/* SCTP kernel implementation * (C) Copyright IBM Corp. 2001, 2004 * Copyright (c) 1999-2000 Cisco, Inc. * Copyright (c) 1999-2001 Motorola, Inc. * Copyright (c) 2001-2003 Intel Corp. * Copyright (c) 2001-2002 Nokia, Inc. * Copyright (c) 2001 La Monte H.P. Yarroll * * This file is part of the SCTP kernel implementation * * These functions interface with the sockets layer to implement the * SCTP Extensions for the Sockets API. * * Note that the descriptions from the specification are USER level * functions--this file is the functions which populate the struct proto * for SCTP which is the BOTTOM of the sockets interface. * * This SCTP implementation is free software; * you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This SCTP implementation is distributed in the hope that it * will be useful, but WITHOUT ANY WARRANTY; without even the implied * ************************ * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU CC; see the file COPYING. If not, see * . * * Please send any bug reports or fixes you make to the * email address(es): * lksctp developers * * Written or modified by: * La Monte H.P. Yarroll * Narasimha Budihal * Karl Knutson * Jon Grimm * Xingang Guo * Daisy Chang * Sridhar Samudrala * Inaky Perez-Gonzalez * Ardelle Fan * Ryan Layer * Anup Pemmaiah * Kevin Gao */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for sa_family_t */ #include #include #include #include #include /* Forward declarations for internal helper functions. */ static bool sctp_writeable(struct sock *sk); static void sctp_wfree(struct sk_buff *skb); static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, size_t msg_len); static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); static int sctp_wait_for_accept(struct sock *sk, long timeo); static void sctp_wait_for_close(struct sock *sk, long timeo); static void sctp_destruct_sock(struct sock *sk); static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, union sctp_addr *addr, int len); static int sctp_bindx_add(struct sock *, struct sockaddr *, int); static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); static int sctp_send_asconf(struct sctp_association *asoc, struct sctp_chunk *chunk); static int sctp_do_bind(struct sock *, union sctp_addr *, int); static int sctp_autobind(struct sock *sk); static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, struct sctp_association *assoc, enum sctp_socket_type type); static unsigned long sctp_memory_pressure; static atomic_long_t sctp_memory_allocated; struct percpu_counter sctp_sockets_allocated; static void sctp_enter_memory_pressure(struct sock *sk) { sctp_memory_pressure = 1; } /* Get the sndbuf space available at the time on the association. */ static inline int sctp_wspace(struct sctp_association *asoc) { struct sock *sk = asoc->base.sk; return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used : sk_stream_wspace(sk); } /* Increment the used sndbuf space count of the corresponding association by * the size of the outgoing data chunk. * Also, set the skb destructor for sndbuf accounting later. * * Since it is always 1-1 between chunk and skb, and also a new skb is always * allocated for chunk bundling in sctp_packet_transmit(), we can use the * destructor in the data chunk skb for the purpose of the sndbuf space * tracking. */ static inline void sctp_set_owner_w(struct sctp_chunk *chunk) { struct sctp_association *asoc = chunk->asoc; struct sock *sk = asoc->base.sk; /* The sndbuf space is tracked per association. */ sctp_association_hold(asoc); if (chunk->shkey) sctp_auth_shkey_hold(chunk->shkey); skb_set_owner_w(chunk->skb, sk); chunk->skb->destructor = sctp_wfree; /* Save the chunk pointer in skb for sctp_wfree to use later. */ skb_shinfo(chunk->skb)->destructor_arg = chunk; refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); sk_mem_charge(sk, chunk->skb->truesize); } static void sctp_clear_owner_w(struct sctp_chunk *chunk) { skb_orphan(chunk->skb); } static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, void (*cb)(struct sctp_chunk *)) { struct sctp_outq *q = &asoc->outqueue; struct sctp_transport *t; struct sctp_chunk *chunk; list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) list_for_each_entry(chunk, &t->transmitted, transmitted_list) cb(chunk); list_for_each_entry(chunk, &q->retransmit, transmitted_list) cb(chunk); list_for_each_entry(chunk, &q->sacked, transmitted_list) cb(chunk); list_for_each_entry(chunk, &q->abandoned, transmitted_list) cb(chunk); list_for_each_entry(chunk, &q->out_chunk_list, list) cb(chunk); } static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, void (*cb)(struct sk_buff *, struct sock *)) { struct sk_buff *skb, *tmp; sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) cb(skb, sk); sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) cb(skb, sk); sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) cb(skb, sk); } /* Verify that this is a valid address. */ static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, int len) { struct sctp_af *af; /* Verify basic sockaddr. */ af = sctp_sockaddr_af(sctp_sk(sk), addr, len); if (!af) return -EINVAL; /* Is this a valid SCTP address? */ if (!af->addr_valid(addr, sctp_sk(sk), NULL)) return -EINVAL; if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) return -EINVAL; return 0; } /* Look up the association by its id. If this is not a UDP-style * socket, the ID field is always ignored. */ struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) { struct sctp_association *asoc = NULL; /* If this is not a UDP-style socket, assoc id should be ignored. */ if (!sctp_style(sk, UDP)) { /* Return NULL if the socket state is not ESTABLISHED. It * could be a TCP-style listening socket or a socket which * hasn't yet called connect() to establish an association. */ if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) return NULL; /* Get the first and the only association from the list. */ if (!list_empty(&sctp_sk(sk)->ep->asocs)) asoc = list_entry(sctp_sk(sk)->ep->asocs.next, struct sctp_association, asocs); return asoc; } /* Otherwise this is a UDP-style socket. */ if (id <= SCTP_ALL_ASSOC) return NULL; spin_lock_bh(&sctp_assocs_id_lock); asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); if (asoc && (asoc->base.sk != sk || asoc->base.dead)) asoc = NULL; spin_unlock_bh(&sctp_assocs_id_lock); return asoc; } /* Look up the transport from an address and an assoc id. If both address and * id are specified, the associations matching the address and the id should be * the same. */ static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, struct sockaddr_storage *addr, sctp_assoc_t id) { struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; struct sctp_af *af = sctp_get_af_specific(addr->ss_family); union sctp_addr *laddr = (union sctp_addr *)addr; struct sctp_transport *transport; if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) return NULL; addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, laddr, &transport); if (!addr_asoc) return NULL; id_asoc = sctp_id2assoc(sk, id); if (id_asoc && (id_asoc != addr_asoc)) return NULL; sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), (union sctp_addr *)addr); return transport; } /* API 3.1.2 bind() - UDP Style Syntax * The syntax of bind() is, * * ret = bind(int sd, struct sockaddr *addr, int addrlen); * * sd - the socket descriptor returned by socket(). * addr - the address structure (struct sockaddr_in or struct * sockaddr_in6 [RFC 2553]), * addr_len - the size of the address structure. */ static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) { int retval = 0; lock_sock(sk); pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, addr, addr_len); /* Disallow binding twice. */ if (!sctp_sk(sk)->ep->base.bind_addr.port) retval = sctp_do_bind(sk, (union sctp_addr *)addr, addr_len); else retval = -EINVAL; release_sock(sk); return retval; } static long sctp_get_port_local(struct sock *, union sctp_addr *); /* Verify this is a valid sockaddr. */ static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, union sctp_addr *addr, int len) { struct sctp_af *af; /* Check minimum size. */ if (len < sizeof (struct sockaddr)) return NULL; if (!opt->pf->af_supported(addr->sa.sa_family, opt)) return NULL; if (addr->sa.sa_family == AF_INET6) { if (len < SIN6_LEN_RFC2133) return NULL; /* V4 mapped address are really of AF_INET family */ if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && !opt->pf->af_supported(AF_INET, opt)) return NULL; } /* If we get this far, af is valid. */ af = sctp_get_af_specific(addr->sa.sa_family); if (len < af->sockaddr_len) return NULL; return af; } /* Bind a local address either to an endpoint or to an association. */ static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) { struct net *net = sock_net(sk); struct sctp_sock *sp = sctp_sk(sk); struct sctp_endpoint *ep = sp->ep; struct sctp_bind_addr *bp = &ep->base.bind_addr; struct sctp_af *af; unsigned short snum; int ret = 0; /* Common sockaddr verification. */ af = sctp_sockaddr_af(sp, addr, len); if (!af) { pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", __func__, sk, addr, len); return -EINVAL; } snum = ntohs(addr->v4.sin_port); pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", __func__, sk, &addr->sa, bp->port, snum, len); /* PF specific bind() address verification. */ if (!sp->pf->bind_verify(sp, addr)) return -EADDRNOTAVAIL; /* We must either be unbound, or bind to the same port. * It's OK to allow 0 ports if we are already bound. * We'll just inhert an already bound port in this case */ if (bp->port) { if (!snum) snum = bp->port; else if (snum != bp->port) { pr_debug("%s: new port %d doesn't match existing port " "%d\n", __func__, snum, bp->port); return -EINVAL; } } if (snum && snum < inet_prot_sock(net) && !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) return -EACCES; /* See if the address matches any of the addresses we may have * already bound before checking against other endpoints. */ if (sctp_bind_addr_match(bp, addr, sp)) return -EINVAL; /* Make sure we are allowed to bind here. * The function sctp_get_port_local() does duplicate address * detection. */ addr->v4.sin_port = htons(snum); if ((ret = sctp_get_port_local(sk, addr))) { return -EADDRINUSE; } /* Refresh ephemeral port. */ if (!bp->port) bp->port = inet_sk(sk)->inet_num; /* Add the address to the bind address list. * Use GFP_ATOMIC since BHs will be disabled. */ ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, SCTP_ADDR_SRC, GFP_ATOMIC); /* Copy back into socket for getsockname() use. */ if (!ret) { inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); sp->pf->to_sk_saddr(addr, sk); } return ret; } /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks * * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged * at any one time. If a sender, after sending an ASCONF chunk, decides * it needs to transfer another ASCONF Chunk, it MUST wait until the * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a * subsequent ASCONF. Note this restriction binds each side, so at any * time two ASCONF may be in-transit on any given association (one sent * from each endpoint). */ static int sctp_send_asconf(struct sctp_association *asoc, struct sctp_chunk *chunk) { struct net *net = sock_net(asoc->base.sk); int retval = 0; /* If there is an outstanding ASCONF chunk, queue it for later * transmission. */ if (asoc->addip_last_asconf) { list_add_tail(&chunk->list, &asoc->addip_chunk_list); goto out; } /* Hold the chunk until an ASCONF_ACK is received. */ sctp_chunk_hold(chunk); retval = sctp_primitive_ASCONF(net, asoc, chunk); if (retval) sctp_chunk_free(chunk); else asoc->addip_last_asconf = chunk; out: return retval; } /* Add a list of addresses as bind addresses to local endpoint or * association. * * Basically run through each address specified in the addrs/addrcnt * array/length pair, determine if it is IPv6 or IPv4 and call * sctp_do_bind() on it. * * If any of them fails, then the operation will be reversed and the * ones that were added will be removed. * * Only sctp_setsockopt_bindx() is supposed to call this function. */ static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) { int cnt; int retval = 0; void *addr_buf; struct sockaddr *sa_addr; struct sctp_af *af; pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, addrs, addrcnt); addr_buf = addrs; for (cnt = 0; cnt < addrcnt; cnt++) { /* The list may contain either IPv4 or IPv6 address; * determine the address length for walking thru the list. */ sa_addr = addr_buf; af = sctp_get_af_specific(sa_addr->sa_family); if (!af) { retval = -EINVAL; goto err_bindx_add; } retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, af->sockaddr_len); addr_buf += af->sockaddr_len; err_bindx_add: if (retval < 0) { /* Failed. Cleanup the ones that have been added */ if (cnt > 0) sctp_bindx_rem(sk, addrs, cnt); return retval; } } return retval; } /* Send an ASCONF chunk with Add IP address parameters to all the peers of the * associations that are part of the endpoint indicating that a list of local * addresses are added to the endpoint. * * If any of the addresses is already in the bind address list of the * association, we do not send the chunk for that association. But it will not * affect other associations. * * Only sctp_setsockopt_bindx() is supposed to call this function. */ static int sctp_send_asconf_add_ip(struct sock *sk, struct sockaddr *addrs, int addrcnt) { struct net *net = sock_net(sk); struct sctp_sock *sp; struct sctp_endpoint *ep; struct sctp_association *asoc; struct sctp_bind_addr *bp; struct sctp_chunk *chunk; struct sctp_sockaddr_entry *laddr; union sctp_addr *addr; union sctp_addr saveaddr; void *addr_buf; struct sctp_af *af; struct list_head *p; int i; int retval = 0; if (!net->sctp.addip_enable) return retval; sp = sctp_sk(sk); ep = sp->ep; pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, addrs, addrcnt); list_for_each_entry(asoc, &ep->asocs, asocs) { if (!asoc->peer.asconf_capable) continue; if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) continue; if (!sctp_state(asoc, ESTABLISHED)) continue; /* Check if any address in the packed array of addresses is * in the bind address list of the association. If so, * do not send the asconf chunk to its peer, but continue with * other associations. */ addr_buf = addrs; for (i = 0; i < addrcnt; i++) { addr = addr_buf; af = sctp_get_af_specific(addr->v4.sin_family); if (!af) { retval = -EINVAL; goto out; } if (sctp_assoc_lookup_laddr(asoc, addr)) break; addr_buf += af->sockaddr_len; } if (i < addrcnt) continue; /* Use the first valid address in bind addr list of * association as Address Parameter of ASCONF CHUNK. */ bp = &asoc->base.bind_addr; p = bp->address_list.next; laddr = list_entry(p, struct sctp_sockaddr_entry, list); chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, addrcnt, SCTP_PARAM_ADD_IP); if (!chunk) { retval = -ENOMEM; goto out; } /* Add the new addresses to the bind address list with * use_as_src set to 0. */ addr_buf = addrs; for (i = 0; i < addrcnt; i++) { addr = addr_buf; af = sctp_get_af_specific(addr->v4.sin_family); memcpy(&saveaddr, addr, af->sockaddr_len); retval = sctp_add_bind_addr(bp, &saveaddr, sizeof(saveaddr), SCTP_ADDR_NEW, GFP_ATOMIC); addr_buf += af->sockaddr_len; } if (asoc->src_out_of_asoc_ok) { struct sctp_transport *trans; list_for_each_entry(trans, &asoc->peer.transport_addr_list, transports) { trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); trans->ssthresh = asoc->peer.i.a_rwnd; trans->rto = asoc->rto_initial; sctp_max_rto(asoc, trans); trans->rtt = trans->srtt = trans->rttvar = 0; /* Clear the source and route cache */ sctp_transport_route(trans, NULL, sctp_sk(asoc->base.sk)); } } retval = sctp_send_asconf(asoc, chunk); } out: return retval; } /* Remove a list of addresses from bind addresses list. Do