMF_PNO_REPEAT 4 #define BRCMF_PNO_FREQ_EXPO_MAX 3 #define BRCMF_PNO_MAX_PFN_COUNT 16 #define BRCMF_PNO_ENABLE_ADAPTSCAN_BIT 6 #define BRCMF_PNO_HIDDEN_BIT 2 #define BRCMF_PNO_WPA_AUTH_ANY 0xFFFFFFFF #define BRCMF_PNO_SCAN_COMPLETE 1 #define BRCMF_PNO_SCAN_INCOMPLETE 0 #define WPA_OUI "\x00\x50\xF2" /* WPA OUI */ #define WPA_OUI_TYPE 1 #define RSN_OUI "\x00\x0F\xAC" /* RSN OUI */ #define WME_OUI_TYPE 2 #define WPS_OUI_TYPE 4 #define VS_IE_FIXED_HDR_LEN 6 #define WPA_IE_VERSION_LEN 2 #define WPA_IE_MIN_OUI_LEN 4 #define WPA_IE_SUITE_COUNT_LEN 2 #define WPA_CIPHER_NONE 0 /* None */ #define WPA_CIPHER_WEP_40 1 /* WEP (40-bit) */ #define WPA_CIPHER_TKIP 2 /* TKIP: default for WPA */ #define WPA_CIPHER_AES_CCM 4 /* AES (CCM) */ #define WPA_CIPHER_WEP_104 5 /* WEP (104-bit) */ #define RSN_AKM_NONE 0 /* None (IBSS) */ #define RSN_AKM_UNSPECIFIED 1 /* Over 802.1x */ #define RSN_AKM_PSK 2 /* Pre-shared Key */ #define RSN_CAP_LEN 2 /* Length of RSN capabilities */ #define RSN_CAP_PTK_REPLAY_CNTR_MASK 0x000C #define VNDR_IE_CMD_LEN 4 /* length of the set command * string :"add", "del" (+ NUL) */ #define VNDR_IE_COUNT_OFFSET 4 #define VNDR_IE_PKTFLAG_OFFSET 8 #define VNDR_IE_VSIE_OFFSET 12 #define VNDR_IE_HDR_SIZE 12 #define VNDR_IE_PARSE_LIMIT 5 #define DOT11_MGMT_HDR_LEN 24 /* d11 management header len */ #define DOT11_BCN_PRB_FIXED_LEN 12 /* beacon/probe fixed length */ #define BRCMF_SCAN_JOIN_ACTIVE_DWELL_TIME_MS 320 #define BRCMF_SCAN_JOIN_PASSIVE_DWELL_TIME_MS 400 #define BRCMF_SCAN_JOIN_PROBE_INTERVAL_MS 20 #define BRCMF_ASSOC_PARAMS_FIXED_SIZE \ (sizeof(struct brcmf_assoc_params_le) - sizeof(u16)) static bool check_vif_up(struct brcmf_cfg80211_vif *vif) { if (!test_bit(BRCMF_VIF_STATUS_READY, &vif->sme_state)) { brcmf_dbg(INFO, "device is not ready : status (%lu)\n", vif->sme_state); return false; } return true; } #define RATE_TO_BASE100KBPS(rate) (((rate) * 10) / 2) #define RATETAB_ENT(_rateid, _flags) \ { \ .bitrate = RATE_TO_BASE100KBPS(_rateid), \ .hw_value = (_rateid), \ .flags = (_flags), \ } static struct ieee80211_rate __wl_rates[] = { RATETAB_ENT(BRCM_RATE_1M, 0), RATETAB_ENT(BRCM_RATE_2M, IEEE80211_RATE_SHORT_PREAMBLE), RATETAB_ENT(BRCM_RATE_5M5, IEEE80211_RATE_SHORT_PREAMBLE), RATETAB_ENT(BRCM_RATE_11M, IEEE80211_RATE_SHORT_PREAMBLE), RATETAB_ENT(BRCM_RATE_6M, 0), RATETAB_ENT(BRCM_RATE_9M, 0), RATETAB_ENT(BRCM_RATE_12M, 0), RATETAB_ENT(BRCM_RATE_18M, 0), RATETAB_ENT(BRCM_RATE_24M, 0), RATETAB_ENT(BRCM_RATE_36M, 0), RATETAB_ENT(BRCM_RATE_48M, 0), RATETAB_ENT(BRCM_RATE_54M, 0), }; #define wl_g_rates (__wl_rates + 0) #define wl_g_rates_size ARRAY_SIZE(__wl_rates) #define wl_a_rates (__wl_rates + 4) #define wl_a_rates_size (wl_g_rates_size - 4) #define CHAN2G(_channel, _freq) { \ .band = IEEE80211_BAND_2GHZ, \ .center_freq = (_freq), \ .hw_value = (_channel), \ .flags = IEEE80211_CHAN_DISABLED, \ .max_antenna_gain = 0, \ .max_power = 30, \ } #define CHAN5G(_channel) { \ .band = IEEE80211_BAND_5GHZ, \ .center_freq = 5000 + (5 * (_channel)), \ .hw_value = (_channel), \ .flags = IEEE80211_CHAN_DISABLED, \ .max_antenna_gain = 0, \ .max_power = 30, \ } static struct ieee80211_channel __wl_2ghz_channels[] = { CHAN2G(1, 2412), CHAN2G(2, 2417), CHAN2G(3, 2422), CHAN2G(4, 2427), CHAN2G(5, 2432), CHAN2G(6, 2437), CHAN2G(7, 2442), CHAN2G(8, 2447), CHAN2G(9, 2452), CHAN2G(10, 2457), CHAN2G(11, 2462), CHAN2G(12, 2467), CHAN2G(13, 2472), CHAN2G(14, 2484) }; static struct ieee80211_channel __wl_5ghz_channels[] = { CHAN5G(34), CHAN5G(36), CHAN5G(38), CHAN5G(40), CHAN5G(42), CHAN5G(44), CHAN5G(46), CHAN5G(48), CHAN5G(52), CHAN5G(56), CHAN5G(60), CHAN5G(64), CHAN5G(100), CHAN5G(104), CHAN5G(108), CHAN5G(112), CHAN5G(116), CHAN5G(120), CHAN5G(124), CHAN5G(128), CHAN5G(132), CHAN5G(136), CHAN5G(140), CHAN5G(144), CHAN5G(149), CHAN5G(153), CHAN5G(157), CHAN5G(161), CHAN5G(165) }; /* Band templates duplicated per wiphy. The channel info * above is added to the band during setup. */ static const struct ieee80211_supported_band __wl_band_2ghz = { .band = IEEE80211_BAND_2GHZ, .bitrates = wl_g_rates, .n_bitrates = wl_g_rates_size, }; static const struct ieee80211_supported_band __wl_band_5ghz = { .band = IEEE80211_BAND_5GHZ, .bitrates = wl_a_rates, .n_bitrates = wl_a_rates_size, }; /* This is to override regulatory domains defined in cfg80211 module (reg.c) * By default world regulatory domain defined in reg.c puts the flags * NL80211_RRF_NO_IR for 5GHz channels (for * 36..48 and 149..165). * With respect to these flags, wpa_supplicant doesn't * start p2p * operations on 5GHz channels. All the changes in world regulatory * domain are to be done here. */ static const struct ieee80211_regdomain brcmf_regdom = { .n_reg_rules = 4, .alpha2 = "99", .reg_rules = { /* IEEE 802.11b/g, channels 1..11 */ REG_RULE(2412-10, 2472+10, 40, 6, 20, 0), /* If any */ /* IEEE 802.11 channel 14 - Only JP enables * this and for 802.11b only */ REG_RULE(2484-10, 2484+10, 20, 6, 20, 0), /* IEEE 802.11a, channel 36..64 */ REG_RULE(5150-10, 5350+10, 80, 6, 20, 0), /* IEEE 802.11a, channel 100..165 */ REG_RULE(5470-10, 5850+10, 80, 6, 20, 0), } }; static const u32 __wl_cipher_suites[] = { WLAN_CIPHER_SUITE_WEP40, WLAN_CIPHER_SUITE_WEP104, WLAN_CIPHER_SUITE_TKIP, WLAN_CIPHER_SUITE_CCMP, WLAN_CIPHER_SUITE_AES_CMAC, }; /* Vendor specific ie. id = 221, oui and type defines exact ie */ struct brcmf_vs_tlv { u8 id; u8 len; u8 oui[3]; u8 oui_type; }; struct parsed_vndr_ie_info { u8 *ie_ptr; u32 ie_len; /* total length including id & length field */ struct brcmf_vs_tlv vndrie; }; struct parsed_vndr_ies { u32 count; struct parsed_vndr_ie_info ie_info[VNDR_IE_PARSE_LIMIT]; }; static int brcmf_roamoff; module_param_named(roamoff, brcmf_roamoff, int, S_IRUSR); MODULE_PARM_DESC(roamoff, "do not use internal roaming engine"); static u16 chandef_to_chanspec(struct brcmu_d11inf *d11inf, struct cfg80211_chan_def *ch) { struct brcmu_chan ch_inf; s32 primary_offset; brcmf_dbg(TRACE, "chandef: control %d center %d width %d\n", ch->chan->center_freq, ch->center_freq1, ch->width); ch_inf.chnum = ieee80211_frequency_to_channel(ch->center_freq1); primary_offset = ch->center_freq1 - ch->chan->center_freq; switch (ch->width) { case NL80211_CHAN_WIDTH_20: case NL80211_CHAN_WIDTH_20_NOHT: ch_inf.bw = BRCMU_CHAN_BW_20; WARN_ON(primary_offset != 0); break; case NL80211_CHAN_WIDTH_40: ch_inf.bw = BRCMU_CHAN_BW_40; if (primary_offset < 0) ch_inf.sb = BRCMU_CHAN_SB_U; else ch_inf.sb = BRCMU_CHAN_SB_L; break; case NL80211_CHAN_WIDTH_80: ch_inf.bw = BRCMU_CHAN_BW_80; if (primary_offset < 0) { if (primary_offset < -CH_10MHZ_APART) ch_inf.sb = BRCMU_CHAN_SB_UU; else ch_inf.sb = BRCMU_CHAN_SB_UL; } else { if (primary_offset > CH_10MHZ_APART) ch_inf.sb = BRCMU_CHAN_SB_LL; else ch_inf.sb = BRCMU_CHAN_SB_LU; } break; case NL80211_CHAN_WIDTH_80P80: case NL80211_CHAN_WIDTH_160: case NL80211_CHAN_WIDTH_5: case NL80211_CHAN_WIDTH_10: default: WARN_ON_ONCE(1); } switch (ch->chan->band) { case IEEE80211_BAND_2GHZ: ch_inf.band = BRCMU_CHAN_BAND_2G; break; case IEEE80211_BAND_5GHZ: ch_inf.band = BRCMU_CHAN_BAND_5G; break; case IEEE80211_BAND_60GHZ: default: WARN_ON_ONCE(1); } d11inf->encchspec(&ch_inf); return ch_inf.chspec; } u16 channel_to_chanspec(struct brcmu_d11inf *d11inf, struct ieee80211_channel *ch) { struct brcmu_chan ch_inf; ch_inf.chnum = ieee80211_frequency_to_channel(ch->center_freq); ch_inf.bw = BRCMU_CHAN_BW_20; d11inf->encchspec(&ch_inf); return ch_inf.chspec; } /* Traverse a string of 1-byte tag/1-byte length/variable-length value * triples, returning a pointer to the substring whose first element * matches tag */ const struct brcmf_tlv * brcmf_parse_tlvs(const void *buf, int buflen, uint key) { const struct brcmf_tlv *elt = buf; int totlen = buflen; /* find tagged parameter */ while (totlen >= TLV_HDR_LEN) { int len = elt->len; /* validate remaining totlen */ if ((elt->id == key) && (totlen >= (len + TLV_HDR_LEN))) return elt; elt = (struct brcmf_tlv *)((u8 *)elt + (len + TLV_HDR_LEN)); totlen -= (len + TLV_HDR_LEN); } return NULL; } /* Is any of the tlvs the expected entry? If * not update the tlvs buffer pointer/length. */ static bool brcmf_tlv_has_ie(const u8 *ie, const u8 **tlvs, u32 *tlvs_len, const u8 *oui, u32 oui_len, u8 type) { /* If the contents match the OUI and the type */ if (ie[TLV_LEN_OFF] >= oui_len + 1 && !memcmp(&ie[TLV_BODY_OFF], oui, oui_len) && type == ie[TLV_BODY_OFF + oui_len]) { return true; } if (tlvs == NULL) return false; /* point to the next ie */ ie += ie[TLV_LEN_OFF] + TLV_HDR_LEN; /* calculate the length of the rest of the buffer */ *tlvs_len -= (int)(ie - *tlvs); /* update the pointer to the start of the buffer */ *tlvs = ie; return false; } static struct brcmf_vs_tlv * brcmf_find_wpaie(const u8 *parse, u32 len) { const struct brcmf_tlv *ie; while ((ie = brcmf_parse_tlvs(parse, len, WLAN_EID_VENDOR_SPECIFIC))) { if (brcmf_tlv_has_ie((const u8 *)ie, &parse, &len, WPA_OUI, TLV_OUI_LEN, WPA_OUI_TYPE)) return (struct brcmf_vs_tlv *)ie; } return NULL; } static struct brcmf_vs_tlv * brcmf_find_wpsie(const u8 *parse, u32 len) { const struct brcmf_tlv *ie; while ((ie = brcmf_parse_tlvs(parse, len, WLAN_EID_VENDOR_SPECIFIC))) { if (brcmf_tlv_has_ie((u8 *)ie, &parse, &len, WPA_OUI, TLV_OUI_LEN, WPS_OUI_TYPE)) return (struct brcmf_vs_tlv *)ie; } return NULL; } static int brcmf_vif_change_validate(struct brcmf_cfg80211_info *cfg, struct brcmf_cfg80211_vif *vif, enum nl80211_iftype new_type) { int iftype_num[NUM_NL80211_IFTYPES]; struct brcmf_cfg80211_vif *pos; memset(&iftype_num[0], 0, sizeof(iftype_num)); list_for_each_entry(pos, &cfg->vif_list, list) if (pos == vif) iftype_num[new_type]++; else iftype_num[pos->wdev.iftype]++; return cfg80211_check_combinations(cfg->wiphy, 1, 0, iftype_num); } static int brcmf_vif_add_validate(struct brcmf_cfg80211_info *cfg, enum nl80211_iftype new_type) { int iftype_num[NUM_NL80211_IFTYPES]; struct brcmf_cfg80211_vif *pos; memset(&iftype_num[0], 0, sizeof(iftype_num)); list_for_each_entry(pos, &cfg->vif_list, list) iftype_num[pos->wdev.iftype]++; iftype_num[new_type]++; return cfg80211_check_combinations(cfg->wiphy, 1, 0, iftype_num); } static void convert_key_from_CPU(struct brcmf_wsec_key *key, struct brcmf_wsec_key_le *key_le) { key_le->index = cpu_to_le32(key->index); key_le->len = cpu_to_le32(key->len); key_le->algo = cpu_to_le32(key->algo); key_le->flags = cpu_to_le32(key->flags); key_le->rxiv.hi = cpu_to_le32(key->rxiv.hi); key_le->rxiv.lo = cpu_to_le16(key->rxiv.lo); key_le->iv_initialized = cpu_to_le32(key->iv_initialized); memcpy(key_le->data, key->data, sizeof(key->data)); memcpy(key_le->ea, key->ea, sizeof(key->ea)); } static int send_key_to_dongle(struct brcmf_if *ifp, struct brcmf_wsec_key *key) { int err; struct brcmf_wsec_key_le key_le; convert_key_from_CPU(key, &key_le); brcmf_netdev_wait_pend8021x(ifp); err = brcmf_fil_bsscfg_data_set(ifp, "wsec_key", &key_le, sizeof(key_le)); if (err) brcmf_err("wsec_key error (%d)\n", err); return err; } static s32 brcmf_configure_arp_offload(struct brcmf_if *ifp, bool enable) { s32 err; u32 mode; if (enable) mode = BRCMF_ARP_OL_AGENT | BRCMF_ARP_OL_PEER_AUTO_REPLY; else mode = 0; /* Try to set and enable ARP offload feature, this may fail, then it */ /* is simply not supported and err 0 will be returned */ err = brcmf_fil_iovar_int_set(ifp, "arp_ol", mode); if (err) { brcmf_dbg(TRACE, "failed to set ARP offload mode to 0x%x, err = %d\n", mode, err); err = 0; } else { err = brcmf_fil_iovar_int_set(ifp, "arpoe", enable); if (err) { brcmf_dbg(TRACE, "failed to configure (%d) ARP offload err = %d\n", enable, err); err = 0; } else brcmf_dbg(TRACE, "successfully configured (%d) ARP offload to 0x%x\n", enable, mode); } return err; } static void brcmf_cfg80211_update_proto_addr_mode(struct wireless_dev *wdev) { struct brcmf_cfg80211_vif *vif; struct brcmf_if *ifp; vif = container_of(wdev, struct brcmf_cfg80211_vif, wdev); ifp = vif->ifp; if ((wdev->iftype == NL80211_IFTYPE_ADHOC) || (wdev->iftype == NL80211_IFTYPE_AP) || (wdev->iftype == NL80211_IFTYPE_P2P_GO)) brcmf_proto_configure_addr_mode(ifp->drvr, ifp->ifidx, ADDR_DIRECT); else brcmf_proto_configure_addr_mode(ifp->drvr, ifp->ifidx, ADDR_INDIRECT); } static int brcmf_cfg80211_request_ap_if(struct brcmf_if *ifp) { struct brcmf_mbss_ssid_le mbss_ssid_le; int bsscfgidx; int err; memset(&mbss_ssid_le, 0, sizeof(mbss_ssid_le)); bsscfgidx = brcmf_get_next_free_bsscfgidx(ifp->drvr); if (bsscfgidx < 0) return bsscfgidx; mbss_ssid_le.bsscfgidx = cpu_to_le32(bsscfgidx); mbss_ssid_le.SSID_len = cpu_to_le32(5); sprintf(mbss_ssid_le.SSID, "ssid%d" , bsscfgidx); err = brcmf_fil_bsscfg_data_set(ifp, "bsscfg:ssid", &mbss_ssid_le, sizeof(mbss_ssid_le)); if (err < 0) brcmf_err("setting ssid failed %d\n", err); return err; } /** * brcmf_ap_add_vif() - create a new AP virtual interface for multiple BSS * * @wiphy: wiphy device of new interface. * @name: name of the new interface. * @flags: not used. * @params: contains mac address for AP device. */ static struct wireless_dev *brcmf_ap_add_vif(struct wiphy *wiphy, const char *name, u32 *flags, struct vif_params *params) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_if *ifp = netdev_priv(cfg_to_ndev(cfg)); struct brcmf_cfg80211_vif *vif; int err; if (brcmf_cfg80211_vif_event_armed(cfg)) return ERR_PTR(-EBUSY); brcmf_dbg(INFO, "Adding vif \"%s\"\n", name); vif = brcmf_alloc_vif(cfg, NL80211_IFTYPE_AP, false); if (IS_ERR(vif)) return (struct wireless_dev *)vif; brcmf_cfg80211_arm_vif_event(cfg, vif); err = brcmf_cfg80211_request_ap_if(ifp); if (err) { brcmf_cfg80211_arm_vif_event(cfg, NULL); goto fail; } /* wait for firmware event */ err = brcmf_cfg80211_wait_vif_event_timeout(cfg, BRCMF_E_IF_ADD, msecs_to_jiffies(1500)); brcmf_cfg80211_arm_vif_event(cfg, NULL); if (!err) { brcmf_err("timeout occurred\n"); err = -EIO; goto fail; } /* interface created in firmware */ ifp = vif->ifp; if (!ifp) { brcmf_err("no if pointer provided\n"); err = -ENOENT; goto fail; } strncpy(ifp->ndev->name, name, sizeof(ifp->ndev->name) - 1); err = brcmf_net_attach(ifp, true); if (err) { brcmf_err("Registering netdevice failed\n"); goto fail; } return &ifp->vif->wdev; fail: brcmf_free_vif(vif); return ERR_PTR(err); } static bool brcmf_is_apmode(struct brcmf_cfg80211_vif *vif) { enum nl80211_iftype iftype; iftype = vif->wdev.iftype; return iftype == NL80211_IFTYPE_AP || iftype == NL80211_IFTYPE_P2P_GO; } static bool brcmf_is_ibssmode(struct brcmf_cfg80211_vif *vif) { return vif->wdev.iftype == NL80211_IFTYPE_ADHOC; } static struct wireless_dev *brcmf_cfg80211_add_iface(struct wiphy *wiphy, const char *name, unsigned char name_assign_type, enum nl80211_iftype type, u32 *flags, struct vif_params *params) { struct wireless_dev *wdev; int err; brcmf_dbg(TRACE, "enter: %s type %d\n", name, type); err = brcmf_vif_add_validate(wiphy_to_cfg(wiphy), type); if (err) { brcmf_err("iface validation failed: err=%d\n", err); return ERR_PTR(err); } switch (type) { case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_WDS: case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_MESH_POINT: return ERR_PTR(-EOPNOTSUPP); case NL80211_IFTYPE_AP: wdev = brcmf_ap_add_vif(wiphy, name, flags, params); if (!IS_ERR(wdev)) brcmf_cfg80211_update_proto_addr_mode(wdev); return wdev; case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_P2P_GO: case NL80211_IFTYPE_P2P_DEVICE: wdev = brcmf_p2p_add_vif(wiphy, name, name_assign_type, type, flags, params); if (!IS_ERR(wdev)) brcmf_cfg80211_update_proto_addr_mode(wdev); return wdev; case NL80211_IFTYPE_UNSPECIFIED: default: return ERR_PTR(-EINVAL); } } static void brcmf_scan_config_mpc(struct brcmf_if *ifp, int mpc) { if (brcmf_feat_is_quirk_enabled(ifp, BRCMF_FEAT_QUIRK_NEED_MPC)) brcmf_set_mpc(ifp, mpc); } void brcmf_set_mpc(struct brcmf_if *ifp, int mpc) { s32 err = 0; if (check_vif_up(ifp->vif)) { err = brcmf_fil_iovar_int_set(ifp, "mpc", mpc); if (err) { brcmf_err("fail to set mpc\n"); return; } brcmf_dbg(INFO, "MPC : %d\n", mpc); } } s32 brcmf_notify_escan_complete(struct brcmf_cfg80211_info *cfg, struct brcmf_if *ifp, bool aborted, bool fw_abort) { struct brcmf_scan_params_le params_le; struct cfg80211_scan_request *scan_request; s32 err = 0; brcmf_dbg(SCAN, "Enter\n"); /* clear scan request, because the FW abort can cause a second call */ /* to this functon and might cause a double cfg80211_scan_done */ scan_request = cfg->scan_request; cfg->scan_request = NULL; if (timer_pending(&cfg->escan_timeout)) del_timer_sync(&cfg->escan_timeout); if (fw_abort) { /* Do a scan abort to stop the driver's scan engine */ brcmf_dbg(SCAN, "ABORT scan in firmware\n"); memset(¶ms_le, 0, sizeof(params_le)); eth_broadcast_addr(params_le.bssid); params_le.bss_type = DOT11_BSSTYPE_ANY; params_le.scan_type = 0; params_le.channel_num = cpu_to_le32(1); params_le.nprobes = cpu_to_le32(1); params_le.active_time = cpu_to_le32(-1); params_le.passive_time = cpu_to_le32(-1); params_le.home_time = cpu_to_le32(-1); /* Scan is aborted by setting channel_list[0] to -1 */ params_le.channel_list[0] = cpu_to_le16(-1); /* E-Scan (or anyother type) can be aborted by SCAN */ err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SCAN, ¶ms_le, sizeof(params_le)); if (err) brcmf_err("Scan abort failed\n"); } brcmf_scan_config_mpc(ifp, 1); /* * e-scan can be initiated by scheduled scan * which takes precedence. */ if (cfg->sched_escan) { brcmf_dbg(SCAN, "scheduled scan completed\n"); cfg->sched_escan = false; if (!aborted) cfg80211_sched_scan_results(cfg_to_wiphy(cfg)); } else if (scan_request) { brcmf_dbg(SCAN, "ESCAN Completed scan: %s\n", aborted ? "Aborted" : "Done"); cfg80211_scan_done(scan_request, aborted); } if (!test_and_clear_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status)) brcmf_dbg(SCAN, "Scan complete, probably P2P scan\n"); return err; } static int brcmf_cfg80211_del_iface(struct wiphy *wiphy, struct wireless_dev *wdev) { struct brcmf_cfg80211_info *cfg = wiphy_priv(wiphy); struct net_device *ndev = wdev->netdev; /* vif event pending in firmware */ if (brcmf_cfg80211_vif_event_armed(cfg)) return -EBUSY; if (ndev) { if (test_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status) && cfg->escan_info.ifp == netdev_priv(ndev)) brcmf_notify_escan_complete(cfg, netdev_priv(ndev), true, true); brcmf_fil_iovar_int_set(netdev_priv(ndev), "mpc", 1); } switch (wdev->iftype) { case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_WDS: case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_MESH_POINT: return -EOPNOTSUPP; case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_P2P_GO: case NL80211_IFTYPE_P2P_DEVICE: return brcmf_p2p_del_vif(wiphy, wdev); case NL80211_IFTYPE_UNSPECIFIED: default: return -EINVAL; } return -EOPNOTSUPP; } static s32 brcmf_cfg80211_change_iface(struct wiphy *wiphy, struct net_device *ndev, enum nl80211_iftype type, u32 *flags, struct vif_params *params) { struct brcmf_cfg80211_info *cfg = wiphy_priv(wiphy); struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_cfg80211_vif *vif = ifp->vif; s32 infra = 0; s32 ap = 0; s32 err = 0; brcmf_dbg(TRACE, "Enter, idx=%d, type=%d\n", ifp->bssidx, type); /* WAR: There are a number of p2p interface related problems which * need to be handled initially (before doing the validate). * wpa_supplicant tends to do iface changes on p2p device/client/go * which are not always possible/allowed. However we need to return * OK otherwise the wpa_supplicant wont start. The situation differs * on configuration and setup (p2pon=1 module param). The first check * is to see if the request is a change to station for p2p iface. */ if ((type == NL80211_IFTYPE_STATION) && ((vif->wdev.iftype == NL80211_IFTYPE_P2P_CLIENT) || (vif->wdev.iftype == NL80211_IFTYPE_P2P_GO) || (vif->wdev.iftype == NL80211_IFTYPE_P2P_DEVICE))) { brcmf_dbg(TRACE, "Ignoring cmd for p2p if\n"); /* Now depending on whether module param p2pon=1 was used the * response needs to be either 0 or EOPNOTSUPP. The reason is * that if p2pon=1 is used, but a newer supplicant is used then * we should return an error, as this combination wont work. * In other situations 0 is returned and supplicant will start * normally. It will give a trace in cfg80211, but it is the * only way to get it working. Unfortunately this will result * in situation where we wont