// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2019 Western Digital Corporation or its affiliates. * * Authors: * Anup Patel */ #include #include #include #include #include #include #include #include #include #include #include #include #include const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { KVM_GENERIC_VCPU_STATS(), STATS_DESC_COUNTER(VCPU, ecall_exit_stat), STATS_DESC_COUNTER(VCPU, wfi_exit_stat), STATS_DESC_COUNTER(VCPU, mmio_exit_user), STATS_DESC_COUNTER(VCPU, mmio_exit_kernel), STATS_DESC_COUNTER(VCPU, csr_exit_user), STATS_DESC_COUNTER(VCPU, csr_exit_kernel), STATS_DESC_COUNTER(VCPU, exits) }; const struct kvm_stats_header kvm_vcpu_stats_header = { .name_size = KVM_STATS_NAME_SIZE, .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), .id_offset = sizeof(struct kvm_stats_header), .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + sizeof(kvm_vcpu_stats_desc), }; #define KVM_RISCV_BASE_ISA_MASK GENMASK(25, 0) /* Mapping between KVM ISA Extension ID & Host ISA extension ID */ static const unsigned long kvm_isa_ext_arr[] = { RISCV_ISA_EXT_a, RISCV_ISA_EXT_c, RISCV_ISA_EXT_d, RISCV_ISA_EXT_f, RISCV_ISA_EXT_h, RISCV_ISA_EXT_i, RISCV_ISA_EXT_m, }; static unsigned long kvm_riscv_vcpu_base2isa_ext(unsigned long base_ext) { unsigned long i; for (i = 0; i < KVM_RISCV_ISA_EXT_MAX; i++) { if (kvm_isa_ext_arr[i] == base_ext) return i; } return KVM_RISCV_ISA_EXT_MAX; } static bool kvm_riscv_vcpu_isa_enable_allowed(unsigned long ext) { switch (ext) { case KVM_RISCV_ISA_EXT_H: return false; default: break; } return true; } static bool kvm_riscv_vcpu_isa_disable_allowed(unsigned long ext) { switch (ext) { case KVM_RISCV_ISA_EXT_A: case KVM_RISCV_ISA_EXT_C: case KVM_RISCV_ISA_EXT_I: case KVM_RISCV_ISA_EXT_M: return false; default: break; } return true; } static void kvm_riscv_reset_vcpu(struct kvm_vcpu *vcpu) { struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; struct kvm_vcpu_csr *reset_csr = &vcpu->arch.guest_reset_csr; struct kvm_cpu_context *cntx = &vcpu->arch.guest_context; struct kvm_cpu_context *reset_cntx = &vcpu->arch.guest_reset_context; bool loaded; /** * The preemption should be disabled here because it races with * kvm_sched_out/kvm_sched_in(called from preempt notifiers) which * also calls vcpu_load/put. */ get_cpu(); loaded = (vcpu->cpu != -1); if (loaded) kvm_arch_vcpu_put(vcpu); vcpu->arch.last_exit_cpu = -1; memcpy(csr, reset_csr, sizeof(*csr)); memcpy(cntx, reset_cntx, sizeof(*cntx)); kvm_riscv_vcpu_fp_reset(vcpu); kvm_riscv_vcpu_timer_reset(vcpu); WRITE_ONCE(vcpu->arch.irqs_pending, 0); WRITE_ONCE(vcpu->arch.irqs_pending_mask, 0); vcpu->arch.hfence_head = 0; vcpu->arch.hfence_tail = 0; memset(vcpu->arch.hfence_queue, 0, sizeof(vcpu->arch.hfence_queue)); /* Reset the guest CSRs for hotplug usecase */ if (loaded) kvm_arch_vcpu_load(vcpu, smp_processor_id()); put_cpu(); } int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) { return 0; } int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) { struct kvm_cpu_context *cntx; struct kvm_vcpu_csr *reset_csr = &vcpu->arch.guest_reset_csr; unsigned long host_isa, i; /* Mark this VCPU never ran */ vcpu->arch.ran_atleast_once = false; vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO; bitmap_zero(vcpu->arch.isa, RISCV_ISA_EXT_MAX); /* Setup ISA features available to VCPU */ for (i = 0; i < ARRAY_SIZE(kvm_isa_ext_arr); i++) { host_isa = kvm_isa_ext_arr[i]; if (__riscv_isa_extension_available(NULL, host_isa) && kvm_riscv_vcpu_isa_enable_allowed(i)) set_bit(host_isa, vcpu->arch.isa); } /* Setup