not remove the * last address. * * Basically run through each address specified in the addrs/addrcnt * array/length pair, determine if it is IPv6 or IPv4 and call * sctp_del_bind() on it. * * If any of them fails, then the operation will be reversed and the * ones that were removed will be added back. * * At least one address has to be left; if only one address is * available, the operation will return -EBUSY. * * Only sctp_setsockopt_bindx() is supposed to call this function. */ static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_endpoint *ep = sp->ep; int cnt; struct sctp_bind_addr *bp = &ep->base.bind_addr; int retval = 0; void *addr_buf; union sctp_addr *sa_addr; struct sctp_af *af; pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, addrs, addrcnt); addr_buf = addrs; for (cnt = 0; cnt < addrcnt; cnt++) { /* If the bind address list is empty or if there is only one * bind address, there is nothing more to be removed (we need * at least one address here). */ if (list_empty(&bp->address_list) || (sctp_list_single_entry(&bp->address_list))) { retval = -EBUSY; goto err_bindx_rem; } sa_addr = addr_buf; af = sctp_get_af_specific(sa_addr->sa.sa_family); if (!af) { retval = -EINVAL; goto err_bindx_rem; } if (!af->addr_valid(sa_addr, sp, NULL)) { retval = -EADDRNOTAVAIL; goto err_bindx_rem; } if (sa_addr->v4.sin_port && sa_addr->v4.sin_port != htons(bp->port)) { retval = -EINVAL; goto err_bindx_rem; } if (!sa_addr->v4.sin_port) sa_addr->v4.sin_port = htons(bp->port); /* FIXME - There is probably a need to check if sk->sk_saddr and * sk->sk_rcv_addr are currently set to one of the addresses to * be removed. This is something which needs to be looked into * when we are fixing the outstanding issues with multi-homing * socket routing and failover schemes. Refer to comments in * sctp_do_bind(). -daisy */ retval = sctp_del_bind_addr(bp, sa_addr); addr_buf += af->sockaddr_len; err_bindx_rem: if (retval < 0) { /* Failed. Add the ones that has been removed back */ if (cnt > 0) sctp_bindx_add(sk, addrs, cnt); return retval; } } return retval; } /* Send an ASCONF chunk with Delete IP address parameters to all the peers of * the associations that are part of the endpoint indicating that a list of * local addresses are removed from the endpoint. * * If any of the addresses is already in the bind address list of the * association, we do not send the chunk for that association. But it will not * affect other associations. * * Only sctp_setsockopt_bindx() is supposed to call this function. */ static int sctp_send_asconf_del_ip(struct sock *sk, struct sockaddr *addrs, int addrcnt) { struct net *net = sock_net(sk); struct sctp_sock *sp; struct sctp_endpoint *ep; struct sctp_association *asoc; struct sctp_transport *transport; struct sctp_bind_addr *bp; struct sctp_chunk *chunk; union sctp_addr *laddr; void *addr_buf; struct sctp_af *af; struct sctp_sockaddr_entry *saddr; int i; int retval = 0; int stored = 0; chunk = NULL; if (!net->sctp.addip_enable) return retval; sp = sctp_sk(sk); ep = sp->ep; pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, addrs, addrcnt); list_for_each_entry(asoc, &ep->asocs, asocs) { if (!asoc->peer.asconf_capable) continue; if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) continue; if (!sctp_state(asoc, ESTABLISHED)) continue; /* Check if any address in the packed array of addresses is * not present in the bind address list of the association. * If so, do not send the asconf chunk to its peer, but * continue with other associations. */ addr_buf = addrs; for (i = 0; i < addrcnt; i++) { laddr = addr_buf; af = sctp_get_af_specific(laddr->v4.sin_family); if (!af) { retval = -EINVAL; goto out; } if (!sctp_assoc_lookup_laddr(asoc, laddr)) break; addr_buf += af->sockaddr_len; } if (i < addrcnt) continue; /* Find one address in the association's bind address list * that is not in the packed array of addresses. This is to * make sure that we do not delete all the addresses in the * association. */ bp = &asoc->base.bind_addr; laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, addrcnt, sp); if ((laddr == NULL) && (addrcnt == 1)) { if (asoc->asconf_addr_del_pending) continue; asoc->asconf_addr_del_pending = kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); if (asoc->asconf_addr_del_pending == NULL) { retval = -ENOMEM; goto out; } asoc->asconf_addr_del_pending->sa.sa_family = addrs->sa_family; asoc->asconf_addr_del_pending->v4.sin_port = htons(bp->port); if (addrs->sa_family == AF_INET) { struct sockaddr_in *sin; sin = (struct sockaddr_in *)addrs; asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; } else if (addrs->sa_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)addrs; asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; } pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", __func__, asoc, &asoc->asconf_addr_del_pending->sa, asoc->asconf_addr_del_pending); asoc->src_out_of_asoc_ok = 1; stored = 1; goto skip_mkasconf; } if (laddr == NULL) return -EINVAL; /* We do not need RCU protection throughout this loop * because this is done under a socket lock from the * setsockopt call. */ chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, SCTP_PARAM_DEL_IP); if (!chunk) { retval = -ENOMEM; goto out; } skip_mkasconf: /* Reset use_as_src flag for the addresses in the bind address * list that are to be deleted. */ addr_buf = addrs; for (i = 0; i < addrcnt; i++) { laddr = addr_buf; af = sctp_get_af_specific(laddr->v4.sin_family); list_for_each_entry(saddr, &bp->address_list, list) { if (sctp_cmp_addr_exact(&saddr->a, laddr)) saddr->state = SCTP_ADDR_DEL; } addr_buf += af->sockaddr_len; } /* Update the route and saddr entries for all the transports * as some of the addresses in the bind address list are * about to be deleted and cannot be used as source addresses. */ list_for_each_entry(transport, &asoc->peer.transport_addr_list, transports) { sctp_transport_route(transport, NULL, sctp_sk(asoc->base.sk)); } if (stored) /* We don't need to transmit ASCONF */ continue; retval = sctp_send_asconf(asoc, chunk); } out: return retval; } /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) { struct sock *sk = sctp_opt2sk(sp); union sctp_addr *addr; struct sctp_af *af; /* It is safe to write port space in caller. */ addr = &addrw->a; addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); af = sctp_get_af_specific(addr->sa.sa_family); if (!af) return -EINVAL; if (sctp_verify_addr(sk, addr, af->sockaddr_len)) return -EINVAL; if (addrw->state == SCTP_ADDR_NEW) return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); else return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); } /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() * * API 8.1 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, * int flags); * * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. * If the sd is an IPv6 socket, the addresses passed can either be IPv4 * or IPv6 addresses. * * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see * Section 3.1.2 for this usage. * * addrs is a pointer to an array of one or more socket addresses. Each * address is contained in its appropriate structure (i.e. struct * sockaddr_in or struct sockaddr_in6) the family of the address type * must be used to distinguish the address length (note that this * representation is termed a "packed array" of addresses). The caller * specifies the number of addresses in the array with addrcnt. * * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns * -1, and sets errno to the appropriate error code. * * For SCTP, the port given in each socket address must be the same, or * sctp_bindx() will fail, setting errno to EINVAL. * * The flags parameter is formed from the bitwise OR of zero or more of * the following currently defined flags: * * SCTP_BINDX_ADD_ADDR * * SCTP_BINDX_REM_ADDR * * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given * addresses from the association. The two flags are mutually exclusive; * if both are given, sctp_bindx() will fail with EINVAL. A caller may * not remove all addresses from an association; sctp_bindx() will * reject such an attempt with EINVAL. * * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate * additional addresses with an endpoint after calling bind(). Or use * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening * socket is associated with so that no new association accepted will be * associated with those addresses. If the endpoint supports dynamic * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a * endpoint to send the appropriate message to the peer to change the * peers address lists. * * Adding and removing addresses from a connected association is * optional functionality. Implementations that do not support this * functionality should return EOPNOTSUPP. * * Basically do nothing but copying the addresses from user to kernel * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() * from userspace. * * On exit there is no need to do sockfd_put(), sys_setsockopt() does * it. * * sk The sk of the socket * addrs The pointer to the addresses in user land * addrssize Size of the addrs buffer * op Operation to perform (add or remove, see the flags of * sctp_bindx) * * Returns 0 if ok, <0 errno code on error. */ static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr __user *addrs, int addrs_size, int op) { struct sockaddr *kaddrs; int err; int addrcnt = 0; int walk_size = 0; struct sockaddr *sa_addr; void *addr_buf; struct sctp_af *af; pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", __func__, sk, addrs, addrs_size, op); if (unlikely(addrs_size <= 0)) return -EINVAL; kaddrs = vmemdup_user(addrs, addrs_size); if (unlikely(IS_ERR(kaddrs))) return PTR_ERR(kaddrs); /* Walk through the addrs buffer and count the number of addresses. */ addr_buf = kaddrs; while (walk_size < addrs_size) { if (walk_size + sizeof(sa_family_t) > addrs_size) { kvfree(kaddrs); return -EINVAL; } sa_addr = addr_buf; af = sctp_get_af_specific(sa_addr->sa_family); /* If the address family is not supported or if this address * causes the address buffer to overflow return EINVAL. */ if (!af || (walk_size + af->sockaddr_len) > addrs_size) { kvfree(kaddrs); return -EINVAL; } addrcnt++; addr_buf += af->sockaddr_len; walk_size += af->sockaddr_len; } /* Do the work. */ switch (op) { case SCTP_BINDX_ADD_ADDR: /* Allow security module to validate bindx addresses. */ err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, (struct sockaddr *)kaddrs, addrs_size); if (err) goto out; err = sctp_bindx_add(sk, kaddrs, addrcnt); if (err) goto out; err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); break; case SCTP_BINDX_REM_ADDR: err = sctp_bindx_rem(sk, kaddrs, addrcnt); if (err) goto out; err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); break; default: err = -EINVAL; break; } out: kvfree(kaddrs); return err; } /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) * * Common routine for handling connect() and sctp_connectx(). * Connect will come in with just a single address. */ static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs, int addrs_size, int flags, sctp_assoc_t *assoc_id) { struct net *net = sock_net(sk); struct sctp_sock *sp; struct sctp_endpoint *ep; struct sctp_association *asoc = NULL; struct sctp_association *asoc2; struct sctp_transport *transport; union sctp_addr to; enum sctp_scope scope; long timeo; int err = 0; int addrcnt = 0; int walk_size = 0; union sctp_addr *sa_addr = NULL; void *addr_buf; unsigned short port; sp = sctp_sk(sk); ep = sp->ep; /* connect() cannot be done on a socket that is already in ESTABLISHED * state - UDP-style peeled off socket or a TCP-style socket that * is already connected. * It cannot be done even on a TCP-style listening socket. */ if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { err = -EISCONN; goto out_free; } /* Walk through the addrs buffer and count the number of addresses. */ addr_buf = kaddrs; while (walk_size < addrs_size) { struct sctp_af *af; if (walk_size + sizeof(sa_family_t) > addrs_size) { err = -EINVAL; goto out_free; } sa_addr = addr_buf; af = sctp_get_af_specific(sa_addr->sa.sa_family); /* If the address family is not supported or if this address * causes the address buffer to overflow return EINVAL. */ if (!af || (walk_size + af->sockaddr_len) > addrs_size) { err = -EINVAL; goto out_free; } port = ntohs(sa_addr->v4.sin_port); /* Save current address so we can work with it */ memcpy(&to, sa_addr, af->sockaddr_len); err = sctp_verify_addr(sk, &to, af->sockaddr_len); if (err) goto out_free; /* Make sure the destination port is correctly set * in all addresses. */ if (asoc && asoc->peer.port && asoc->peer.port != port) { err = -EINVAL; goto out_free; } /* Check if there already is a matching association on the * endpoint (other than the one created here). */ asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); if (asoc2 && asoc2 != asoc) { if (asoc2->state >= SCTP_STATE_ESTABLISHED) err = -EISCONN; else err = -EALREADY; goto out_free; } /* If we could not find a matching association on the endpoint, * make sure that there is no peeled-off association matching * the peer address even on another socket. */ if (sctp_endpoint_is_peeled_off(ep, &to)) { err = -EADDRNOTAVAIL; goto out_free; } if (!asoc) { /* If a bind() or sctp_bindx() is not called prior to * an sctp_connectx() call, the system picks an * ephemeral port and will choose an address set * equivalent to binding with a wildcard address. */ if (!ep->base.bind_addr.port) { if (sctp_autobind(sk)) { err = -EAGAIN; goto out_free; } } else { /* * If an unprivileged user inherits a 1-many * style socket with open associations on a * privileged port, it MAY be permitted to * accept new associations, but it SHOULD NOT * be permitted to open new associations. */ if (ep->base.bind_addr.port < inet_prot_sock(net) && !