support new supplicant in * combination with module param p2pon=1, but that is the way * it is. If the user tries this then unloading of driver might * fail/lock. */ if (cfg->p2p.p2pdev_dynamically) return -EOPNOTSUPP; else return 0; } err = brcmf_vif_change_validate(wiphy_to_cfg(wiphy), vif, type); if (err) { brcmf_err("iface validation failed: err=%d\n", err); return err; } switch (type) { case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_WDS: brcmf_err("type (%d) : currently we do not support this type\n", type); return -EOPNOTSUPP; case NL80211_IFTYPE_ADHOC: infra = 0; break; case NL80211_IFTYPE_STATION: infra = 1; break; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: ap = 1; break; default: err = -EINVAL; goto done; } if (ap) { if (type == NL80211_IFTYPE_P2P_GO) { brcmf_dbg(INFO, "IF Type = P2P GO\n"); err = brcmf_p2p_ifchange(cfg, BRCMF_FIL_P2P_IF_GO); } if (!err) { brcmf_dbg(INFO, "IF Type = AP\n"); } } else { err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_INFRA, infra); if (err) { brcmf_err("WLC_SET_INFRA error (%d)\n", err); err = -EAGAIN; goto done; } brcmf_dbg(INFO, "IF Type = %s\n", brcmf_is_ibssmode(vif) ? "Adhoc" : "Infra"); } ndev->ieee80211_ptr->iftype = type; brcmf_cfg80211_update_proto_addr_mode(&vif->wdev); done: brcmf_dbg(TRACE, "Exit\n"); return err; } static void brcmf_escan_prep(struct brcmf_cfg80211_info *cfg, struct brcmf_scan_params_le *params_le, struct cfg80211_scan_request *request) { u32 n_ssids; u32 n_channels; s32 i; s32 offset; u16 chanspec; char *ptr; struct brcmf_ssid_le ssid_le; eth_broadcast_addr(params_le->bssid); params_le->bss_type = DOT11_BSSTYPE_ANY; params_le->scan_type = 0; params_le->channel_num = 0; params_le->nprobes = cpu_to_le32(-1); params_le->active_time = cpu_to_le32(-1); params_le->passive_time = cpu_to_le32(-1); params_le->home_time = cpu_to_le32(-1); memset(¶ms_le->ssid_le, 0, sizeof(params_le->ssid_le)); /* if request is null exit so it will be all channel broadcast scan */ if (!request) return; n_ssids = request->n_ssids; n_channels = request->n_channels; /* Copy channel array if applicable */ brcmf_dbg(SCAN, "### List of channelspecs to scan ### %d\n", n_channels); if (n_channels > 0) { for (i = 0; i < n_channels; i++) { chanspec = channel_to_chanspec(&cfg->d11inf, request->channels[i]); brcmf_dbg(SCAN, "Chan : %d, Channel spec: %x\n", request->channels[i]->hw_value, chanspec); params_le->channel_list[i] = cpu_to_le16(chanspec); } } else { brcmf_dbg(SCAN, "Scanning all channels\n"); } /* Copy ssid array if applicable */ brcmf_dbg(SCAN, "### List of SSIDs to scan ### %d\n", n_ssids); if (n_ssids > 0) { offset = offsetof(struct brcmf_scan_params_le, channel_list) + n_channels * sizeof(u16); offset = roundup(offset, sizeof(u32)); ptr = (char *)params_le + offset; for (i = 0; i < n_ssids; i++) { memset(&ssid_le, 0, sizeof(ssid_le)); ssid_le.SSID_len = cpu_to_le32(request->ssids[i].ssid_len); memcpy(ssid_le.SSID, request->ssids[i].ssid, request->ssids[i].ssid_len); if (!ssid_le.SSID_len) brcmf_dbg(SCAN, "%d: Broadcast scan\n", i); else brcmf_dbg(SCAN, "%d: scan for %s size =%d\n", i, ssid_le.SSID, ssid_le.SSID_len); memcpy(ptr, &ssid_le, sizeof(ssid_le)); ptr += sizeof(ssid_le); } } else { brcmf_dbg(SCAN, "Broadcast scan %p\n", request->ssids); if ((request->ssids) && request->ssids->ssid_len) { brcmf_dbg(SCAN, "SSID %s len=%d\n", params_le->ssid_le.SSID, request->ssids->ssid_len); params_le->ssid_le.SSID_len = cpu_to_le32(request->ssids->ssid_len); memcpy(¶ms_le->ssid_le.SSID, request->ssids->ssid, request->ssids->ssid_len); } } /* Adding mask to channel numbers */ params_le->channel_num = cpu_to_le32((n_ssids << BRCMF_SCAN_PARAMS_NSSID_SHIFT) | (n_channels & BRCMF_SCAN_PARAMS_COUNT_MASK)); } static s32 brcmf_run_escan(struct brcmf_cfg80211_info *cfg, struct brcmf_if *ifp, struct cfg80211_scan_request *request, u16 action) { s32 params_size = BRCMF_SCAN_PARAMS_FIXED_SIZE + offsetof(struct brcmf_escan_params_le, params_le); struct brcmf_escan_params_le *params; s32 err = 0; brcmf_dbg(SCAN, "E-SCAN START\n"); if (request != NULL) { /* Allocate space for populating ssids in struct */ params_size += sizeof(u32) * ((request->n_channels + 1) / 2); /* Allocate space for populating ssids in struct */ params_size += sizeof(struct brcmf_ssid) * request->n_ssids; } params = kzalloc(params_size, GFP_KERNEL); if (!params) { err = -ENOMEM; goto exit; } BUG_ON(params_size + sizeof("escan") >= BRCMF_DCMD_MEDLEN); brcmf_escan_prep(cfg, ¶ms->params_le, request); params->version = cpu_to_le32(BRCMF_ESCAN_REQ_VERSION); params->action = cpu_to_le16(action); params->sync_id = cpu_to_le16(0x1234); err = brcmf_fil_iovar_data_set(ifp, "escan", params, params_size); if (err) { if (err == -EBUSY) brcmf_dbg(INFO, "system busy : escan canceled\n"); else brcmf_err("error (%d)\n", err); } kfree(params); exit: return err; } static s32 brcmf_do_escan(struct brcmf_cfg80211_info *cfg, struct wiphy *wiphy, struct brcmf_if *ifp, struct cfg80211_scan_request *request) { s32 err; u32 passive_scan; struct brcmf_scan_results *results; struct escan_info *escan = &cfg->escan_info; brcmf_dbg(SCAN, "Enter\n"); escan->ifp = ifp; escan->wiphy = wiphy; escan->escan_state = WL_ESCAN_STATE_SCANNING; passive_scan = cfg->active_scan ? 0 : 1; err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_PASSIVE_SCAN, passive_scan); if (err) { brcmf_err("error (%d)\n", err); return err; } brcmf_scan_config_mpc(ifp, 0); results = (struct brcmf_scan_results *)cfg->escan_info.escan_buf; results->version = 0; results->count = 0; results->buflen = WL_ESCAN_RESULTS_FIXED_SIZE; err = escan->run(cfg, ifp, request, WL_ESCAN_ACTION_START); if (err) brcmf_scan_config_mpc(ifp, 1); return err; } static s32 brcmf_cfg80211_escan(struct wiphy *wiphy, struct brcmf_cfg80211_vif *vif, struct cfg80211_scan_request *request, struct cfg80211_ssid *this_ssid) { struct brcmf_if *ifp = vif->ifp; struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct cfg80211_ssid *ssids; struct brcmf_cfg80211_scan_req *sr = &cfg->scan_req_int; u32 passive_scan; bool escan_req; bool spec_scan; s32 err; u32 SSID_len; brcmf_dbg(SCAN, "START ESCAN\n"); if (test_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status)) { brcmf_err("Scanning already: status (%lu)\n", cfg->scan_status); return -EAGAIN; } if (test_bit(BRCMF_SCAN_STATUS_ABORT, &cfg->scan_status)) { brcmf_err("Scanning being aborted: status (%lu)\n", cfg->scan_status); return -EAGAIN; } if (test_bit(BRCMF_SCAN_STATUS_SUPPRESS, &cfg->scan_status)) { brcmf_err("Scanning suppressed: status (%lu)\n", cfg->scan_status); return -EAGAIN; } if (test_bit(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state)) { brcmf_err("Connecting: status (%lu)\n", ifp->vif->sme_state); return -EAGAIN; } /* If scan req comes for p2p0, send it over primary I/F */ if (vif == cfg->p2p.bss_idx[P2PAPI_BSSCFG_DEVICE].vif) vif = cfg->p2p.bss_idx[P2PAPI_BSSCFG_PRIMARY].vif; escan_req = false; if (request) { /* scan bss */ ssids = request->ssids; escan_req = true; } else { /* scan in ibss */ /* we don't do escan in ibss */ ssids = this_ssid; } cfg->scan_request = request; set_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status); if (escan_req) { cfg->escan_info.run = brcmf_run_escan; err = brcmf_p2p_scan_prep(wiphy, request, vif); if (err) goto scan_out; err = brcmf_do_escan(cfg, wiphy, vif->ifp, request); if (err) goto scan_out; } else { brcmf_dbg(SCAN, "ssid \"%s\", ssid_len (%d)\n", ssids->ssid, ssids->ssid_len); memset(&sr->ssid_le, 0, sizeof(sr->ssid_le)); SSID_len = min_t(u8, sizeof(sr->ssid_le.SSID), ssids->ssid_len); sr->ssid_le.SSID_len = cpu_to_le32(0); spec_scan = false; if (SSID_len) { memcpy(sr->ssid_le.SSID, ssids->ssid, SSID_len); sr->ssid_le.SSID_len = cpu_to_le32(SSID_len); spec_scan = true; } else brcmf_dbg(SCAN, "Broadcast scan\n"); passive_scan = cfg->active_scan ? 0 : 1; err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_PASSIVE_SCAN, passive_scan); if (err) { brcmf_err("WLC_SET_PASSIVE_SCAN error (%d)\n", err); goto scan_out; } brcmf_scan_config_mpc(ifp, 0); err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SCAN, &sr->ssid_le, sizeof(sr->ssid_le)); if (err) { if (err == -EBUSY) brcmf_dbg(INFO, "BUSY: scan for \"%s\" canceled\n", sr->ssid_le.SSID); else brcmf_err("WLC_SCAN error (%d)\n", err); brcmf_scan_config_mpc(ifp, 1); goto scan_out; } } /* Arm scan timeout timer */ mod_timer(&cfg->escan_timeout, jiffies + WL_ESCAN_TIMER_INTERVAL_MS * HZ / 1000); return 0; scan_out: clear_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status); cfg->scan_request = NULL; return err; } static s32 brcmf_cfg80211_scan(struct wiphy *wiphy, struct cfg80211_scan_request *request) { struct brcmf_cfg80211_vif *vif; s32 err = 0; brcmf_dbg(TRACE, "Enter\n"); vif = container_of(request->wdev, struct brcmf_cfg80211_vif, wdev); if (!check_vif_up(vif)) return -EIO; err = brcmf_cfg80211_escan(wiphy, vif, request, NULL); if (err) brcmf_err("scan error (%d)\n", err); brcmf_dbg(TRACE, "Exit\n"); return err; } static s32 brcmf_set_rts(struct net_device *ndev, u32 rts_threshold) { s32 err = 0; err = brcmf_fil_iovar_int_set(netdev_priv(ndev), "rtsthresh", rts_threshold); if (err) brcmf_err("Error (%d)\n", err); return err; } static s32 brcmf_set_frag(struct net_device *ndev, u32 frag_threshold) { s32 err = 0; err = brcmf_fil_iovar_int_set(netdev_priv(ndev), "fragthresh", frag_threshold); if (err) brcmf_err("Error (%d)\n", err); return err; } static s32 brcmf_set_retry(struct net_device *ndev, u32 retry, bool l) { s32 err = 0; u32 cmd = (l ? BRCMF_C_SET_LRL : BRCMF_C_SET_SRL); err = brcmf_fil_cmd_int_set(netdev_priv(ndev), cmd, retry); if (err) { brcmf_err("cmd (%d) , error (%d)\n", cmd, err); return err; } return err; } static s32 brcmf_cfg80211_set_wiphy_params(struct wiphy *wiphy, u32 changed) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct net_device *ndev = cfg_to_ndev(cfg); struct brcmf_if *ifp = netdev_priv(ndev); s32 err = 0; brcmf_dbg(TRACE, "Enter\n"); if (!check_vif_up(ifp->vif)) return -EIO; if (changed & WIPHY_PARAM_RTS_THRESHOLD && (cfg->conf->rts_threshold != wiphy->rts_threshold)) { cfg->conf->rts_threshold = wiphy->rts_threshold; err = brcmf_set_rts(ndev, cfg->conf->rts_threshold); if (!err) goto done; } if (changed & WIPHY_PARAM_FRAG_THRESHOLD && (cfg->conf->frag_threshold != wiphy->frag_threshold)) { cfg->conf->frag_threshold = wiphy->frag_threshold; err = brcmf_set_frag(ndev, cfg->conf->frag_threshold); if (!err) goto done; } if (changed & WIPHY_PARAM_RETRY_LONG && (cfg->conf->retry_long != wiphy->retry_long)) { cfg->conf->retry_long = wiphy->retry_long; err = brcmf_set_retry(ndev, cfg->conf->retry_long, true); if (!err) goto done; } if (changed & WIPHY_PARAM_RETRY_SHORT && (cfg->conf->retry_short != wiphy->retry_short)) { cfg->conf->retry_short = wiphy->retry_short; err = brcmf_set_retry(ndev, cfg->conf->retry_short, false); if (!err) goto done; } done: brcmf_dbg(TRACE, "Exit\n"); return err; } static void brcmf_init_prof(struct brcmf_cfg80211_profile *prof) { memset(prof, 0, sizeof(*prof)); } static u16 brcmf_map_fw_linkdown_reason(const struct brcmf_event_msg *e) { u16 reason; switch (e->event_code) { case BRCMF_E_DEAUTH: case BRCMF_E_DEAUTH_IND: case BRCMF_E_DISASSOC_IND: reason = e->reason; break; case BRCMF_E_LINK: default: reason = 0; break; } return reason; } static void brcmf_link_down(struct brcmf_cfg80211_vif *vif, u16 reason) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(vif->wdev.wiphy); s32 err = 0; brcmf_dbg(TRACE, "Enter\n"); if (test_bit(BRCMF_VIF_STATUS_CONNECTED, &vif->sme_state)) { brcmf_dbg(INFO, "Call WLC_DISASSOC to stop excess roaming\n "); err = brcmf_fil_cmd_data_set(vif->ifp, BRCMF_C_DISASSOC, NULL, 0); if (err) { brcmf_err("WLC_DISASSOC failed (%d)\n", err); } clear_bit(BRCMF_VIF_STATUS_CONNECTED, &vif->sme_state); cfg80211_disconnected(vif->wdev.netdev, reason, NULL, 0, true, GFP_KERNEL); } clear_bit(BRCMF_VIF_STATUS_CONNECTING, &vif->sme_state); clear_bit(BRCMF_SCAN_STATUS_SUPPRESS, &cfg->scan_status); brcmf_btcoex_set_mode(vif, BRCMF_BTCOEX_ENABLED, 0); brcmf_dbg(TRACE, "Exit\n"); } static s32 brcmf_cfg80211_join_ibss(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_ibss_params *params) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_cfg80211_profile *profile = &ifp->vif->profile; struct brcmf_join_params join_params; size_t join_params_size = 0; s32 err = 0; s32 wsec = 0; s32 bcnprd; u16 chanspec; brcmf_dbg(TRACE, "Enter\n"); if (!check_vif_up(ifp->vif)) return -EIO; if (params->ssid) brcmf_dbg(CONN, "SSID: %s\n", params->ssid); else { brcmf_dbg(CONN, "SSID: NULL, Not supported\n"); return -EOPNOTSUPP; } set_bit(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state); if (params->bssid) brcmf_dbg(CONN, "BSSID: %pM\n", params->bssid); else brcmf_dbg(CONN, "No BSSID specified\n"); if (params->chandef.chan) brcmf_dbg(CONN, "channel: %d\n", params->chandef.chan->center_freq); else brcmf_dbg(CONN, "no channel specified\n"); if (params->channel_fixed) brcmf_dbg(CONN, "fixed channel required\n"); else brcmf_dbg(CONN, "no fixed channel required\n"); if (params->ie && params->ie_len) brcmf_dbg(CONN, "ie len: %d\n", params->ie_len); else brcmf_dbg(CONN, "no ie specified\n"); if (params->beacon_interval) brcmf_dbg(CONN, "beacon interval: %d\n", params->beacon_interval); else brcmf_dbg(CONN, "no beacon interval specified\n"); if (params->basic_rates) brcmf_dbg(CONN, "basic rates: %08X\n", params->basic_rates); else brcmf_dbg(CONN, "no basic rates specified\n"); if (params->privacy) brcmf_dbg(CONN, "privacy required\n"); else brcmf_dbg(CONN, "no privacy required\n"); /* Configure Privacy for starter */ if (params->privacy) wsec |= WEP_ENABLED; err = brcmf_fil_iovar_int_set(ifp, "wsec", wsec); if (err) { brcmf_err("wsec failed (%d)\n", err); goto done; } /* Configure Beacon Interval for starter */ if (params->beacon_interval) bcnprd = params->beacon_interval; else bcnprd = 100; err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_BCNPRD, bcnprd); if (err) { brcmf_err("WLC_SET_BCNPRD failed (%d)\n", err); goto done; } /* Configure required join parameter */ memset(&join_params, 0, sizeof(struct brcmf_join_params)); /* SSID */ profile->ssid.SSID_len = min_t(u32, params->ssid_len, 32); memcpy(profile->ssid.SSID, params->ssid, profile->ssid.SSID_len); memcpy(join_params.ssid_le.SSID, params->ssid, profile->ssid.SSID_len); join_params.ssid_le.SSID_len = cpu_to_le32(profile->ssid.SSID_len); join_params_size = sizeof(join_params.ssid_le); /* BSSID */ if (params->bssid) { memcpy(join_params.params_le.bssid, params->bssid, ETH_ALEN); join_params_size = sizeof(join_params.ssid_le) + BRCMF_ASSOC_PARAMS_FIXED_SIZE; memcpy(profile->bssid, params->bssid, ETH_ALEN); } else { eth_broadcast_addr(join_params.params_le.bssid); eth_zero_addr(profile->bssid); } /* Channel */ if (params->chandef.chan) { u32 target_channel; cfg->channel = ieee80211_frequency_to_channel( params->chandef.chan->center_freq); if (params->channel_fixed) { /* adding chanspec */ chanspec = chandef_to_chanspec(&cfg->d11inf, ¶ms->chandef); join_params.params_le.chanspec_list[0] = cpu_to_le16(chanspec); join_params.params_le.chanspec_num = cpu_to_le32(1); join_params_size += sizeof(join_params.params_le); } /* set channel for starter */ target_channel = cfg->channel; err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_CHANNEL, target_channel); if (err) { brcmf_err("WLC_SET_CHANNEL failed (%d)\n", err); goto done; } } else cfg->channel = 0; cfg->ibss_starter = false; err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_SSID, &join_params, join_params_size); if (err) { brcmf_err("WLC_SET_SSID failed (%d)\n", err); goto done; } done: if (err) clear_bit(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state); brcmf_dbg(TRACE, "Exit\n"); return err; } static s32 brcmf_cfg80211_leave_ibss(struct wiphy *wiphy, struct net_device *ndev) { struct brcmf_if *ifp = netdev_priv(ndev); brcmf_dbg(TRACE, "Enter\n"); if (!check_vif_up(ifp->vif)) return -EIO; brcmf_link_down(ifp->vif, WLAN_REASON_DEAUTH_LEAVING); brcmf_dbg(TRACE, "Exit\n"); return 0; } static s32 brcmf_set_wpa_version(struct net_device *ndev, struct cfg80211_connect_params *sme) { struct brcmf_cfg80211_profile *profile = ndev_to_prof(ndev); struct brcmf_cfg80211_security *sec; s32 val = 0; s32 err = 0; if (sme->crypto.wpa_versions & NL80211_WPA_VERSION_1) val = WPA_AUTH_PSK | WPA_AUTH_UNSPECIFIED; else if (sme->crypto.wpa_versions & NL80211_WPA_VERSION_2) val = WPA2_AUTH_PSK | WPA2_AUTH_UNSPECIFIED; else val = WPA_AUTH_DISABLED; brcmf_dbg(CONN, "setting wpa_auth to 0x%0x\n", val); err = brcmf_fil_bsscfg_int_set(netdev_priv(ndev), "wpa_auth", val); if (err) { brcmf_err("set wpa_auth failed (%d)\n", err); return err; } sec = &profile->sec; sec->wpa_versions = sme->crypto.wpa_versions; return err; } static s32 brcmf_set_auth_type(struct net_device *ndev, struct cfg80211_connect_params *sme) { struct brcmf_cfg80211_profile *profile = ndev_to_prof(ndev); struct brcmf_cfg80211_security *sec; s32 val = 0; s32 err = 0; switch (sme->auth_type) { case NL80211_AUTHTYPE_OPEN_SYSTEM: val = 0; brcmf_dbg(CONN, "open system\n"); break; case NL80211_AUTHTYPE_SHARED_KEY: val = 1; brcmf_dbg(CONN, "shared key\n"); break; case NL80211_AUTHTYPE_AUTOMATIC: val = 2; brcmf_dbg(CONN, "automatic\n"); break; case NL80211_AUTHTYPE_NETWORK_EAP: brcmf_dbg(CONN, "network eap\n"); default: val = 2; brcmf_err("invalid auth type (%d)\n", sme->auth_type); break; } err = brcmf_fil_bsscfg_int_set(netdev_priv(ndev), "auth", val); if (err) { brcmf_err("set auth failed (%d)\n", err); return err; } sec = &profile->sec; sec->auth_type = sme->auth_type; return err; } static s32 brcmf_set_wsec_mode(struct net_device *ndev, struct cfg80211_connect_params *sme, bool mfp) { struct brcmf_cfg80211_profile *profile = ndev_to_prof(ndev); struct brcmf_cfg80211_security *sec; s32 pval = 0; s32 gval = 0; s32 wsec; s32 err = 0; if (sme->crypto.n_ciphers_pairwise) { switch (sme->crypto.ciphers_pairwise[0]) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: pval = WEP_ENABLED; break; case WLAN_CIPHER_SUITE_TKIP: pval = TKIP_ENABLED; break; case WLAN_CIPHER_SUITE_CCMP: pval = AES_ENABLED; break; case WLAN_CIPHER_SUITE_AES_CMAC: pval = AES_ENABLED; break; default: brcmf_err("invalid cipher pairwise (%d)\n", sme->crypto.ciphers_pairwise[0]); return -EINVAL; } } if (sme->crypto.cipher_group) { switch (sme->crypto.cipher_group) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: gval = WEP_ENABLED; break; case WLAN_CIPHER_SUITE_TKIP: gval = TKIP_ENABLED; break; case WLAN_CIPHER_SUITE_CCMP: gval = AES_ENABLED; break; case WLAN_CIPHER_SUITE_AES_CMAC: gval = AES_ENABLED; break; default: brcmf_err("invalid cipher group (%d)\n", sme->crypto.cipher_group); return -EINVAL; } } brcmf_dbg(CONN, "pval (%d) gval (%d)\n", pval, gval); /* In case of privacy, but no security and WPS then simulate */ /* setting AES. WPS-2.0 allows no security */ if (brcmf_find_wpsie(sme->ie, sme->ie_len) && !pval && !gval && sme->privacy) pval = AES_ENABLED; if (mfp) wsec = pval | gval | MFP_CAPABLE; else wsec = pval | gval; err = brcmf_fil_bsscfg_int_set(netdev_priv(ndev), "wsec", wsec); if (err) { brcmf_err("error (%d)\n", err); return err; } sec = &profile->sec; sec->cipher_pairwise = sme->crypto.ciphers_pairwise[0]; sec->cipher_group = sme->crypto.cipher_group; return err; } static s32 brcmf_set_key_mgmt(struct net_device *ndev, struct cfg80211_connect_params *sme) { struct brcmf_cfg80211_profile *profile = ndev_to_prof(ndev); struct brcmf_cfg80211_security *sec; s32 val = 0; s32 err = 0; if (sme->crypto.n_akm_suites) { err = brcmf_fil_bsscfg_int_get(netdev_priv(ndev), "wpa_auth", &val); if (err) { brcmf_err("could not get wpa_auth (%d)\n", err); return err; } if (val & (WPA_AUTH_PSK | WPA_AUTH_UNSPECIFIED)) { switch (sme->crypto.akm_suites[0]) { case WLAN_AKM_SUITE_8021X: val = WPA_AUTH_UNSPECIFIED; break; case WLAN_AKM_SUITE_PSK: val = WPA_AUTH_PSK; break; default: brcmf_err("invalid cipher group (%d)\n", sme->crypto.cipher_group); return -EINVAL; } } else if (val & (WPA2_AUTH_PSK | WPA2_AUTH_UNSPECIFIED)) { switch (sme->crypto.akm_suites[0]) { case WLAN_AKM_SUITE_8021X: val = WPA2_AUTH_UNSPECIFIED; break; case WLAN_AKM_SUITE_PSK: val = WPA2_AUTH_PSK; break; default: brcmf_err("invalid cipher group (%d)\n", sme->crypto.cipher_group); return -EINVAL; } } brcmf_dbg(CONN, "setting wpa_auth to %d\n", val); err = brcmf_fil_bsscfg_int_set(netdev_priv(ndev), "wpa_auth", val); if (err) { brcmf_err("could not set wpa_auth (%d)\n", err); return err; } } sec = &profile->sec; sec->wpa_auth = sme->crypto.akm_suites[0]; return err; } static s32 brcmf_set_sharedkey(struct net_device *ndev, struct cfg80211_connect_params *sme) { struct brcmf_cfg80211_profile *profile = ndev_to_prof(ndev); struct brcmf_cfg80211_security *sec; struct brcmf_wsec_key key; s32 val; s32 err = 0; brcmf_dbg(CONN, "key len (%d)\n", sme->key_len); if (sme->key_len == 0) return 0; sec = &profile->sec; brcmf_dbg(CONN, "wpa_versions 0x%x cipher_pairwise 0x%x\n", sec->wpa_versions, sec->cipher_pairwise); if (sec->wpa_versions & (NL80211_WPA_VERSION_1 | NL80211_WPA_VERSION_2)) return 0; if (!