VCPU hfence queue */ spin_lock_init(&vcpu->arch.hfence_lock); /* Setup reset state of shadow SSTATUS and HSTATUS CSRs */ cntx = &vcpu->arch.guest_reset_context; cntx->sstatus = SR_SPP | SR_SPIE; cntx->hstatus = 0; cntx->hstatus |= HSTATUS_VTW; cntx->hstatus |= HSTATUS_SPVP; cntx->hstatus |= HSTATUS_SPV; /* By default, make CY, TM, and IR counters accessible in VU mode */ reset_csr->scounteren = 0x7; /* Setup VCPU timer */ kvm_riscv_vcpu_timer_init(vcpu); /* Reset VCPU */ kvm_riscv_reset_vcpu(vcpu); return 0; } void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) { /** * vcpu with id 0 is the designated boot cpu. * Keep all vcpus with non-zero id in power-off state so that * they can be brought up using SBI HSM extension. */ if (vcpu->vcpu_idx != 0) kvm_riscv_vcpu_power_off(vcpu); } void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) { /* Cleanup VCPU timer */ kvm_riscv_vcpu_timer_deinit(vcpu); /* Free unused pages pre-allocated for G-stage page table mappings */ kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); } int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) { return kvm_riscv_vcpu_has_interrupts(vcpu, 1UL << IRQ_VS_TIMER); } void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) { } void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) { } int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) { return (kvm_riscv_vcpu_has_interrupts(vcpu, -1UL) && !vcpu->arch.power_off && !vcpu->arch.pause); } int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) { return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; } bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) { return (vcpu->arch.guest_context.sstatus & SR_SPP) ? true : false; } vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) { return VM_FAULT_SIGBUS; } static int kvm_riscv_vcpu_get_reg_config(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { unsigned long __user *uaddr = (unsigned long __user *)(unsigned long)reg->addr; unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_RISCV_CONFIG); unsigned long reg_val; if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long)) return -EINVAL; switch (reg_num) { case KVM_REG_RISCV_CONFIG_REG(isa): reg_val = vcpu->arch.isa[0] & KVM_RISCV_BASE_ISA_MASK; break; default: return -EINVAL; } if (copy_to_user(uaddr, ®_val, KVM_REG_SIZE(reg->id))) return -EFAULT; return 0; } static int kvm_riscv_vcpu_set_reg_config(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { unsigned long __user *uaddr = (unsigned long __user *)(unsigned long)reg->addr; unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_RISCV_CONFIG); unsigned long i, isa_ext, reg_val; if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long)) return -EINVAL; if (copy_from_user(®_val, uaddr, KVM_REG_SIZE(reg->id))) return -EFAULT; /* This ONE REG interface is only defined for single letter extensions */ if (fls(reg_val) >= RISCV_ISA_EXT_BASE) return -EINVAL; switch (reg_num) { case KVM_REG_RISCV_CONFIG_REG(isa): if (!vcpu->arch.ran_atleast_once) { /* Ignore the enable/disable request for certain extensions */ for (i = 0; i < RISCV_ISA_EXT_BASE; i++) { isa_ext = kvm_riscv_vcpu_base2isa_ext(i); if (isa_ext >= KVM_RISCV_ISA_EXT_MAX) { reg_val &= ~BIT(i); continue; } if (!kvm_riscv_vcpu_isa_enable_allowed(isa_ext)) if (reg_val & BIT(i)) reg_val &= ~BIT(i); if (!kvm_riscv_vcpu_isa_disable_allowed(isa_ext)) if (!