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { err = -EACCES; goto out_free; } } scope = sctp_scope(&to); asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); if (!asoc) { err = -ENOMEM; goto out_free; } err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); if (err < 0) { goto out_free; } } /* Prime the peer's transport structures. */ transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); if (!transport) { err = -ENOMEM; goto out_free; } addrcnt++; addr_buf += af->sockaddr_len; walk_size += af->sockaddr_len; } /* In case the user of sctp_connectx() wants an association * id back, assign one now. */ if (assoc_id) { err = sctp_assoc_set_id(asoc, GFP_KERNEL); if (err < 0) goto out_free; } err = sctp_primitive_ASSOCIATE(net, asoc, NULL); if (err < 0) { goto out_free; } /* Initialize sk's dport and daddr for getpeername() */ inet_sk(sk)->inet_dport = htons(asoc->peer.port); sp->pf->to_sk_daddr(sa_addr, sk); sk->sk_err = 0; timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); if (assoc_id) *assoc_id = asoc->assoc_id; err = sctp_wait_for_connect(asoc, &timeo); /* Note: the asoc may be freed after the return of * sctp_wait_for_connect. */ /* Don't free association on exit. */ asoc = NULL; out_free: pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", __func__, asoc, kaddrs, err); if (asoc) { /* sctp_primitive_ASSOCIATE may have added this association * To the hash table, try to unhash it, just in case, its a noop * if it wasn't hashed so we're safe */ sctp_association_free(asoc); } return err; } /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() * * API 8.9 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, * sctp_assoc_t *asoc); * * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. * If the sd is an IPv6 socket, the addresses passed can either be IPv4 * or IPv6 addresses. * * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see * Section 3.1.2 for this usage. * * addrs is a pointer to an array of one or more socket addresses. Each * address is contained in its appropriate structure (i.e. struct * sockaddr_in or struct sockaddr_in6) the family of the address type * must be used to distengish the address length (note that this * representation is termed a "packed array" of addresses). The caller * specifies the number of addresses in the array with addrcnt. * * On success, sctp_connectx() returns 0. It also sets the assoc_id to * the association id of the new association. On failure, sctp_connectx() * returns -1, and sets errno to the appropriate error code. The assoc_id * is not touched by the kernel. * * For SCTP, the port given in each socket address must be the same, or * sctp_connectx() will fail, setting errno to EINVAL. * * An application can use sctp_connectx to initiate an association with * an endpoint that is multi-homed. Much like sctp_bindx() this call * allows a caller to specify multiple addresses at which a peer can be * reached. The way the SCTP stack uses the list of addresses to set up * the association is implementation dependent. This function only * specifies that the stack will try to make use of all the addresses in * the list when needed. * * Note that the list of addresses passed in is only used for setting up * the association. It does not necessarily equal the set of addresses * the peer uses for the resulting association. If the caller wants to * find out the set of peer addresses, it must use sctp_getpaddrs() to * retrieve them after the association has been set up. * * Basically do nothing but copying the addresses from user to kernel * land and invoking either sctp_connectx(). This is used for tunneling * the sctp_connectx() request through sctp_setsockopt() from userspace. * * On exit there is no need to do sockfd_put(), sys_setsockopt() does * it. * * sk The sk of the socket * addrs The pointer to the addresses in user land * addrssize Size of the addrs buffer * * Returns >=0 if ok, <0 errno code on error. */ static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr __user *addrs, int addrs_size, sctp_assoc_t *assoc_id) { struct sockaddr *kaddrs; int err = 0, flags = 0; pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", __func__, sk, addrs, addrs_size); if (unlikely(addrs_size <= 0)) return -EINVAL; kaddrs = vmemdup_user(addrs, addrs_size); if (unlikely(IS_ERR(kaddrs))) return PTR_ERR(kaddrs); /* Allow security module to validate connectx addresses. */ err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, (struct sockaddr *)kaddrs, addrs_size); if (err) goto out_free; /* in-kernel sockets don't generally have a file allocated to them * if all they do is call sock_create_kern(). */ if (sk->sk_socket->file) flags = sk->sk_socket->file->f_flags; err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); out_free: kvfree(kaddrs); return err; } /* * This is an older interface. It's kept for backward compatibility * to the option that doesn't provide association id. */ static int sctp_setsockopt_connectx_old(struct sock *sk, struct sockaddr __user *addrs, int addrs_size) { return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); } /* * New interface for the API. The since the API is done with a socket * option, to make it simple we feed back the association id is as a return * indication to the call. Error is always negative and association id is * always positive. */ static int sctp_setsockopt_connectx(struct sock *sk, struct sockaddr __user *addrs, int addrs_size) { sctp_assoc_t assoc_id = 0; int err = 0; err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); if (err) return err; else return assoc_id; } /* * New (hopefully final) interface for the API. * We use the sctp_getaddrs_old structure so that use-space library * can avoid any unnecessary allocations. The only different part * is that we store the actual length of the address buffer into the * addrs_num structure member. That way we can re-use the existing * code. */ #ifdef CONFIG_COMPAT struct compat_sctp_getaddrs_old { sctp_assoc_t assoc_id; s32 addr_num; compat_uptr_t addrs; /* struct sockaddr * */ }; #endif static int sctp_getsockopt_connectx3(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_getaddrs_old param; sctp_assoc_t assoc_id = 0; int err = 0; #ifdef CONFIG_COMPAT if (in_compat_syscall()) { struct compat_sctp_getaddrs_old param32; if (len < sizeof(param32)) return -EINVAL; if (copy_from_user(¶m32, optval, sizeof(param32))) return -EFAULT; param.assoc_id = param32.assoc_id; param.addr_num = param32.addr_num; param.addrs = compat_ptr(param32.addrs); } else #endif { if (len < sizeof(param)) return -EINVAL; if (copy_from_user(¶m, optval, sizeof(param))) return -EFAULT; } err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) param.addrs, param.addr_num, &assoc_id); if (err == 0 || err == -EINPROGRESS) { if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) return -EFAULT; if (put_user(sizeof(assoc_id), optlen)) return -EFAULT; } return err; } /* API 3.1.4 close() - UDP Style Syntax * Applications use close() to perform graceful shutdown (as described in * Section 10.1 of [SCTP]) on ALL the associations currently represented * by a UDP-style socket. * * The syntax is * * ret = close(int sd); * * sd - the socket descriptor of the associations to be closed. * * To gracefully shutdown a specific association represented by the * UDP-style socket, an application should use the sendmsg() call, * passing no user data, but including the appropriate flag in the * ancillary data (see Section xxxx). * * If sd in the close() call is a branched-off socket representing only * one association, the shutdown is performed on that association only. * * 4.1.6 close() - TCP Style Syntax * * Applications use close() to gracefully close down an association. * * The syntax is: * * int close(int sd); * * sd - the socket descriptor of the association to be closed. * * After an application calls close() on a socket descriptor, no further * socket operations will succeed on that descriptor. * * API 7.1.4 SO_LINGER * * An application using the TCP-style socket can use this option to * perform the SCTP ABORT primitive. The linger option structure is: * * struct linger { * int l_onoff; // option on/off * int l_linger; // linger time * }; * * To enable the option, set l_onoff to 1. If the l_linger value is set * to 0, calling close() is the same as the ABORT primitive. If the * value is set to a negative value, the setsockopt() call will return * an error. If the value is set to a positive value linger_time, the * close() can be blocked for at most linger_time ms. If the graceful * shutdown phase does not finish during this period, close() will * return but the graceful shutdown phase continues in the system. */ static void sctp_close(struct sock *sk, long timeout) { struct net *net = sock_net(sk); struct sctp_endpoint *ep; struct sctp_association *asoc; struct list_head *pos, *temp; unsigned int data_was_unread; pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); lock_sock_nested(sk, SINGLE_DEPTH_NESTING); sk->sk_shutdown = SHUTDOWN_MASK; inet_sk_set_state(sk, SCTP_SS_CLOSING); ep = sctp_sk(sk)->ep; /* Clean up any skbs sitting on the receive queue. */ data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); /* Walk all associations on an endpoint. */ list_for_each_safe(pos, temp, &ep->asocs) { asoc = list_entry(pos, struct sctp_association, asocs); if (sctp_style(sk, TCP)) { /* A closed association can still be in the list if * it belongs to a TCP-style listening socket that is * not yet accepted. If so, free it. If not, send an * ABORT or SHUTDOWN based on the linger options. */ if (sctp_state(asoc, CLOSED)) { sctp_association_free(asoc); continue; } } if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || !skb_queue_empty(&asoc->ulpq.reasm) || !skb_queue_empty(&asoc->ulpq.reasm_uo) || (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { struct sctp_chunk *chunk; chunk = sctp_make_abort_user(asoc, NULL, 0); sctp_primitive_ABORT(net, asoc, chunk); } else sctp_primitive_SHUTDOWN(net, asoc, NULL); } /* On a TCP-style socket, block for at most linger_time if set. */ if (sctp_style(sk, TCP) && timeout) sctp_wait_for_close(sk, timeout); /* This will run the backlog queue. */ release_sock(sk); /* Supposedly, no process has access to the socket, but * the net layers still may. * Also, sctp_destroy_sock() needs to be called with addr_wq_lock * held and that should be grabbed before socket lock. */ spin_lock_bh(&net->sctp.addr_wq_lock); bh_lock_sock_nested(sk); /* Hold the sock, since sk_common_release() will put sock_put() * and we have just a little more cleanup. */ sock_hold(sk); sk_common_release(sk); bh_unlock_sock(sk); spin_unlock_bh(&net->sctp.addr_wq_lock); sock_put(sk); SCTP_DBG_OBJCNT_DEC(sock); } /* Handle EPIPE error. */ static int sctp_error(struct sock *sk, int flags, int err) { if (err == -EPIPE) err = sock_error(sk) ? : -EPIPE; if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) send_sig(SIGPIPE, current, 0); return err; } /* API 3.1.3 sendmsg() - UDP Style Syntax * * An application uses sendmsg() and recvmsg() calls to transmit data to * and receive data from its peer. * * ssize_t sendmsg(int socket, const struct msghdr *message, * int flags); * * socket - the socket descriptor of the endpoint. * message - pointer to the msghdr structure which contains a single * user message and possibly some ancillary data. * * See Section 5 for complete description of the data * structures. * * flags - flags sent or received with the user message, see Section * 5 for complete description of the flags. * * Note: This function could use a rewrite especially when explicit * connect support comes in. */ /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs); static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, struct sctp_sndrcvinfo *srinfo, const struct msghdr *msg, size_t msg_len) { __u16 sflags; int err; if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) return -EPIPE; if (msg_len > sk->sk_sndbuf) return -EMSGSIZE; memset(cmsgs, 0, sizeof(*cmsgs)); err = sctp_msghdr_parse(msg, cmsgs); if (err) { pr_debug("%s: msghdr parse err:%x\n", __func__, err); return err; } memset(srinfo, 0, sizeof(*srinfo)); if (cmsgs->srinfo) { srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; } if (cmsgs->sinfo) { srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; srinfo->sinfo_context = cmsgs->sinfo->snd_context; srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; } if (cmsgs->prinfo) { srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; SCTP_PR_SET_POLICY(srinfo->sinfo_flags, cmsgs->prinfo->pr_policy); } sflags = srinfo->sinfo_flags; if (!sflags && msg_len) return 0; if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) return -EINVAL; if (((sflags & SCTP_EOF) && msg_len > 0) || (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) return -EINVAL; if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) return -EINVAL; return 0; } static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, struct sctp_cmsgs *cmsgs, union sctp_addr *daddr, struct sctp_transport **tp) { struct sctp_endpoint *ep = sctp_sk(sk)->ep; struct net *net = sock_net(sk); struct sctp_association *asoc; enum sctp_scope scope; struct cmsghdr *cmsg; __be32 flowinfo = 0; struct sctp_af *af; int err; *tp = NULL; if (sflags & (SCTP_EOF | SCTP_ABORT)) return -EINVAL; if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING))) return -EADDRNOTAVAIL; if (sctp_endpoint_is_peeled_off(ep, daddr)) return -EADDRNOTAVAIL; if (!ep->base.bind_addr.port) { if (sctp_autobind(sk)) return -EAGAIN; } else { if (ep->base.bind_addr.port < inet_prot_sock(net) && !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) return -EACCES; } scope = sctp_scope(daddr); /* Label connection socket for first association 1-to-many * style for client sequence socket()->sendmsg(). This * needs to be done before sctp_assoc_add_peer() as that will * set up the initial packet that needs to account for any * security ip options (CIPSO/CALIPSO) added to the packet. */ af = sctp_get_af_specific(daddr->sa.sa_family); if (!af) return -EINVAL; err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, (struct sockaddr *)daddr, af->sockaddr_len); if (err < 0) return err; asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); if (!asoc) return -ENOMEM; if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) { err = -ENOMEM; goto free; } if (cmsgs->init) { struct sctp_initmsg *init = cmsgs->init; if (init->sinit_num_ostreams) { __u16 outcnt = init->sinit_num_ostreams; asoc->c.sinit_num_ostreams = outcnt; /* outcnt has been changed, need to re-init stream */ err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL); if (err) goto free; } if (init->sinit_max_instreams) asoc->c.sinit_max_instreams = init->sinit_max_instreams; if (init->sinit_max_attempts) asoc->max_init_attempts = init->sinit_max_attempts; if (init->sinit_max_init_timeo) asoc->max_init_timeo = msecs_to_jiffies(init->sinit_max_init_timeo); } *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); if (!*tp) { err = -ENOMEM; goto free; } if (!cmsgs->addrs_msg) return 0; if (daddr->sa.sa_family == AF_INET6) flowinfo = daddr->v6.sin6_flowinfo; /* sendv addr list parse */ for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { struct sctp_transport *transport; struct sctp_association *old; union sctp_addr _daddr; int dlen; if (cmsg->cmsg_level != IPPROTO_SCTP || (cmsg->cmsg_type != SCTP_DSTADDRV4 && cmsg->cmsg_type != SCTP_DSTADDRV6)) continue; daddr = &_daddr; memset(daddr, 0, sizeof(*daddr)); dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); if (cmsg->cmsg_type == SCTP_DSTADDRV4) { if (dlen < sizeof(struct in_addr)) { err = -EINVAL; goto free; } dlen = sizeof(struct in_addr); daddr->v4.sin_family = AF_INET; daddr->v4.sin_port = htons(asoc->peer.port); memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); } else { if (dlen < sizeof(struct in6_addr)) { err = -EINVAL; goto free; } dlen = sizeof(struct in6_addr); daddr->v6.sin6_flowinfo = flowinfo; daddr->v6.sin6_family = AF_INET6; daddr->v6.sin6_port = htons(asoc->peer.port); memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); } err = sctp_verify_addr(sk, daddr, sizeof(*daddr)); if (err) goto free; old = sctp_endpoint_lookup_assoc(ep, daddr, &transport); if (old && old != asoc) { if (old->state >= SCTP_STATE_ESTABLISHED) err = -EISCONN; else err = -EALREADY; goto free; } if (sctp_endpoint_is_peeled_off(ep, daddr)) { err = -EADDRNOTAVAIL; goto free; } transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); if (!transport) { err = -ENOMEM; goto free; } } return 0; free: sctp_association_free(asoc); return err; } static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, __u16 sflags, struct msghdr *msg, size_t msg_len) { struct sock *sk = asoc->base.sk; struct net *net = sock_net(sk); if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) return -EPIPE; if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && !sctp_state(asoc, ESTABLISHED)) return 0; if (sflags & SCTP_EOF) { pr_debug("%s: shutting down association:%p\n", __func__, asoc); sctp_primitive_SHUTDOWN(net, asoc, NULL); return 0; } if (sflags & SCTP_ABORT) { struct sctp_chunk *chunk; chunk = sctp_make_abort_user(asoc, msg, msg_len); if (!chunk) return -ENOMEM; pr_debug("%s: aborting association:%p\n", __func__, asoc); sctp_primitive_ABORT(net, asoc, chunk); iov_iter_revert(&msg->msg_iter, msg_len); return 0; } return 1; } static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, struct msghdr *msg, size_t msg_len, struct sctp_transport *transport, struct sctp_sndrcvinfo *sinfo) { struct sock *sk = asoc->base.sk; struct sctp_sock *sp = sctp_sk(sk); struct net *net = sock_net(sk); struct sctp_datamsg *datamsg; bool wait_connect = false; struct sctp_chunk *chunk; long timeo; int err; if (sinfo->sinfo_stream >= asoc->stream.outcnt) { err = -EINVAL; goto err; } if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); if (err) goto err; } if (sp->disable_fragments && msg_len > asoc->frag_point) { err = -EMSGSIZE; goto err; } if (asoc->pmtu_pending) { if (sp->param_flags & SPP_PMTUD_ENABLE) sctp_assoc_sync_pmtu(asoc); asoc->pmtu_pending = 0; } if (sctp_wspace(asoc) < (int)msg_len) sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); if (sctp_wspace(asoc) <= 0) { timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); if (err) goto err; } if (sctp_state(asoc, CLOSED)) { err = sctp_primitive_ASSOCIATE(net, asoc, NULL); if (err) goto err; if (sp->strm_interleave) { timeo = sock_sndtimeo(sk, 0); err = sctp_wait_for_connect(asoc, &timeo); if (err) { err = -ESRCH; goto err; } } else { wait_connect = true; } pr_debug("%s: we associated primitively\n", __func__); } datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); if (IS_ERR(datamsg)) { err = PTR_ERR(datamsg); goto err; } asoc->force_delay = !!