(sec->cipher_pairwise & (WLAN_CIPHER_SUITE_WEP40 | WLAN_CIPHER_SUITE_WEP104))) return 0; memset(&key, 0, sizeof(key)); key.len = (u32) sme->key_len; key.index = (u32) sme->key_idx; if (key.len > sizeof(key.data)) { brcmf_err("Too long key length (%u)\n", key.len); return -EINVAL; } memcpy(key.data, sme->key, key.len); key.flags = BRCMF_PRIMARY_KEY; switch (sec->cipher_pairwise) { case WLAN_CIPHER_SUITE_WEP40: key.algo = CRYPTO_ALGO_WEP1; break; case WLAN_CIPHER_SUITE_WEP104: key.algo = CRYPTO_ALGO_WEP128; break; default: brcmf_err("Invalid algorithm (%d)\n", sme->crypto.ciphers_pairwise[0]); return -EINVAL; } /* Set the new key/index */ brcmf_dbg(CONN, "key length (%d) key index (%d) algo (%d)\n", key.len, key.index, key.algo); brcmf_dbg(CONN, "key \"%s\"\n", key.data); err = send_key_to_dongle(netdev_priv(ndev), &key); if (err) return err; if (sec->auth_type == NL80211_AUTHTYPE_SHARED_KEY) { brcmf_dbg(CONN, "set auth_type to shared key\n"); val = WL_AUTH_SHARED_KEY; /* shared key */ err = brcmf_fil_bsscfg_int_set(netdev_priv(ndev), "auth", val); if (err) brcmf_err("set auth failed (%d)\n", err); } return err; } static enum nl80211_auth_type brcmf_war_auth_type(struct brcmf_if *ifp, enum nl80211_auth_type type) { if (type == NL80211_AUTHTYPE_AUTOMATIC && brcmf_feat_is_quirk_enabled(ifp, BRCMF_FEAT_QUIRK_AUTO_AUTH)) { brcmf_dbg(CONN, "WAR: use OPEN instead of AUTO\n"); type = NL80211_AUTHTYPE_OPEN_SYSTEM; } return type; } static s32 brcmf_cfg80211_connect(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_connect_params *sme) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_cfg80211_profile *profile = &ifp->vif->profile; struct ieee80211_channel *chan = sme->channel; struct brcmf_join_params join_params; size_t join_params_size; const struct brcmf_tlv *rsn_ie; const struct brcmf_vs_tlv *wpa_ie; const void *ie; u32 ie_len; struct brcmf_ext_join_params_le *ext_join_params; u16 chanspec; s32 err = 0; brcmf_dbg(TRACE, "Enter\n"); if (!check_vif_up(ifp->vif)) return -EIO; if (!sme->ssid) { brcmf_err("Invalid ssid\n"); return -EOPNOTSUPP; } if (ifp->vif == cfg->p2p.bss_idx[P2PAPI_BSSCFG_PRIMARY].vif) { /* A normal (non P2P) connection request setup. */ ie = NULL; ie_len = 0; /* find the WPA_IE */ wpa_ie = brcmf_find_wpaie((u8 *)sme->ie, sme->ie_len); if (wpa_ie) { ie = wpa_ie; ie_len = wpa_ie->len + TLV_HDR_LEN; } else { /* find the RSN_IE */ rsn_ie = brcmf_parse_tlvs((const u8 *)sme->ie, sme->ie_len, WLAN_EID_RSN); if (rsn_ie) { ie = rsn_ie; ie_len = rsn_ie->len + TLV_HDR_LEN; } } brcmf_fil_iovar_data_set(ifp, "wpaie", ie, ie_len); } err = brcmf_vif_set_mgmt_ie(ifp->vif, BRCMF_VNDR_IE_ASSOCREQ_FLAG, sme->ie, sme->ie_len); if (err) brcmf_err("Set Assoc REQ IE Failed\n"); else brcmf_dbg(TRACE, "Applied Vndr IEs for Assoc request\n"); set_bit(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state); if (chan) { cfg->channel = ieee80211_frequency_to_channel(chan->center_freq); chanspec = channel_to_chanspec(&cfg->d11inf, chan); brcmf_dbg(CONN, "channel=%d, center_req=%d, chanspec=0x%04x\n", cfg->channel, chan->center_freq, chanspec); } else { cfg->channel = 0; chanspec = 0; } brcmf_dbg(INFO, "ie (%p), ie_len (%zd)\n", sme->ie, sme->ie_len); err = brcmf_set_wpa_version(ndev, sme); if (err) { brcmf_err("wl_set_wpa_version failed (%d)\n", err); goto done; } sme->auth_type = brcmf_war_auth_type(ifp, sme->auth_type); err = brcmf_set_auth_type(ndev, sme); if (err) { brcmf_err("wl_set_auth_type failed (%d)\n", err); goto done; } err = brcmf_set_wsec_mode(ndev, sme, sme->mfp == NL80211_MFP_REQUIRED); if (err) { brcmf_err("wl_set_set_cipher failed (%d)\n", err); goto done; } err = brcmf_set_key_mgmt(ndev, sme); if (err) { brcmf_err("wl_set_key_mgmt failed (%d)\n", err); goto done; } err = brcmf_set_sharedkey(ndev, sme); if (err) { brcmf_err("brcmf_set_sharedkey failed (%d)\n", err); goto done; } profile->ssid.SSID_len = min_t(u32, (u32)sizeof(profile->ssid.SSID), (u32)sme->ssid_len); memcpy(&profile->ssid.SSID, sme->ssid, profile->ssid.SSID_len); if (profile->ssid.SSID_len < IEEE80211_MAX_SSID_LEN) { profile->ssid.SSID[profile->ssid.SSID_len] = 0; brcmf_dbg(CONN, "SSID \"%s\", len (%d)\n", profile->ssid.SSID, profile->ssid.SSID_len); } /* Join with specific BSSID and cached SSID * If SSID is zero join based on BSSID only */ join_params_size = offsetof(struct brcmf_ext_join_params_le, assoc_le) + offsetof(struct brcmf_assoc_params_le, chanspec_list); if (cfg->channel) join_params_size += sizeof(u16); ext_join_params = kzalloc(join_params_size, GFP_KERNEL); if (ext_join_params == NULL) { err = -ENOMEM; goto done; } ext_join_params->ssid_le.SSID_len = cpu_to_le32(profile->ssid.SSID_len); memcpy(&ext_join_params->ssid_le.SSID, sme->ssid, profile->ssid.SSID_len); /* Set up join scan parameters */ ext_join_params->scan_le.scan_type = -1; ext_join_params->scan_le.home_time = cpu_to_le32(-1); if (sme->bssid) memcpy(&ext_join_params->assoc_le.bssid, sme->bssid, ETH_ALEN); else eth_broadcast_addr(ext_join_params->assoc_le.bssid); if (cfg->channel) { ext_join_params->assoc_le.chanspec_num = cpu_to_le32(1); ext_join_params->assoc_le.chanspec_list[0] = cpu_to_le16(chanspec); /* Increase dwell time to receive probe response or detect * beacon from target AP at a noisy air only during connect * command. */ ext_join_params->scan_le.active_time = cpu_to_le32(BRCMF_SCAN_JOIN_ACTIVE_DWELL_TIME_MS); ext_join_params->scan_le.passive_time = cpu_to_le32(BRCMF_SCAN_JOIN_PASSIVE_DWELL_TIME_MS); /* To sync with presence period of VSDB GO send probe request * more frequently. Probe request will be stopped when it gets * probe response from target AP/GO. */ ext_join_params->scan_le.nprobes = cpu_to_le32(BRCMF_SCAN_JOIN_ACTIVE_DWELL_TIME_MS / BRCMF_SCAN_JOIN_PROBE_INTERVAL_MS); } else { ext_join_params->scan_le.active_time = cpu_to_le32(-1); ext_join_params->scan_le.passive_time = cpu_to_le32(-1); ext_join_params->scan_le.nprobes = cpu_to_le32(-1); } err = brcmf_fil_bsscfg_data_set(ifp, "join", ext_join_params, join_params_size); kfree(ext_join_params); if (!err) /* This is it. join command worked, we are done */ goto done; /* join command failed, fallback to set ssid */ memset(&join_params, 0, sizeof(join_params)); join_params_size = sizeof(join_params.ssid_le); memcpy(&join_params.ssid_le.SSID, sme->ssid, profile->ssid.SSID_len); join_params.ssid_le.SSID_len = cpu_to_le32(profile->ssid.SSID_len); if (sme->bssid) memcpy(join_params.params_le.bssid, sme->bssid, ETH_ALEN); else eth_broadcast_addr(join_params.params_le.bssid); if (cfg->channel) { join_params.params_le.chanspec_list[0] = cpu_to_le16(chanspec); join_params.params_le.chanspec_num = cpu_to_le32(1); join_params_size += sizeof(join_params.params_le); } err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_SSID, &join_params, join_params_size); if (err) brcmf_err("BRCMF_C_SET_SSID failed (%d)\n", err); done: if (err) clear_bit(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state); brcmf_dbg(TRACE, "Exit\n"); return err; } static s32 brcmf_cfg80211_disconnect(struct wiphy *wiphy, struct net_device *ndev, u16 reason_code) { struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_cfg80211_profile *profile = &ifp->vif->profile; struct brcmf_scb_val_le scbval; s32 err = 0; brcmf_dbg(TRACE, "Enter. Reason code = %d\n", reason_code); if (!check_vif_up(ifp->vif)) return -EIO; clear_bit(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state); clear_bit(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state); cfg80211_disconnected(ndev, reason_code, NULL, 0, true, GFP_KERNEL); memcpy(&scbval.ea, &profile->bssid, ETH_ALEN); scbval.val = cpu_to_le32(reason_code); err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_DISASSOC, &scbval, sizeof(scbval)); if (err) brcmf_err("error (%d)\n", err); brcmf_dbg(TRACE, "Exit\n"); return err; } static s32 brcmf_cfg80211_set_tx_power(struct wiphy *wiphy, struct wireless_dev *wdev, enum nl80211_tx_power_setting type, s32 mbm) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct net_device *ndev = cfg_to_ndev(cfg); struct brcmf_if *ifp = netdev_priv(ndev); s32 err; s32 disable; u32 qdbm = 127; brcmf_dbg(TRACE, "Enter %d %d\n", type, mbm); if (!check_vif_up(ifp->vif)) return -EIO; switch (type) { case NL80211_TX_POWER_AUTOMATIC: break; case NL80211_TX_POWER_LIMITED: case NL80211_TX_POWER_FIXED: if (mbm < 0) { brcmf_err("TX_POWER_FIXED - dbm is negative\n"); err = -EINVAL; goto done; } qdbm = MBM_TO_DBM(4 * mbm); if (qdbm > 127) qdbm = 127; qdbm |= WL_TXPWR_OVERRIDE; break; default: brcmf_err("Unsupported type %d\n", type); err = -EINVAL; goto done; } /* Make sure radio is off or on as far as software is concerned */ disable = WL_RADIO_SW_DISABLE << 16; err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_RADIO, disable); if (err) brcmf_err("WLC_SET_RADIO error (%d)\n", err); err = brcmf_fil_iovar_int_set(ifp, "qtxpower", qdbm); if (err) brcmf_err("qtxpower error (%d)\n", err); done: brcmf_dbg(TRACE, "Exit %d (qdbm)\n", qdbm & ~WL_TXPWR_OVERRIDE); return err; } static s32 brcmf_cfg80211_get_tx_power(struct wiphy *wiphy, struct wireless_dev *wdev, s32 *dbm) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct net_device *ndev = cfg_to_ndev(cfg); struct brcmf_if *ifp = netdev_priv(ndev); s32 qdbm = 0; s32 err; brcmf_dbg(TRACE, "Enter\n"); if (!check_vif_up(ifp->vif)) return -EIO; err = brcmf_fil_iovar_int_get(ifp, "qtxpower", &qdbm); if (err) { brcmf_err("error (%d)\n", err); goto done; } *dbm = (qdbm & ~WL_TXPWR_OVERRIDE) / 4; done: brcmf_dbg(TRACE, "Exit (0x%x %d)\n", qdbm, *dbm); return err; } static s32 brcmf_cfg80211_config_default_key(struct wiphy *wiphy, struct net_device *ndev, u8 key_idx, bool unicast, bool multicast) { struct brcmf_if *ifp = netdev_priv(ndev); u32 index; u32 wsec; s32 err = 0; brcmf_dbg(TRACE, "Enter\n"); brcmf_dbg(CONN, "key index (%d)\n", key_idx); if (!check_vif_up(ifp->vif)) return -EIO; err = brcmf_fil_bsscfg_int_get(ifp, "wsec", &wsec); if (err) { brcmf_err("WLC_GET_WSEC error (%d)\n", err); goto done; } if (wsec & WEP_ENABLED) { /* Just select a new current key */ index = key_idx; err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_KEY_PRIMARY, index); if (err) brcmf_err("error (%d)\n", err); } done: brcmf_dbg(TRACE, "Exit\n"); return err; } static s32 brcmf_add_keyext(struct wiphy *wiphy, struct net_device *ndev, u8 key_idx, const u8 *mac_addr, struct key_params *params) { struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_wsec_key key; s32 err = 0; u8 keybuf[8]; memset(&key, 0, sizeof(key)); key.index = (u32) key_idx; /* Instead of bcast for ea address for default wep keys, driver needs it to be Null */ if (!is_multicast_ether_addr(mac_addr)) memcpy((char *)&key.ea, (void *)mac_addr, ETH_ALEN); key.len = (u32) params->key_len; /* check for key index change */ if (key.len == 0) { /* key delete */ err = send_key_to_dongle(ifp, &key); if (err) brcmf_err("key delete error (%d)\n", err); } else { if (key.len > sizeof(key.data)) { brcmf_err("Invalid key length (%d)\n", key.len); return -EINVAL; } brcmf_dbg(CONN, "Setting the key index %d\n", key.index); memcpy(key.data, params->key, key.len); if (!brcmf_is_apmode(ifp->vif) && (params->cipher == WLAN_CIPHER_SUITE_TKIP)) { brcmf_dbg(CONN, "Swapping RX/TX MIC key\n"); memcpy(keybuf, &key.data[24], sizeof(keybuf)); memcpy(&key.data[24], &key.data[16], sizeof(keybuf)); memcpy(&key.data[16], keybuf, sizeof(keybuf)); } /* if IW_ENCODE_EXT_RX_SEQ_VALID set */ if (params->seq && params->seq_len == 6) { /* rx iv */ u8 *ivptr; ivptr = (u8 *) params->seq; key.rxiv.hi = (ivptr[5] << 24) | (ivptr[4] << 16) | (ivptr[3] << 8) | ivptr[2]; key.rxiv.lo = (ivptr[1] << 8) | ivptr[0]; key.iv_initialized = true; } switch (params->cipher) { case WLAN_CIPHER_SUITE_WEP40: key.algo = CRYPTO_ALGO_WEP1; brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_WEP40\n"); break; case WLAN_CIPHER_SUITE_WEP104: key.algo = CRYPTO_ALGO_WEP128; brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_WEP104\n"); break; case WLAN_CIPHER_SUITE_TKIP: key.algo = CRYPTO_ALGO_TKIP; brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_TKIP\n"); break; case WLAN_CIPHER_SUITE_AES_CMAC: key.algo = CRYPTO_ALGO_AES_CCM; brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_AES_CMAC\n"); break; case WLAN_CIPHER_SUITE_CCMP: key.algo = CRYPTO_ALGO_AES_CCM; brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_CCMP\n"); break; default: brcmf_err("Invalid cipher (0x%x)\n", params->cipher); return -EINVAL; } err = send_key_to_dongle(ifp, &key); if (err) brcmf_err("wsec_key error (%d)\n", err); } return err; } static s32 brcmf_cfg80211_add_key(struct wiphy *wiphy, struct net_device *ndev, u8 key_idx, bool pairwise, const u8 *mac_addr, struct key_params *params) { struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_wsec_key *key; s32 val; s32 wsec; s32 err = 0; u8 keybuf[8]; brcmf_dbg(TRACE, "Enter\n"); brcmf_dbg(CONN, "key index (%d)\n", key_idx); if (!check_vif_up(ifp->vif)) return -EIO; if (key_idx >= BRCMF_MAX_DEFAULT_KEYS) { /* we ignore this key index in this case */ brcmf_err("invalid key index (%d)\n", key_idx); return -EINVAL; } if (mac_addr && (params->cipher != WLAN_CIPHER_SUITE_WEP40) && (params->cipher != WLAN_CIPHER_SUITE_WEP104)) { brcmf_dbg(TRACE, "Exit"); return brcmf_add_keyext(wiphy, ndev, key_idx, mac_addr, params); } key = &ifp->vif->profile.key[key_idx]; memset(key, 0, sizeof(*key)); if (params->key_len > sizeof(key->data)) { brcmf_err("Too long key length (%u)\n", params->key_len); err = -EINVAL; goto done; } key->len = params->key_len; key->index = key_idx; memcpy(key->data, params->key, key->len); key->flags = BRCMF_PRIMARY_KEY; switch (params->cipher) { case WLAN_CIPHER_SUITE_WEP40: key->algo = CRYPTO_ALGO_WEP1; val = WEP_ENABLED; brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_WEP40\n"); break; case WLAN_CIPHER_SUITE_WEP104: key->algo = CRYPTO_ALGO_WEP128; val = WEP_ENABLED; brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_WEP104\n"); break; case WLAN_CIPHER_SUITE_TKIP: if (!brcmf_is_apmode(ifp->vif)) { brcmf_dbg(CONN, "Swapping RX/TX MIC key\n"); memcpy(keybuf, &key->data[24], sizeof(keybuf)); memcpy(&key->data[24], &key->data[16], sizeof(keybuf)); memcpy(&key->data[16], keybuf, sizeof(keybuf)); } key->algo = CRYPTO_ALGO_TKIP; val = TKIP_ENABLED; brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_TKIP\n"); break; case WLAN_CIPHER_SUITE_AES_CMAC: key->algo = CRYPTO_ALGO_AES_CCM; val = AES_ENABLED; brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_AES_CMAC\n"); break; case WLAN_CIPHER_SUITE_CCMP: key->algo = CRYPTO_ALGO_AES_CCM; val = AES_ENABLED; brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_CCMP\n"); break; default: brcmf_err("Invalid cipher (0x%x)\n", params->cipher); err = -EINVAL; goto done; } err = send_key_to_dongle(ifp, key); if (err) goto done; err = brcmf_fil_bsscfg_int_get(ifp, "wsec", &wsec); if (err) { brcmf_err("get wsec error (%d)\n", err); goto done; } wsec |= val; err = brcmf_fil_bsscfg_int_set(ifp, "wsec", wsec); if (err) { brcmf_err("set wsec error (%d)\n", err); goto done; } done: brcmf_dbg(TRACE, "Exit\n"); return err; } static s32 brcmf_cfg80211_del_key(struct wiphy *wiphy, struct net_device *ndev, u8 key_idx, bool pairwise, const u8 *mac_addr) { struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_wsec_key key; s32 err = 0; brcmf_dbg(TRACE, "Enter\n"); if (!check_vif_up(ifp->vif)) return -EIO; if (key_idx >= BRCMF_MAX_DEFAULT_KEYS) { /* we ignore this key index in this case */ return -EINVAL; } memset(&key, 0, sizeof(key)); key.index = (u32) key_idx; key.flags = BRCMF_PRIMARY_KEY; key.algo = CRYPTO_ALGO_OFF; brcmf_dbg(CONN, "key index (%d)\n", key_idx); /* Set the new key/index */ err = send_key_to_dongle(ifp, &key); brcmf_dbg(TRACE, "Exit\n"); return err; } static s32 brcmf_cfg80211_get_key(struct wiphy *wiphy, struct net_device *ndev, u8 key_idx, bool pairwise, const u8 *mac_addr, void *cookie, void (*callback) (void *cookie, struct key_params * params)) { struct key_params params; struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_cfg80211_profile *profile = &ifp->vif->profile; struct brcmf_cfg80211_security *sec; s32 wsec; s32 err = 0; brcmf_dbg(TRACE, "Enter\n"); brcmf_dbg(CONN, "key index (%d)\n", key_idx); if (!check_vif_up(ifp->vif)) return -EIO; memset(¶ms, 0, sizeof(params)); err = brcmf_fil_bsscfg_int_get(ifp, "wsec", &wsec); if (err) { brcmf_err("WLC_GET_WSEC error (%d)\n", err); /* Ignore this error, may happen during DISASSOC */ err = -EAGAIN; goto done; } if (wsec & WEP_ENABLED) { sec = &profile->sec; if (sec->cipher_pairwise & WLAN_CIPHER_SUITE_WEP40) { params.cipher = WLAN_CIPHER_SUITE_WEP40; brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_WEP40\n"); } else if (sec->cipher_pairwise & WLAN_CIPHER_SUITE_WEP104) { params.cipher = WLAN_CIPHER_SUITE_WEP104; brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_WEP104\n"); } } else if (wsec & TKIP_ENABLED) { params.cipher = WLAN_CIPHER_SUITE_TKIP; brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_TKIP\n"); } else if (wsec & AES_ENABLED) { params.cipher = WLAN_CIPHER_SUITE_AES_CMAC; brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_AES_CMAC\n"); } else { brcmf_err("Invalid algo (0x%x)\n", wsec); err = -EINVAL; goto done; } callback(cookie, ¶ms); done: brcmf_dbg(TRACE, "Exit\n"); return err; } static s32 brcmf_cfg80211_config_default_mgmt_key(struct wiphy *wiphy, struct net_device *ndev, u8 key_idx) { brcmf_dbg(INFO, "Not supported\n"); return -EOPNOTSUPP; } static void brcmf_cfg80211_reconfigure_wep(struct brcmf_if *ifp) { s32 err; u8 key_idx; struct brcmf_wsec_key *key; s32 wsec; for (key_idx = 0; key_idx < BRCMF_MAX_DEFAULT_KEYS; key_idx++) { key = &ifp->vif->profile.key[key_idx]; if ((key->algo == CRYPTO_ALGO_WEP1) || (key->algo == CRYPTO_ALGO_WEP128)) break; } if (key_idx == BRCMF_MAX_DEFAULT_KEYS) return; err = send_key_to_dongle(ifp, key); if (err) { brcmf_err("Setting WEP key failed (%d)\n", err); return; } err = brcmf_fil_bsscfg_int_get(ifp, "wsec", &wsec); if (err) { brcmf_err("get wsec error (%d)\n", err); return; } wsec |= WEP_ENABLED; err = brcmf_fil_bsscfg_int_set(ifp, "wsec", wsec); if (err) brcmf_err("set wsec error (%d)\n", err); } static void brcmf_convert_sta_flags(u32 fw_sta_flags, struct station_info *si) { struct nl80211_sta_flag_update *sfu; brcmf_dbg(TRACE, "flags %08x\n", fw_sta_flags); si->filled |= BIT(NL80211_STA_INFO_STA_FLAGS); sfu = &si->sta_flags; sfu->mask = BIT(NL80211_STA_FLAG_WME) | BIT(NL80211_STA_FLAG_AUTHENTICATED) | BIT(NL80211_STA_FLAG_ASSOCIATED) | BIT(NL80211_STA_FLAG_AUTHORIZED); if (fw_sta_flags & BRCMF_STA_WME) sfu->set |= BIT(NL80211_STA_FLAG_WME); if (fw_sta_flags & BRCMF_STA_AUTHE) sfu->set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); if (fw_sta_flags & BRCMF_STA_ASSOC) sfu->set |= BIT(NL80211_STA_FLAG_ASSOCIATED); if (fw_sta_flags & BRCMF_STA_AUTHO) sfu->set |= BIT(NL80211_STA_FLAG_AUTHORIZED); } static void brcmf_fill_bss_param(struct brcmf_if *ifp, struct station_info *si) { struct { __le32 len; struct brcmf_bss_info_le bss_le; } *buf; u16 capability; int err; buf = kzalloc(WL_BSS_INFO_MAX, GFP_KERNEL); if (!buf) return; buf->len = cpu_to_le32(WL_BSS_INFO_MAX); err = brcmf_fil_cmd_data_get(ifp, BRCMF_C_GET_BSS_INFO, buf, WL_BSS_INFO_MAX); if (err) { brcmf_err("Failed to get bss info (%d)\n", err); return; } si->filled |= BIT(NL80211_STA_INFO_BSS_PARAM); si->bss_param.beacon_interval = le16_to_cpu(buf->bss_le.beacon_period); si->bss_param.dtim_period = buf->bss_le.dtim_period; capability = le16_to_cpu(buf->bss_le.capability); if (capability & IEEE80211_HT_STBC_PARAM_DUAL_CTS_PROT) si->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; if (capability & WLAN_CAPABILITY_SHORT_PREAMBLE) si->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; if (capability & WLAN_CAPABILITY_SHORT_SLOT_TIME) si->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; } static s32 brcmf_cfg80211_get_station(struct wiphy *wiphy, struct net_device *ndev, const u8 *mac, struct station_info *sinfo) { struct brcmf_if *ifp = netdev_priv(ndev); s32 err = 0; struct brcmf_sta_info_le sta_info_le; u32 sta_flags; u32 is_tdls_peer; s32 total_rssi; s32 count_rssi; u32 i; brcmf_dbg(TRACE, "Enter, MAC %pM\n", mac); if (!check_vif_up(ifp->vif)) return -EIO; memset(&sta_info_le, 0, sizeof(sta_info_le)); memcpy(&sta_info_le, mac, ETH_ALEN); err = brcmf_fil_iovar_data_get(ifp, "tdls_sta_info", &sta_info_le, sizeof(sta_info_le)); is_tdls_peer = !err; if (err) { err = brcmf_fil_iovar_data_get(ifp, "sta_info", &sta_info_le, sizeof(sta_info_le)); if (err < 0) { brcmf_err("GET STA INFO failed, %d\n", err); goto done; } } brcmf_dbg(TRACE, "version %d\n", le16_to_cpu(sta_info_le.ver)); sinfo->filled = BIT(NL80211_STA_INFO_INACTIVE_TIME); sinfo->inactive_time = le32_to_cpu(sta_info_le.idle) * 1000; sta_flags = le32_to_cpu(sta_info_le.flags); brcmf_convert_sta_flags(sta_flags, sinfo); sinfo->sta_flags.mask |= BIT(NL80211_STA_FLAG_TDLS_PEER); if (is_tdls_peer) sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); else sinfo->sta_flags.set &= ~BIT(NL80211_STA_FLAG_TDLS_PEER); if (sta_flags & BRCMF_STA_ASSOC) { sinfo->filled |= BIT(NL80211_STA_INFO_CONNECTED_TIME); sinfo->connected_time = le32_to_cpu(sta_info_le.in); brcmf_fill_bss_param(ifp, sinfo); } if (sta_flags & BRCMF_STA_SCBSTATS) { sinfo->filled |= BIT(NL80211_STA_INFO_TX_FAILED); sinfo->tx_failed = le32_to_cpu(sta_info_le.tx_failures); sinfo->filled |= BIT(NL80211_STA_INFO_TX_PACKETS); sinfo->tx_packets = le32_to_cpu(sta_info_le.tx_pkts); sinfo->tx_packets += le32_to_cpu(sta_info_le.tx_mcast_pkts); sinfo->filled |= BIT(NL80211_STA_INFO_RX_PACKETS); sinfo->rx_packets = le32_to_cpu(sta_info_le.rx_ucast_pkts); sinfo->rx_packets += le32_to_cpu(sta_info_le.rx_mcast_pkts); if (sinfo->tx_packets) { sinfo->filled |= BIT(NL80211_STA_INFO_TX_BITRATE); sinfo->txrate.legacy = le32_to_cpu(sta_info_le.tx_rate) / 100; } if (sinfo->rx_packets) { sinfo->filled |= BIT(NL80211_STA_INFO_RX_BITRATE); sinfo->rxrate.legacy = le32_to_cpu(sta_info_le.rx_rate) / 100; } if (le16_to_cpu(sta_info_le.ver) >= 4) { sinfo->filled |= BIT(NL80211_STA_INFO_TX_BYTES); sinfo->tx_bytes = le64_to_cpu(sta_info_le.tx_tot_bytes); sinfo->filled |= BIT(NL80211_STA_INFO_RX_BYTES); sinfo->rx_bytes = le64_to_cpu(sta_info_le.rx_tot_bytes); } total_rssi = 0; count_rssi = 0; for (i = 0; i < BRCMF_ANT_MAX; i++) { if (sta_info_le.rssi[i]) { sinfo->chain_signal_avg[count_rssi] = sta_info_le.rssi[i]; sinfo->chain_signal[count_rssi] = sta_info_le.rssi[i]; total_rssi += sta_info_le.rssi[i]; count_rssi++; } } if (count_rssi) { sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL); sinfo->chains = count_rssi; sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL); total_rssi /= count_rssi; sinfo->signal = total_rssi; } } done: brcmf_dbg(TRACE, "Exit\n"); return err; } static int brcmf_cfg80211_dump_station(struct wiphy *wiphy, struct net_device *ndev, int idx, u8 *mac, struct station_info *sinfo) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_if *ifp = netdev_priv(ndev); s32 err; brcmf_dbg(TRACE, "Enter, idx %d\n", idx); if (idx == 0) { cfg->assoclist.count = cpu_to_le32(BRCMF_MAX_ASSOCLIST); err = brcmf_fil_cmd_data_get(ifp, BRCMF_C_GET_ASSOCLIST, &cfg->assoclist, sizeof(cfg->assoclist)); if (err) { brcmf_err("BRCMF_C_GET_ASSOCLIST unsupported, err=%d\n", err); cfg->assoclist.count = 0; return -EOPNOTSUPP; } } if (idx < le32_to_cpu(cfg->assoclist.count)) { memcpy(mac, cfg->assoclist.mac[idx], ETH_ALEN); return brcmf_cfg80211_get_station(wiphy, ndev, mac, sinfo); } return -ENOENT; } static s32 brcmf_cfg80211_set_power_mgmt(struct wiphy *wiphy, struct net_device *ndev, bool enabled, s32 timeout) { s32 pm; s32 err = 0; struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_if *ifp = netdev_priv(ndev); brcmf_dbg(TRACE, "Enter\n"); /* * Powersave enable/disable request is coming from the * cfg80211 even before the interface is up. In that * scenario, driver will be storing the power save * preference in cfg struct to apply this to * FW later while initializing the dongle */ cfg->pwr_save = enabled; if (!check_vif_up(ifp->vif)) { brcmf_dbg(INFO, "Device is not ready, storing the value in cfg_info struct\n"); goto done; } pm = enabled ? PM_FAST : PM_OFF; /* Do not enable the power save after assoc if it is a p2p interface */ if (ifp->vif->wdev.iftype == NL80211_IFTYPE_P2P_CLIENT) { brcmf_dbg(INFO, "Do not enable power save for P2P clients\n"); pm = PM_OFF; } brcmf_dbg(INFO, "power save %s\n", (pm ? "enabled" : "disabled")); err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_PM, pm); if (err) { if (err == -ENODEV) brcmf_err("net_device is not ready yet\n"); else brcmf_err("error (%d)\n", err); } done: brcmf_dbg(TRACE, "Exit\n"); return err; } static s32 brcmf_inform_single_bss(struct brcmf_cfg80211_info *cfg, struct brcmf_bss_info_le *bi) { struct wiphy *wiphy = cfg_to_wiphy(cfg); struct ieee80211_channel *notify_channel; struct cfg80211_bss *bss; struct ieee80211_supported_band *band; struct brcmu_chan ch; u16 channel; u32 freq; u16 notify_capability; u16 notify_interval; u8 *notify_ie; size_t notify_ielen; s32 notify_signal; if (le32_to_cpu(bi->length) > WL_BSS_INFO_MAX) { brcmf_err("Bss info is larger than buffer. Discarding\n"); return 0; } if (!bi->ctl_ch) { ch.chspec = le16_to_cpu(bi->chanspec); cfg->d11inf.decchspec(&ch); bi->ctl_ch = ch.chnum; } channel = bi->ctl_ch; if (channel <= CH_MAX_2G_CHANNEL) band = wiphy->bands[IEEE80211_BAND_2GHZ]; else band = wiphy->bands[IEEE80211_BAND_5GHZ]; freq = ieee80211_channel_to_frequency(channel, band->band); notify_channel = ieee80211_get_channel(wiphy, freq); notify_capability = le16_to_cpu(bi->capability); notify_interval = le16_to_cpu(bi->beacon_period); notify_ie = (u8 *)bi + le16_to_cpu(bi->ie_offset); notify_ielen = le32_to_cpu(bi->ie_length); notify_signal = (s16)le16_to_cpu(bi->RSSI) * 100; brcmf_dbg(CONN, "bssid: %pM\n", bi->BSSID); brcmf_dbg(CONN, "Channel: %d(%d)\n", channel, freq); brcmf_dbg(CONN, "Capability: %X\n", notify_capability); brcmf_dbg(CONN, "Beacon interval: %d\n", notify_interval); brcmf_dbg(CONN, "Signal: %d\n", notify_signal); bss = cfg80211_inform_bss(wiphy, notify_channel, CFG80211_BSS_FTYPE_UNKNOWN, (const u8 *)bi->BSSID, 0, notify_capability, notify_interval, notify_ie, notify_ielen, notify_signal, GFP_KERNEL); if (!bss) return -ENOMEM; cfg80211_put_bss(wiphy, bss); return 0; } static struct brcmf_bss_info_le * next_bss_le(struct brcmf_scan_results *list, struct brcmf_bss_info_le *bss) { if (bss == NULL) return list->bss_info_le; return (struct brcmf_bss_info_le *)((unsigned long)bss + le32_to_cpu(bss->length)); } static s32 brcmf_inform_bss(struct brcmf_cfg80211_info *cfg) { struct brcmf_scan_results *bss_list; struct brcmf_bss_info_le *bi = NULL; /* must be initialized */ s32 err = 0; int i; bss_list = (struct brcmf_scan_results *)cfg->escan_info.escan_buf; if (bss_list->count != 0 && bss_list->version != BRCMF_BSS_INFO_VERSION) { brcmf_err("Version %d != WL_BSS_INFO_VERSION\n", bss_list->version); return -EOPNOTSUPP; } brcmf_dbg(SCAN, "scanned AP count (%d)\n", bss_list->count); for (i = 0; i < bss_list->count; i++) { bi = next_bss_le(bss_list, bi); err = brcmf_inform_single_bss(cfg, bi); if (err) break; } return err; } static s32 wl_inform_ibss(struct brcmf_cfg80211_info *cfg, struct net_device *ndev, const u8 *bssid) { struct wiphy *wiphy = cfg_to_wiphy(cfg); struct ieee80211_channel *notify_channel; struct brcmf_bss_info_le *bi = NULL; struct ieee80211_supported_band *band; struct cfg80211_bss *bss; struct brcmu_chan ch; u8 *buf = NULL; s32 err = 0; u32 freq; u16 notify_capability; u16 notify_interval; u8 *notify_ie; size_t notify_ielen; s32 notify_signal; brcmf_dbg(TRACE, "Enter\n"); buf = kzalloc(WL_BSS_INFO_MAX, GFP_KERNEL); if (buf == NULL) { err = -ENOMEM; goto CleanUp; } *(__le32 *)buf = cpu_to_le32(WL_BSS_INFO_MAX); err = brcmf_fil_cmd_data_get(netdev_priv(ndev), BRCMF_C_GET_BSS_INFO, buf, WL_BSS_INFO_MAX); if (err) { brcmf_err("WLC_GET_BSS_INFO failed: %d\n", err); goto CleanUp; } bi = (struct brcmf_bss_info_le *)(buf + 4); ch.chspec = le16_to_cpu(bi->chanspec); cfg->d11inf.decchspec(&ch); if (ch.band == BRCMU_CHAN_BAND_2G) band = wiphy->bands[IEEE80211_BAND_2GHZ]; else band = wiphy->bands[IEEE80211_BAND_5GHZ]; freq = ieee80211_channel_to_frequency(ch.chnum, band->band); notify_channel = ieee80211_get_channel(wiphy, freq); notify_capability = le16_to_cpu(bi->capability); notify_interval = le16_to_cpu(bi->beacon_period); notify_ie = (u8 *)bi + le16_to_cpu(bi->ie_offset); notify_ielen = le32_to_cpu(bi->ie_length); notify_signal = (s16)le16_to_cpu(bi->RSSI) * 100; brcmf_dbg(CONN, "channel: %d(%d)\n", ch.chnum, freq); brcmf_dbg(CONN, "capability: %X\n", notify_capability); brcmf_dbg(CONN, "beacon interval: %d\n", notify_interval); brcmf_dbg(CONN, "signal: %d\n", notify_signal); bss = cfg80211_inform_bss(wiphy, notify_channel, CFG80211_BSS_FTYPE_UNKNOWN, bssid, 0, notify_capability, notify_interval, notify_ie, notify_ielen, notify_signal, GFP_KERNEL); if (!bss) { err = -ENOMEM; goto CleanUp; } cfg80211_put_bss(wiphy, bss); CleanUp: kfree(buf); brcmf_dbg(TRACE, "Exit\n"); return err; } static s32 brcmf_update_bss_info(struct brcmf_cfg80211_info *cfg, struct brcmf_if *ifp) { struct brcmf_cfg80211_profile *profile = ndev_to_prof(ifp->ndev); struct brcmf_bss_info_le *bi; struct brcmf_ssid *ssid; const struct brcmf_tlv *tim; u16 beacon_interval; u8 dtim_period; size_t ie_len; u8 *ie; s32 err = 0; brcmf_dbg(TRACE, "Enter\n"); if (brcmf_is_ibssmode(ifp->vif)) return err; ssid = &profile->ssid; *(__le32 *)cfg->extra_buf = cpu_to_le32(WL_EXTRA_BUF_MAX); err = brcmf_fil_cmd_data_get(ifp, BRCMF_C_GET_BSS_INFO, cfg->extra_buf, WL_EXTRA_BUF_MAX); if (err) { brcmf_err("Could not get bss info %d\n", err); goto update_bss_info_out; } bi = (struct brcmf_bss_info_le *)(cfg->extra_buf + 4); err = brcmf_inform_single_bss(cfg, bi); if (err) goto update_bss_info_out; ie = ((u8 *)bi) + le16_to_cpu(bi->ie_offset); ie_len = le32_to_cpu(bi->ie_length); beacon_interval = le16_to_cpu(bi->beacon_period); tim = brcmf_parse_tlvs(ie, ie_len, WLAN_EID_TIM); if (tim) dtim_period = tim->data[1]; else { /* * active scan was done so we could not get dtim * information out of probe response. * so we speficially query dtim information to dongle. */ u32 var; err = brcmf_fil_iovar_int_get(ifp, "dtim_assoc", &var); if (err) { brcmf_err("wl dtim_assoc failed (%d)\n", err); goto update_bss_info_out; } dtim_period = (u8)var; } update_bss_info_out: brcmf_dbg(TRACE, "Exit"); return err; } void brcmf_abort_scanning(struct brcmf_cfg80211_info *cfg) { struct escan_info *escan = &cfg->escan_info; set_bit(BRCMF_SCAN_STATUS_ABORT, &cfg->scan_status); if (cfg->scan_request) { escan->escan_state = WL_ESCAN_STATE_IDLE; brcmf_notify_escan_complete(cfg, escan->ifp, true, true); } clear_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status); clear_bit(BRCMF_SCAN_STATUS_ABORT, &cfg->scan_status); } static void brcmf_cfg80211_escan_timeout_worker(struct work_struct *work) { struct brcmf_cfg80211_info *cfg = container_of(work, struct brcmf_cfg80211_info, escan_timeout_work); brcmf_inform_bss(cfg); brcmf_notify_escan_complete(cfg, cfg->escan_info.ifp, true, true); } static void brcmf_escan_timeout(unsigned long data) { struct brcmf_cfg80211_info *cfg = (struct brcmf_cfg80211_info *)data; if (cfg->scan_request) { brcmf_err("timer expired\n"); schedule_work(&cfg->escan_timeout_work); } } static s32 brcmf_compare_update_same_bss(struct brcmf_cfg80211_info *cfg, struct brcmf_bss_info_le *bss, struct brcmf_bss_info_le *bss_info_le) { struct brcmu_chan ch_bss, ch_bss_info_le; ch_bss.chspec = le16_to_cpu(bss->chanspec); cfg->d11inf.decchspec(&ch_bss); ch_bss_info_le.chspec = le16_to_cpu(bss_info_le->chanspec); cfg->d11inf.decchspec(&ch_bss_info_le); if (!memcmp(&bss_info_le->BSSID, &bss->BSSID, ETH_ALEN) && ch_bss.band == ch_bss_info_le.band && bss_info_le->SSID_len == bss->SSID_len && !memcmp(bss_info_le->SSID, bss->SSID, bss_info_le->SSID_len)) { if ((bss->flags & BRCMF_BSS_RSSI_ON_CHANNEL) == (bss_info_le->flags & BRCMF_BSS_RSSI_ON_CHANNEL)) { s16 bss_rssi = le16_to_cpu(bss->RSSI); s16 bss_info_rssi = le16_to_cpu(bss_info_le->RSSI); /* preserve max RSSI if the measurements are * both on-channel or both off-channel */ if (bss_info_rssi > bss_rssi) bss->RSSI = bss_info_le->RSSI; } else if ((bss->flags & BRCMF_BSS_RSSI_ON_CHANNEL) && (bss_info_le->flags & BRCMF_BSS_RSSI_ON_CHANNEL) == 0) { /* preserve the on-channel rssi measurement * if the new measurement is off channel */ bss->RSSI = bss_info_le->RSSI; bss->flags |= BRCMF_BSS_RSSI_ON_CHANNEL; } return 1; } return 0; } static s32 brcmf_cfg80211_escan_handler(struct brcmf_if *ifp, const struct brcmf_event_msg *e, void *data) { struct brcmf_cfg80211_info *cfg = ifp->drvr->config; s32 status; struct brcmf_escan_result_le *escan_result_le; struct brcmf_bss_info_le *bss_info_le; struct brcmf_bss_info_le *bss = NULL; u32 bi_length; struct brcmf_scan_results *list; u32 i; bool aborted; status = e->status; if (!test_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status)) { brcmf_err("scan not ready, bssidx=%d\n", ifp->bssidx); return -EPERM; } if (status == BRCMF_E_STATUS_PARTIAL) { brcmf_dbg(SCAN, "ESCAN Partial result\n"); escan_result_le = (struct brcmf_escan_result_le *) data; if (!escan_result_le) { brcmf_err("Invalid escan result (NULL pointer)\n"); goto exit; } if (le16_to_cpu(escan_result_le->bss_count) != 1) { brcmf_err("Invalid bss_count %d: ignoring\n", escan_result_le->bss_count); goto exit; } bss_info_le = &escan_result_le->bss_info_le; if (brcmf_p2p_scan_finding_common_channel(cfg, bss_info_le)) goto exit; if (!cfg->scan_request) { brcmf_dbg(SCAN, "result without cfg80211 request\n"); goto exit; } bi_length = le32_to_cpu(bss_info_le->length); if (bi_length != (le32_to_cpu(escan_result_le->buflen) - WL_ESCAN_RESULTS_FIXED_SIZE)) { brcmf_err("Invalid bss_info length %d: ignoring\n", bi_length); goto exit; } if (!(cfg_to_wiphy(cfg)->interface_modes & BIT(NL80211_IFTYPE_ADHOC))) { if (le16_to_cpu(bss_info_le->capability) & WLAN_CAPABILITY_IBSS) { brcmf_err("Ignoring IBSS result\n"); goto exit; } } list = (struct brcmf_scan_results *) cfg->escan_info.escan_buf; if (bi_length > WL_ESCAN_BUF_SIZE - list->buflen) { brcmf_err("Buffer is too small: ignoring\n"); goto exit; } for (i = 0; i < list->count; i++) { bss = bss ? (struct brcmf_bss_info_le *) ((unsigned char *)bss + le32_to_cpu(bss->length)) : list->bss_info_le; if (brcmf_compare_update_same_bss(cfg, bss, bss_info_le)) goto exit; } memcpy(&(cfg->escan_info.escan_buf[list->buflen]), bss_info_le, bi_length); list->version = le32_to_cpu(bss_info_le->version); list->buflen += bi_length; list->count++; } else { cfg->escan_info.escan_state = WL_ESCAN_STATE_IDLE; if (brcmf_p2p_scan_finding_common_channel(cfg, NULL)) goto exit; if (cfg->scan_request) { brcmf_inform_bss(cfg); aborted = status != BRCMF_E_STATUS_SUCCESS; brcmf_notify_escan_complete(cfg, ifp, aborted, false); } else brcmf_dbg(SCAN, "Ignored scan complete result 0x%x\n", status); } exit: return 0; } static void brcmf_init_escan(struct brcmf_cfg80211_info *cfg) { brcmf_fweh_register(cfg->pub, BRCMF_E_ESCAN_RESULT, brcmf_cfg80211_escan_handler); cfg->escan_info.escan_state = WL_ESCAN_STATE_IDLE; /* Init scan_timeout timer */ init_timer(&cfg->escan_timeout); cfg->escan_timeout.data = (unsigned long) cfg; cfg->escan_timeout.function = brcmf_escan_timeout; INIT_WORK(&cfg->escan_timeout_work, brcmf_cfg80211_escan_timeout_worker); } static __always_inline void brcmf_delay(u32 ms) { if (ms < 1000 / HZ) { cond_resched(); mdelay(ms); } else { msleep(ms); } } static s32 brcmf_config_wowl_pattern(struct brcmf_if *ifp, u8 cmd[4], u8 *pattern, u32 patternsize, u8 *mask, u32 packet_offset) { struct brcmf_fil_wowl_pattern_le *filter; u32 masksize; u32 patternoffset; u8 *buf; u32 bufsize; s32 ret; masksize = (patternsize + 7) / 8; patternoffset = sizeof(*filter) - sizeof(filter->cmd) + masksize; bufsize = sizeof(*filter) + patternsize + masksize; buf = kzalloc(bufsize, GFP_KERNEL); if (!buf) return -ENOMEM; filter = (struct brcmf_fil_wowl_pattern_le *)buf; memcpy(filter->cmd, cmd, 4); filter->masksize = cpu_to_le32(masksize); filter->offset = cpu_to_le32(packet_offset); filter->patternoffset = cpu_to_le32(patternoffset); filter->patternsize = cpu_to_le32(patternsize); filter->type = cpu_to_le32(BRCMF_WOWL_PATTERN_TYPE_BITMAP); if ((mask) && (masksize)) memcpy(buf + sizeof(*filter), mask, masksize); if ((pattern) && (patternsize)) memcpy(buf + sizeof(*filter) + masksize, pattern, patternsize); ret = brcmf_fil_iovar_data_set(ifp, "wowl_pattern", buf, bufsize); kfree(buf); return ret; } static s32 brcmf_cfg80211_resume(struct wiphy *wiphy) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct net_device *ndev = cfg_to_ndev(cfg); struct brcmf_if *ifp = netdev_priv(ndev); brcmf_dbg(TRACE, "Enter\n"); if (cfg->wowl_enabled) { brcmf_configure_arp_offload(ifp, true); brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_PM, cfg->pre_wowl_pmmode); brcmf_fil_iovar_int_set(ifp, "wowl_clear", 0); brcmf_config_wowl_pattern(ifp, "clr", NULL, 0, NULL, 0); cfg->wowl_enabled = false; } return 0; } static void brcmf_configure_wowl(struct brcmf_cfg80211_info *cfg, struct brcmf_if *ifp, struct cfg80211_wowlan *wowl) { u32 wowl_config; u32 i; brcmf_dbg(TRACE, "Suspend, wowl config.