(reg_val & BIT(i))) reg_val |= BIT(i); } reg_val &= riscv_isa_extension_base(NULL); /* Do not modify anything beyond single letter extensions */ reg_val = (vcpu->arch.isa[0] & ~KVM_RISCV_BASE_ISA_MASK) | (reg_val & KVM_RISCV_BASE_ISA_MASK); vcpu->arch.isa[0] = reg_val; kvm_riscv_vcpu_fp_reset(vcpu); } else { return -EOPNOTSUPP; } break; default: return -EINVAL; } return 0; } static int kvm_riscv_vcpu_get_reg_core(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { struct kvm_cpu_context *cntx = &vcpu->arch.guest_context; unsigned long __user *uaddr = (unsigned long __user *)(unsigned long)reg->addr; unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_RISCV_CORE); unsigned long reg_val; if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long)) return -EINVAL; if (reg_num >= sizeof(struct kvm_riscv_core) / sizeof(unsigned long)) return -EINVAL; if (reg_num == KVM_REG_RISCV_CORE_REG(regs.pc)) reg_val = cntx->sepc; else if (KVM_REG_RISCV_CORE_REG(regs.pc) < reg_num && reg_num <= KVM_REG_RISCV_CORE_REG(regs.t6)) reg_val = ((unsigned long *)cntx)[reg_num]; else if (reg_num == KVM_REG_RISCV_CORE_REG(mode)) reg_val = (cntx->sstatus & SR_SPP) ? KVM_RISCV_MODE_S : KVM_RISCV_MODE_U; else return -EINVAL; if (copy_to_user(uaddr, ®_val, KVM_REG_SIZE(reg->id))) return -EFAULT; return 0; } static int kvm_riscv_vcpu_set_reg_core(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { struct kvm_cpu_context *cntx = &vcpu->arch.guest_context; unsigned long __user *uaddr = (unsigned long __user *)(unsigned long)reg->addr; unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_RISCV_CORE); unsigned long reg_val; if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long)) return -EINVAL; if (reg_num >= sizeof(struct kvm_riscv_core) / sizeof(unsigned long)) return -EINVAL; if (copy_from_user(®_val, uaddr, KVM_REG_SIZE(reg->id))) return -EFAULT; if (reg_num == KVM_REG_RISCV_CORE_REG(regs.pc)) cntx->sepc = reg_val; else if (KVM_REG_RISCV_CORE_REG(regs.pc) < reg_num && reg_num <= KVM_REG_RISCV_CORE_REG(regs.t6)) ((unsigned long *)cntx)[reg_num] = reg_val; else if (reg_num == KVM_REG_RISCV_CORE_REG(mode)) { if (reg_val == KVM_RISCV_MODE_S) cntx->sstatus |= SR_SPP; else cntx->sstatus &= ~SR_SPP; } else return -EINVAL; return 0; } static int kvm_riscv_vcpu_get_reg_csr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; unsigned long __user *uaddr = (unsigned long __user *)(unsigned long)reg->addr; unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_RISCV_CSR); unsigned long reg_val; if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long)) return -EINVAL; if (reg_num >= sizeof(struct kvm_riscv_csr) / sizeof(unsigned long)) return -EINVAL; if (reg_num == KVM_REG_RISCV_CSR_REG(sip)) { kvm_riscv_vcpu_flush_interrupts(vcpu); reg_val = (csr->hvip >> VSIP_TO_HVIP_SHIFT) & VSIP_VALID_MASK; } else reg_val = ((unsigned long *)csr)[reg_num]; if (copy_to_user(uaddr, ®_val, KVM_REG_SIZE(reg->id))) return -EFAULT; return 0; } static int kvm_riscv_vcpu_set_reg_csr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; unsigned long __user *uaddr = (unsigned long __user *)(unsigned long)reg->addr; unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_RISCV_CSR); unsigned long reg_val; if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long)) return -EINVAL; if (reg_num >= sizeof(struct kvm_riscv_csr) / sizeof(unsigned long)) return -EINVAL; if (copy_from_user(®_val, uaddr, KVM_REG_SIZE(reg->id))) return -EFAULT; if (reg_num == KVM_REG_RISCV_CSR_REG(sip)) { reg_val &= VSIP_VALID_MASK; reg_val <<= VSIP_TO_HVIP_SHIFT; } ((unsigned long *)csr)[reg_num] = reg_val; if (reg_num == KVM_REG_RISCV_CSR_REG(sip)) WRITE_ONCE(vcpu->arch.irqs_pending_mask, 0); return 0; } static int kvm_riscv_vcpu_get_reg_isa_ext(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { unsigned long __user *uaddr = (unsigned long __user *)(unsigned long)reg->addr; unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_RISCV_ISA_EXT); unsigned long reg_val = 0; unsigned long host_isa_ext; if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long)) return -EINVAL; if (reg_num >= KVM_RISCV_ISA_EXT_MAX || reg_num >= ARRAY_SIZE(kvm_isa_ext_arr)) return -EINVAL; host_isa_ext = kvm_isa_ext_arr[reg_num]; if (__riscv_isa_extension_available(vcpu->arch.isa, host_isa_ext)) reg_val = 1; /* Mark the given extension as available */ if (copy_to_user(uaddr, ®_val, KVM_REG_SIZE(reg->id))) return -EFAULT; return 0; } static int kvm_riscv_vcpu_set_reg_isa_ext(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { unsigned long __user *uaddr = (unsigned long __user *)(unsigned long)reg->addr; unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_RISCV_ISA_EXT); unsigned long reg_val; unsigned long host_isa_ext; if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long)) return -EINVAL; if (reg_num >= KVM_RISCV_ISA_EXT_MAX || reg_num >= ARRAY_SIZE(kvm_isa_ext_arr)) return -EINVAL; if (copy_from_user(®_val, uaddr, KVM_REG_SIZE(reg->id))) return -EFAULT; host_isa_ext = kvm_isa_ext_arr[reg_num]; if (!__riscv_isa_extension_available(NULL, host_isa_ext)) return -EOPNOTSUPP; if (!vcpu->arch.ran_atleast_once) { /* * All multi-letter extension and a few single letter * extension can be disabled */ if (reg_val == 1 && kvm_riscv_vcpu_isa_enable_allowed(reg_num)) set_bit(host_isa_ext, vcpu->arch.isa); else if (!reg_val && kvm_riscv_vcpu_isa_disable_allowed(reg_num)) clear_bit(host_isa_ext, vcpu->arch.isa); else return -EINVAL; kvm_riscv_vcpu_fp_reset(vcpu); } else { return -EOPNOTSUPP; } return 0; } static int kvm_riscv_vcpu_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CONFIG) return kvm_riscv_vcpu_set_reg_config(vcpu, reg); else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CORE) return kvm_riscv_vcpu_set_reg_core(vcpu, reg); else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CSR) return kvm_riscv_vcpu_set_reg_csr(vcpu, reg); else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_TIMER) return kvm_riscv_vcpu_set_reg_timer(vcpu, reg); else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_F) return kvm_riscv_vcpu_set_reg_fp(vcpu, reg, KVM_REG_RISCV_FP_F); else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_D) return kvm_riscv_vcpu_set_reg_fp(vcpu, reg, KVM_REG_RISCV_FP_D); else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_ISA_EXT) return kvm_riscv_vcpu_set_reg_isa_ext(vcpu, reg); return -EINVAL; } static int kvm_riscv_vcpu_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CONFIG) return kvm_riscv_vcpu_get_reg_config(vcpu, reg); else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CORE) return kvm_riscv_vcpu_get_reg_core(vcpu, reg); else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CSR) return kvm_riscv_vcpu_get_reg_csr(vcpu, reg); else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_TIMER) return kvm_riscv_vcpu_get_reg_timer(vcpu, reg); else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_F) return kvm_riscv_vcpu_get_reg_fp(vcpu, reg, KVM_REG_RISCV_FP_F); else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_D) return