(msg->msg_flags & MSG_MORE); list_for_each_entry(chunk, &datamsg->chunks, frag_list) { sctp_chunk_hold(chunk); sctp_set_owner_w(chunk); chunk->transport = transport; } err = sctp_primitive_SEND(net, asoc, datamsg); if (err) { sctp_datamsg_free(datamsg); goto err; } pr_debug("%s: we sent primitively\n", __func__); sctp_datamsg_put(datamsg); if (unlikely(wait_connect)) { timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); sctp_wait_for_connect(asoc, &timeo); } err = msg_len; err: return err; } static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, const struct msghdr *msg, struct sctp_cmsgs *cmsgs) { union sctp_addr *daddr = NULL; int err; if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { int len = msg->msg_namelen; if (len > sizeof(*daddr)) len = sizeof(*daddr); daddr = (union sctp_addr *)msg->msg_name; err = sctp_verify_addr(sk, daddr, len); if (err) return ERR_PTR(err); } return daddr; } static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, struct sctp_sndrcvinfo *sinfo, struct sctp_cmsgs *cmsgs) { if (!cmsgs->srinfo && !cmsgs->sinfo) { sinfo->sinfo_stream = asoc->default_stream; sinfo->sinfo_ppid = asoc->default_ppid; sinfo->sinfo_context = asoc->default_context; sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); if (!cmsgs->prinfo) sinfo->sinfo_flags = asoc->default_flags; } if (!cmsgs->srinfo && !cmsgs->prinfo) sinfo->sinfo_timetolive = asoc->default_timetolive; if (cmsgs->authinfo) { /* Reuse sinfo_tsn to indicate that authinfo was set and * sinfo_ssn to save the keyid on tx path. */ sinfo->sinfo_tsn = 1; sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; } } static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) { struct sctp_endpoint *ep = sctp_sk(sk)->ep; struct sctp_transport *transport = NULL; struct sctp_sndrcvinfo _sinfo, *sinfo; struct sctp_association *asoc, *tmp; struct sctp_cmsgs cmsgs; union sctp_addr *daddr; bool new = false; __u16 sflags; int err; /* Parse and get snd_info */ err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); if (err) goto out; sinfo = &_sinfo; sflags = sinfo->sinfo_flags; /* Get daddr from msg */ daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); if (IS_ERR(daddr)) { err = PTR_ERR(daddr); goto out; } lock_sock(sk); /* SCTP_SENDALL process */ if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); if (err == 0) continue; if (err < 0) goto out_unlock; sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, NULL, sinfo); if (err < 0) goto out_unlock; iov_iter_revert(&msg->msg_iter, err); } goto out_unlock; } /* Get and check or create asoc */ if (daddr) { asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); if (asoc) { err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); if (err <= 0) goto out_unlock; } else { err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, &transport); if (err) goto out_unlock; asoc = transport->asoc; new = true; } if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) transport = NULL; } else { asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); if (!asoc) { err = -EPIPE; goto out_unlock; } err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); if (err <= 0) goto out_unlock; } /* Update snd_info with the asoc */ sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); /* Send msg to the asoc */ err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); if (err < 0 && err != -ESRCH && new) sctp_association_free(asoc); out_unlock: release_sock(sk); out: return sctp_error(sk, msg->msg_flags, err); } /* This is an extended version of skb_pull() that removes the data from the * start of a skb even when data is spread across the list of skb's in the * frag_list. len specifies the total amount of data that needs to be removed. * when 'len' bytes could be removed from the skb, it returns 0. * If 'len' exceeds the total skb length, it returns the no. of bytes that * could not be removed. */ static int sctp_skb_pull(struct sk_buff *skb, int len) { struct sk_buff *list; int skb_len = skb_headlen(skb); int rlen; if (len <= skb_len) { __skb_pull(skb, len); return 0; } len -= skb_len; __skb_pull(skb, skb_len); skb_walk_frags(skb, list) { rlen = sctp_skb_pull(list, len); skb->len -= (len-rlen); skb->data_len -= (len-rlen); if (!rlen) return 0; len = rlen; } return len; } /* API 3.1.3 recvmsg() - UDP Style Syntax * * ssize_t recvmsg(int socket, struct msghdr *message, * int flags); * * socket - the socket descriptor of the endpoint. * message - pointer to the msghdr structure which contains a single * user message and possibly some ancillary data. * * See Section 5 for complete description of the data * structures. * * flags - flags sent or received with the user message, see Section * 5 for complete description of the flags. */ static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, int flags, int *addr_len) { struct sctp_ulpevent *event = NULL; struct sctp_sock *sp = sctp_sk(sk); struct sk_buff *skb, *head_skb; int copied; int err = 0; int skb_len; pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, addr_len); lock_sock(sk); if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { err = -ENOTCONN; goto out; } skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); if (!skb) goto out; /* Get the total length of the skb including any skb's in the * frag_list. */ skb_len = skb->len; copied = skb_len; if (copied > len) copied = len; err = skb_copy_datagram_msg(skb, 0, msg, copied); event = sctp_skb2event(skb); if (err) goto out_free; if (event->chunk && event->chunk->head_skb) head_skb = event->chunk->head_skb; else head_skb = skb; sock_recv_ts_and_drops(msg, sk, head_skb); if (sctp_ulpevent_is_notification(event)) { msg->msg_flags |= MSG_NOTIFICATION; sp->pf->event_msgname(event, msg->msg_name, addr_len); } else { sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); } /* Check if we allow SCTP_NXTINFO. */ if (sp->recvnxtinfo) sctp_ulpevent_read_nxtinfo(event, msg, sk); /* Check if we allow SCTP_RCVINFO. */ if (sp->recvrcvinfo) sctp_ulpevent_read_rcvinfo(event, msg); /* Check if we allow SCTP_SNDRCVINFO. */ if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) sctp_ulpevent_read_sndrcvinfo(event, msg); err = copied; /* If skb's length exceeds the user's buffer, update the skb and * push it back to the receive_queue so that the next call to * recvmsg() will return the remaining data. Don't set MSG_EOR. */ if (skb_len > copied) { msg->msg_flags &= ~MSG_EOR; if (flags & MSG_PEEK) goto out_free; sctp_skb_pull(skb, copied); skb_queue_head(&sk->sk_receive_queue, skb); /* When only partial message is copied to the user, increase * rwnd by that amount. If all the data in the skb is read, * rwnd is updated when the event is freed. */ if (!sctp_ulpevent_is_notification(event)) sctp_assoc_rwnd_increase(event->asoc, copied); goto out; } else if ((event->msg_flags & MSG_NOTIFICATION) || (event->msg_flags & MSG_EOR)) msg->msg_flags |= MSG_EOR; else msg->msg_flags &= ~MSG_EOR; out_free: if (flags & MSG_PEEK) { /* Release the skb reference acquired after peeking the skb in * sctp_skb_recv_datagram(). */ kfree_skb(skb); } else { /* Free the event which includes releasing the reference to * the owner of the skb, freeing the skb and updating the * rwnd. */ sctp_ulpevent_free(event); } out: release_sock(sk); return err; } /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) * * This option is a on/off flag. If enabled no SCTP message * fragmentation will be performed. Instead if a message being sent * exceeds the current PMTU size, the message will NOT be sent and * instead a error will be indicated to the user. */ static int sctp_setsockopt_disable_fragments(struct sock *sk, char __user *optval, unsigned int optlen) { int val; if (optlen < sizeof(int)) return -EINVAL; if (get_user(val, (int __user *)optval)) return -EFAULT; sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; return 0; } static int sctp_setsockopt_events(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_event_subscribe subscribe; __u8 *sn_type = (__u8 *)&subscribe; struct sctp_sock *sp = sctp_sk(sk); struct sctp_association *asoc; int i; if (optlen > sizeof(struct sctp_event_subscribe)) return -EINVAL; if (copy_from_user(&subscribe, optval, optlen)) return -EFAULT; for (i = 0; i < optlen; i++) sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, sn_type[i]); list_for_each_entry(asoc, &sp->ep->asocs, asocs) asoc->subscribe = sctp_sk(sk)->subscribe; /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, * if there is no data to be sent or retransmit, the stack will * immediately send up this notification. */ if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { struct sctp_ulpevent *event; asoc = sctp_id2assoc(sk, 0); if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { event = sctp_ulpevent_make_sender_dry_event(asoc, GFP_USER | __GFP_NOWARN); if (!event) return -ENOMEM; asoc->stream.si->enqueue_event(&asoc->ulpq, event); } } return 0; } /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) * * This socket option is applicable to the UDP-style socket only. When * set it will cause associations that are idle for more than the * specified number of seconds to automatically close. An association * being idle is defined an association that has NOT sent or received * user data. The special value of '0' indicates that no automatic * close of any associations should be performed. The option expects an * integer defining the number of seconds of idle time before an * association is closed. */ static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_sock *sp = sctp_sk(sk); struct net *net = sock_net(sk); /* Applicable to UDP-style socket only */ if (sctp_style(sk, TCP)) return -EOPNOTSUPP; if (optlen != sizeof(int)) return -EINVAL; if (copy_from_user(&sp->autoclose, optval, optlen)) return -EFAULT; if (sp->autoclose > net->sctp.max_autoclose) sp->autoclose = net->sctp.max_autoclose; return 0; } /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) * * Applications can enable or disable heartbeats for any peer address of * an association, modify an address's heartbeat interval, force a * heartbeat to be sent immediately, and adjust the address's maximum * number of retransmissions sent before an address is considered * unreachable. The following structure is used to access and modify an * address's parameters: * * struct sctp_paddrparams { * sctp_assoc_t spp_assoc_id; * struct sockaddr_storage spp_address; * uint32_t spp_hbinterval; * uint16_t spp_pathmaxrxt; * uint32_t spp_pathmtu; * uint32_t spp_sackdelay; * uint32_t spp_flags; * uint32_t spp_ipv6_flowlabel; * uint8_t spp_dscp; * }; * * spp_assoc_id - (one-to-many style socket) This is filled in the * application, and identifies the association for * this query. * spp_address - This specifies which address is of interest. * spp_hbinterval - This contains the value of the heartbeat interval, * in milliseconds. If a value of zero * is present in this field then no changes are to * be made to this parameter. * spp_pathmaxrxt - This contains the maximum number of * retransmissions before this address shall be * considered unreachable. If a value of zero * is present in this field then no changes are to * be made to this parameter. * spp_pathmtu - When Path MTU discovery is disabled the value * specified here will be the "fixed" path mtu. * Note that if the spp_address field is empty * then all associations on this address will * have this fixed path mtu set upon them. * * spp_sackdelay - When delayed sack is enabled, this value specifies * the number of milliseconds that sacks will be delayed * for. This value will apply to all addresses of an * association if the spp_address field is empty. Note * also, that if delayed sack is enabled and this * value is set to 0, no change is made to the last * recorded delayed sack timer value. * * spp_flags - These flags are used to control various features * on an association. The flag field may contain * zero or more of the following options. * * SPP_HB_ENABLE - Enable heartbeats on the * specified address. Note that if the address * field is empty all addresses for the association * have heartbeats enabled upon them. * * SPP_HB_DISABLE - Disable heartbeats on the * speicifed address. Note that if the address * field is empty all addresses for the association * will have their heartbeats disabled. Note also * that SPP_HB_ENABLE and SPP_HB_DISABLE are * mutually exclusive, only one of these two should * be specified. Enabling both fields will have * undetermined results. * * SPP_HB_DEMAND - Request a user initiated heartbeat * to be made immediately. * * SPP_HB_TIME_IS_ZERO - Specify's that the time for * heartbeat delayis to be set to the value of 0 * milliseconds. * * SPP_PMTUD_ENABLE - This field will enable PMTU * discovery upon the specified address. Note that * if the address feild is empty then all addresses * on the association are effected. * * SPP_PMTUD_DISABLE - This field will disable PMTU * discovery upon the specified address. Note that * if the address feild is empty then all addresses * on the association are effected. Not also that * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually * exclusive. Enabling both will have undetermined * results. * * SPP_SACKDELAY_ENABLE - Setting this flag turns * on delayed sack. The time specified in spp_sackdelay * is used to specify the sack delay for this address. Note * that if spp_address is empty then all addresses will * enable delayed sack and take on the sack delay * value specified in spp_sackdelay. * SPP_SACKDELAY_DISABLE - Setting this flag turns * off delayed sack. If the spp_address field is blank then * delayed sack is disabled for the entire association. Note * also that this field is mutually exclusive to * SPP_SACKDELAY_ENABLE, setting both will have undefined * results. * * SPP_IPV6_FLOWLABEL: Setting this flag enables the * setting of the IPV6 flow label value. The value is * contained in the spp_ipv6_flowlabel field. * Upon retrieval, this flag will be set to indicate that * the spp_ipv6_flowlabel field has a valid value returned. * If a specific destination address is set (in the * spp_address field), then the value returned is that of * the address. If just an association is specified (and * no address), then the association's default flow label * is returned. If neither an association nor a destination * is specified, then the socket's default flow label is * returned. For non-IPv6 sockets, this flag will be left * cleared. * * SPP_DSCP: Setting this flag enables the setting of the * Differentiated Services Code Point (DSCP) value * associated with either the association or a specific * address. The value is obtained in the spp_dscp field. * Upon retrieval, this flag will be set to indicate that * the spp_dscp field has a valid value returned. If a * specific destination address is set when called (in the * spp_address field), then