\n"); brcmf_configure_arp_offload(ifp, false); brcmf_fil_cmd_int_get(ifp, BRCMF_C_GET_PM, &cfg->pre_wowl_pmmode); brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_PM, PM_MAX); wowl_config = 0; if (wowl->disconnect) wowl_config = BRCMF_WOWL_DIS | BRCMF_WOWL_BCN | BRCMF_WOWL_RETR; if (wowl->magic_pkt) wowl_config |= BRCMF_WOWL_MAGIC; if ((wowl->patterns) && (wowl->n_patterns)) { wowl_config |= BRCMF_WOWL_NET; for (i = 0; i < wowl->n_patterns; i++) { brcmf_config_wowl_pattern(ifp, "add", (u8 *)wowl->patterns[i].pattern, wowl->patterns[i].pattern_len, (u8 *)wowl->patterns[i].mask, wowl->patterns[i].pkt_offset); } } brcmf_fil_iovar_int_set(ifp, "wowl", wowl_config); brcmf_fil_iovar_int_set(ifp, "wowl_activate", 1); brcmf_bus_wowl_config(cfg->pub->bus_if, true); cfg->wowl_enabled = true; } static s32 brcmf_cfg80211_suspend(struct wiphy *wiphy, struct cfg80211_wowlan *wowl) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct net_device *ndev = cfg_to_ndev(cfg); struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_cfg80211_vif *vif; brcmf_dbg(TRACE, "Enter\n"); /* if the primary net_device is not READY there is nothing * we can do but pray resume goes smoothly. */ if (!check_vif_up(ifp->vif)) goto exit; /* end any scanning */ if (test_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status)) brcmf_abort_scanning(cfg); if (wowl == NULL) { brcmf_bus_wowl_config(cfg->pub->bus_if, false); list_for_each_entry(vif, &cfg->vif_list, list) { if (!test_bit(BRCMF_VIF_STATUS_READY, &vif->sme_state)) continue; /* While going to suspend if associated with AP * disassociate from AP to save power while system is * in suspended state */ brcmf_link_down(vif, WLAN_REASON_UNSPECIFIED); /* Make sure WPA_Supplicant receives all the event * generated due to DISASSOC call to the fw to keep * the state fw and WPA_Supplicant state consistent */ brcmf_delay(500); } /* Configure MPC */ brcmf_set_mpc(ifp, 1); } else { /* Configure WOWL paramaters */ brcmf_configure_wowl(cfg, ifp, wowl); } exit: brcmf_dbg(TRACE, "Exit\n"); /* clear any scanning activity */ cfg->scan_status = 0; return 0; } static __used s32 brcmf_update_pmklist(struct net_device *ndev, struct brcmf_cfg80211_pmk_list *pmk_list, s32 err) { int i, j; u32 pmkid_len; pmkid_len = le32_to_cpu(pmk_list->pmkids.npmkid); brcmf_dbg(CONN, "No of elements %d\n", pmkid_len); for (i = 0; i < pmkid_len; i++) { brcmf_dbg(CONN, "PMKID[%d]: %pM =\n", i, &pmk_list->pmkids.pmkid[i].BSSID); for (j = 0; j < WLAN_PMKID_LEN; j++) brcmf_dbg(CONN, "%02x\n", pmk_list->pmkids.pmkid[i].PMKID[j]); } if (!err) brcmf_fil_iovar_data_set(netdev_priv(ndev), "pmkid_info", (char *)pmk_list, sizeof(*pmk_list)); return err; } static s32 brcmf_cfg80211_set_pmksa(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_pmksa *pmksa) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_if *ifp = netdev_priv(ndev); struct pmkid_list *pmkids = &cfg->pmk_list->pmkids; s32 err = 0; u32 pmkid_len, i; brcmf_dbg(TRACE, "Enter\n"); if (!check_vif_up(ifp->vif)) return -EIO; pmkid_len = le32_to_cpu(pmkids->npmkid); for (i = 0; i < pmkid_len; i++) if (!memcmp(pmksa->bssid, pmkids->pmkid[i].BSSID, ETH_ALEN)) break; if (i < WL_NUM_PMKIDS_MAX) { memcpy(pmkids->pmkid[i].BSSID, pmksa->bssid, ETH_ALEN); memcpy(pmkids->pmkid[i].PMKID, pmksa->pmkid, WLAN_PMKID_LEN); if (i == pmkid_len) { pmkid_len++; pmkids->npmkid = cpu_to_le32(pmkid_len); } } else err = -EINVAL; brcmf_dbg(CONN, "set_pmksa,IW_PMKSA_ADD - PMKID: %pM =\n", pmkids->pmkid[pmkid_len].BSSID); for (i = 0; i < WLAN_PMKID_LEN; i++) brcmf_dbg(CONN, "%02x\n", pmkids->pmkid[pmkid_len].PMKID[i]); err = brcmf_update_pmklist(ndev, cfg->pmk_list, err); brcmf_dbg(TRACE, "Exit\n"); return err; } static s32 brcmf_cfg80211_del_pmksa(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_pmksa *pmksa) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_if *ifp = netdev_priv(ndev); struct pmkid_list pmkid; s32 err = 0; u32 pmkid_len, i; brcmf_dbg(TRACE, "Enter\n"); if (!check_vif_up(ifp->vif)) return -EIO; memcpy(&pmkid.pmkid[0].BSSID, pmksa->bssid, ETH_ALEN); memcpy(&pmkid.pmkid[0].PMKID, pmksa->pmkid, WLAN_PMKID_LEN); brcmf_dbg(CONN, "del_pmksa,IW_PMKSA_REMOVE - PMKID: %pM =\n", &pmkid.pmkid[0].BSSID); for (i = 0; i < WLAN_PMKID_LEN; i++) brcmf_dbg(CONN, "%02x\n", pmkid.pmkid[0].PMKID[i]); pmkid_len = le32_to_cpu(cfg->pmk_list->pmkids.npmkid); for (i = 0; i < pmkid_len; i++) if (!memcmp (pmksa->bssid, &cfg->pmk_list->pmkids.pmkid[i].BSSID, ETH_ALEN)) break; if ((pmkid_len > 0) && (i < pmkid_len)) { memset(&cfg->pmk_list->pmkids.pmkid[i], 0, sizeof(struct pmkid)); for (; i < (pmkid_len - 1); i++) { memcpy(&cfg->pmk_list->pmkids.pmkid[i].BSSID, &cfg->pmk_list->pmkids.pmkid[i + 1].BSSID, ETH_ALEN); memcpy(&cfg->pmk_list->pmkids.pmkid[i].PMKID, &cfg->pmk_list->pmkids.pmkid[i + 1].PMKID, WLAN_PMKID_LEN); } cfg->pmk_list->pmkids.npmkid = cpu_to_le32(pmkid_len - 1); } else err = -EINVAL; err = brcmf_update_pmklist(ndev, cfg->pmk_list, err); brcmf_dbg(TRACE, "Exit\n"); return err; } static s32 brcmf_cfg80211_flush_pmksa(struct wiphy *wiphy, struct net_device *ndev) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_if *ifp = netdev_priv(ndev); s32 err = 0; brcmf_dbg(TRACE, "Enter\n"); if (!check_vif_up(ifp->vif)) return -EIO; memset(cfg->pmk_list, 0, sizeof(*cfg->pmk_list)); err = brcmf_update_pmklist(ndev, cfg->pmk_list, err); brcmf_dbg(TRACE, "Exit\n"); return err; } /* * PFN result doesn't have all the info which are * required by the supplicant * (For e.g IEs) Do a target Escan so that sched scan results are reported * via wl_inform_single_bss in the required format. Escan does require the * scan request in the form of cfg80211_scan_request. For timebeing, create * cfg80211_scan_request one out of the received PNO event. */ static s32 brcmf_notify_sched_scan_results(struct brcmf_if *ifp, const struct brcmf_event_msg *e, void *data) { struct brcmf_cfg80211_info *cfg = ifp->drvr->config; struct brcmf_pno_net_info_le *netinfo, *netinfo_start; struct cfg80211_scan_request *request = NULL; struct cfg80211_ssid *ssid = NULL; struct ieee80211_channel *channel = NULL; struct wiphy *wiphy = cfg_to_wiphy(cfg); int err = 0; int channel_req = 0; int band = 0; struct brcmf_pno_scanresults_le *pfn_result; u32 result_count; u32 status; brcmf_dbg(SCAN, "Enter\n"); if (e->event_code == BRCMF_E_PFN_NET_LOST) { brcmf_dbg(SCAN, "PFN NET LOST event. Do Nothing\n"); return 0; } pfn_result = (struct brcmf_pno_scanresults_le *)data; result_count = le32_to_cpu(pfn_result->count); status = le32_to_cpu(pfn_result->status); /* * PFN event is limited to fit 512 bytes so we may get * multiple NET_FOUND events. For now place a warning here. */ WARN_ON(status != BRCMF_PNO_SCAN_COMPLETE); brcmf_dbg(SCAN, "PFN NET FOUND event. count: %d\n", result_count); if (result_count > 0) { int i; request = kzalloc(sizeof(*request), GFP_KERNEL); ssid = kcalloc(result_count, sizeof(*ssid), GFP_KERNEL); channel = kcalloc(result_count, sizeof(*channel), GFP_KERNEL); if (!request || !ssid || !channel) { err = -ENOMEM; goto out_err; } request->wiphy = wiphy; data += sizeof(struct brcmf_pno_scanresults_le); netinfo_start = (struct brcmf_pno_net_info_le *)data; for (i = 0; i < result_count; i++) { netinfo = &netinfo_start[i]; if (!netinfo) { brcmf_err("Invalid netinfo ptr. index: %d\n", i); err = -EINVAL; goto out_err; } brcmf_dbg(SCAN, "SSID:%s Channel:%d\n", netinfo->SSID, netinfo->channel); memcpy(ssid[i].ssid, netinfo->SSID, netinfo->SSID_len); ssid[i].ssid_len = netinfo->SSID_len; request->n_ssids++; channel_req = netinfo->channel; if (channel_req <= CH_MAX_2G_CHANNEL) band = NL80211_BAND_2GHZ; else band = NL80211_BAND_5GHZ; channel[i].center_freq = ieee80211_channel_to_frequency(channel_req, band); channel[i].band = band; channel[i].flags |= IEEE80211_CHAN_NO_HT40; request->channels[i] = &channel[i]; request->n_channels++; } /* assign parsed ssid array */ if (request->n_ssids) request->ssids = &ssid[0]; if (test_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status)) { /* Abort any on-going scan */ brcmf_abort_scanning(cfg); } set_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status); cfg->escan_info.run = brcmf_run_escan; err = brcmf_do_escan(cfg, wiphy, ifp, request); if (err) { clear_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status); goto out_err; } cfg->sched_escan = true; cfg->scan_request = request; } else { brcmf_err("FALSE PNO Event. (pfn_count == 0)\n"); goto out_err; } kfree(ssid); kfree(channel); kfree(request); return 0; out_err: kfree(ssid); kfree(channel); kfree(request); cfg80211_sched_scan_stopped(wiphy); return err; } static int brcmf_dev_pno_clean(struct net_device *ndev) { int ret; /* Disable pfn */ ret = brcmf_fil_iovar_int_set(netdev_priv(ndev), "pfn", 0); if (ret == 0) { /* clear pfn */ ret = brcmf_fil_iovar_data_set(netdev_priv(ndev), "pfnclear", NULL, 0); } if (ret < 0) brcmf_err("failed code %d\n", ret); return ret; } static int brcmf_dev_pno_config(struct net_device *ndev) { struct brcmf_pno_param_le pfn_param; memset(&pfn_param, 0, sizeof(pfn_param)); pfn_param.version = cpu_to_le32(BRCMF_PNO_VERSION); /* set extra pno params */ pfn_param.flags = cpu_to_le16(1 << BRCMF_PNO_ENABLE_ADAPTSCAN_BIT); pfn_param.repeat = BRCMF_PNO_REPEAT; pfn_param.exp = BRCMF_PNO_FREQ_EXPO_MAX; /* set up pno scan fr */ pfn_param.scan_freq = cpu_to_le32(BRCMF_PNO_TIME); return brcmf_fil_iovar_data_set(netdev_priv(ndev), "pfn_set", &pfn_param, sizeof(pfn_param)); } static int brcmf_cfg80211_sched_scan_start(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_sched_scan_request *request) { struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_cfg80211_info *cfg = wiphy_priv(wiphy); struct brcmf_pno_net_param_le pfn; int i; int ret = 0; brcmf_dbg(SCAN, "Enter n_match_sets:%d n_ssids:%d\n", request->n_match_sets, request->n_ssids); if (test_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status)) { brcmf_err("Scanning already: status (%lu)\n", cfg->scan_status); return -EAGAIN; } if (test_bit(BRCMF_SCAN_STATUS_SUPPRESS, &cfg->scan_status)) { brcmf_err("Scanning suppressed: status (%lu)\n", cfg->scan_status); return -EAGAIN; } if (!request->n_ssids || !request->n_match_sets) { brcmf_dbg(SCAN, "Invalid sched scan req!! n_ssids:%d\n", request->n_ssids); return -EINVAL; } if (request->n_ssids > 0) { for (i = 0; i < request->n_ssids; i++) { /* Active scan req for ssids */ brcmf_dbg(SCAN, ">>> Active scan req for ssid (%s)\n", request->ssids[i].ssid); /* * match_set ssids is a supert set of n_ssid list, * so we need not add these set seperately. */ } } if (request->n_match_sets > 0) { /* clean up everything */ ret = brcmf_dev_pno_clean(ndev); if (ret < 0) { brcmf_err("failed error=%d\n", ret); return ret; } /* configure pno */ ret = brcmf_dev_pno_config(ndev); if (ret < 0) { brcmf_err("PNO setup failed!! ret=%d\n", ret); return -EINVAL; } /* configure each match set */ for (i = 0; i < request->n_match_sets; i++) { struct cfg80211_ssid *ssid; u32 ssid_len; ssid = &request->match_sets[i].ssid; ssid_len = ssid->ssid_len; if (!ssid_len) { brcmf_err("skip broadcast ssid\n"); continue; } pfn.auth = cpu_to_le32(WLAN_AUTH_OPEN); pfn.wpa_auth = cpu_to_le32(BRCMF_PNO_WPA_AUTH_ANY); pfn.wsec = cpu_to_le32(0); pfn.infra = cpu_to_le32(1); pfn.flags = cpu_to_le32(1 << BRCMF_PNO_HIDDEN_BIT); pfn.ssid.SSID_len = cpu_to_le32(ssid_len); memcpy(pfn.ssid.SSID, ssid->ssid, ssid_len); ret = brcmf_fil_iovar_data_set(ifp, "pfn_add", &pfn, sizeof(pfn)); brcmf_dbg(SCAN, ">>> PNO filter %s for ssid (%s)\n", ret == 0 ? "set" : "failed", ssid->ssid); } /* Enable the PNO */ if (brcmf_fil_iovar_int_set(ifp, "pfn", 1) < 0) { brcmf_err("PNO enable failed!! ret=%d\n", ret); return -EINVAL; } } else { return -EINVAL; } return 0; } static int brcmf_cfg80211_sched_scan_stop(struct wiphy *wiphy, struct net_device *ndev) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); brcmf_dbg(SCAN, "enter\n"); brcmf_dev_pno_clean(ndev); if (cfg->sched_escan) brcmf_notify_escan_complete(cfg, netdev_priv(ndev), true, true); return 0; } static s32 brcmf_configure_opensecurity(struct brcmf_if *ifp) { s32 err; /* set auth */ err = brcmf_fil_bsscfg_int_set(ifp, "auth", 0); if (err < 0) { brcmf_err("auth error %d\n", err); return err; } /* set wsec */ err = brcmf_fil_bsscfg_int_set(ifp, "wsec", 0); if (err < 0) { brcmf_err("wsec error %d\n", err); return err; } /* set upper-layer auth */ err = brcmf_fil_bsscfg_int_set(ifp, "wpa_auth", WPA_AUTH_NONE); if (err < 0) { brcmf_err("wpa_auth error %d\n", err); return err; } return 0; } static bool brcmf_valid_wpa_oui(u8 *oui, bool is_rsn_ie) { if (is_rsn_ie) return (memcmp(oui, RSN_OUI, TLV_OUI_LEN) == 0); return (memcmp(oui, WPA_OUI, TLV_OUI_LEN) == 0); } static s32 brcmf_configure_wpaie(struct brcmf_if *ifp, const struct brcmf_vs_tlv *wpa_ie, bool is_rsn_ie) { u32 auth = 0; /* d11 open authentication */ u16 count; s32 err = 0; s32 len = 0; u32 i; u32 wsec; u32 pval = 0; u32 gval = 0; u32 wpa_auth = 0; u32 offset; u8 *data; u16 rsn_cap; u32 wme_bss_disable; brcmf_dbg(TRACE, "Enter\n"); if (wpa_ie == NULL) goto exit; len = wpa_ie->len + TLV_HDR_LEN; data = (u8 *)wpa_ie; offset = TLV_HDR_LEN; if (!is_rsn_ie) offset += VS_IE_FIXED_HDR_LEN; else offset += WPA_IE_VERSION_LEN; /* check for multicast cipher suite */ if (offset + WPA_IE_MIN_OUI_LEN > len) { err = -EINVAL; brcmf_err("no multicast cipher suite\n"); goto exit; } if (!brcmf_valid_wpa_oui(&data[offset], is_rsn_ie)) { err = -EINVAL; brcmf_err("ivalid OUI\n"); goto exit; } offset += TLV_OUI_LEN; /* pick up multicast cipher */ switch (data[offset]) { case WPA_CIPHER_NONE: gval = 0; break; case WPA_CIPHER_WEP_40: case WPA_CIPHER_WEP_104: gval = WEP_ENABLED; break; case WPA_CIPHER_TKIP: gval = TKIP_ENABLED; break; case WPA_CIPHER_AES_CCM: gval = AES_ENABLED; break; default: err = -EINVAL; brcmf_err("Invalid multi cast cipher info\n"); goto exit; } offset++; /* walk thru unicast cipher list and pick up what we recognize */ count = data[offset] + (data[offset + 1] << 8); offset += WPA_IE_SUITE_COUNT_LEN; /* Check for unicast suite(s) */ if (offset + (WPA_IE_MIN_OUI_LEN * count) > len) { err = -EINVAL; brcmf_err("no unicast cipher suite\n"); goto exit; } for (i = 0; i < count; i++) { if (!brcmf_valid_wpa_oui(&data[offset], is_rsn_ie)) { err = -EINVAL; brcmf_err("ivalid OUI\n"); goto exit; } offset += TLV_OUI_LEN; switch (data[offset]) { case WPA_CIPHER_NONE: break; case WPA_CIPHER_WEP_40: case WPA_CIPHER_WEP_104: pval |= WEP_ENABLED; break; case WPA_CIPHER_TKIP: pval |= TKIP_ENABLED; break; case WPA_CIPHER_AES_CCM: pval |= AES_ENABLED; break; default: brcmf_err("Ivalid unicast security info\n"); } offset++; } /* walk thru auth management suite list and pick up what we recognize */ count = data[offset] + (data[offset + 1] << 8); offset += WPA_IE_SUITE_COUNT_LEN; /* Check for auth key management suite(s) */ if (offset + (WPA_IE_MIN_OUI_LEN * count) > len) { err = -EINVAL; brcmf_err("no auth key mgmt suite\n"); goto exit; } for (i = 0; i < count; i++) { if (!brcmf_valid_wpa_oui(&data[offset], is_rsn_ie)) { err = -EINVAL; brcmf_err("ivalid OUI\n"); goto exit; } offset += TLV_OUI_LEN; switch (data[offset]) { case RSN_AKM_NONE: brcmf_dbg(TRACE, "RSN_AKM_NONE\n"); wpa_auth |= WPA_AUTH_NONE; break; case RSN_AKM_UNSPECIFIED: brcmf_dbg(TRACE, "RSN_AKM_UNSPECIFIED\n"); is_rsn_ie ? (wpa_auth |= WPA2_AUTH_UNSPECIFIED) : (wpa_auth |= WPA_AUTH_UNSPECIFIED); break; case RSN_AKM_PSK: brcmf_dbg(TRACE, "RSN_AKM_PSK\n"); is_rsn_ie ? (wpa_auth |= WPA2_AUTH_PSK) : (wpa_auth |= WPA_AUTH_PSK); break; default: brcmf_err("Ivalid key mgmt info\n"); } offset++; } if (is_rsn_ie) { wme_bss_disable = 1; if ((offset + RSN_CAP_LEN) <= len) { rsn_cap = data[offset] + (data[offset + 1] << 8); if (rsn_cap & RSN_CAP_PTK_REPLAY_CNTR_MASK) wme_bss_disable = 0; } /* set wme_bss_disable to sync RSN Capabilities */ err = brcmf_fil_bsscfg_int_set(ifp, "wme_bss_disable", wme_bss_disable); if (err < 0) { brcmf_err("wme_bss_disable error %d\n", err); goto exit; } } /* FOR WPS , set SES_OW_ENABLED */ wsec = (pval | gval | SES_OW_ENABLED); /* set auth */ err = brcmf_fil_bsscfg_int_set(ifp, "auth", auth); if (err < 0) { brcmf_err("auth error %d\n", err); goto exit; } /* set wsec */ err = brcmf_fil_bsscfg_int_set(ifp, "wsec", wsec); if (err < 0) { brcmf_err("wsec error %d\n", err); goto exit; } /* set upper-layer auth */ err = brcmf_fil_bsscfg_int_set(ifp, "wpa_auth", wpa_auth); if (err < 0) { brcmf_err("wpa_auth error %d\n", err); goto exit; } exit: return err; } static s32 brcmf_parse_vndr_ies(const u8 *vndr_ie_buf, u32 vndr_ie_len, struct parsed_vndr_ies *vndr_ies) { struct brcmf_vs_tlv *vndrie; struct brcmf_tlv *ie; struct parsed_vndr_ie_info *parsed_info; s32 remaining_len; remaining_len = (s32)vndr_ie_len; memset(vndr_ies, 0, sizeof(*vndr_ies)); ie = (struct brcmf_tlv *)vndr_ie_buf; while (ie) { if (ie->id != WLAN_EID_VENDOR_SPECIFIC) goto next; vndrie = (struct brcmf_vs_tlv *)ie; /* len should be bigger than OUI length + one */ if (vndrie->len < (VS_IE_FIXED_HDR_LEN - TLV_HDR_LEN + 1)) { brcmf_err("invalid vndr ie. length is too small %d\n", vndrie->len); goto next; } /* if wpa or wme ie, do not add ie */ if (!memcmp(vndrie->oui, (u8 *)WPA_OUI, TLV_OUI_LEN) && ((vndrie->oui_type == WPA_OUI_TYPE) || (vndrie->oui_type == WME_OUI_TYPE))) { brcmf_dbg(TRACE, "Found WPA/WME oui. Do not add it\n"); goto next; } parsed_info = &vndr_ies->ie_info[vndr_ies->count]; /* save vndr ie information */ parsed_info->ie_ptr = (char *)vndrie; parsed_info->ie_len = vndrie->len + TLV_HDR_LEN; memcpy(&parsed_info->vndrie, vndrie, sizeof(*vndrie)); vndr_ies->count++; brcmf_dbg(TRACE, "** OUI %02x %02x %02x, type 0x%02x\n", parsed_info->vndrie.oui[0], parsed_info->vndrie.oui[1], parsed_info->vndrie.oui[2], parsed_info->vndrie.oui_type); if (vndr_ies->count >= VNDR_IE_PARSE_LIMIT) break; next: remaining_len -= (ie->len + TLV_HDR_LEN); if (remaining_len <= TLV_HDR_LEN) ie = NULL; else ie = (struct brcmf_tlv *)(((u8 *)ie) + ie->len + TLV_HDR_LEN); } return 0; } static u32 brcmf_vndr_ie(u8 *iebuf, s32 pktflag, u8 *ie_ptr, u32 ie_len, s8 *add_del_cmd) { strncpy(iebuf, add_del_cmd, VNDR_IE_CMD_LEN - 1); iebuf[VNDR_IE_CMD_LEN - 1] = '\0'; put_unaligned_le32(1, &iebuf[VNDR_IE_COUNT_OFFSET]); put_unaligned_le32(pktflag, &iebuf[VNDR_IE_PKTFLAG_OFFSET]); memcpy(&iebuf[VNDR_IE_VSIE_OFFSET], ie_ptr, ie_len); return ie_len + VNDR_IE_HDR_SIZE; } s32 brcmf_vif_set_mgmt_ie(struct brcmf_cfg80211_vif *vif, s32 pktflag, const u8 *vndr_ie_buf, u32 vndr_ie_len) { struct brcmf_if *ifp; struct vif_saved_ie *saved_ie; s32 err = 0; u8 *iovar_ie_buf; u8 *curr_ie_buf; u8 *mgmt_ie_buf = NULL; int mgmt_ie_buf_len; u32 *mgmt_ie_len; u32 del_add_ie_buf_len = 0; u32 total_ie_buf_len = 0; u32 parsed_ie_buf_len = 0; struct parsed_vndr_ies old_vndr_ies; struct parsed_vndr_ies new_vndr_ies; struct parsed_vndr_ie_info *vndrie_info; s32 i; u8 *ptr; int remained_buf_len; if (!vif) return -ENODEV; ifp = vif->ifp; saved_ie = &vif->saved_ie; brcmf_dbg(TRACE, "bssidx %d, pktflag : 0x%02X\n", ifp->bssidx, pktflag); iovar_ie_buf = kzalloc(WL_EXTRA_BUF_MAX, GFP_KERNEL); if (!iovar_ie_buf) return -ENOMEM; curr_ie_buf = iovar_ie_buf; switch (pktflag) { case BRCMF_VNDR_IE_PRBREQ_FLAG: mgmt_ie_buf = saved_ie->probe_req_ie; mgmt_ie_len = &saved_ie->probe_req_ie_len; mgmt_ie_buf_len = sizeof(saved_ie->probe_req_ie); break; case BRCMF_VNDR_IE_PRBRSP_FLAG: mgmt_ie_buf = saved_ie->probe_res_ie; mgmt_ie_len = &saved_ie->probe_res_ie_len; mgmt_ie_buf_len = sizeof(saved_ie->probe_res_ie); break; case BRCMF_VNDR_IE_BEACON_FLAG: mgmt_ie_buf = saved_ie->beacon_ie; mgmt_ie_len = &saved_ie->beacon_ie_len; mgmt_ie_buf_len = sizeof(saved_ie->beacon_ie); break; case BRCMF_VNDR_IE_ASSOCREQ_FLAG: mgmt_ie_buf = saved_ie->assoc_req_ie; mgmt_ie_len = &saved_ie->assoc_req_ie_len; mgmt_ie_buf_len = sizeof(saved_ie->assoc_req_ie); break; default: err = -EPERM; brcmf_err("not suitable type\n"); goto exit; } if (vndr_ie_len > mgmt_ie_buf_len) { err = -ENOMEM; brcmf_err("extra IE size too big\n"); goto exit; } /* parse and save new vndr_ie in curr_ie_buff before comparing it */ if (vndr_ie_buf && vndr_ie_len && curr_ie_buf) { ptr = curr_ie_buf; brcmf_parse_vndr_ies(vndr_ie_buf, vndr_ie_len, &new_vndr_ies); for (i = 0; i < new_vndr_ies.count; i++) { vndrie_info = &new_vndr_ies.ie_info[i]; memcpy(ptr + parsed_ie_buf_len, vndrie_info->ie_ptr, vndrie_info->ie_len); parsed_ie_buf_len += vndrie_info->ie_len; } } if (mgmt_ie_buf && *mgmt_ie_len) { if (parsed_ie_buf_len && (parsed_ie_buf_len == *mgmt_ie_len) && (memcmp(mgmt_ie_buf, curr_ie_buf, parsed_ie_buf_len) == 0)) { brcmf_dbg(TRACE, "Previous mgmt IE equals to current IE\n"); goto exit; } /* parse old vndr_ie */ brcmf_parse_vndr_ies(mgmt_ie_buf, *mgmt_ie_len, &old_vndr_ies); /* make a command to delete old ie */ for (i = 0; i < old_vndr_ies.count; i++) { vndrie_info = &old_vndr_ies.ie_info[i]; brcmf_dbg(TRACE, "DEL ID : %d, Len: %d , OUI:%02x:%02x:%02x\n", vndrie_info->vndrie.id, vndrie_info->vndrie.len, vndrie_info->vndrie.oui[0], vndrie_info->vndrie.oui[1], vndrie_info->vndrie.oui[2]); del_add_ie_buf_len = brcmf_vndr_ie(curr_ie_buf, pktflag, vndrie_info->ie_ptr, vndrie_info->ie_len, "del"); curr_ie_buf += del_add_ie_buf_len; total_ie_buf_len += del_add_ie_buf_len; } } *mgmt_ie_len = 0; /* Add if there is any extra IE */ if (mgmt_ie_buf && parsed_ie_buf_len) { ptr = mgmt_ie_buf; remained_buf_len = mgmt_ie_buf_len; /* make a command to add new ie */ for (i = 0; i < new_vndr_ies.count; i++) { vndrie_info = &new_vndr_ies.ie_info[i]; /* verify remained buf size before copy data */ if (remained_buf_len < (vndrie_info->vndrie.len + VNDR_IE_VSIE_OFFSET)) { brcmf_err("no space in mgmt_ie_buf: len left %d", remained_buf_len); break; } remained_buf_len -= (vndrie_info->ie_len + VNDR_IE_VSIE_OFFSET); brcmf_dbg(TRACE, "ADDED ID : %d, Len: %d, OUI:%02x:%02x:%02x\n", vndrie_info->vndrie.id, vndrie_info->vndrie.len, vndrie_info->vndrie.oui[0], vndrie_info->vndrie.oui[1], vndrie_info->vndrie.oui[2]); del_add_ie_buf_len = brcmf_vndr_ie(curr_ie_buf, pktflag, vndrie_info->ie_ptr, vndrie_info->ie_len, "add"); /* save the parsed IE in wl struct */ memcpy(ptr + (*mgmt_ie_len), vndrie_info->ie_ptr, vndrie_info->ie_len); *mgmt_ie_len += vndrie_info->ie_len; curr_ie_buf += del_add_ie_buf_len; total_ie_buf_len += del_add_ie_buf_len; } } if (total_ie_buf_len) { err = brcmf_fil_bsscfg_data_set(ifp, "vndr_ie", iovar_ie_buf, total_ie_buf_len); if (err) brcmf_err("vndr ie set error : %d\n", err); } exit: kfree(iovar_ie_buf); return err; } s32 brcmf_vif_clear_mgmt_ies(struct brcmf_cfg80211_vif *vif) { s32 pktflags[] = { BRCMF_VNDR_IE_PRBREQ_FLAG, BRCMF_VNDR_IE_PRBRSP_FLAG, BRCMF_VNDR_IE_BEACON_FLAG }; int i; for (i = 0; i < ARRAY_SIZE(pktflags); i++) brcmf_vif_set_mgmt_ie(vif, pktflags[i], NULL, 0); memset(&vif->saved_ie, 0, sizeof(vif->saved_ie)); return 0; } static s32 brcmf_config_ap_mgmt_ie(struct brcmf_cfg80211_vif *vif, struct cfg80211_beacon_data *beacon) { s32 err; /* Set Beacon IEs to FW */ err = brcmf_vif_set_mgmt_ie(vif, BRCMF_VNDR_IE_BEACON_FLAG, beacon->tail, beacon->tail_len); if (err) { brcmf_err("Set Beacon IE Failed\n"); return err; } brcmf_dbg(TRACE, "Applied Vndr IEs for Beacon\n"); /* Set Probe Response IEs to FW */ err = brcmf_vif_set_mgmt_ie(vif, BRCMF_VNDR_IE_PRBRSP_FLAG, beacon->proberesp_ies, beacon->proberesp_ies_len); if (err) brcmf_err("Set Probe Resp IE Failed\n"); else brcmf_dbg(TRACE, "Applied Vndr IEs for Probe Resp\n"); return err; } static s32 brcmf_cfg80211_start_ap(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_ap_settings *settings) { s32 ie_offset; struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_if *ifp = netdev_priv(ndev); const struct brcmf_tlv *ssid_ie; const struct brcmf_tlv *country_ie; struct brcmf_ssid_le ssid_le; s32 err = -EPERM; const struct brcmf_tlv *rsn_ie; const struct brcmf_vs_tlv *wpa_ie; struct brcmf_join_params join_params; enum nl80211_iftype dev_role; struct brcmf_fil_bss_enable_le bss_enable; u16 chanspec; bool mbss; int is_11d; brcmf_dbg(TRACE, "ctrlchn=%d, center=%d, bw=%d, beacon_interval=%d, dtim_period=%d,\n", settings->chandef.chan->hw_value, settings->chandef.center_freq1, settings->chandef.width, settings->beacon_interval, settings->dtim_period); brcmf_dbg(TRACE, "ssid=%s(%zu), auth_type=%d, inactivity_timeout=%d\n", settings->ssid, settings->ssid_len, settings->auth_type, settings->inactivity_timeout); dev_role = ifp->vif->wdev.iftype; mbss = ifp->vif->mbss; /* store current 11d setting */ brcmf_fil_cmd_int_get(ifp, BRCMF_C_GET_REGULATORY, &ifp->vif->is_11d); country_ie = brcmf_parse_tlvs((u8 *)settings->beacon.tail, settings->beacon.tail_len, WLAN_EID_COUNTRY); is_11d = country_ie ? 