kvm_riscv_vcpu_get_reg_fp(vcpu, reg, KVM_REG_RISCV_FP_D); else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_ISA_EXT) return kvm_riscv_vcpu_get_reg_isa_ext(vcpu, reg); return -EINVAL; } long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm_vcpu *vcpu = filp->private_data; void __user *argp = (void __user *)arg; if (ioctl == KVM_INTERRUPT) { struct kvm_interrupt irq; if (copy_from_user(&irq, argp, sizeof(irq))) return -EFAULT; if (irq.irq == KVM_INTERRUPT_SET) return kvm_riscv_vcpu_set_interrupt(vcpu, IRQ_VS_EXT); else return kvm_riscv_vcpu_unset_interrupt(vcpu, IRQ_VS_EXT); } return -ENOIOCTLCMD; } long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm_vcpu *vcpu = filp->private_data; void __user *argp = (void __user *)arg; long r = -EINVAL; switch (ioctl) { case KVM_SET_ONE_REG: case KVM_GET_ONE_REG: { struct kvm_one_reg reg; r = -EFAULT; if (copy_from_user(®, argp, sizeof(reg))) break; if (ioctl == KVM_SET_ONE_REG) r = kvm_riscv_vcpu_set_reg(vcpu, ®); else r = kvm_riscv_vcpu_get_reg(vcpu, ®); break; } default: break; } return r; } int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { return -EINVAL; } int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { return -EINVAL; } int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { return -EINVAL; } int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { return -EINVAL; } int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, struct kvm_translation *tr) { return -EINVAL; } int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { return -EINVAL; } int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { return -EINVAL; } void kvm_riscv_vcpu_flush_interrupts(struct kvm_vcpu *vcpu) { struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; unsigned long mask, val; if (READ_ONCE(vcpu->arch.irqs_pending_mask)) { mask = xchg_acquire(&vcpu->arch.irqs_pending_mask, 0); val = READ_ONCE(vcpu->arch.irqs_pending) & mask; csr->hvip &= ~mask; csr->hvip |= val; } } void kvm_riscv_vcpu_sync_interrupts(struct kvm_vcpu *vcpu) { unsigned long hvip; struct kvm_vcpu_arch *v = &vcpu->arch; struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; /* Read current HVIP and VSIE CSRs */ csr->vsie = csr_read(CSR_VSIE); /* Sync-up HVIP.VSSIP bit changes does by Guest */ hvip = csr_read(CSR_HVIP); if ((csr->hvip ^ hvip) & (1UL << IRQ_VS_SOFT)) { if (hvip & (1UL << IRQ_VS_SOFT)) { if (!test_and_set_bit(IRQ_VS_SOFT, &v->irqs_pending_mask)) set_bit(IRQ_VS_SOFT, &v->irqs_pending); } else { if (!test_and_set_bit(IRQ_VS_SOFT, &v->irqs_pending_mask)) clear_bit(IRQ_VS_SOFT, &v->irqs_pending); } } } int kvm_riscv_vcpu_set_interrupt(struct kvm_vcpu *vcpu, unsigned int irq) { if (irq != IRQ_VS_SOFT && irq != IRQ_VS_TIMER && irq != IRQ_VS_EXT) return -EINVAL; set_bit(irq, &vcpu->arch.irqs_pending); smp_mb__before_atomic(); set_bit(irq, &vcpu->arch.irqs_pending_mask); kvm_vcpu_kick(vcpu); return 0; } int kvm_riscv_vcpu_unset_interrupt(struct kvm_vcpu *vcpu, unsigned int irq) { if (irq != IRQ_VS_SOFT && irq != IRQ_VS_TIMER && irq != IRQ_VS_EXT) return -EINVAL; clear_bit(irq, &vcpu->arch.irqs_pending); smp_mb__before_atomic(); set_bit(irq, &vcpu->arch.irqs_pending_mask); return 0; } bool kvm_riscv_vcpu_has_interrupts(struct kvm_vcpu *vcpu, unsigned long mask) { unsigned long ie = ((vcpu->arch.guest_csr.vsie & VSIP_VALID_MASK) << VSIP_TO_HVIP_SHIFT) & mask; return (READ_ONCE(vcpu->arch.irqs_pending) & ie) ? true : false; } void kvm_riscv_vcpu_power_off(struct kvm_vcpu *vcpu) { vcpu->arch.power_off = true; kvm_make_request(KVM_REQ_SLEEP, vcpu); kvm_vcpu_kick(vcpu); } void kvm_riscv_vcpu_power_on(struct kvm_vcpu *vcpu) { vcpu->arch.power_off = false; kvm_vcpu_wake_up(vcpu); } int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { if (vcpu->arch.power_off) mp_state->mp_state = KVM_MP_STATE_STOPPED; else mp_state->mp_state = KVM_MP_STATE_RUNNABLE; return 0; } int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { int ret = 0; switch (mp_state->mp_state) { case KVM_MP_STATE_RUNNABLE: vcpu->arch.power_off = false; break; case KVM_MP_STATE_STOPPED: kvm_riscv_vcpu_power_off(vcpu); break; default: ret = -EINVAL; } return ret; } int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg) { /* TODO; To be implemented later. */ return -EINVAL; } void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; csr_write(CSR_VSSTATUS, csr->vsstatus); csr_write(CSR_VSIE, csr->vsie); csr_write(CSR_VSTVEC, csr->vstvec); csr_write(CSR_VSSCRATCH, csr->vsscratch); csr_write(CSR_VSEPC, csr->vsepc); csr_write(CSR_VSCAUSE, csr->vscause); csr_write(CSR_VSTVAL, csr->vstval); csr_write(CSR_HVIP, csr->hvip); csr_write(CSR_VSATP, csr->vsatp); kvm_riscv_gstage_update_hgatp(vcpu); kvm_riscv_vcpu_timer_restore(vcpu); kvm_riscv_vcpu_host_fp_save(&vcpu->arch.host_context); kvm_riscv_vcpu_guest_fp_restore(&vcpu->arch.guest_context, vcpu->arch.isa); vcpu->cpu = cpu; } void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) { struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; vcpu->cpu = -1; kvm_riscv_vcpu_guest_fp_save(&vcpu->arch.guest_context, vcpu->arch.isa); kvm_riscv_vcpu_host_fp_restore(&vcpu->arch.host_context); csr->vsstatus = csr_read(CSR_VSSTATUS); csr->vsie = csr_read(CSR_VSIE); csr->vstvec = csr_read(CSR_VSTVEC); csr->vsscratch = csr_read(CSR_VSSCRATCH); csr->vsepc = csr_read(CSR_VSEPC); csr->vscause = csr_read(CSR_VSCAUSE); csr->vstval = csr_read(CSR_VSTVAL); csr->hvip = csr_read(CSR_HVIP); csr->vsatp = csr_read(CSR_VSATP); } static void kvm_riscv_check_vcpu_requests(struct kvm_vcpu *vcpu) { struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); if (kvm_request_pending(vcpu)) { if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) { kvm_vcpu_srcu_read_unlock(vcpu); rcuwait_wait_event(wait, (!vcpu->arch.power_off) && (!vcpu->arch.pause), TASK_INTERRUPTIBLE); kvm_vcpu_srcu_read_lock(vcpu); if (vcpu->arch.power_off || vcpu->arch.pause) { /* * Awaken to handle a signal, request to * sleep again later. */ kvm_make_request(KVM_REQ_SLEEP, vcpu); } } if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) kvm_riscv_reset_vcpu(vcpu); if (kvm_check_request(KVM_REQ_UPDATE_HGATP, vcpu)) kvm_riscv_gstage_update_hgatp(vcpu); if (kvm_check_request(KVM_REQ_FENCE_I, vcpu)) kvm_riscv_fence_i_process(vcpu); /* * The generic KVM_REQ_TLB_FLUSH is same as * KVM_REQ_HFENCE_GVMA_VMID_ALL */ if (kvm_check_request(KVM_REQ_HFENCE_GVMA_VMID_ALL, vcpu)) kvm_riscv_hfence_gvma_vmid_all_process(vcpu); if (kvm_check_request(KVM_REQ_HFENCE_VVMA_ALL, vcpu)) kvm_riscv_hfence_vvma_all_process(vcpu); if (kvm_check_request(KVM_REQ_HFENCE, vcpu)) kvm_riscv_hfence_process(vcpu); } } static void kvm_riscv_update_hvip(struct kvm_vcpu *vcpu) { struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; csr_write(CSR_HVIP, csr->hvip); } /* * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while * the vCPU is running. * * This must be noinstr as instrumentation may make use of RCU, and this is not * safe during the EQS. */ static void noinstr kvm_riscv_vcpu_enter_exit(struct kvm_vcpu *vcpu) { guest_state_enter_irqoff(); __kvm_riscv_switch_to(&vcpu->arch); vcpu->arch.last_exit_cpu = vcpu->cpu; guest_state_exit_irqoff(); } int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) { int ret; struct kvm_cpu_trap trap; struct kvm_run *run = vcpu->run; /* Mark this VCPU ran at least once */ vcpu->arch.ran_atleast_once = true; kvm_vcpu_srcu_read_lock(vcpu); switch (run->exit_reason) { case KVM_EXIT_MMIO: /* Process MMIO value returned from user-space */ ret = kvm_riscv_vcpu_mmio_return(vcpu, vcpu->run); break; case KVM_EXIT_RISCV_SBI: /* Process SBI value returned from user-space */ ret = kvm_riscv_vcpu_sbi_return(vcpu, vcpu->run); break; case KVM_EXIT_RISCV_CSR: /* Process CSR value returned from user-space */ ret = kvm_riscv_vcpu_csr_return(vcpu, vcpu->run); break; default: ret = 0; break; } if (ret) { kvm_vcpu_srcu_read_unlock(vcpu); return ret; } if (run->immediate_exit) { kvm_vcpu_srcu_read_unlock(vcpu); return -EINTR; } vcpu_load(vcpu); kvm_sigset_activate(vcpu); ret = 1; run->exit_reason = KVM_EXIT_UNKNOWN; while (ret > 0) { /* Check conditions before entering the guest */ cond_resched(); kvm_riscv_gstage_vmid_update(vcpu); kvm_riscv_check_vcpu_requests(vcpu); local_irq_disable(); /* * Exit if we have a signal pending so that we can deliver * the signal to user space. */ if (signal_pending(current)) { ret = -EINTR; run->exit_reason = KVM_EXIT_INTR; } /* * Ensure we set mode to IN_GUEST_MODE after we disable * interrupts and before the final VCPU requests check. * See the comment in kvm_vcpu_exiting_guest_mode() and * Documentation/virt/kvm/vcpu-requests.rst */ vcpu->mode = IN_GUEST_MODE; kvm_vcpu_srcu_read_unlock(vcpu); smp_mb__after_srcu_read_unlock(); /* * We might have got VCPU interrupts updated asynchronously * so update it in HW. */ kvm_riscv_vcpu_flush_interrupts(vcpu); /* Update HVIP CSR for current CPU */ kvm_riscv_update_hvip(vcpu); if (ret <= 0 || kvm_riscv_gstage_vmid_ver_changed(&vcpu->kvm->arch.vmid) || kvm_request_pending(vcpu)) { vcpu->mode = OUTSIDE_GUEST_MODE; local_irq_enable(); kvm_vcpu_srcu_read_lock(vcpu); continue; } /* * Cleanup stale TLB enteries * * Note: This should be done after G-stage VMID has been * updated using kvm_riscv_gstage_vmid_ver_changed() */ kvm_riscv_local_tlb_sanitize(vcpu); guest_timing_enter_irqoff(); kvm_riscv_vcpu_enter_exit(vcpu); vcpu->mode = OUTSIDE_GUEST_MODE; vcpu->stat.exits++; /* * Save SCAUSE, STVAL, HTVAL, and HTINST because we might * get an interrupt between __kvm_riscv_switch_to() and * local_irq_enable() which can potentially change CSRs. */ trap.sepc = vcpu->arch.guest_context.sepc; trap.scause = csr_read(CSR_SCAUSE); trap.stval = csr_read(CSR_STVAL); trap.htval = csr_read(CSR_HTVAL); trap.htinst = csr_read(CSR_HTINST); /* Syncup interrupts state with HW */ kvm_riscv_vcpu_sync_interrupts(vcpu); preempt_disable(); /* * We must ensure that any pending interrupts are taken before * we exit guest timing so that timer ticks are accounted as * guest time. Transiently unmask interrupts so that any * pending interrupts are taken. * * There's no barrier which ensures that pending interrupts are * recognised, so we just hope that the CPU takes any pending * interrupts between the enable and disable. */ local_irq_enable(); local_irq_disable(); guest_timing_exit_irqoff(); local_irq_enable(); preempt_enable(); kvm_vcpu_srcu_read_lock(vcpu); ret = kvm_riscv_vcpu_exit(vcpu, run, &trap); } kvm_sigset_deactivate(vcpu); vcpu_put(vcpu); kvm_vcpu_srcu_read_unlock(vcpu); return ret; }