that specific destination * address's DSCP value is returned. If just an association * is specified, then the association's default DSCP is * returned. If neither an association nor a destination is * specified, then the socket's default DSCP is returned. * * spp_ipv6_flowlabel * - This field is used in conjunction with the * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. * The 20 least significant bits are used for the flow * label. This setting has precedence over any IPv6-layer * setting. * * spp_dscp - This field is used in conjunction with the SPP_DSCP flag * and contains the DSCP. The 6 most significant bits are * used for the DSCP. This setting has precedence over any * IPv4- or IPv6- layer setting. */ static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, struct sctp_transport *trans, struct sctp_association *asoc, struct sctp_sock *sp, int hb_change, int pmtud_change, int sackdelay_change) { int error; if (params->spp_flags & SPP_HB_DEMAND && trans) { struct net *net = sock_net(trans->asoc->base.sk); error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); if (error) return error; } /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of * this field is ignored. Note also that a value of zero indicates * the current setting should be left unchanged. */ if (params->spp_flags & SPP_HB_ENABLE) { /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is * set. This lets us use 0 value when this flag * is set. */ if (params->spp_flags & SPP_HB_TIME_IS_ZERO) params->spp_hbinterval = 0; if (params->spp_hbinterval || (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { if (trans) { trans->hbinterval = msecs_to_jiffies(params->spp_hbinterval); } else if (asoc) { asoc->hbinterval = msecs_to_jiffies(params->spp_hbinterval); } else { sp->hbinterval = params->spp_hbinterval; } } } if (hb_change) { if (trans) { trans->param_flags = (trans->param_flags & ~SPP_HB) | hb_change; } else if (asoc) { asoc->param_flags = (asoc->param_flags & ~SPP_HB) | hb_change; } else { sp->param_flags = (sp->param_flags & ~SPP_HB) | hb_change; } } /* When Path MTU discovery is disabled the value specified here will * be the "fixed" path mtu (i.e. the value of the spp_flags field must * include the flag SPP_PMTUD_DISABLE for this field to have any * effect). */ if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { if (trans) { trans->pathmtu = params->spp_pathmtu; sctp_assoc_sync_pmtu(asoc); } else if (asoc) { sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); } else { sp->pathmtu = params->spp_pathmtu; } } if (pmtud_change) { if (trans) { int update = (trans->param_flags & SPP_PMTUD_DISABLE) && (params->spp_flags & SPP_PMTUD_ENABLE); trans->param_flags = (trans->param_flags & ~SPP_PMTUD) | pmtud_change; if (update) { sctp_transport_pmtu(trans, sctp_opt2sk(sp)); sctp_assoc_sync_pmtu(asoc); } } else if (asoc) { asoc->param_flags = (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; } else { sp->param_flags = (sp->param_flags & ~SPP_PMTUD) | pmtud_change; } } /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the * value of this field is ignored. Note also that a value of zero * indicates the current setting should be left unchanged. */ if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { if (trans) { trans->sackdelay = msecs_to_jiffies(params->spp_sackdelay); } else if (asoc) { asoc->sackdelay = msecs_to_jiffies(params->spp_sackdelay); } else { sp->sackdelay = params->spp_sackdelay; } } if (sackdelay_change) { if (trans) { trans->param_flags = (trans->param_flags & ~SPP_SACKDELAY) | sackdelay_change; } else if (asoc) { asoc->param_flags = (asoc->param_flags & ~SPP_SACKDELAY) | sackdelay_change; } else { sp->param_flags = (sp->param_flags & ~SPP_SACKDELAY) | sackdelay_change; } } /* Note that a value of zero indicates the current setting should be left unchanged. */ if (params->spp_pathmaxrxt) { if (trans) { trans->pathmaxrxt = params->spp_pathmaxrxt; } else if (asoc) { asoc->pathmaxrxt = params->spp_pathmaxrxt; } else { sp->pathmaxrxt = params->spp_pathmaxrxt; } } if (params->spp_flags & SPP_IPV6_FLOWLABEL) { if (trans) { if (trans->ipaddr.sa.sa_family == AF_INET6) { trans->flowlabel = params->spp_ipv6_flowlabel & SCTP_FLOWLABEL_VAL_MASK; trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; } } else if (asoc) { struct sctp_transport *t; list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { if (t->ipaddr.sa.sa_family != AF_INET6) continue; t->flowlabel = params->spp_ipv6_flowlabel & SCTP_FLOWLABEL_VAL_MASK; t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; } asoc->flowlabel = params->spp_ipv6_flowlabel & SCTP_FLOWLABEL_VAL_MASK; asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { sp->flowlabel = params->spp_ipv6_flowlabel & SCTP_FLOWLABEL_VAL_MASK; sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; } } if (params->spp_flags & SPP_DSCP) { if (trans) { trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; trans->dscp |= SCTP_DSCP_SET_MASK; } else if (asoc) { struct sctp_transport *t; list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { t->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; t->dscp |= SCTP_DSCP_SET_MASK; } asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; asoc->dscp |= SCTP_DSCP_SET_MASK; } else { sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; sp->dscp |= SCTP_DSCP_SET_MASK; } } return 0; } static int sctp_setsockopt_peer_addr_params(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_paddrparams params; struct sctp_transport *trans = NULL; struct sctp_association *asoc = NULL; struct sctp_sock *sp = sctp_sk(sk); int error; int hb_change, pmtud_change, sackdelay_change; if (optlen == sizeof(params)) { if (copy_from_user(¶ms, optval, optlen)) return -EFAULT; } else if (optlen == ALIGN(offsetof(struct sctp_paddrparams, spp_ipv6_flowlabel), 4)) { if (copy_from_user(¶ms, optval, optlen)) return -EFAULT; if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) return -EINVAL; } else { return -EINVAL; } /* Validate flags and value parameters. */ hb_change = params.spp_flags & SPP_HB; pmtud_change = params.spp_flags & SPP_PMTUD; sackdelay_change = params.spp_flags & SPP_SACKDELAY; if (hb_change == SPP_HB || pmtud_change == SPP_PMTUD || sackdelay_change == SPP_SACKDELAY || params.spp_sackdelay > 500 || (params.spp_pathmtu && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) return -EINVAL; /* If an address other than INADDR_ANY is specified, and * no transport is found, then the request is invalid. */ if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { trans = sctp_addr_id2transport(sk, ¶ms.spp_address, params.spp_assoc_id); if (!trans) return -EINVAL; } /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the * socket is a one to many style socket, and an association * was not found, then the id was invalid. */ asoc = sctp_id2assoc(sk, params.spp_assoc_id); if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; /* Heartbeat demand can only be sent on a transport or * association, but not a socket. */ if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) return -EINVAL; /* Process parameters. */ error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, hb_change, pmtud_change, sackdelay_change); if (error) return error; /* If changes are for association, also apply parameters to each * transport. */ if (!trans && asoc) { list_for_each_entry(trans, &asoc->peer.transport_addr_list, transports) { sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, hb_change, pmtud_change, sackdelay_change); } } return 0; } static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) { return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; } static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) { return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; } static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, struct sctp_association *asoc) { struct sctp_transport *trans; if (params->sack_delay) { asoc->sackdelay = msecs_to_jiffies(params->sack_delay); asoc->param_flags = sctp_spp_sackdelay_enable(asoc->param_flags); } if (params->sack_freq == 1) { asoc->param_flags = sctp_spp_sackdelay_disable(asoc->param_flags); } else if (params->sack_freq > 1) { asoc->sackfreq = params->sack_freq; asoc->param_flags = sctp_spp_sackdelay_enable(asoc->param_flags); } list_for_each_entry(trans, &asoc->peer.transport_addr_list, transports) { if (params->sack_delay) { trans->sackdelay = msecs_to_jiffies(params->sack_delay); trans->param_flags = sctp_spp_sackdelay_enable(trans->param_flags); } if (params->sack_freq == 1) { trans->param_flags = sctp_spp_sackdelay_disable(trans->param_flags); } else if (params->sack_freq > 1) { trans->sackfreq = params->sack_freq; trans->param_flags = sctp_spp_sackdelay_enable(trans->param_flags); } } } /* * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) * * This option will effect the way delayed acks are performed. This * option allows you to get or set the delayed ack time, in * milliseconds. It also allows changing the delayed ack frequency. * Changing the frequency to 1 disables the delayed sack algorithm. If * the assoc_id is 0, then this sets or gets the endpoints default * values. If the assoc_id field is non-zero, then the set or get * effects the specified association for the one to many model (the * assoc_id field is ignored by the one to one model). Note that if * sack_delay or sack_freq are 0 when setting this option, then the * current values will remain unchanged. * * struct sctp_sack_info { * sctp_assoc_t sack_assoc_id; * uint32_t sack_delay; * uint32_t sack_freq; * }; * * sack_assoc_id - This parameter, indicates which association the user * is performing an action upon. Note that if this field's value is * zero then the endpoints default value is changed (effecting future * associations only). * * sack_delay - This parameter contains the number of milliseconds that * the user is requesting the delayed ACK timer be set to. Note that * this value is defined in the standard to be between 200 and 500 * milliseconds. * * sack_freq - This parameter contains the number of packets that must * be received before a sack is sent without waiting for the delay * timer to expire. The default value for this is 2, setting this * value to 1 will disable the delayed sack algorithm. */ static int sctp_setsockopt_delayed_ack(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_association *asoc; struct sctp_sack_info params; if (optlen == sizeof(struct sctp_sack_info)) { if (copy_from_user(¶ms, optval, optlen)) return -EFAULT; if (params.sack_delay == 0 && params.sack_freq == 0) return 0; } else if (optlen == sizeof(struct sctp_assoc_value)) { pr_warn_ratelimited(DEPRECATED "%s (pid %d) " "Use of struct sctp_assoc_value in delayed_ack socket option.\n" "Use struct sctp_sack_info instead\n", current->comm, task_pid_nr(current)); if (copy_from_user(¶ms, optval, optlen)) return -EFAULT; if (params.sack_delay == 0) params.sack_freq = 1; else params.sack_freq = 0; } else return -EINVAL; /* Validate value parameter. */ if (params.sack_delay > 500) return -EINVAL; /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the * socket is a one to many style socket, and an association * was not found, then the id was invalid. */ asoc = sctp_id2assoc(sk, params.sack_assoc_id); if (!asoc && params.sack_assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) { sctp_apply_asoc_delayed_ack(¶ms, asoc); return 0; } if (params.sack_assoc_id == SCTP_FUTURE_ASSOC || params.sack_assoc_id == SCTP_ALL_ASSOC) { if (params.sack_delay) { sp->sackdelay = params.sack_delay; sp->param_flags = sctp_spp_sackdelay_enable(sp->param_flags); } if (params.sack_freq == 1) { sp->param_flags = sctp_spp_sackdelay_disable(sp->param_flags); } else if (params.sack_freq > 1) { sp->sackfreq = params.sack_freq; sp->param_flags = sctp_spp_sackdelay_enable(sp->param_flags); } } if (params.sack_assoc_id == SCTP_CURRENT_ASSOC || params.sack_assoc_id == SCTP_ALL_ASSOC) list_for_each_entry(asoc, &sp->ep->asocs, asocs) sctp_apply_asoc_delayed_ack(¶ms, asoc); return 0; } /* 7.1.3 Initialization Parameters (SCTP_INITMSG) * * Applications can specify protocol parameters for the default association * initialization. The option name argument to setsockopt() and getsockopt() * is SCTP_INITMSG. * * Setting initialization parameters is effective only on an unconnected * socket (for UDP-style sockets only future associations are effected * by the change). With TCP-style sockets, this option is inherited by * sockets derived from a listener socket. */ static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_initmsg sinit; struct sctp_sock *sp = sctp_sk(sk); if (optlen != sizeof(struct sctp_initmsg)) return -EINVAL; if (copy_from_user(&sinit, optval, optlen)) return -EFAULT; if (sinit.sinit_num_ostreams) sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; if (sinit.sinit_max_instreams) sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; if (sinit.sinit_max_attempts) sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; if (sinit.sinit_max_init_timeo) sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; return 0; } /* * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) * * Applications that wish to use the sendto() system call may wish to * specify a default set of parameters that would normally be supplied * through the inclusion of ancillary data. This socket option allows * such an application to set the default sctp_sndrcvinfo structure. * The application that wishes to use this socket option simply passes * in to this call the sctp_sndrcvinfo structure defined in Section * 5.2.2) The input parameters accepted by this call include * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, * sinfo_timetolive. The user must provide the sinfo_assoc_id field in * to this call if the caller is using the UDP model. */ static int sctp_setsockopt_default_send_param(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_association *asoc; struct sctp_sndrcvinfo info; if (optlen != sizeof(info)) return -EINVAL; if (copy_from_user(&info, optval, optlen)) return -EFAULT; if (info.sinfo_flags & ~(SCTP_UNORDERED | SCTP_ADDR_OVER | SCTP_ABORT | SCTP_EOF)) return -EINVAL; asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); if (!asoc && info.sinfo_assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) { asoc->default_stream = info.sinfo_stream; asoc->default_flags = info.sinfo_flags; asoc->default_ppid = info.sinfo_ppid; asoc->default_context = info.sinfo_context; asoc->default_timetolive = info.sinfo_timetolive; return 0; } if (info.sinfo_assoc_id == SCTP_FUTURE_ASSOC || info.sinfo_assoc_id == SCTP_ALL_ASSOC) { sp->default_stream = info.sinfo_stream; sp->default_flags = info.sinfo_flags; sp->default_ppid = info.sinfo_ppid; sp->default_context = info.sinfo_context; sp->default_timetolive = info.sinfo_timetolive; } if (info.sinfo_assoc_id == SCTP_CURRENT_ASSOC || info.sinfo_assoc_id == SCTP_ALL_ASSOC) { list_for_each_entry(asoc, &sp->ep->asocs, asocs) { asoc->default_stream = info.sinfo_stream; asoc->default_flags = info.sinfo_flags; asoc->default_ppid = info.sinfo_ppid; asoc->default_context = info.sinfo_context; asoc->default_timetolive = info.sinfo_timetolive; } } return 0; } /* RFC6458, Section 8.1.31. Set/get Default Send Parameters * (SCTP_DEFAULT_SNDINFO) */ static int sctp_setsockopt_default_sndinfo(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_association *asoc; struct sctp_sndinfo info; if (optlen != sizeof(info)) return -EINVAL; if (copy_from_user(&info, optval, optlen)) return -EFAULT; if (info.snd_flags & ~(SCTP_UNORDERED | SCTP_ADDR_OVER | SCTP_ABORT | SCTP_EOF)) return -EINVAL; asoc = sctp_id2assoc(sk, info.snd_assoc_id); if (!asoc && info.snd_assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) { asoc->default_stream = info.snd_sid; asoc->default_flags = info.snd_flags; asoc->default_ppid = info.snd_ppid; asoc->default_context = info.snd_context; return 0; } if (info.snd_assoc_id == SCTP_FUTURE_ASSOC || info.snd_assoc_id == SCTP_ALL_ASSOC) { sp->default_stream = info.snd_sid; sp->default_flags = info.snd_flags; sp->default_ppid = info.snd_ppid; sp->default_context = info.snd_context; } if (info.snd_assoc_id == SCTP_CURRENT_ASSOC || info.snd_assoc_id == SCTP_ALL_ASSOC) { list_for_each_entry(asoc, &sp->ep->asocs, asocs) { asoc->default_stream = info.snd_sid; asoc->default_flags = info.snd_flags; asoc->default_ppid = info.snd_ppid; asoc->default_context = info.snd_context; } } return 0; } /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) * * Requests that the local SCTP stack use the enclosed peer address as * the association primary. The enclosed address must be one of the * association peer's addresses. */ static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_prim prim; struct sctp_transport *trans; struct sctp_af *af; int err; if (optlen != sizeof(struct sctp_prim)) return -EINVAL; if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) return -EFAULT; /* Allow security module to validate address but need address len. */ af = sctp_get_af_specific(prim.ssp_addr.ss_family); if (!af) return -EINVAL; err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, (struct sockaddr *)&prim.ssp_addr, af->sockaddr_len); if (err) return err; trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); if (!trans) return -EINVAL; sctp_assoc_set_primary(trans->asoc, trans); return 0; } /* * 7.1.5 SCTP_NODELAY * * Turn on/off any Nagle-like algorithm. This means that packets are * generally sent as soon as possible and no unnecessary delays are * introduced, at the cost of more packets in the network. Expects an * integer boolean flag. */ static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, unsigned int optlen) { int val; if (optlen < sizeof(int)) return -EINVAL; if (get_user(val, (int __user *)optval)) return -EFAULT; sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; return 0; } /* * * 7.1.1 SCTP_RTOINFO * * The protocol parameters used to initialize and bound retransmission * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access * and modify these parameters. * All parameters are time values, in milliseconds. A value of 0, when * modifying the parameters, indicates that the current value should not * be changed. * */ static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_rtoinfo rtoinfo; struct sctp_association *asoc; unsigned long rto_min, rto_max; struct sctp_sock *sp = sctp_sk(sk); if (optlen != sizeof (struct sctp_rtoinfo)) return -EINVAL; if (copy_from_user(&rtoinfo, optval, optlen)) return -EFAULT; asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); /* Set the values to the specific association */ if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; rto_max = rtoinfo.srto_max; rto_min = rtoinfo.srto_min; if (rto_max) rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; else rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; if (rto_min) rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; else rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; if (rto_min > rto_max) return -EINVAL; if (asoc) { if (rtoinfo.srto_initial != 0) asoc->rto_initial = msecs_to_jiffies(rtoinfo.srto_initial); asoc->rto_max = rto_max; asoc->rto_min = rto_min; } else { /* If there is no association or the association-id = 0 * set the values to the endpoint. */ if (rtoinfo.srto_initial != 0) sp->rtoinfo.srto_initial = rtoinfo.srto_initial; sp->rtoinfo.srto_max = rto_max; sp->rtoinfo.srto_min = rto_min; } return 0; } /* * * 7.1.2 SCTP_ASSOCINFO * * This option is used to tune the maximum retransmission attempts * of the association. * Returns an error if the new association retransmission value is * greater than the sum of the retransmission value of the peer. * See [SCTP] for more information. * */ static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_assocparams assocparams; struct sctp_association *asoc; if (optlen != sizeof(struct sctp_assocparams)) return -EINVAL; if (copy_from_user(&assocparams, optval, optlen)) return -EFAULT; asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; /* Set the values to the specific association */ if (asoc) { if (assocparams.sasoc_asocmaxrxt != 0) { __u32 path_sum = 0; int paths = 0; struct sctp_transport *peer_addr; list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, transports) { path_sum += peer_addr->pathmaxrxt; paths++; } /* Only validate asocmaxrxt if we have more than * one path/transport. We do this because path * retransmissions are only counted when we have more * then one path. */ if (paths > 1 && assocparams.sasoc_asocmaxrxt > path_sum) return -EINVAL; asoc->max_retrans = assocparams.sasoc_asocmaxrxt; } if (assocparams.sasoc_cookie_life != 0) asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); } else { /* Set the values to the endpoint */ struct sctp_sock *sp = sctp_sk(sk); if (assocparams.sasoc_asocmaxrxt != 0) sp->assocparams.sasoc_asocmaxrxt = assocparams.sasoc_asocmaxrxt; if (assocparams.sasoc_cookie_life != 0) sp->assocparams.sasoc_cookie_life = assocparams.sasoc_cookie_life; } return 0; } /* * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) * * This socket option is a boolean flag which turns on or off mapped V4 * addresses. If this option is turned on and the socket is type * PF_INET6, then IPv4 addresses will be mapped to V6 representation. * If this option is turned off, then no mapping will be done of V4 * addresses and a user will receive both PF_INET6 and PF_INET type * addresses on the socket. */ static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) { int val; struct sctp_sock *sp = sctp_sk(sk); if (optlen < sizeof(int)) return -EINVAL; if (get_user(val, (int __user *)optval)) return -EFAULT; if (val) sp->v4mapped = 1; else sp->v4mapped = 0; return 0; } /* * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) * This option will get or set the maximum size to put in any outgoing * SCTP DATA chunk. If a message is larger than this size it will be * fragmented by SCTP into the specified size. Note that the underlying * SCTP implementation may fragment into smaller sized chunks when the * PMTU of the underlying association is smaller than the value set by * the user. The default value for this option is '0' which indicates * the user is NOT limiting fragmentation and only the PMTU will effect * SCTP's choice of DATA chunk size. Note also that values set larger * than the maximum size of an IP datagram will effectively let SCTP * control fragmentation (i.e. the same as setting this option to 0). * * The following structure is used to access and modify this parameter: * * struct sctp_assoc_value { * sctp_assoc_t assoc_id; * uint32_t assoc_value; * }; * * assoc_id: This parameter is ignored for one-to-one style sockets. * For one-to-many style sockets this parameter indicates which * association the user is performing an action upon. Note that if * this field's value is zero then the endpoints default value is * changed (effecting future associations only). * assoc_value: This parameter specifies the maximum size in bytes. */ static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_assoc_value params; struct sctp_association *asoc; int val; if (optlen == sizeof(int)) { pr_warn_ratelimited(DEPRECATED "%s (pid %d) " "Use of int in maxseg socket option.\n" "Use struct sctp_assoc_value instead\n", current->comm, task_pid_nr(current)); if (copy_from_user(&val, optval, optlen)) return -EFAULT; params.assoc_id = SCTP_FUTURE_ASSOC; } else if (optlen == sizeof(struct sctp_assoc_value)) { if (copy_from_user(¶ms, optval, optlen)) return -EFAULT; val = params.assoc_value; } else { return -EINVAL; } asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (val) { int min_len, max_len; __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : sizeof(struct sctp_data_chunk); min_len = sctp_min_frag_point(sp, datasize); max_len = SCTP_MAX_CHUNK_LEN - datasize; if (val < min_len || val > max_len) return -EINVAL; } if (asoc) { asoc->user_frag = val; sctp_assoc_update_frag_point(asoc); } else { sp->user_frag = val; } return 0; } /* * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) * * Requests that the peer mark the enclosed address as the association * primary. The enclosed address must be one of the association's * locally bound addresses. The following structure is used to make a * set primary request: */ static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, unsigned int optlen) { struct net *net = sock_net(sk); struct sctp_sock *sp; struct sctp_association *asoc = NULL; struct sctp_setpeerprim prim; struct sctp_chunk *chunk; struct sctp_af *af; int err; sp = sctp_sk(sk); if (!net->sctp.addip_enable) return -EPERM; if (optlen != sizeof(struct sctp_setpeerprim)) return -EINVAL; if (copy_from_user(&prim, optval, optlen)) return -EFAULT; asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); if (!asoc) return -EINVAL; if (!asoc->peer.asconf_capable) return -EPERM; if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) return -EPERM; if (!sctp_state(asoc, ESTABLISHED)) return -ENOTCONN; af = sctp_get_af_specific(prim.sspp_addr.ss_family); if (!af) return -EINVAL; if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) return -EADDRNOTAVAIL; if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) return -EADDRNOTAVAIL; /* Allow security module to validate address. */ err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, (struct sockaddr *)&prim.sspp_addr, af->sockaddr_len); if (err) return err; /* Create an ASCONF chunk with SET_PRIMARY parameter */ chunk = sctp_make_asconf_set_prim(asoc, (union sctp_addr *)&prim.sspp_addr); if (!chunk) return -ENOMEM; err = sctp_send_asconf(asoc, chunk); pr_debug("%s: we set peer primary addr primitively\n", __func__); return err; } static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_setadaptation adaptation; if (optlen != sizeof(struct sctp_setadaptation)) return -EINVAL; if (copy_from_user(&adaptation, optval, optlen)) return -EFAULT; sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; return 0; } /* * 7.1.29. Set or Get the default context (SCTP_CONTEXT) * * The context field in the sctp_sndrcvinfo structure is normally only * used when a failed message is retrieved holding the value that was * sent down on the actual send call. This option allows the setting of * a default context on an association basis that will be received on * reading messages from the peer. This is especially helpful in the * one-2-many model for an application to keep some reference to an * internal state machine that is processing messages on the * association. Note that the setting of this value only effects * received messages from the peer and does not effect the value that is * saved with outbound messages. */ static int sctp_setsockopt_context(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_assoc_value params; struct sctp_association *asoc; if (optlen != sizeof(struct sctp_assoc_value)) return -EINVAL; if (copy_from_user(¶ms, optval, optlen)) return -EFAULT; asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) { asoc->default_rcv_context = params.assoc_value; return 0; } if (params.assoc_id == SCTP_FUTURE_ASSOC || params.assoc_id == SCTP_ALL_ASSOC) sp->default_rcv_context = params.assoc_value; if (params.assoc_id == SCTP_CURRENT_ASSOC || params.assoc_id == SCTP_ALL_ASSOC) list_for_each_entry(asoc, &sp->ep->asocs, asocs) asoc->default_rcv_context = params.assoc_value; return 0; } /* * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) * * This options will at a minimum specify if the implementation is doing * fragmented interleave. Fragmented interleave, for a one to many * socket, is when subsequent calls to receive a message may return * parts of messages from different associations. Some implementations * may allow you to turn this value on or off. If so, when turned off, * no fragment interleave will occur (which will cause a head of line * blocking amongst multiple associations sharing the same one to many * socket). When this option is turned on, then each receive call may * come from a different association (thus the user must receive data * with the extended calls (e.g. sctp_recvmsg) to keep track of which * association each receive belongs to. * * This option takes a boolean value. A non-zero value indicates that * fragmented interleave is on. A value of zero indicates that * fragmented interleave is off. * * Note that it is important that an implementation that allows this * option to be turned on, have it off by default. Otherwise an unaware * application using the one to many model may become confused and act * incorrectly. */ static int sctp_setsockopt_fragment_interleave(struct sock *sk, char __user *optval, unsigned int optlen) { int val; if (optlen != sizeof(int)) return -EINVAL; if (get_user(val, (int __user *)optval)) return -EFAULT; sctp_sk(sk)->frag_interleave = !!val; if (!sctp_sk(sk)->frag_interleave) sctp_sk(sk)->strm_interleave = 0; return 0; } /* * 8.1.21. Set or Get the SCTP Partial Delivery Point * (SCTP_PARTIAL_DELIVERY_POINT) * * This option will set or get the SCTP partial delivery point. This * point is the size of a message where the partial delivery API will be * invoked to help free up rwnd space for the peer. Setting this to a * lower value will cause partial deliveries to happen more often. The * calls argument is an integer that sets or gets the partial delivery * point. Note also that the call will fail if the user attempts to set * this value larger than the socket receive buffer size. * * Note that any single message having a length smaller than or equal to * the SCTP partial delivery point will be delivered in one single read * call as long as the user provided buffer is large enough to hold the * message. */ static int sctp_setsockopt_partial_delivery_point(struct sock *sk, char __user *optval, unsigned int optlen) { u32 val; if (optlen != sizeof(u32)) return -EINVAL; if (get_user(val, (int __user *)optval)) return -EFAULT; /* Note: We double the receive buffer from what the user sets * it to be, also initial rwnd is based on rcvbuf/2. */ if (val > (sk->sk_rcvbuf >> 1)) return -EINVAL; sctp_sk(sk)->pd_point = val; return 0; /* is this the right error code? */ } /* * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) * * This option will allow a user to change the maximum burst of packets * that can be emitted by this association. Note that the default value * is 4, and some implementations may restrict this setting so that it * can only be lowered. * * NOTE: This text doesn't seem right. Do this on a socket basis with * future associations inheriting the socket value. */ static int sctp_setsockopt_maxburst(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_assoc_value params; struct sctp_association *asoc; if (optlen == sizeof(int)) { pr_warn_ratelimited(DEPRECATED "%s (pid %d) " "Use of int in max_burst socket option deprecated.