1 : 0; memset(&ssid_le, 0, sizeof(ssid_le)); if (settings->ssid == NULL || settings->ssid_len == 0) { ie_offset = DOT11_MGMT_HDR_LEN + DOT11_BCN_PRB_FIXED_LEN; ssid_ie = brcmf_parse_tlvs( (u8 *)&settings->beacon.head[ie_offset], settings->beacon.head_len - ie_offset, WLAN_EID_SSID); if (!ssid_ie) return -EINVAL; memcpy(ssid_le.SSID, ssid_ie->data, ssid_ie->len); ssid_le.SSID_len = cpu_to_le32(ssid_ie->len); brcmf_dbg(TRACE, "SSID is (%s) in Head\n", ssid_le.SSID); } else { memcpy(ssid_le.SSID, settings->ssid, settings->ssid_len); ssid_le.SSID_len = cpu_to_le32((u32)settings->ssid_len); } if (!mbss) { brcmf_set_mpc(ifp, 0); brcmf_configure_arp_offload(ifp, false); } /* find the RSN_IE */ rsn_ie = brcmf_parse_tlvs((u8 *)settings->beacon.tail, settings->beacon.tail_len, WLAN_EID_RSN); /* find the WPA_IE */ wpa_ie = brcmf_find_wpaie((u8 *)settings->beacon.tail, settings->beacon.tail_len); if ((wpa_ie != NULL || rsn_ie != NULL)) { brcmf_dbg(TRACE, "WPA(2) IE is found\n"); if (wpa_ie != NULL) { /* WPA IE */ err = brcmf_configure_wpaie(ifp, wpa_ie, false); if (err < 0) goto exit; } else { struct brcmf_vs_tlv *tmp_ie; tmp_ie = (struct brcmf_vs_tlv *)rsn_ie; /* RSN IE */ err = brcmf_configure_wpaie(ifp, tmp_ie, true); if (err < 0) goto exit; } } else { brcmf_dbg(TRACE, "No WPA(2) IEs found\n"); brcmf_configure_opensecurity(ifp); } brcmf_config_ap_mgmt_ie(ifp->vif, &settings->beacon); if (!mbss) { chanspec = chandef_to_chanspec(&cfg->d11inf, &settings->chandef); err = brcmf_fil_iovar_int_set(ifp, "chanspec", chanspec); if (err < 0) { brcmf_err("Set Channel failed: chspec=%d, %d\n", chanspec, err); goto exit; } if (is_11d != ifp->vif->is_11d) { err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_REGULATORY, is_11d); if (err < 0) { brcmf_err("Regulatory Set Error, %d\n", err); goto exit; } } if (settings->beacon_interval) { err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_BCNPRD, settings->beacon_interval); if (err < 0) { brcmf_err("Beacon Interval Set Error, %d\n", err); goto exit; } } if (settings->dtim_period) { err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_DTIMPRD, settings->dtim_period); if (err < 0) { brcmf_err("DTIM Interval Set Error, %d\n", err); goto exit; } } if ((dev_role == NL80211_IFTYPE_AP) && ((ifp->ifidx == 0) || !brcmf_feat_is_enabled(ifp, BRCMF_FEAT_RSDB))) { err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_DOWN, 1); if (err < 0) { brcmf_err("BRCMF_C_DOWN error %d\n", err); goto exit; } brcmf_fil_iovar_int_set(ifp, "apsta", 0); } err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_INFRA, 1); if (err < 0) { brcmf_err("SET INFRA error %d\n", err); goto exit; } } else if (WARN_ON(is_11d != ifp->vif->is_11d)) { /* Multiple-BSS should use same 11d configuration */ err = -EINVAL; goto exit; } if (dev_role == NL80211_IFTYPE_AP) { if ((brcmf_feat_is_enabled(ifp, BRCMF_FEAT_MBSS)) && (!mbss)) brcmf_fil_iovar_int_set(ifp, "mbss", 1); err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_AP, 1); if (err < 0) { brcmf_err("setting AP mode failed %d\n", err); goto exit; } err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_UP, 1); if (err < 0) { brcmf_err("BRCMF_C_UP error (%d)\n", err); goto exit; } /* On DOWN the firmware removes the WEP keys, reconfigure * them if they were set. */ brcmf_cfg80211_reconfigure_wep(ifp); memset(&join_params, 0, sizeof(join_params)); /* join parameters starts with ssid */ memcpy(&join_params.ssid_le, &ssid_le, sizeof(ssid_le)); /* create softap */ err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_SSID, &join_params, sizeof(join_params)); if (err < 0) { brcmf_err("SET SSID error (%d)\n", err); goto exit; } brcmf_dbg(TRACE, "AP mode configuration complete\n"); } else { err = brcmf_fil_bsscfg_data_set(ifp, "ssid", &ssid_le, sizeof(ssid_le)); if (err < 0) { brcmf_err("setting ssid failed %d\n", err); goto exit; } bss_enable.bsscfg_idx = cpu_to_le32(ifp->bssidx); bss_enable.enable = cpu_to_le32(1); err = brcmf_fil_iovar_data_set(ifp, "bss", &bss_enable, sizeof(bss_enable)); if (err < 0) { brcmf_err("bss_enable config failed %d\n", err); goto exit; } brcmf_dbg(TRACE, "GO mode configuration complete\n"); } set_bit(BRCMF_VIF_STATUS_AP_CREATED, &ifp->vif->sme_state); brcmf_net_setcarrier(ifp, true); exit: if ((err) && (!mbss)) { brcmf_set_mpc(ifp, 1); brcmf_configure_arp_offload(ifp, true); } return err; } static int brcmf_cfg80211_stop_ap(struct wiphy *wiphy, struct net_device *ndev) { struct brcmf_if *ifp = netdev_priv(ndev); s32 err; struct brcmf_fil_bss_enable_le bss_enable; struct brcmf_join_params join_params; brcmf_dbg(TRACE, "Enter\n"); if (ifp->vif->wdev.iftype == NL80211_IFTYPE_AP) { /* Due to most likely deauths outstanding we sleep */ /* first to make sure they get processed by fw. */ msleep(400); if (ifp->vif->mbss) { err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_DOWN, 1); return err; } memset(&join_params, 0, sizeof(join_params)); err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_SSID, &join_params, sizeof(join_params)); if (err < 0) brcmf_err("SET SSID error (%d)\n", err); err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_DOWN, 1); if (err < 0) brcmf_err("BRCMF_C_DOWN error %d\n", err); err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_AP, 0); if (err < 0) brcmf_err("setting AP mode failed %d\n", err); err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_INFRA, 0); if (err < 0) brcmf_err("setting INFRA mode failed %d\n", err); if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_MBSS)) brcmf_fil_iovar_int_set(ifp, "mbss", 0); err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_REGULATORY, ifp->vif->is_11d); if (err < 0) brcmf_err("restoring REGULATORY setting failed %d\n", err); /* Bring device back up so it can be used again */ err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_UP, 1); if (err < 0) brcmf_err("BRCMF_C_UP error %d\n", err); } else { bss_enable.bsscfg_idx = cpu_to_le32(ifp->bssidx); bss_enable.enable = cpu_to_le32(0); err = brcmf_fil_iovar_data_set(ifp, "bss", &bss_enable, sizeof(bss_enable)); if (err < 0) brcmf_err("bss_enable config failed %d\n", err); } brcmf_set_mpc(ifp, 1); brcmf_configure_arp_offload(ifp, true); clear_bit(BRCMF_VIF_STATUS_AP_CREATED, &ifp->vif->sme_state); brcmf_net_setcarrier(ifp, false); return err; } static s32 brcmf_cfg80211_change_beacon(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_beacon_data *info) { struct brcmf_if *ifp = netdev_priv(ndev); s32 err; brcmf_dbg(TRACE, "Enter\n"); err = brcmf_config_ap_mgmt_ie(ifp->vif, info); return err; } static int brcmf_cfg80211_del_station(struct wiphy *wiphy, struct net_device *ndev, struct station_del_parameters *params) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_scb_val_le scbval; struct brcmf_if *ifp = netdev_priv(ndev); s32 err; if (!params->mac) return -EFAULT; brcmf_dbg(TRACE, "Enter %pM\n", params->mac); if (ifp->vif == cfg->p2p.bss_idx[P2PAPI_BSSCFG_DEVICE].vif) ifp = cfg->p2p.bss_idx[P2PAPI_BSSCFG_PRIMARY].vif->ifp; if (!check_vif_up(ifp->vif)) return -EIO; memcpy(&scbval.ea, params->mac, ETH_ALEN); scbval.val = cpu_to_le32(params->reason_code); err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SCB_DEAUTHENTICATE_FOR_REASON, &scbval, sizeof(scbval)); if (err) brcmf_err("SCB_DEAUTHENTICATE_FOR_REASON failed %d\n", err); brcmf_dbg(TRACE, "Exit\n"); return err; } static int brcmf_cfg80211_change_station(struct wiphy *wiphy, struct net_device *ndev, const u8 *mac, struct station_parameters *params) { struct brcmf_if *ifp = netdev_priv(ndev); s32 err; brcmf_dbg(TRACE, "Enter, MAC %pM, mask 0x%04x set 0x%04x\n", mac, params->sta_flags_mask, params->sta_flags_set); /* Ignore all 00 MAC */ if (is_zero_ether_addr(mac)) return 0; if (!(params->sta_flags_mask & BIT(NL80211_STA_FLAG_AUTHORIZED))) return 0; if (params->sta_flags_set & BIT(NL80211_STA_FLAG_AUTHORIZED)) err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_SCB_AUTHORIZE, (void *)mac, ETH_ALEN); else err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_SCB_DEAUTHORIZE, (void *)mac, ETH_ALEN); if (err < 0) brcmf_err("Setting SCB (de-)authorize failed, %d\n", err); return err; } static void brcmf_cfg80211_mgmt_frame_register(struct wiphy *wiphy, struct wireless_dev *wdev, u16 frame_type, bool reg) { struct brcmf_cfg80211_vif *vif; u16 mgmt_type; brcmf_dbg(TRACE, "Enter, frame_type %04x, reg=%d\n", frame_type, reg); mgmt_type = (frame_type & IEEE80211_FCTL_STYPE) >> 4; vif = container_of(wdev, struct brcmf_cfg80211_vif, wdev); if (reg) vif->mgmt_rx_reg |= BIT(mgmt_type); else vif->mgmt_rx_reg &= ~BIT(mgmt_type); } static int brcmf_cfg80211_mgmt_tx(struct wiphy *wiphy, struct wireless_dev *wdev, struct cfg80211_mgmt_tx_params *params, u64 *cookie) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct ieee80211_channel *chan = params->chan; const u8 *buf = params->buf; size_t len = params->len; const struct ieee80211_mgmt *mgmt; struct brcmf_cfg80211_vif *vif; s32 err = 0; s32 ie_offset; s32 ie_len; struct brcmf_fil_action_frame_le *action_frame; struct brcmf_fil_af_params_le *af_params; bool ack; s32 chan_nr; u32 freq; brcmf_dbg(TRACE, "Enter\n"); *cookie = 0; mgmt = (const struct ieee80211_mgmt *)buf; if (!ieee80211_is_mgmt(mgmt->frame_control)) { brcmf_err("Driver only allows MGMT packet type\n"); return -EPERM; } vif = container_of(wdev, struct brcmf_cfg80211_vif, wdev); if (ieee80211_is_probe_resp(mgmt->frame_control)) { /* Right now the only reason to get a probe response */ /* is for p2p listen response or for p2p GO from */ /* wpa_supplicant. Unfortunately the probe is send */ /* on primary ndev, while dongle wants it on the p2p */ /* vif. Since this is only reason for a probe */ /* response to be sent, the vif is taken from cfg. */ /* If ever desired to send proberesp for non p2p */ /* response then data should be checked for */ /* "DIRECT-". Note in future supplicant will take */ /* dedicated p2p wdev to do this and then this 'hack'*/ /* is not needed anymore. */ ie_offset = DOT11_MGMT_HDR_LEN + DOT11_BCN_PRB_FIXED_LEN; ie_len = len - ie_offset; if (vif == cfg->p2p.bss_idx[P2PAPI_BSSCFG_PRIMARY].vif) vif = cfg->p2p.bss_idx[P2PAPI_BSSCFG_DEVICE].vif; err = brcmf_vif_set_mgmt_ie(vif, BRCMF_VNDR_IE_PRBRSP_FLAG, &buf[ie_offset], ie_len); cfg80211_mgmt_tx_status(wdev, *cookie, buf, len, true, GFP_KERNEL); } else if (ieee80211_is_action(mgmt->frame_control)) { af_params = kzalloc(sizeof(*af_params), GFP_KERNEL); if (af_params == NULL) { brcmf_err("unable to allocate frame\n"); err = -ENOMEM; goto exit; } action_frame = &af_params->action_frame; /* Add the packet Id */ action_frame->packet_id = cpu_to_le32(*cookie); /* Add BSSID */ memcpy(&action_frame->da[0], &mgmt->da[0], ETH_ALEN); memcpy(&af_params->bssid[0], &mgmt->bssid[0], ETH_ALEN); /* Add the length exepted for 802.11 header */ action_frame->len = cpu_to_le16(len - DOT11_MGMT_HDR_LEN); /* Add the channel. Use the one specified as parameter if any or * the current one (got from the firmware) otherwise */ if (chan) freq = chan->center_freq; else brcmf_fil_cmd_int_get(vif->ifp, BRCMF_C_GET_CHANNEL, &freq); chan_nr = ieee80211_frequency_to_channel(freq); af_params->channel = cpu_to_le32(chan_nr); memcpy(action_frame->data, &buf[DOT11_MGMT_HDR_LEN], le16_to_cpu(action_frame->len)); brcmf_dbg(TRACE, "Action frame, cookie=%lld, len=%d, freq=%d\n", *cookie, le16_to_cpu(action_frame->len), freq); ack = brcmf_p2p_send_action_frame(cfg, cfg_to_ndev(cfg), af_params); cfg80211_mgmt_tx_status(wdev, *cookie, buf, len, ack, GFP_KERNEL); kfree(af_params); } else { brcmf_dbg(TRACE, "Unhandled, fc=%04x!!\n", mgmt->frame_control); brcmf_dbg_hex_dump(true, buf, len, "payload, len=%Zu\n", len); } exit: return err; } static int brcmf_cfg80211_cancel_remain_on_channel(struct wiphy *wiphy, struct wireless_dev *wdev, u64 cookie) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_cfg80211_vif *vif; int err = 0; brcmf_dbg(TRACE, "Enter p2p listen cancel\n"); vif = cfg->p2p.bss_idx[P2PAPI_BSSCFG_DEVICE].vif; if (vif == NULL) { brcmf_err("No p2p device available for probe response\n"); err = -ENODEV; goto exit; } brcmf_p2p_cancel_remain_on_channel(vif->ifp); exit: return err; } static int brcmf_cfg80211_crit_proto_start(struct wiphy *wiphy, struct wireless_dev *wdev, enum nl80211_crit_proto_id proto, u16 duration) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_cfg80211_vif *vif; vif = container_of(wdev, struct brcmf_cfg80211_vif, wdev); /* only DHCP support for now */ if (proto != NL80211_CRIT_PROTO_DHCP) return -EINVAL; /* suppress and abort scanning */ set_bit(BRCMF_SCAN_STATUS_SUPPRESS, &cfg->scan_status); brcmf_abort_scanning(cfg); return brcmf_btcoex_set_mode(vif, BRCMF_BTCOEX_DISABLED, duration); } static void brcmf_cfg80211_crit_proto_stop(struct wiphy *wiphy, struct wireless_dev *wdev) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_cfg80211_vif *vif; vif = container_of(wdev, struct brcmf_cfg80211_vif, wdev); brcmf_btcoex_set_mode(vif, BRCMF_BTCOEX_ENABLED, 0); clear_bit(BRCMF_SCAN_STATUS_SUPPRESS, &cfg->scan_status); } static s32 brcmf_notify_tdls_peer_event(struct brcmf_if *ifp, const struct brcmf_event_msg *e, void *data) { switch (e->reason) { case BRCMF_E_REASON_TDLS_PEER_DISCOVERED: brcmf_dbg(TRACE, "TDLS Peer Discovered\n"); break; case BRCMF_E_REASON_TDLS_PEER_CONNECTED: brcmf_dbg(TRACE, "TDLS Peer Connected\n"); brcmf_proto_add_tdls_peer(ifp->drvr, ifp->ifidx, (u8 *)e->addr); break; case BRCMF_E_REASON_TDLS_PEER_DISCONNECTED: brcmf_dbg(TRACE, "TDLS Peer Disconnected\n"); brcmf_proto_delete_peer(ifp->drvr, ifp->ifidx, (u8 *)e->addr); break; } return 0; } static int brcmf_convert_nl80211_tdls_oper(enum nl80211_tdls_operation oper) { int ret; switch (oper) { case NL80211_TDLS_DISCOVERY_REQ: ret = BRCMF_TDLS_MANUAL_EP_DISCOVERY; break; case NL80211_TDLS_SETUP: ret = BRCMF_TDLS_MANUAL_EP_CREATE; break; case NL80211_TDLS_TEARDOWN: ret = BRCMF_TDLS_MANUAL_EP_DELETE; break; default: brcmf_err("unsupported operation: %d\n", oper); ret = -EOPNOTSUPP; } return ret; } static int brcmf_cfg80211_tdls_oper(struct wiphy *wiphy, struct net_device *ndev, const u8 *peer, enum nl80211_tdls_operation oper) { struct brcmf_if *ifp; struct brcmf_tdls_iovar_le info; int ret = 0; ret = brcmf_convert_nl80211_tdls_oper(oper); if (ret < 0) return ret; ifp = netdev_priv(ndev); memset(&info, 0, sizeof(info)); info.mode = (u8)ret; if (peer) memcpy(info.ea, peer, ETH_ALEN); ret = brcmf_fil_iovar_data_set(ifp, "tdls_endpoint", &info, sizeof(info)); if (ret < 0) brcmf_err("tdls_endpoint iovar failed: ret=%d\n", ret); return ret; } static struct cfg80211_ops wl_cfg80211_ops = { .add_virtual_intf = brcmf_cfg80211_add_iface, .del_virtual_intf = brcmf_cfg80211_del_iface, .change_virtual_intf = brcmf_cfg80211_change_iface, .scan = brcmf_cfg80211_scan, .set_wiphy_params = brcmf_cfg80211_set_wiphy_params, .join_ibss = brcmf_cfg80211_join_ibss, .leave_ibss = brcmf_cfg80211_leave_ibss, .get_station = brcmf_cfg80211_get_station, .dump_station = brcmf_cfg80211_dump_station, .set_tx_power = brcmf_cfg80211_set_tx_power, .get_tx_power = brcmf_cfg80211_get_tx_power, .add_key = brcmf_cfg80211_add_key, .del_key = brcmf_cfg80211_del_key, .get_key = brcmf_cfg80211_get_key, .set_default_key = brcmf_cfg80211_config_default_key, .set_default_mgmt_key = brcmf_cfg80211_config_default_mgmt_key, .set_power_mgmt = brcmf_cfg80211_set_power_mgmt, .connect = brcmf_cfg80211_connect, .disconnect = brcmf_cfg80211_disconnect, .suspend = brcmf_cfg80211_suspend, .resume = brcmf_cfg80211_resume, .set_pmksa = brcmf_cfg80211_set_pmksa, .del_pmksa = brcmf_cfg80211_del_pmksa, .flush_pmksa = brcmf_cfg80211_flush_pmksa, .start_ap = brcmf_cfg80211_start_ap, .stop_ap = brcmf_cfg80211_stop_ap, .change_beacon = brcmf_cfg80211_change_beacon, .del_station = brcmf_cfg80211_del_station, .change_station = brcmf_cfg80211_change_station, .sched_scan_start = brcmf_cfg80211_sched_scan_start, .sched_scan_stop = brcmf_cfg80211_sched_scan_stop, .mgmt_frame_register = brcmf_cfg80211_mgmt_frame_register, .mgmt_tx = brcmf_cfg80211_mgmt_tx, .remain_on_channel = brcmf_p2p_remain_on_channel, .cancel_remain_on_channel = brcmf_cfg80211_cancel_remain_on_channel, .start_p2p_device = brcmf_p2p_start_device, .stop_p2p_device = brcmf_p2p_stop_device, .crit_proto_start = brcmf_cfg80211_crit_proto_start, .crit_proto_stop = brcmf_cfg80211_crit_proto_stop, .tdls_oper = brcmf_cfg80211_tdls_oper, }; struct brcmf_cfg80211_vif *brcmf_alloc_vif(struct brcmf_cfg80211_info *cfg, enum nl80211_iftype type, bool pm_block) { struct brcmf_cfg80211_vif *vif_walk; struct brcmf_cfg80211_vif *vif; bool mbss; brcmf_dbg(TRACE, "allocating virtual interface (size=%zu)\n", sizeof(*vif)); vif = kzalloc(sizeof(*vif), GFP_KERNEL); if (!vif) return ERR_PTR(-ENOMEM); vif->wdev.wiphy = cfg->wiphy; vif->wdev.iftype = type; vif->pm_block = pm_block; vif->roam_off = -1; brcmf_init_prof(&vif->profile); if (type == NL80211_IFTYPE_AP) { mbss = false; list_for_each_entry(vif_walk, &cfg->vif_list, list) { if (vif_walk->wdev.iftype == NL80211_IFTYPE_AP) { mbss = true; break; } } vif->mbss = mbss; } list_add_tail(&vif->list, &cfg->vif_list); return vif; } void brcmf_free_vif(struct brcmf_cfg80211_vif *vif) { list_del(&vif->list); kfree(vif); } void brcmf_cfg80211_free_netdev(struct net_device *ndev) { struct brcmf_cfg80211_vif *vif; struct brcmf_if *ifp; ifp = netdev_priv(ndev); vif = ifp->vif; if (vif) brcmf_free_vif(vif); free_netdev(ndev); } static bool brcmf_is_linkup(const struct brcmf_event_msg *e) { u32 event = e->event_code; u32 status = e->status; if (event == BRCMF_E_SET_SSID && status == BRCMF_E_STATUS_SUCCESS) { brcmf_dbg(CONN, "Processing set ssid\n"); return true; } return false; } static bool brcmf_is_linkdown(const struct brcmf_event_msg *e) { u32 event = e->event_code; u16 flags = e->flags; if ((event == BRCMF_E_DEAUTH) || (event == BRCMF_E_DEAUTH_IND) || (event == BRCMF_E_DISASSOC_IND) || ((event == BRCMF_E_LINK) && (!(flags & BRCMF_EVENT_MSG_LINK)))) { brcmf_dbg(CONN, "Processing link down\n"); return true; } return false; } static bool brcmf_is_nonetwork(struct brcmf_cfg80211_info *cfg, const struct brcmf_event_msg *e) { u32 event = e->event_code; u32 status = e->status; if (event == BRCMF_E_LINK && status == BRCMF_E_STATUS_NO_NETWORKS) { brcmf_dbg(CONN, "Processing Link %s & no network found\n", e->flags & BRCMF_EVENT_MSG_LINK ? "up" : "down"); return true; } if (event == BRCMF_E_SET_SSID && status != BRCMF_E_STATUS_SUCCESS) { brcmf_dbg(CONN, "Processing connecting & no network found\n"); return true; } return false; } static void brcmf_clear_assoc_ies(struct brcmf_cfg80211_info *cfg) { struct brcmf_cfg80211_connect_info *conn_info = cfg_to_conn(cfg); kfree(conn_info->req_ie); conn_info->req_ie = NULL; conn_info->req_ie_len = 0; kfree(conn_info->resp_ie); conn_info->resp_ie = NULL; conn_info->resp_ie_len = 0; } static s32 brcmf_get_assoc_ies(struct brcmf_cfg80211_info *cfg, struct brcmf_if *ifp) { struct brcmf_cfg80211_assoc_ielen_le *assoc_info; struct brcmf_cfg80211_connect_info *conn_info = cfg_to_conn(cfg); u32 req_len; u32 resp_len; s32 err = 0; brcmf_clear_assoc_ies(cfg); err = brcmf_fil_iovar_data_get(ifp, "assoc_info", cfg->extra_buf, WL_ASSOC_INFO_MAX); if (err) { brcmf_err("could not get assoc info (%d)\n", err); return err; } assoc_info = (struct brcmf_cfg80211_assoc_ielen_le *)cfg->extra_buf; req_len = le32_to_cpu(assoc_info->req_len); resp_len = le32_to_cpu(assoc_info->resp_len); if (req_len) { err = brcmf_fil_iovar_data_get(ifp, "assoc_req_ies", cfg->extra_buf, WL_ASSOC_INFO_MAX); if (err) { brcmf_err("could not get assoc req (%d)\n", err); return err; } conn_info->req_ie_len = req_len; conn_info->req_ie = kmemdup(cfg->extra_buf, conn_info->req_ie_len, GFP_KERNEL); } else { conn_info->req_ie_len = 0; conn_info->req_ie = NULL; } if (resp_len) { err = brcmf_fil_iovar_data_get(ifp, "assoc_resp_ies", cfg->extra_buf, WL_ASSOC_INFO_MAX); if (err) { brcmf_err("could not get assoc resp (%d)\n", err); return err; } conn_info->resp_ie_len = resp_len; conn_info->resp_ie = kmemdup(cfg->extra_buf, conn_info->resp_ie_len, GFP_KERNEL); } else { conn_info->resp_ie_len = 0; conn_info->resp_ie = NULL; } brcmf_dbg(CONN, "req len (%d) resp len (%d)\n", conn_info->req_ie_len, conn_info->resp_ie_len); return err; } static s32 brcmf_bss_roaming_done(struct brcmf_cfg80211_info *cfg, struct net_device *ndev, const struct brcmf_event_msg *e) { struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_cfg80211_profile *profile = &ifp->vif->profile; struct brcmf_cfg80211_connect_info *conn_info = cfg_to_conn(cfg); struct wiphy *wiphy = cfg_to_wiphy(cfg); struct ieee80211_channel *notify_channel = NULL; struct ieee80211_supported_band *band; struct brcmf_bss_info_le *bi; struct brcmu_chan ch; u32 freq; s32 err = 0; u8 *buf; brcmf_dbg(TRACE, "Enter\n"); brcmf_get_assoc_ies(cfg, ifp); memcpy(profile->bssid, e->addr, ETH_ALEN); brcmf_update_bss_info(cfg, ifp); buf = kzalloc(WL_BSS_INFO_MAX, GFP_KERNEL); if (buf == NULL) { err = -ENOMEM; goto done; } /* data sent to dongle has to be little endian */ *(__le32 *)buf = cpu_to_le32(WL_BSS_INFO_MAX); err = brcmf_fil_cmd_data_get(ifp, BRCMF_C_GET_BSS_INFO, buf, WL_BSS_INFO_MAX); if (err) goto done; bi = (struct brcmf_bss_info_le *)(buf + 4); ch.chspec = le16_to_cpu(bi->chanspec); cfg->d11inf.decchspec(&ch); if (ch.band == BRCMU_CHAN_BAND_2G) band = wiphy->bands[IEEE80211_BAND_2GHZ]; else band = wiphy->bands[IEEE80211_BAND_5GHZ]; freq = ieee80211_channel_to_frequency(ch.chnum, band->band); notify_channel = ieee80211_get_channel(wiphy, freq); done: kfree(buf); cfg80211_roamed(ndev, notify_channel, (u8 *)profile->bssid, conn_info->req_ie, conn_info->req_ie_len, conn_info->resp_ie, conn_info->resp_ie_len, GFP_KERNEL); brcmf_dbg(CONN, "Report roaming result\n"); set_bit(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state); brcmf_dbg(TRACE, "Exit\n"); return err; } static s32 brcmf_bss_connect_done(struct brcmf_cfg80211_info *cfg, struct net_device *ndev, const struct brcmf_event_msg *e, bool completed) { struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_cfg80211_profile *profile = &ifp->vif->profile; struct brcmf_cfg80211_connect_info *conn_info = cfg_to_conn(cfg); brcmf_dbg(TRACE, "Enter\n"); if (test_and_clear_bit(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state)) { if (completed) { brcmf_get_assoc_ies(cfg, ifp); memcpy(profile->bssid, e->addr, ETH_ALEN); brcmf_update_bss_info(cfg, ifp); set_bit(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state); } cfg80211_connect_result(ndev, (u8 *)profile->bssid, conn_info->req_ie, conn_info->req_ie_len, conn_info->resp_ie, conn_info->resp_ie_len, completed ? WLAN_STATUS_SUCCESS : WLAN_STATUS_AUTH_TIMEOUT, GFP_KERNEL); brcmf_dbg(CONN, "Report connect result - connection %s\n", completed ? "succeeded" : "failed"); } brcmf_dbg(TRACE, "Exit\n"); return 0; } static s32 brcmf_notify_connect_status_ap(struct brcmf_cfg80211_info *cfg, struct net_device *ndev, const struct brcmf_event_msg *e, void *data) { struct brcmf_if *ifp = netdev_priv(ndev); static int generation; u32 event = e->event_code; u32 reason = e->reason; struct station_info sinfo; brcmf_dbg(CONN, "event %d, reason %d\n", event, reason); if (event == BRCMF_E_LINK && reason == BRCMF_E_REASON_LINK_BSSCFG_DIS && ndev != cfg_to_ndev(cfg)) { brcmf_dbg(CONN, "AP mode link down\n"); complete(&cfg->vif_disabled); if (ifp->vif->mbss) brcmf_remove_interface(ifp); return 0; } if (((event == BRCMF_E_ASSOC_IND) || (event == BRCMF_E_REASSOC_IND)) && (reason == BRCMF_E_STATUS_SUCCESS)) { memset(&sinfo, 0, sizeof(sinfo)); if (!data) { brcmf_err("No IEs present in ASSOC/REASSOC_IND"); return -EINVAL; } sinfo.assoc_req_ies = data; sinfo.assoc_req_ies_len = e->datalen; generation++; sinfo.generation = generation; cfg80211_new_sta(ndev, e->addr, &sinfo, GFP_KERNEL); } else if ((event == BRCMF_E_DISASSOC_IND) || (event == BRCMF_E_DEAUTH_IND) || (event == BRCMF_E_DEAUTH)) { cfg80211_del_sta(ndev, e->addr, GFP_KERNEL); } return 0; } static s32 brcmf_notify_connect_status(struct brcmf_if *ifp, const struct brcmf_event_msg *e, void *data) { struct brcmf_cfg80211_info *cfg = ifp->drvr->config; struct net_device *ndev = ifp->ndev; struct brcmf_cfg80211_profile *profile = &ifp->vif->profile; struct ieee80211_channel *chan; s32 err = 0; if ((e->event_code == BRCMF_E_DEAUTH) || (e->event_code == BRCMF_E_DEAUTH_IND) || (e->event_code == BRCMF_E_DISASSOC_IND) || ((e->event_code == BRCMF_E_LINK) && (!e->flags))) { brcmf_proto_delete_peer(ifp->drvr, ifp->ifidx, (u8 *)e->addr); } if (brcmf_is_apmode(ifp->vif)) { err = brcmf_notify_connect_status_ap(cfg, ndev, e, data); } else if (brcmf_is_linkup(e)) { brcmf_dbg(CONN, "Linkup\n"); if (brcmf_is_ibssmode(ifp->vif)) { chan = ieee80211_get_channel(cfg->wiphy, cfg->channel); memcpy(profile->bssid, e->addr, ETH_ALEN); wl_inform_ibss(cfg, ndev, e->addr); cfg80211_ibss_joined(ndev, e->addr, chan, GFP_KERNEL); clear_bit(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state); set_bit(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state); } else brcmf_bss_connect_done(cfg, ndev, e, true); brcmf_net_setcarrier(ifp, true); } else if (brcmf_is_linkdown(e)) { brcmf_dbg(CONN, "Linkdown\n"); if (!brcmf_is_ibssmode(ifp->vif)) { brcmf_bss_connect_done(cfg, ndev, e, false); } brcmf_link_down(ifp->vif, brcmf_map_fw_linkdown_reason(e)); brcmf_init_prof(ndev_to_prof(ndev)); if (ndev != cfg_to_ndev(cfg)) complete(&cfg->vif_disabled); brcmf_net_setcarrier(ifp, false); } else if (brcmf_is_nonetwork(cfg, e)) { if (brcmf_is_ibssmode(ifp->vif)) clear_bit(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state); else brcmf_bss_connect_done(cfg, ndev, e, false); } return err; } static s32 brcmf_notify_roaming_status(struct brcmf_if *ifp, const struct brcmf_event_msg *e, void *data) { struct brcmf_cfg80211_info *cfg = ifp->drvr->config; u32 event = e->event_code; u32 status = e->status; if (event == BRCMF_E_ROAM && status == BRCMF_E_STATUS_SUCCESS) { if (test_bit(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state)) brcmf_bss_roaming_done(cfg, ifp->ndev, e); else brcmf_bss_connect_done(cfg, ifp->ndev, e, true); } return 0; } static s32 brcmf_notify_mic_status(struct brcmf_if *ifp, const struct brcmf_event_msg *e, void *data) { u16 flags = e->flags; enum nl80211_key_type key_type; if (flags & BRCMF_EVENT_MSG_GROUP) key_type = NL80211_KEYTYPE_GROUP; else key_type = NL80211_KEYTYPE_PAIRWISE; cfg80211_michael_mic_failure(ifp->ndev, (u8 *)&e->addr, key_type, -1, NULL, GFP_KERNEL); return 0; } static s32 brcmf_notify_vif_event(struct brcmf_if *ifp, const struct brcmf_event_msg *e, void *data) { struct brcmf_cfg80211_info *cfg = ifp->drvr->config; struct brcmf_if_event *ifevent = (struct brcmf_if_event *)data; struct brcmf_cfg80211_vif_event *event = &cfg->vif_event; struct brcmf_cfg80211_vif *vif; brcmf_dbg(TRACE, "Enter: action %u flags %u ifidx %u bsscfg %u\n", ifevent->action, ifevent->flags, ifevent->ifidx, ifevent->bssidx); mutex_lock(&event->vif_event_lock); event->action = ifevent->action; vif = event->vif; switch (ifevent->action) { case BRCMF_E_IF_ADD: /* waiting process may have timed out */ if (!cfg->vif_event.vif) { mutex_unlock(&event->vif_event_lock); return -EBADF; } ifp->vif = vif; vif->ifp = ifp; if (ifp->ndev) { vif->wdev.netdev = ifp->ndev; ifp->ndev->ieee80211_ptr = &vif->wdev; SET_NETDEV_DEV(ifp->ndev, wiphy_dev(cfg->wiphy)); } mutex_unlock(&event->vif_event_lock); wake_up(&event->vif_wq); return 0; case BRCMF_E_IF_DEL: mutex_unlock(&event->vif_event_lock); /* event may not be upon user request */ if (brcmf_cfg80211_vif_event_armed(cfg)) wake_up(&event->vif_wq); return 0; case BRCMF_E_IF_CHANGE: mutex_unlock(&event->vif_event_lock); wake_up(&event->vif_wq); return 0; default: mutex_unlock(&event->vif_event_lock); break; } return -EINVAL; } static void brcmf_init_conf(struct brcmf_cfg80211_conf *conf) { conf->frag_threshold = (u32)-1; conf->rts_threshold = (u32)-1; conf->retry_short = (u32)-1; conf->retry_long = (u32)-1; conf->tx_power = -1; } static void brcmf_register_event_handlers(struct brcmf_cfg80211_info *cfg) { brcmf_fweh_register(cfg->pub, BRCMF_E_LINK, brcmf_notify_connect_status); brcmf_fweh_register(cfg->pub, BRCMF_E_DEAUTH_IND, brcmf_notify_connect_status); brcmf_fweh_register(cfg->pub, BRCMF_E_DEAUTH, brcmf_notify_connect_status); brcmf_fweh_register(cfg->pub, BRCMF_E_DISASSOC_IND, brcmf_notify_connect_status); brcmf_fweh_register(cfg->pub, BRCMF_E_ASSOC_IND, brcmf_notify_connect_status); brcmf_fweh_register(cfg->pub, BRCMF_E_REASSOC_IND, brcmf_notify_connect_status); brcmf_fweh_register(cfg->pub, BRCMF_E_ROAM, brcmf_notify_roaming_status); brcmf_fweh_register(cfg->pub, BRCMF_E_MIC_ERROR, brcmf_notify_mic_status); brcmf_fweh_register(cfg->pub, BRCMF_E_SET_SSID, brcmf_notify_connect_status); brcmf_fweh_register(cfg->pub, BRCMF_E_PFN_NET_FOUND, brcmf_notify_sched_scan_results); brcmf_fweh_register(cfg->pub, BRCMF_E_IF, brcmf_notify_vif_event); brcmf_fweh_register(cfg->pub, BRCMF_E_P2P_PROBEREQ_MSG, brcmf_p2p_notify_rx_mgmt_p2p_probereq); brcmf_fweh_register(cfg->pub, BRCMF_E_P2P_DISC_LISTEN_COMPLETE, brcmf_p2p_notify_listen_complete); brcmf_fweh_register(cfg->pub, BRCMF_E_ACTION_FRAME_RX, brcmf_p2p_notify_action_frame_rx); brcmf_fweh_register(cfg->pub, BRCMF_E_ACTION_FRAME_COMPLETE, brcmf_p2p_notify_action_tx_complete); brcmf_fweh_register(cfg->pub, BRCMF_E_ACTION_FRAME_OFF_CHAN_COMPLETE, brcmf_p2p_notify_action_tx_complete); } static void brcmf_deinit_priv_mem(struct brcmf_cfg80211_info *cfg) { kfree(cfg->conf); cfg->conf = NULL; kfree(cfg->escan_ioctl_buf); cfg->escan_ioctl_buf = NULL; kfree(cfg->extra_buf); cfg->extra_buf = NULL; kfree(cfg->pmk_list); cfg->pmk_list = NULL; } static s32 brcmf_init_priv_mem(struct brcmf_cfg80211_info *cfg) { cfg->conf = kzalloc(sizeof(*cfg->conf), GFP_KERNEL); if (!cfg->conf) goto init_priv_mem_out; cfg->escan_ioctl_buf = kzalloc(BRCMF_DCMD_MEDLEN, GFP_KERNEL); if (!cfg->escan_ioctl_buf) goto init_priv_mem_out; cfg->extra_buf = kzalloc(WL_EXTRA_BUF_MAX, GFP_KERNEL); if (!cfg->extra_buf) goto init_priv_mem_out; cfg->pmk_list = kzalloc(sizeof(*cfg->pmk_list), GFP_KERNEL); if (!cfg->pmk_list) goto init_priv_mem_out; return 0; init_priv_mem_out: brcmf_deinit_priv_mem(cfg); return -ENOMEM; } static s32 wl_init_priv(struct brcmf_cfg80211_info *cfg) { s32 err = 0; cfg->scan_request = NULL; cfg->pwr_save = true; cfg->active_scan = true; /* we do active scan per default */ cfg->dongle_up = false; /* dongle is not up yet */ err = brcmf_init_priv_mem(cfg); if (err) return err; brcmf_register_event_handlers(cfg); mutex_init(&cfg->usr_sync); brcmf_init_escan(cfg); brcmf_init_conf(cfg->conf); init_completion(&cfg->vif_disabled); return err; } static void wl_deinit_priv(struct brcmf_cfg80211_info *cfg) { cfg->dongle_up = false; /* dongle down */ brcmf_abort_scanning(cfg); brcmf_deinit_priv_mem(cfg); } static void init_vif_event(struct brcmf_cfg80211_vif_event *event) { init_waitqueue_head(&event->vif_wq); mutex_init(&event->vif_event_lock); } static s32 brcmf_dongle_roam(struct brcmf_if *ifp, u32 bcn_timeout) { s32 err = 0; __le32 roamtrigger[2]; __le32 roam_delta[2]; /* * Setup timeout if Beacons are lost and roam is * off to report link down */ if (brcmf_roamoff) { err = brcmf_fil_iovar_int_set(ifp, "bcn_timeout", bcn_timeout); if (err) { brcmf_err("bcn_timeout error (%d)\n", err); goto dongle_rom_out; } } /* * Enable/Disable built-in roaming to allow supplicant * to take care of roaming */ brcmf_dbg(INFO, "Internal Roaming = %s\n", brcmf_roamoff ? "Off" : "On"); err = brcmf_fil_iovar_int_set(ifp, "roam_off", !!(brcmf_roamoff)); if (err) { brcmf_err("roam_off error (%d)\n", err); goto dongle_rom_out; } roamtrigger[0] = cpu_to_le32(WL_ROAM_TRIGGER_LEVEL); roamtrigger[1] = cpu_to_le32(BRCM_BAND_ALL); err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_ROAM_TRIGGER, (void *)roamtrigger, sizeof(roamtrigger)); if (err) { brcmf_err("WLC_SET_ROAM_TRIGGER error (%d)\n", err); goto dongle_rom_out; } roam_delta[0] = cpu_to_le32(WL_ROAM_DELTA); roam_delta[1] = cpu_to_le32(BRCM_BAND_ALL); err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_ROAM_DELTA, (void *)roam_delta, sizeof(roam_delta)); if (err) { brcmf_err("WLC_SET_ROAM_DELTA error (%d)\n", err); goto dongle_rom_out; } dongle_rom_out: return err; } static s32 brcmf_dongle_scantime(struct brcmf_if *ifp, s32 scan_assoc_time, s32 scan_unassoc_time, s32 scan_passive_time) { s32 err = 0; err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_SCAN_CHANNEL_TIME, scan_assoc_time); if (err) { if (err == -EOPNOTSUPP) brcmf_dbg(INFO, "Scan assoc time is not supported\n"); else brcmf_err("Scan assoc time error (%d)\n", err); goto dongle_scantime_out; } err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_SCAN_UNASSOC_TIME, scan_unassoc_time); if (err) { if (err == -EOPNOTSUPP) brcmf_dbg(INFO, "Scan unassoc time is not supported\n"); else brcmf_err("Scan unassoc time error (%d)\n", err); goto dongle_scantime_out; } err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_SCAN_PASSIVE_TIME, scan_passive_time); if (err) { if (err == -EOPNOTSUPP) brcmf_dbg(INFO, "Scan passive time is not supported\n"); else brcmf_err("Scan passive time error (%d)\n", err); goto dongle_scantime_out; } dongle_scantime_out: return err; } static void brcmf_update_bw40_channel_flag(struct ieee80211_channel *channel, struct brcmu_chan *ch) { u32 ht40_flag; ht40_flag = channel->flags & IEEE80211_CHAN_NO_HT40; if (ch->sb == BRCMU_CHAN_SB_U) { if (ht40_flag == IEEE80211_CHAN_NO_HT40) channel->flags &= ~IEEE80211_CHAN_NO_HT40; channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; } else { /* It should be one of * IEEE80211_CHAN_NO_HT40 or * IEEE80211_CHAN_NO_HT40PLUS */ channel->flags &= ~IEEE80211_CHAN_NO_HT40; if (ht40_flag == IEEE80211_CHAN_NO_HT40) channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; } } static int brcmf_construct_chaninfo(struct brcmf_cfg80211_info *cfg, u32 bw_cap[]) { struct brcmf_if *ifp = netdev_priv(cfg_to_ndev(cfg)); struct ieee80211_supported_band *band; struct ieee80211_channel *channel; struct wiphy *wiphy; struct brcmf_chanspec_list *list; struct brcmu_chan ch; int err; u8 *pbuf; u32 i, j; u32 total; u32 chaninfo; u32 index; pbuf = kzalloc(BRCMF_DCMD_MEDLEN, GFP_KERNEL); if (pbuf == NULL) return -ENOMEM; list = (struct brcmf_chanspec_list *)pbuf; err = brcmf_fil_iovar_data_get(ifp, "chanspecs", pbuf, BRCMF_DCMD_MEDLEN); if (err) { brcmf_err("get chanspecs error (%d)\n", err); goto fail_pbuf; } wiphy = cfg_to_wiphy(cfg); band = wiphy->bands[IEEE80211_BAND_2GHZ]; if (band) for (i = 0; i < band->n_channels; i++) band->channels[i].flags = IEEE80211_CHAN_DISABLED; band = wiphy->bands[IEEE80211_BAND_5GHZ]; if (band) for (i = 0; i < band->n_channels; i++) band->channels[i].flags = IEEE80211_CHAN_DISABLED; total = le32_to_cpu(list->count); for (i = 0; i < total; i++) { ch.chspec = (u16)le32_to_cpu(list->element[i]); cfg->d11inf.decchspec(&ch); if (ch.band == BRCMU_CHAN_BAND_2G) { band = wiphy->bands[IEEE80211_BAND_2GHZ]; } else if (ch.band == BRCMU_CHAN_BAND_5G) { band = wiphy->bands[IEEE80211_BAND_5GHZ]; } else { brcmf_err("Invalid channel Spec. 0x%x.\n", ch.chspec); continue; } if (!band) continue; if (!(bw_cap[band->band] & WLC_BW_40MHZ_BIT) && ch.bw == BRCMU_CHAN_BW_40) continue; if (!(bw_cap[band->band] & WLC_BW_80MHZ_BIT) && ch.bw == BRCMU_CHAN_BW_80) continue; channel = band->channels; index = band->n_channels; for (j = 0; j < band->n_channels; j++) { if (channel[j].hw_value == ch.chnum) { index = j; break; } } channel[index].center_freq = ieee80211_channel_to_frequency(ch.chnum, band->band); channel[index].hw_value = ch.chnum; /* assuming the chanspecs order is HT20, * HT40 upper, HT40 lower, and VHT80. */ if (ch.bw == BRCMU_CHAN_BW_80) { channel[index].flags &= ~IEEE80211_CHAN_NO_80MHZ; } else if (ch.bw == BRCMU_CHAN_BW_40) { brcmf_update_bw40_channel_flag(&channel[index], &ch); } else { /* enable the channel and disable other bandwidths * for now as mentioned order assure they are enabled * for subsequent chanspecs. */ channel[index].flags = IEEE80211_CHAN_NO_HT40 | IEEE80211_CHAN_NO_80MHZ; ch.bw = BRCMU_CHAN_BW_20; cfg->d11inf.encchspec(&ch); chaninfo = ch.chspec; err = brcmf_fil_bsscfg_int_get(ifp, "per_chan_info", &chaninfo); if (!err) { if (chaninfo & WL_CHAN_RADAR) channel[index].flags |= (IEEE80211_CHAN_RADAR | IEEE80211_CHAN_NO_IR); if (chaninfo & WL_CHAN_PASSIVE) channel[index].flags |= IEEE80211_CHAN_NO_IR; } } } fail_pbuf: kfree(pbuf); return err; } static int brcmf_enable_bw40_2g(struct brcmf_cfg80211_info *cfg) { struct brcmf_if *ifp = netdev_priv(cfg_to_ndev(cfg)); struct ieee80211_supported_band *band; struct brcmf_fil_bwcap_le band_bwcap; struct brcmf_chanspec_list *list; u8 *pbuf; u32 val; int err; struct brcmu_chan ch; u32 num_chan; int i, j; /* verify support for bw_cap command */ val = WLC_BAND_5G; err = brcmf_fil_iovar_int_get(ifp, "bw_cap", &val); if (!err) { /* only set 2G bandwidth using bw_cap command */ band_bwcap.band = cpu_to_le32(WLC_BAND_2G); band_bwcap.bw_cap = cpu_to_le32(WLC_BW_CAP_40MHZ); err = brcmf_fil_iovar_data_set(ifp, "bw_cap", &band_bwcap, sizeof(band_bwcap)); } else { brcmf_dbg(INFO, "fallback to mimo_bw_cap\n"); val = WLC_N_BW_40ALL; err = brcmf_fil_iovar_int_set(ifp, "mimo_bw_cap", val); } if (!err) { /* update channel info in 2G band */ pbuf = kzalloc(BRCMF_DCMD_MEDLEN, GFP_KERNEL); if (pbuf == NULL) return -ENOMEM; ch.band = BRCMU_CHAN_BAND_2G; ch.bw = BRCMU_CHAN_BW_40; ch.sb = BRCMU_CHAN_SB_NONE; ch.chnum = 0; cfg->d11inf.encchspec(&ch); /* pass encoded chanspec in query */ *(__le16 *)pbuf = cpu_to_le16(ch.chspec); err = brcmf_fil_iovar_data_get(ifp, "chanspecs", pbuf, BRCMF_DCMD_MEDLEN); if (err) { brcmf_err("get chanspecs error (%d)\n", err); kfree(pbuf); return err; } band = cfg_to_wiphy(cfg)->bands[IEEE80211_BAND_2GHZ]; list = (struct brcmf_chanspec_list *)pbuf; num_chan = le32_to_cpu(list->count); for (i = 0; i < num_chan; i++) { ch.chspec = (u16)le32_to_cpu(list->element[i]); cfg->d11inf.decchspec(&ch); if (WARN_ON(ch.band != BRCMU_CHAN_BAND_2G)) continue; if (WARN_ON(ch.bw != BRCMU_CHAN_BW_40)) continue; for (j = 0; j < band->n_channels; j++) { if (band->channels[j].hw_value == ch.chnum) break; } if (WARN_ON(j == band->n_channels)) continue; brcmf_update_bw40_channel_flag(&band->channels[j], &ch); } kfree(pbuf); } return