\n" "Use struct sctp_assoc_value instead\n", current->comm, task_pid_nr(current)); if (copy_from_user(¶ms.assoc_value, optval, optlen)) return -EFAULT; params.assoc_id = SCTP_FUTURE_ASSOC; } else if (optlen == sizeof(struct sctp_assoc_value)) { if (copy_from_user(¶ms, optval, optlen)) return -EFAULT; } else return -EINVAL; asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) { asoc->max_burst = params.assoc_value; return 0; } if (params.assoc_id == SCTP_FUTURE_ASSOC || params.assoc_id == SCTP_ALL_ASSOC) sp->max_burst = params.assoc_value; if (params.assoc_id == SCTP_CURRENT_ASSOC || params.assoc_id == SCTP_ALL_ASSOC) list_for_each_entry(asoc, &sp->ep->asocs, asocs) asoc->max_burst = params.assoc_value; return 0; } /* * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) * * This set option adds a chunk type that the user is requesting to be * received only in an authenticated way. Changes to the list of chunks * will only effect future associations on the socket. */ static int sctp_setsockopt_auth_chunk(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_endpoint *ep = sctp_sk(sk)->ep; struct sctp_authchunk val; if (!ep->auth_enable) return -EACCES; if (optlen != sizeof(struct sctp_authchunk)) return -EINVAL; if (copy_from_user(&val, optval, optlen)) return -EFAULT; switch (val.sauth_chunk) { case SCTP_CID_INIT: case SCTP_CID_INIT_ACK: case SCTP_CID_SHUTDOWN_COMPLETE: case SCTP_CID_AUTH: return -EINVAL; } /* add this chunk id to the endpoint */ return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); } /* * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) * * This option gets or sets the list of HMAC algorithms that the local * endpoint requires the peer to use. */ static int sctp_setsockopt_hmac_ident(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_endpoint *ep = sctp_sk(sk)->ep; struct sctp_hmacalgo *hmacs; u32 idents; int err; if (!ep->auth_enable) return -EACCES; if (optlen < sizeof(struct sctp_hmacalgo)) return -EINVAL; optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + SCTP_AUTH_NUM_HMACS * sizeof(u16)); hmacs = memdup_user(optval, optlen); if (IS_ERR(hmacs)) return PTR_ERR(hmacs); idents = hmacs->shmac_num_idents; if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { err = -EINVAL; goto out; } err = sctp_auth_ep_set_hmacs(ep, hmacs); out: kfree(hmacs); return err; } /* * 7.1.20. Set a shared key (SCTP_AUTH_KEY) * * This option will set a shared secret key which is used to build an * association shared key. */ static int sctp_setsockopt_auth_key(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_endpoint *ep = sctp_sk(sk)->ep; struct sctp_authkey *authkey; struct sctp_association *asoc; int ret = -EINVAL; if (!ep->auth_enable) return -EACCES; if (optlen <= sizeof(struct sctp_authkey)) return -EINVAL; /* authkey->sca_keylength is u16, so optlen can't be bigger than * this. */ optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); authkey = memdup_user(optval, optlen); if (IS_ERR(authkey)) return PTR_ERR(authkey); if (authkey->sca_keylength > optlen - sizeof(*authkey)) goto out; asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) goto out; if (asoc) { ret = sctp_auth_set_key(ep, asoc, authkey); goto out; } if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || authkey->sca_assoc_id == SCTP_ALL_ASSOC) { ret = sctp_auth_set_key(ep, asoc, authkey); if (ret) goto out; } ret = 0; if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || authkey->sca_assoc_id == SCTP_ALL_ASSOC) { list_for_each_entry(asoc, &ep->asocs, asocs) { int res = sctp_auth_set_key(ep, asoc, authkey); if (res && !ret) ret = res; } } out: kzfree(authkey); return ret; } /* * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) * * This option will get or set the active shared key to be used to build * the association shared key. */ static int sctp_setsockopt_active_key(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_endpoint *ep = sctp_sk(sk)->ep; struct sctp_association *asoc; struct sctp_authkeyid val; int ret = 0; if (!ep->auth_enable) return -EACCES; if (optlen != sizeof(struct sctp_authkeyid)) return -EINVAL; if (copy_from_user(&val, optval, optlen)) return -EFAULT; asoc = sctp_id2assoc(sk, val.scact_assoc_id); if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || val.scact_assoc_id == SCTP_ALL_ASSOC) { ret = sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); if (ret) return ret; } if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || val.scact_assoc_id == SCTP_ALL_ASSOC) { list_for_each_entry(asoc, &ep->asocs, asocs) { int res = sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); if (res && !ret) ret = res; } } return ret; } /* * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) * * This set option will delete a shared secret key from use. */ static int sctp_setsockopt_del_key(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_endpoint *ep = sctp_sk(sk)->ep; struct sctp_association *asoc; struct sctp_authkeyid val; int ret = 0; if (!ep->auth_enable) return -EACCES; if (optlen != sizeof(struct sctp_authkeyid)) return -EINVAL; if (copy_from_user(&val, optval, optlen)) return -EFAULT; asoc = sctp_id2assoc(sk, val.scact_assoc_id); if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || val.scact_assoc_id == SCTP_ALL_ASSOC) { ret = sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); if (ret) return ret; } if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || val.scact_assoc_id == SCTP_ALL_ASSOC) { list_for_each_entry(asoc, &ep->asocs, asocs) { int res = sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); if (res && !ret) ret = res; } } return ret; } /* * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) * * This set option will deactivate a shared secret key. */ static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_endpoint *ep = sctp_sk(sk)->ep; struct sctp_association *asoc; struct sctp_authkeyid val; int ret = 0; if (!ep->auth_enable) return -EACCES; if (optlen != sizeof(struct sctp_authkeyid)) return -EINVAL; if (copy_from_user(&val, optval, optlen)) return -EFAULT; asoc = sctp_id2assoc(sk, val.scact_assoc_id); if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || val.scact_assoc_id == SCTP_ALL_ASSOC) { ret = sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); if (ret) return ret; } if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || val.scact_assoc_id == SCTP_ALL_ASSOC) { list_for_each_entry(asoc, &ep->asocs, asocs) { int res = sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); if (res && !ret) ret = res; } } return ret; } /* * 8.1.23 SCTP_AUTO_ASCONF * * This option will enable or disable the use of the automatic generation of * ASCONF chunks to add and delete addresses to an existing association. Note * that this option has two caveats namely: a) it only affects sockets that * are bound to all addresses available to the SCTP stack, and b) the system * administrator may have an overriding control that turns the ASCONF feature * off no matter what setting the socket option may have. * This option expects an integer boolean flag, where a non-zero value turns on * the option, and a zero value turns off the option. * Note. In this implementation, socket operation overrides default parameter * being set by sysctl as well as FreeBSD implementation */ static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, unsigned int optlen) { int val; struct sctp_sock *sp = sctp_sk(sk); if (optlen < sizeof(int)) return -EINVAL; if (get_user(val, (int __user *)optval)) return -EFAULT; if (!sctp_is_ep_boundall(sk) && val) return -EINVAL; if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) return 0; spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); if (val == 0 && sp->do_auto_asconf) { list_del(&sp->auto_asconf_list); sp->do_auto_asconf = 0; } else if (val && !sp->do_auto_asconf) { list_add_tail(&sp->auto_asconf_list, &sock_net(sk)->sctp.auto_asconf_splist); sp->do_auto_asconf = 1; } spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); return 0; } /* * SCTP_PEER_ADDR_THLDS * * This option allows us to alter the partially failed threshold for one or all * transports in an association. See Section 6.1 of: * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt */ static int sctp_setsockopt_paddr_thresholds(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_paddrthlds val; struct sctp_transport *trans; struct sctp_association *asoc; if (optlen < sizeof(struct sctp_paddrthlds)) return -EINVAL; if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, sizeof(struct sctp_paddrthlds))) return -EFAULT; if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { trans = sctp_addr_id2transport(sk, &val.spt_address, val.spt_assoc_id); if (!trans) return -ENOENT; if (val.spt_pathmaxrxt) trans->pathmaxrxt = val.spt_pathmaxrxt; trans->pf_retrans = val.spt_pathpfthld; return 0; } asoc = sctp_id2assoc(sk, val.spt_assoc_id); if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) { list_for_each_entry(trans, &asoc->peer.transport_addr_list, transports) { if (val.spt_pathmaxrxt) trans->pathmaxrxt = val.spt_pathmaxrxt; trans->pf_retrans = val.spt_pathpfthld; } if (val.spt_pathmaxrxt) asoc->pathmaxrxt = val.spt_pathmaxrxt; asoc->pf_retrans = val.spt_pathpfthld; } else { struct sctp_sock *sp = sctp_sk(sk); if (val.spt_pathmaxrxt) sp->pathmaxrxt = val.spt_pathmaxrxt; sp->pf_retrans = val.spt_pathpfthld; } return 0; } static int sctp_setsockopt_recvrcvinfo(struct sock *sk, char __user *optval, unsigned int optlen) { int val; if (optlen < sizeof(int)) return -EINVAL; if (get_user(val, (int __user *) optval)) return -EFAULT; sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; return 0; } static int sctp_setsockopt_recvnxtinfo(struct sock *sk, char __user *optval, unsigned int optlen) { int val; if (optlen < sizeof(int)) return -EINVAL; if (get_user(val, (int __user *) optval)) return -EFAULT; sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; return 0; } static int sctp_setsockopt_pr_supported(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_assoc_value params; struct sctp_association *asoc; if (optlen != sizeof(params)) return -EINVAL; if (copy_from_user(¶ms, optval, optlen)) return -EFAULT; asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value; return 0; } static int sctp_setsockopt_default_prinfo(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_default_prinfo info; struct sctp_association *asoc; int retval = -EINVAL; if (optlen != sizeof(info)) goto out; if (copy_from_user(&info, optval, sizeof(info))) { retval = -EFAULT; goto out; } if (info.pr_policy & ~SCTP_PR_SCTP_MASK) goto out; if (info.pr_policy == SCTP_PR_SCTP_NONE) info.pr_value = 0; asoc = sctp_id2assoc(sk, info.pr_assoc_id); if (!asoc && info.pr_assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) goto out; retval = 0; if (asoc) { SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); asoc->default_timetolive = info.pr_value; goto out; } if (info.pr_assoc_id == SCTP_FUTURE_ASSOC || info.pr_assoc_id == SCTP_ALL_ASSOC) { SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); sp->default_timetolive = info.pr_value; } if (info.pr_assoc_id == SCTP_CURRENT_ASSOC || info.pr_assoc_id == SCTP_ALL_ASSOC) { list_for_each_entry(asoc, &sp->ep->asocs, asocs) { SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); asoc->default_timetolive = info.pr_value; } } out: return retval; } static int sctp_setsockopt_reconfig_supported(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_assoc_value params; struct sctp_association *asoc; int retval = -EINVAL; if (optlen != sizeof(params)) goto out; if (copy_from_user(¶ms, optval, optlen)) { retval = -EFAULT; goto out; } asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) goto out; if (asoc) asoc->reconf_enable = !!params.assoc_value; else sctp_sk(sk)->ep->reconf_enable = !!params.assoc_value; retval = 0; out: return retval; } static int sctp_setsockopt_enable_strreset(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_endpoint *ep = sctp_sk(sk)->ep; struct sctp_assoc_value params; struct sctp_association *asoc; int retval = -EINVAL; if (optlen != sizeof(params)) goto out; if (copy_from_user(¶ms, optval, optlen)) { retval = -EFAULT; goto out; } if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) goto out; asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) goto out; retval = 0; if (asoc) { asoc->strreset_enable = params.assoc_value; goto out; } if (params.assoc_id == SCTP_FUTURE_ASSOC || params.assoc_id == SCTP_ALL_ASSOC) ep->strreset_enable = params.assoc_value; if (params.assoc_id == SCTP_CURRENT_ASSOC || params.assoc_id == SCTP_ALL_ASSOC) list_for_each_entry(asoc, &ep->asocs, asocs) asoc->strreset_enable = params.assoc_value; out: return retval; } static int sctp_setsockopt_reset_streams(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_reset_streams *params; struct sctp_association *asoc; int retval = -EINVAL; if (optlen < sizeof(*params)) return -EINVAL; /* srs_number_streams is u16, so optlen can't be bigger than this. */ optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(__u16) * sizeof(*params)); params = memdup_user(optval, optlen); if (IS_ERR(params)) return PTR_ERR(params); if (params->srs_number_streams * sizeof(__u16) > optlen - sizeof(*params)) goto out; asoc = sctp_id2assoc(sk, params->srs_assoc_id); if (!asoc) goto out; retval = sctp_send_reset_streams(asoc, params); out: kfree(params); return retval; } static int sctp_setsockopt_reset_assoc(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_association *asoc; sctp_assoc_t associd; int retval = -EINVAL; if (optlen != sizeof(associd)) goto out; if (copy_from_user(&associd, optval, optlen)) { retval = -EFAULT; goto out; } asoc = sctp_id2assoc(sk, associd); if (!asoc) goto out; retval = sctp_send_reset_assoc(asoc); out: return retval; } static int sctp_setsockopt_add_streams(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_association *asoc; struct sctp_add_streams params; int retval = -EINVAL; if (optlen != sizeof(params)) goto out; if (copy_from_user(¶ms, optval, optlen)) { retval = -EFAULT; goto out; } asoc = sctp_id2assoc(sk, params.sas_assoc_id); if (!asoc) goto out; retval = sctp_send_add_streams(asoc, ¶ms); out: return retval; } static int sctp_setsockopt_scheduler(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_association *asoc; struct sctp_assoc_value params; int retval = 0; if (optlen < sizeof(params)) return -EINVAL; optlen = sizeof(params); if (copy_from_user(¶ms, optval, optlen)) return -EFAULT; if (params.assoc_value > SCTP_SS_MAX) return -EINVAL; asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) return sctp_sched_set_sched(asoc, params.assoc_value); if (params.assoc_id == SCTP_FUTURE_ASSOC || params.assoc_id == SCTP_ALL_ASSOC) sp->default_ss = params.assoc_value; if (params.assoc_id == SCTP_CURRENT_ASSOC || params.assoc_id == SCTP_ALL_ASSOC) { list_for_each_entry(asoc, &sp->ep->asocs, asocs) { int ret = sctp_sched_set_sched(asoc, params.assoc_value); if (ret && !retval) retval = ret; } } return retval; } static int sctp_setsockopt_scheduler_value(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_stream_value params; struct sctp_association *asoc; int retval = -EINVAL; if (optlen < sizeof(params)) goto out; optlen = sizeof(params); if (copy_from_user(¶ms, optval, optlen)) { retval = -EFAULT; goto out; } asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc && params.assoc_id != SCTP_CURRENT_ASSOC && sctp_style(sk, UDP)) goto out; if (asoc) { retval = sctp_sched_set_value(asoc, params.stream_id, params.stream_value, GFP_KERNEL); goto out; } retval = 0; list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { int ret = sctp_sched_set_value(asoc, params.stream_id, params.stream_value, GFP_KERNEL); if (ret && !retval) /* try to return the 1st error. */ retval = ret; } out: return retval; } static int sctp_setsockopt_interleaving_supported(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_assoc_value params; struct sctp_association *asoc; int retval = -EINVAL; if (optlen < sizeof(params)) goto out; optlen = sizeof(params); if (copy_from_user(¶ms, optval, optlen)) { retval = -EFAULT; goto out; } asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) goto out; if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { retval = -EPERM; goto out; } sp->strm_interleave = !!params.assoc_value; retval = 0; out: return retval; } static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval, unsigned int optlen) { int val; if (!sctp_style(sk, TCP)) return -EOPNOTSUPP; if (sctp_sk(sk)->ep->base.bind_addr.port) return -EFAULT; if (optlen < sizeof(int)) return -EINVAL; if (get_user(val, (int __user *)optval)) return -EFAULT; sctp_sk(sk)->reuse = !!val; return 