err; } static void brcmf_get_bwcap(struct brcmf_if *ifp, u32 bw_cap[]) { u32 band, mimo_bwcap; int err; band = WLC_BAND_2G; err = brcmf_fil_iovar_int_get(ifp, "bw_cap", &band); if (!err) { bw_cap[IEEE80211_BAND_2GHZ] = band; band = WLC_BAND_5G; err = brcmf_fil_iovar_int_get(ifp, "bw_cap", &band); if (!err) { bw_cap[IEEE80211_BAND_5GHZ] = band; return; } WARN_ON(1); return; } brcmf_dbg(INFO, "fallback to mimo_bw_cap info\n"); mimo_bwcap = 0; err = brcmf_fil_iovar_int_get(ifp, "mimo_bw_cap", &mimo_bwcap); if (err) /* assume 20MHz if firmware does not give a clue */ mimo_bwcap = WLC_N_BW_20ALL; switch (mimo_bwcap) { case WLC_N_BW_40ALL: bw_cap[IEEE80211_BAND_2GHZ] |= WLC_BW_40MHZ_BIT; /* fall-thru */ case WLC_N_BW_20IN2G_40IN5G: bw_cap[IEEE80211_BAND_5GHZ] |= WLC_BW_40MHZ_BIT; /* fall-thru */ case WLC_N_BW_20ALL: bw_cap[IEEE80211_BAND_2GHZ] |= WLC_BW_20MHZ_BIT; bw_cap[IEEE80211_BAND_5GHZ] |= WLC_BW_20MHZ_BIT; break; default: brcmf_err("invalid mimo_bw_cap value\n"); } } static void brcmf_update_ht_cap(struct ieee80211_supported_band *band, u32 bw_cap[2], u32 nchain) { band->ht_cap.ht_supported = true; if (bw_cap[band->band] & WLC_BW_40MHZ_BIT) { band->ht_cap.cap |= IEEE80211_HT_CAP_SGI_40; band->ht_cap.cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40; } band->ht_cap.cap |= IEEE80211_HT_CAP_SGI_20; band->ht_cap.cap |= IEEE80211_HT_CAP_DSSSCCK40; band->ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K; band->ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_16; memset(band->ht_cap.mcs.rx_mask, 0xff, nchain); band->ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; } static __le16 brcmf_get_mcs_map(u32 nchain, enum ieee80211_vht_mcs_support supp) { u16 mcs_map; int i; for (i = 0, mcs_map = 0xFFFF; i < nchain; i++) mcs_map = (mcs_map << 2) | supp; return cpu_to_le16(mcs_map); } static void brcmf_update_vht_cap(struct ieee80211_supported_band *band, u32 bw_cap[2], u32 nchain) { __le16 mcs_map; /* not allowed in 2.4G band */ if (band->band == IEEE80211_BAND_2GHZ) return; band->vht_cap.vht_supported = true; /* 80MHz is mandatory */ band->vht_cap.cap |= IEEE80211_VHT_CAP_SHORT_GI_80; if (bw_cap[band->band] & WLC_BW_160MHZ_BIT) { band->vht_cap.cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ; band->vht_cap.cap |= IEEE80211_VHT_CAP_SHORT_GI_160; } /* all support 256-QAM */ mcs_map = brcmf_get_mcs_map(nchain, IEEE80211_VHT_MCS_SUPPORT_0_9); band->vht_cap.vht_mcs.rx_mcs_map = mcs_map; band->vht_cap.vht_mcs.tx_mcs_map = mcs_map; } static int brcmf_setup_wiphybands(struct wiphy *wiphy) { struct brcmf_cfg80211_info *cfg = wiphy_priv(wiphy); struct brcmf_if *ifp = netdev_priv(cfg_to_ndev(cfg)); u32 nmode = 0; u32 vhtmode = 0; u32 bw_cap[2] = { WLC_BW_20MHZ_BIT, WLC_BW_20MHZ_BIT }; u32 rxchain; u32 nchain; int err; s32 i; struct ieee80211_supported_band *band; (void)brcmf_fil_iovar_int_get(ifp, "vhtmode", &vhtmode); err = brcmf_fil_iovar_int_get(ifp, "nmode", &nmode); if (err) { brcmf_err("nmode error (%d)\n", err); } else { brcmf_get_bwcap(ifp, bw_cap); } brcmf_dbg(INFO, "nmode=%d, vhtmode=%d, bw_cap=(%d, %d)\n", nmode, vhtmode, bw_cap[IEEE80211_BAND_2GHZ], bw_cap[IEEE80211_BAND_5GHZ]); err = brcmf_fil_iovar_int_get(ifp, "rxchain", &rxchain); if (err) { brcmf_err("rxchain error (%d)\n", err); nchain = 1; } else { for (nchain = 0; rxchain; nchain++) rxchain = rxchain & (rxchain - 1); } brcmf_dbg(INFO, "nchain=%d\n", nchain); err = brcmf_construct_chaninfo(cfg, bw_cap); if (err) { brcmf_err("brcmf_construct_chaninfo failed (%d)\n", err); return err; } wiphy = cfg_to_wiphy(cfg); for (i = 0; i < ARRAY_SIZE(wiphy->bands); i++) { band = wiphy->bands[i]; if (band == NULL) continue; if (nmode) brcmf_update_ht_cap(band, bw_cap, nchain); if (vhtmode) brcmf_update_vht_cap(band, bw_cap, nchain); } return 0; } static const struct ieee80211_txrx_stypes brcmf_txrx_stypes[NUM_NL80211_IFTYPES] = { [NL80211_IFTYPE_STATION] = { .tx = 0xffff, .rx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4) }, [NL80211_IFTYPE_P2P_CLIENT] = { .tx = 0xffff, .rx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4) }, [NL80211_IFTYPE_P2P_GO] = { .tx = 0xffff, .rx = BIT(IEEE80211_STYPE_ASSOC_REQ >> 4) | BIT(IEEE80211_STYPE_REASSOC_REQ >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4) | BIT(IEEE80211_STYPE_DISASSOC >> 4) | BIT(IEEE80211_STYPE_AUTH >> 4) | BIT(IEEE80211_STYPE_DEAUTH >> 4) | BIT(IEEE80211_STYPE_ACTION >> 4) }, [NL80211_IFTYPE_P2P_DEVICE] = { .tx = 0xffff, .rx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4) } }; /** * brcmf_setup_ifmodes() - determine interface modes and combinations. * * @wiphy: wiphy object. * @ifp: interface object needed for feat module api. * * The interface modes and combinations are determined dynamically here * based on firmware functionality. * * no p2p and no mbss: * * #STA <= 1, #AP <= 1, channels = 1, 2 total * * no p2p and mbss: * * #STA <= 1, #AP <= 1, channels = 1, 2 total * #AP <= 4, matching BI, channels = 1, 4 total * * p2p, no mchan, and mbss: * * #STA <= 1, #P2P-DEV <= 1, #{P2P-CL, P2P-GO} <= 1, channels = 1, 3 total * #STA <= 1, #P2P-DEV <= 1, #AP <= 1, #P2P-CL <= 1, channels = 1, 4 total * #AP <= 4, matching BI, channels = 1, 4 total * * p2p, mchan, and mbss: * * #STA <= 1, #P2P-DEV <= 1, #{P2P-CL, P2P-GO} <= 1, channels = 2, 3 total * #STA <= 1, #P2P-DEV <= 1, #AP <= 1, #P2P-CL <= 1, channels = 1, 4 total * #AP <= 4, matching BI, channels = 1, 4 total */ static int brcmf_setup_ifmodes(struct wiphy *wiphy, struct brcmf_if *ifp) { struct ieee80211_iface_combination *combo = NULL; struct ieee80211_iface_limit *c0_limits = NULL; struct ieee80211_iface_limit *p2p_limits = NULL; struct ieee80211_iface_limit *mbss_limits = NULL; bool mbss, p2p; int i, c, n_combos; mbss = brcmf_feat_is_enabled(ifp, BRCMF_FEAT_MBSS); p2p = brcmf_feat_is_enabled(ifp, BRCMF_FEAT_P2P); n_combos = 1 + !!p2p + !!mbss; combo = kcalloc(n_combos, sizeof(*combo), GFP_KERNEL); if (!combo) goto err; c0_limits = kcalloc(p2p ? 3 : 2, sizeof(*c0_limits), GFP_KERNEL); if (!c0_limits) goto err; if (p2p) { p2p_limits = kcalloc(4, sizeof(*p2p_limits), GFP_KERNEL); if (!p2p_limits) goto err; } if (mbss) { mbss_limits = kcalloc(1, sizeof(*mbss_limits), GFP_KERNEL); if (!mbss_limits) goto err; } wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_ADHOC) | BIT(NL80211_IFTYPE_AP); c = 0; i = 0; combo[c].num_different_channels = 1; c0_limits[i].max = 1; c0_limits[i++].types = BIT(NL80211_IFTYPE_STATION); if (p2p) { if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_MCHAN)) combo[c].num_different_channels = 2; wiphy->interface_modes |= BIT(NL80211_IFTYPE_P2P_CLIENT) | BIT(NL80211_IFTYPE_P2P_GO) | BIT(NL80211_IFTYPE_P2P_DEVICE); c0_limits[i].max = 1; c0_limits[i++].types = BIT(NL80211_IFTYPE_P2P_DEVICE); c0_limits[i].max = 1; c0_limits[i++].types = BIT(NL80211_IFTYPE_P2P_CLIENT) | BIT(NL80211_IFTYPE_P2P_GO); } else { c0_limits[i].max = 1; c0_limits[i++].types = BIT(NL80211_IFTYPE_AP); } combo[c].max_interfaces = i; combo[c].n_limits = i; combo[c].limits = c0_limits; if (p2p) { c++; i = 0; combo[c].num_different_channels = 1; p2p_limits[i].max = 1; p2p_limits[i++].types = BIT(NL80211_IFTYPE_STATION); p2p_limits[i].max = 1; p2p_limits[i++].types = BIT(NL80211_IFTYPE_AP); p2p_limits[i].max = 1; p2p_limits[i++].types = BIT(NL80211_IFTYPE_P2P_CLIENT); p2p_limits[i].max = 1; p2p_limits[i++].types = BIT(NL80211_IFTYPE_P2P_DEVICE); combo[c].max_interfaces = i; combo[c].n_limits = i; combo[c].limits = p2p_limits; } if (mbss) { c++; combo[c].beacon_int_infra_match = true; combo[c].num_different_channels = 1; mbss_limits[0].max = 4; mbss_limits[0].types = BIT(NL80211_IFTYPE_AP); combo[c].max_interfaces = 4; combo[c].n_limits = 1; combo[c].limits = mbss_limits; } wiphy->n_iface_combinations = n_combos; wiphy->iface_combinations = combo; return 0; err: kfree(c0_limits); kfree(p2p_limits); kfree(mbss_limits); kfree(combo); return -ENOMEM; } static void brcmf_wiphy_pno_params(struct wiphy *wiphy) { /* scheduled scan settings */ wiphy->max_sched_scan_ssids = BRCMF_PNO_MAX_PFN_COUNT; wiphy->max_match_sets = BRCMF_PNO_MAX_PFN_COUNT; wiphy->max_sched_scan_ie_len = BRCMF_SCAN_IE_LEN_MAX; wiphy->flags |= WIPHY_FLAG_SUPPORTS_SCHED_SCAN; } #ifdef CONFIG_PM static const struct wiphy_wowlan_support brcmf_wowlan_support = { .flags = WIPHY_WOWLAN_MAGIC_PKT | WIPHY_WOWLAN_DISCONNECT, .n_patterns = BRCMF_WOWL_MAXPATTERNS, .pattern_max_len = BRCMF_WOWL_MAXPATTERNSIZE, .pattern_min_len = 1, .max_pkt_offset = 1500, }; #endif static void brcmf_wiphy_wowl_params(struct wiphy *wiphy) { #ifdef CONFIG_PM /* wowl settings */ wiphy->wowlan = &brcmf_wowlan_support; #endif } static int brcmf_setup_wiphy(struct wiphy *wiphy, struct brcmf_if *ifp) { struct brcmf_pub *drvr = ifp->drvr; const struct ieee80211_iface_combination *combo; struct ieee80211_supported_band *band; u16 max_interfaces = 0; __le32 bandlist[3]; u32 n_bands; int err, i; wiphy->max_scan_ssids = WL_NUM_SCAN_MAX; wiphy->max_scan_ie_len = BRCMF_SCAN_IE_LEN_MAX; wiphy->max_num_pmkids = WL_NUM_PMKIDS_MAX; err = brcmf_setup_ifmodes(wiphy, ifp); if (err) return err; for (i = 0, combo = wiphy->iface_combinations; i < wiphy->n_iface_combinations; i++, combo++) { max_interfaces = max(max_interfaces, combo->max_interfaces); } for (i = 0; i < max_interfaces && i < ARRAY_SIZE(drvr->addresses); i++) { u8 *addr = drvr->addresses[i].addr; memcpy(addr, drvr->mac, ETH_ALEN); if (i) { addr[0] |= BIT(1); addr[ETH_ALEN - 1] ^= i; } } wiphy->addresses = drvr->addresses; wiphy->n_addresses = i; wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM; wiphy->cipher_suites = __wl_cipher_suites; wiphy->n_cipher_suites = ARRAY_SIZE(__wl_cipher_suites); wiphy->flags |= WIPHY_FLAG_PS_ON_BY_DEFAULT | WIPHY_FLAG_OFFCHAN_TX | WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL | WIPHY_FLAG_SUPPORTS_TDLS; if (!brcmf_roamoff) wiphy->flags |= WIPHY_FLAG_SUPPORTS_FW_ROAM; wiphy->mgmt_stypes = brcmf_txrx_stypes; wiphy->max_remain_on_channel_duration = 5000; if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_PNO)) brcmf_wiphy_pno_params(wiphy); /* vendor commands/events support */ wiphy->vendor_commands = brcmf_vendor_cmds; wiphy->n_vendor_commands = BRCMF_VNDR_CMDS_LAST - 1; if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_WOWL)) brcmf_wiphy_wowl_params(wiphy); err = brcmf_fil_cmd_data_get(ifp, BRCMF_C_GET_BANDLIST, &bandlist, sizeof(bandlist)); if (err) { brcmf_err("could not obtain band info: err=%d\n", err); return err; } /* first entry in bandlist is number of bands */ n_bands = le32_to_cpu(bandlist[0]); for (i = 1; i <= n_bands && i < ARRAY_SIZE(bandlist); i++) { if (bandlist[i] == cpu_to_le32(WLC_BAND_2G)) { band = kmemdup(&__wl_band_2ghz, sizeof(__wl_band_2ghz), GFP_KERNEL); if (!band) return -ENOMEM; band->channels = kmemdup(&__wl_2ghz_channels, sizeof(__wl_2ghz_channels), GFP_KERNEL); if (!band->channels) { kfree(band); return -ENOMEM; } band->n_channels = ARRAY_SIZE(__wl_2ghz_channels); wiphy->bands[IEEE80211_BAND_2GHZ] = band; } if (bandlist[i] == cpu_to_le32(WLC_BAND_5G)) { band = kmemdup(&__wl_band_5ghz, sizeof(__wl_band_5ghz), GFP_KERNEL); if (!band) return -ENOMEM; band->channels = kmemdup(&__wl_5ghz_channels, sizeof(__wl_5ghz_channels), GFP_KERNEL); if (!band->channels) { kfree(band); return -ENOMEM; } band->n_channels = ARRAY_SIZE(__wl_5ghz_channels); wiphy->bands[IEEE80211_BAND_5GHZ] = band; } } err = brcmf_setup_wiphybands(wiphy); return err; } static s32 brcmf_config_dongle(struct brcmf_cfg80211_info *cfg) { struct net_device *ndev; struct wireless_dev *wdev; struct brcmf_if *ifp; s32 power_mode; s32 err = 0; if (cfg->dongle_up) return err; ndev = cfg_to_ndev(cfg); wdev = ndev->ieee80211_ptr; ifp = netdev_priv(ndev); /* make sure RF is ready for work */ brcmf_fil_cmd_int_set(ifp, BRCMF_C_UP, 0); brcmf_dongle_scantime(ifp, WL_SCAN_CHANNEL_TIME, WL_SCAN_UNASSOC_TIME, WL_SCAN_PASSIVE_TIME); power_mode = cfg->pwr_save ? PM_FAST : PM_OFF; err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_PM, power_mode); if (err) goto default_conf_out; brcmf_dbg(INFO, "power save set to %s\n", (power_mode ? "enabled" : "disabled")); err = brcmf_dongle_roam(ifp, WL_BEACON_TIMEOUT); if (err) goto default_conf_out; err = brcmf_cfg80211_change_iface(wdev->wiphy, ndev, wdev->iftype, NULL, NULL); if (err) goto default_conf_out; brcmf_configure_arp_offload(ifp, true); cfg->dongle_up = true; default_conf_out: return err; } static s32 __brcmf_cfg80211_up(struct brcmf_if *ifp) { set_bit(BRCMF_VIF_STATUS_READY, &ifp->vif->sme_state); return brcmf_config_dongle(ifp->drvr->config); } static s32 __brcmf_cfg80211_down(struct brcmf_if *ifp) { struct brcmf_cfg80211_info *cfg = ifp->drvr->config; /* * While going down, if associated with AP disassociate * from AP to save power */ if (check_vif_up(ifp->vif)) { brcmf_link_down(ifp->vif, WLAN_REASON_UNSPECIFIED); /* Make sure WPA_Supplicant receives all the event generated due to DISASSOC call to the fw to keep the state fw and WPA_Supplicant state consistent */ brcmf_delay(500); } brcmf_abort_scanning(cfg); clear_bit(BRCMF_VIF_STATUS_READY, &ifp->vif->sme_state); return 0; } s32 brcmf_cfg80211_up(struct net_device *ndev) { struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_cfg80211_info *cfg = ifp->drvr->config; s32 err = 0; mutex_lock(&cfg->usr_sync); err = __brcmf_cfg80211_up(ifp); mutex_unlock(&cfg->usr_sync); return err; } s32 brcmf_cfg80211_down(struct net_device *ndev) { struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_cfg80211_info *cfg = ifp->drvr->config; s32 err = 0; mutex_lock(&cfg->usr_sync); err = __brcmf_cfg80211_down(ifp); mutex_unlock(&cfg->usr_sync); return err; } enum nl80211_iftype brcmf_cfg80211_get_iftype(struct brcmf_if *ifp) { struct wireless_dev *wdev = &ifp->vif->wdev; return wdev->iftype; } bool brcmf_get_vif_state_any(struct brcmf_cfg80211_info *cfg, unsigned long state) { struct brcmf_cfg80211_vif *vif; list_for_each_entry(vif, &cfg->vif_list, list) { if (test_bit(state, &vif->sme_state)) return true; } return false; } static inline bool vif_event_equals(struct brcmf_cfg80211_vif_event *event, u8 action) { u8 evt_action; mutex_lock(&event->vif_event_lock); evt_action = event->action; mutex_unlock(&event->vif_event_lock); return evt_action == action; } void brcmf_cfg80211_arm_vif_event(struct brcmf_cfg80211_info *cfg, struct brcmf_cfg80211_vif *vif) { struct brcmf_cfg80211_vif_event *event = &cfg->vif_event; mutex_lock(&event->vif_event_lock); event->vif = vif; event->action = 0; mutex_unlock(&event->vif_event_lock); } bool brcmf_cfg80211_vif_event_armed(struct brcmf_cfg80211_info *cfg) { struct brcmf_cfg80211_vif_event *event = &cfg->vif_event; bool armed; mutex_lock(&event->vif_event_lock); armed = event->vif != NULL; mutex_unlock(&event->vif_event_lock); return armed; } int brcmf_cfg80211_wait_vif_event_timeout(struct brcmf_cfg80211_info *cfg, u8 action, ulong timeout) { struct brcmf_cfg80211_vif_event *event = &cfg->vif_event; return wait_event_timeout(event->vif_wq, vif_event_equals(event, action), timeout); } static void brcmf_cfg80211_reg_notifier(struct wiphy *wiphy, struct regulatory_request *req) { struct brcmf_cfg80211_info *cfg = wiphy_priv(wiphy); struct brcmf_if *ifp = netdev_priv(cfg_to_ndev(cfg)); struct brcmf_fil_country_le ccreq; int i; brcmf_dbg(TRACE, "enter: initiator=%d, alpha=%c%c\n", req->initiator, req->alpha2[0], req->alpha2[1]); /* ignore non-ISO3166 country codes */ for (i = 0; i < sizeof(req->alpha2); i++) if (req->alpha2[i] < 'A' || req->alpha2[i] > 'Z') { brcmf_err("not a ISO3166 code\n"); return; } memset(&ccreq, 0, sizeof(ccreq)); ccreq.rev = cpu_to_le32(-1); memcpy(ccreq.ccode, req->alpha2, sizeof(req->alpha2)); if (brcmf_fil_iovar_data_set(ifp, "country", &ccreq, sizeof(ccreq))) { brcmf_err("firmware rejected country setting\n"); return; } brcmf_setup_wiphybands(wiphy); } static void brcmf_free_wiphy(struct wiphy *wiphy) { int i; if (!wiphy) return; if (wiphy->iface_combinations) { for (i = 0; i < wiphy->n_iface_combinations; i++) kfree(wiphy->iface_combinations[i].limits); } kfree(wiphy->iface_combinations); if (wiphy->bands[IEEE80211_BAND_2GHZ]) { kfree(wiphy->bands[IEEE80211_BAND_2GHZ]->channels); kfree(wiphy->bands[IEEE80211_BAND_2GHZ]); } if (wiphy->bands[IEEE80211_BAND_5GHZ]) { kfree(wiphy->bands[IEEE80211_BAND_5GHZ]->channels); kfree(wiphy->bands[IEEE80211_BAND_5GHZ]); } wiphy_free(wiphy); } struct brcmf_cfg80211_info *brcmf_cfg80211_attach(struct brcmf_pub *drvr, struct device *busdev, bool p2pdev_forced) { struct net_device *ndev = brcmf_get_ifp(drvr, 0)->ndev; struct brcmf_cfg80211_info *cfg; struct wiphy *wiphy; struct brcmf_cfg80211_vif *vif; struct brcmf_if *ifp; s32 err = 0; s32 io_type; u16 *cap = NULL; if (!ndev) { brcmf_err("ndev is invalid\n"); return NULL; } ifp = netdev_priv(ndev); wiphy = wiphy_new(&wl_cfg80211_ops, sizeof(struct brcmf_cfg80211_info)); if (!wiphy) { brcmf_err("Could not allocate wiphy device\n"); return NULL; } memcpy(wiphy->perm_addr, drvr->mac, ETH_ALEN); set_wiphy_dev(wiphy, busdev); cfg = wiphy_priv(wiphy); cfg->wiphy = wiphy; cfg->pub = drvr; init_vif_event(&cfg->vif_event); INIT_LIST_HEAD(&cfg->vif_list); vif = brcmf_alloc_vif(cfg, NL80211_IFTYPE_STATION, false); if (IS_ERR(vif)) goto wiphy_out; vif->ifp = ifp; vif->wdev.netdev = ndev; ndev->ieee80211_ptr = &vif->wdev; SET_NETDEV_DEV(ndev, wiphy_dev(cfg->wiphy)); err = wl_init_priv(cfg); if (err) { brcmf_err("Failed to init iwm_priv (%d)\n", err); brcmf_free_vif(vif); goto wiphy_out; } ifp->vif = vif; /* determine d11 io type before wiphy setup */ err = brcmf_fil_cmd_int_get(ifp, BRCMF_C_GET_VERSION, &io_type); if (err) { brcmf_err("Failed to get D11 version (%d)\n", err); goto priv_out; } cfg->d11inf.io_type = (u8)io_type; brcmu_d11_attach(&cfg->d11inf); err = brcmf_setup_wiphy(wiphy, ifp); if (err < 0) goto priv_out; brcmf_dbg(INFO, "Registering custom regulatory\n"); wiphy->reg_notifier = brcmf_cfg80211_reg_notifier; wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; wiphy_apply_custom_regulatory(wiphy, &brcmf_regdom); /* firmware defaults to 40MHz disabled in 2G band. We signal * cfg80211 here that we do and have it decide we can enable * it. But first check if device does support 2G operation. */ if (wiphy->bands[IEEE80211_BAND_2GHZ]) { cap = &wiphy->bands[IEEE80211_BAND_2GHZ]->ht_cap.cap; *cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40; } err = wiphy_register(wiphy); if (err < 0) { brcmf_err("Could not register wiphy device (%d)\n", err); goto priv_out; } /* If cfg80211 didn't disable 40MHz HT CAP in wiphy_register(), * setup 40MHz in 2GHz band and enable OBSS scanning. */ if (cap && (*cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40)) { err = brcmf_enable_bw40_2g(cfg); if (!err) err = brcmf_fil_iovar_int_set(ifp, "obss_coex", BRCMF_OBSS_COEX_AUTO); else *cap &= ~IEEE80211_HT_CAP_SUP_WIDTH_20_40; } /* p2p might require that "if-events" get processed by fweh. So * activate the already registered event handlers now and activate * the rest when initialization has completed. drvr->config needs to * be assigned before activating events. */ drvr->config = cfg; err = brcmf_fweh_activate_events(ifp); if (err) { brcmf_err("FWEH activation failed (%d)\n", err); goto wiphy_unreg_out; } err = brcmf_p2p_attach(cfg, p2pdev_forced); if (err) { brcmf_err("P2P initilisation failed (%d)\n", err); goto wiphy_unreg_out; } err = brcmf_btcoex_attach(cfg); if (err) { brcmf_err("BT-coex initialisation failed (%d)\n", err); brcmf_p2p_detach(&cfg->p2p); goto wiphy_unreg_out; } err = brcmf_fil_iovar_int_set(ifp, "tdls_enable", 1); if (err) { brcmf_dbg(INFO, "TDLS not enabled (%d)\n", err); wiphy->flags &= ~WIPHY_FLAG_SUPPORTS_TDLS; } else { brcmf_fweh_register(cfg->pub, BRCMF_E_TDLS_PEER_EVENT, brcmf_notify_tdls_peer_event); } /* (re-) activate FWEH event handling */ err = brcmf_fweh_activate_events(ifp); if (err) { brcmf_err("FWEH activation failed (%d)\n", err); goto wiphy_unreg_out; } return cfg; wiphy_unreg_out: wiphy_unregister(cfg->wiphy); priv_out: wl_deinit_priv(cfg); brcmf_free_vif(vif); ifp->vif = NULL; wiphy_out: brcmf_free_wiphy(wiphy); return NULL; } void brcmf_cfg80211_detach(struct brcmf_cfg80211_info *cfg) { if (!cfg) return; brcmf_btcoex_detach(cfg); wiphy_unregister(cfg->wiphy); wl_deinit_priv(cfg); brcmf_free_wiphy(cfg->wiphy); }