0; } static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, struct sctp_association *asoc) { struct sctp_ulpevent *event; sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { if (sctp_outq_is_empty(&asoc->outqueue)) { event = sctp_ulpevent_make_sender_dry_event(asoc, GFP_USER | __GFP_NOWARN); if (!event) return -ENOMEM; asoc->stream.si->enqueue_event(&asoc->ulpq, event); } } return 0; } static int sctp_setsockopt_event(struct sock *sk, char __user *optval, unsigned int optlen) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_association *asoc; struct sctp_event param; int retval = 0; if (optlen < sizeof(param)) return -EINVAL; optlen = sizeof(param); if (copy_from_user(¶m, optval, optlen)) return -EFAULT; if (param.se_type < SCTP_SN_TYPE_BASE || param.se_type > SCTP_SN_TYPE_MAX) return -EINVAL; asoc = sctp_id2assoc(sk, param.se_assoc_id); if (!asoc && param.se_assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) return sctp_assoc_ulpevent_type_set(¶m, asoc); if (param.se_assoc_id == SCTP_FUTURE_ASSOC || param.se_assoc_id == SCTP_ALL_ASSOC) sctp_ulpevent_type_set(&sp->subscribe, param.se_type, param.se_on); if (param.se_assoc_id == SCTP_CURRENT_ASSOC || param.se_assoc_id == SCTP_ALL_ASSOC) { list_for_each_entry(asoc, &sp->ep->asocs, asocs) { int ret = sctp_assoc_ulpevent_type_set(¶m, asoc); if (ret && !retval) retval = ret; } } return retval; } /* API 6.2 setsockopt(), getsockopt() * * Applications use setsockopt() and getsockopt() to set or retrieve * socket options. Socket options are used to change the default * behavior of sockets calls. They are described in Section 7. * * The syntax is: * * ret = getsockopt(int sd, int level, int optname, void __user *optval, * int __user *optlen); * ret = setsockopt(int sd, int level, int optname, const void __user *optval, * int optlen); * * sd - the socket descript. * level - set to IPPROTO_SCTP for all SCTP options. * optname - the option name. * optval - the buffer to store the value of the option. * optlen - the size of the buffer. */ static int sctp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, unsigned int optlen) { int retval = 0; pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); /* I can hardly begin to describe how wrong this is. This is * so broken as to be worse than useless. The API draft * REALLY is NOT helpful here... I am not convinced that the * semantics of setsockopt() with a level OTHER THAN SOL_SCTP * are at all well-founded. */ if (level != SOL_SCTP) { struct sctp_af *af = sctp_sk(sk)->pf->af; retval = af->setsockopt(sk, level, optname, optval, optlen); goto out_nounlock; } lock_sock(sk); switch (optname) { case SCTP_SOCKOPT_BINDX_ADD: /* 'optlen' is the size of the addresses buffer. */ retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, optlen, SCTP_BINDX_ADD_ADDR); break; case SCTP_SOCKOPT_BINDX_REM: /* 'optlen' is the size of the addresses buffer. */ retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, optlen, SCTP_BINDX_REM_ADDR); break; case SCTP_SOCKOPT_CONNECTX_OLD: /* 'optlen' is the size of the addresses buffer. */ retval = sctp_setsockopt_connectx_old(sk, (struct sockaddr __user *)optval, optlen); break; case SCTP_SOCKOPT_CONNECTX: /* 'optlen' is the size of the addresses buffer. */ retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval, optlen); break; case SCTP_DISABLE_FRAGMENTS: retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); break; case SCTP_EVENTS: retval = sctp_setsockopt_events(sk, optval, optlen); break; case SCTP_AUTOCLOSE: retval = sctp_setsockopt_autoclose(sk, optval, optlen); break; case SCTP_PEER_ADDR_PARAMS: retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); break; case SCTP_DELAYED_SACK: retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); break; case SCTP_PARTIAL_DELIVERY_POINT: retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); break; case SCTP_INITMSG: retval = sctp_setsockopt_initmsg(sk, optval, optlen); break; case SCTP_DEFAULT_SEND_PARAM: retval = sctp_setsockopt_default_send_param(sk, optval, optlen); break; case SCTP_DEFAULT_SNDINFO: retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); break; case SCTP_PRIMARY_ADDR: retval = sctp_setsockopt_primary_addr(sk, optval, optlen); break; case SCTP_SET_PEER_PRIMARY_ADDR: retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); break; case SCTP_NODELAY: retval = sctp_setsockopt_nodelay(sk, optval, optlen); break; case SCTP_RTOINFO: retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); break; case SCTP_ASSOCINFO: retval = sctp_setsockopt_associnfo(sk, optval, optlen); break; case SCTP_I_WANT_MAPPED_V4_ADDR: retval = sctp_setsockopt_mappedv4(sk, optval, optlen); break; case SCTP_MAXSEG: retval = sctp_setsockopt_maxseg(sk, optval, optlen); break; case SCTP_ADAPTATION_LAYER: retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); break; case SCTP_CONTEXT: retval = sctp_setsockopt_context(sk, optval, optlen); break; case SCTP_FRAGMENT_INTERLEAVE: retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); break; case SCTP_MAX_BURST: retval = sctp_setsockopt_maxburst(sk, optval, optlen); break; case SCTP_AUTH_CHUNK: retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); break; case SCTP_HMAC_IDENT: retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); break; case SCTP_AUTH_KEY: retval = sctp_setsockopt_auth_key(sk, optval, optlen); break; case SCTP_AUTH_ACTIVE_KEY: retval = sctp_setsockopt_active_key(sk, optval, optlen); break; case SCTP_AUTH_DELETE_KEY: retval = sctp_setsockopt_del_key(sk, optval, optlen); break; case SCTP_AUTH_DEACTIVATE_KEY: retval = sctp_setsockopt_deactivate_key(sk, optval, optlen); break; case SCTP_AUTO_ASCONF: retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); break; case SCTP_PEER_ADDR_THLDS: retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); break; case SCTP_RECVRCVINFO: retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); break; case SCTP_RECVNXTINFO: retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); break; case SCTP_PR_SUPPORTED: retval = sctp_setsockopt_pr_supported(sk, optval, optlen); break; case SCTP_DEFAULT_PRINFO: retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); break; case SCTP_RECONFIG_SUPPORTED: retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); break; case SCTP_ENABLE_STREAM_RESET: retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); break; case SCTP_RESET_STREAMS: retval = sctp_setsockopt_reset_streams(sk, optval, optlen); break; case SCTP_RESET_ASSOC: retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); break; case SCTP_ADD_STREAMS: retval = sctp_setsockopt_add_streams(sk, optval, optlen); break; case SCTP_STREAM_SCHEDULER: retval = sctp_setsockopt_scheduler(sk, optval, optlen); break; case SCTP_STREAM_SCHEDULER_VALUE: retval = sctp_setsockopt_scheduler_value(sk, optval, optlen); break; case SCTP_INTERLEAVING_SUPPORTED: retval = sctp_setsockopt_interleaving_supported(sk, optval, optlen); break; case SCTP_REUSE_PORT: retval = sctp_setsockopt_reuse_port(sk, optval, optlen); break; case SCTP_EVENT: retval = sctp_setsockopt_event(sk, optval, optlen); break; default: retval = -ENOPROTOOPT; break; } release_sock(sk); out_nounlock: return retval; } /* API 3.1.6 connect() - UDP Style Syntax * * An application may use the connect() call in the UDP model to initiate an * association without sending data. * * The syntax is: * * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); * * sd: the socket descriptor to have a new association added to. * * nam: the address structure (either struct sockaddr_in or struct * sockaddr_in6 defined in RFC2553 [7]). * * len: the size of the address. */ static int sctp_connect(struct sock *sk, struct sockaddr *addr, int addr_len, int flags) { struct inet_sock *inet = inet_sk(sk); struct sctp_af *af; int err = 0; lock_sock(sk); pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, addr, addr_len); /* We may need to bind the socket. */ if (!inet->inet_num) { if (sk->sk_prot->get_port(sk, 0)) { release_sock(sk); return -EAGAIN; } inet->inet_sport = htons(inet->inet_num); } /* Validate addr_len before calling common connect/connectx routine. */ af = sctp_get_af_specific(addr->sa_family); if (!af || addr_len < af->sockaddr_len) { err = -EINVAL; } else { /* Pass correct addr len to common routine (so it knows there * is only one address being passed. */ err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); } release_sock(sk); return err; } int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags) { if (addr_len < sizeof(uaddr->sa_family)) return -EINVAL; if (uaddr->sa_family == AF_UNSPEC) return -EOPNOTSUPP; return sctp_connect(sock->sk, uaddr, addr_len, flags); } /* FIXME: Write comments. */ static int sctp_disconnect(struct sock *sk, int flags) { return -EOPNOTSUPP; /* STUB */ } /* 4.1.4 accept() - TCP Style Syntax * * Applications use accept() call to remove an established SCTP * association from the accept queue of the endpoint. A new socket * descriptor will be returned from accept() to represent the newly * formed association. */ static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) { struct sctp_sock *sp; struct sctp_endpoint *ep; struct sock *newsk = NULL; struct sctp_association *asoc; long timeo; int error = 0; lock_sock(sk); sp = sctp_sk(sk); ep = sp->ep; if (!sctp_style(sk, TCP)) { error = -EOPNOTSUPP; goto out; } if (!sctp_sstate(sk, LISTENING)) { error = -EINVAL; goto out; } timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); error = sctp_wait_for_accept(sk, timeo); if (error) goto out; /* We treat the list of associations on the endpoint as the accept * queue and pick the first association on the list. */ asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); newsk = sp->pf->create_accept_sk(sk, asoc, kern); if (!newsk) { error = -ENOMEM; goto out; } /* Populate the fields of the newsk from the oldsk and migrate the * asoc to the newsk. */ error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); if (error) { sk_common_release(newsk); newsk = NULL; } out: release_sock(sk); *err = error; return newsk; } /* The SCTP ioctl handler. */ static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) { int rc = -ENOTCONN; lock_sock(sk); /* * SEQPACKET-style sockets in LISTENING state are valid, for * SCTP, so only discard TCP-style sockets in LISTENING state. */ if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) goto out; switch (cmd) { case SIOCINQ: { struct sk_buff *skb; unsigned int amount = 0; skb = skb_peek(&sk->sk_receive_queue); if (skb != NULL) { /* * We will only return the amount of this packet since * that is all that will be read. */ amount = skb->len; } rc = put_user(amount, (int __user *)arg); break; } default: rc = -ENOIOCTLCMD; break; } out: release_sock(sk); return rc; } /* This is the function which gets called during socket creation to * initialized the SCTP-specific portion of the sock. * The sock structure should already be zero-filled memory. */ static int sctp_init_sock(struct sock *sk) { struct net *net = sock_net(sk); struct sctp_sock *sp; pr_debug("%s: sk:%p\n", __func__, sk); sp = sctp_sk(sk); /* Initialize the SCTP per socket area. */ switch (sk->sk_type) { case SOCK_SEQPACKET: sp->type = SCTP_SOCKET_UDP; break; case SOCK_STREAM: sp->type = SCTP_SOCKET_TCP; break; default: return -ESOCKTNOSUPPORT; } sk->sk_gso_type = SKB_GSO_SCTP; /* Initialize default send parameters. These parameters can be * modified with the SCTP_DEFAULT_SEND_PARAM socket option. */ sp->default_stream = 0; sp->default_ppid = 0; sp->default_flags = 0; sp->default_context = 0; sp->default_timetolive = 0; sp->default_rcv_context = 0; sp->max_burst = net->sctp.max_burst; sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; /* Initialize default setup parameters. These parameters * can be modified with the SCTP_INITMSG socket option or * overridden by the SCTP_INIT CMSG. */ sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; sp->initmsg.sinit_max_instreams = sctp_max_instreams; sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; /* Initialize default RTO related parameters. These parameters can * be modified for with the SCTP_RTOINFO socket option. */ sp->rtoinfo.srto_initial = net->sctp.rto_initial; sp->rtoinfo.srto_max = net->sctp.rto_max; sp->rtoinfo.srto_min = net->sctp.rto_min; /* Initialize default association related parameters. These parameters * can be modified with the SCTP_ASSOCINFO socket option. */ sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; sp->assocparams.sasoc_number_peer_destinations = 0; sp->assocparams.sasoc_peer_rwnd = 0; sp->assocparams.sasoc_local_rwnd = 0; sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; /* Initialize default event subscriptions. By default, all the * options are off. */ sp->subscribe = 0; /* Default Peer Address Parameters. These defaults can * be modified via SCTP_PEER_ADDR_PARAMS */ sp->hbinterval = net->sctp.hb_interval; sp->pathmaxrxt = net->sctp.max_retrans_path; sp->pf_retrans = net->sctp.pf_retrans; sp->pathmtu = 0; /* allow default discovery */ sp->sackdelay = net->sctp.sack_timeout; sp->sackfreq = 2; sp->param_flags = SPP_HB_ENABLE | SPP_PMTUD_ENABLE | SPP_SACKDELAY_ENABLE; sp->default_ss = SCTP_SS_DEFAULT; /* If enabled no SCTP message fragmentation will be performed. * Configure through SCTP_DISABLE_FRAGMENTS socket option. */ sp->disable_fragments = 0; /* Enable Nagle algorithm by default. */ sp->nodelay = 0; sp->recvrcvinfo = 0; sp->recvnxtinfo = 0; /* Enable by default. */ sp->v4mapped = 1; /* Auto-close idle associations after the configured * number of seconds. A value of 0 disables this * feature. Configure through the SCTP_AUTOCLOSE socket option, * for UDP-style sockets only. */ sp->autoclose = 0; /* User specified fragmentation limit. */ sp->user_frag = 0; sp->adaptation_ind = 0; sp->pf = sctp_get_pf_specific(sk->sk_family); /* Control variables for partial data delivery. */ atomic_set(&sp->pd_mode, 0); skb_queue_head_init(&sp->pd_lobby); sp->frag_interleave = 0; /* Create a per socket endpoint structure. Even if we * change the data structure relationships, this may still * be useful for storing pre-connect address information. */ sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); if (!sp->ep) return -ENOMEM; sp->hmac = NULL; sk->sk_destruct = sctp_destruct_sock; SCTP_DBG_OBJCNT_INC(sock); local_bh_disable(); sk_sockets_allocated_inc(sk); sock_prot_inuse_add(net, sk->sk_prot, 1); /* Nothing can fail after this block, otherwise * sctp_destroy_sock() will be called without addr_wq_lock held */ if (net->sctp.default_auto_asconf) { spin_lock(&sock_net(sk)->sctp.addr_wq_lock); list_add_tail(&sp->auto_asconf_list, &net->sctp.auto_asconf_splist); sp->do_auto_asconf = 1; spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); } else { sp->do_auto_asconf = 0; } local_bh_enable(); return 0; } /* Cleanup any SCTP per socket resources. Must be called with * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true */ static void sctp_destroy_sock(struct sock *sk) { struct sctp_sock *sp; pr_debug("%s: sk:%p\n", __func__, sk); /* Release our hold on the endpoint. */ sp = sctp_sk(sk); /* This could happen during socket init, thus we bail out * early, since the rest of the below is not setup either. */ if (sp->ep == NULL) return; if (sp->do_auto_asconf) { sp->do_auto_asconf = 0; list_del(&sp->auto_asconf_list); } sctp_endpoint_free(sp->ep); local_bh_disable(); sk_sockets_allocated_dec(sk); sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); local_bh_enable(); } /* Triggered when there are no references on the socket anymore */ static void sctp_destruct_sock(struct sock *sk) { struct sctp_sock *sp = sctp_sk(sk); /* Free up the HMAC transform. */ crypto_free_shash(sp->hmac); inet_sock_destruct(sk); } /* API 4.1.7 shutdown() - TCP Style Syntax * int shutdown(int socket, int how); * * sd - the socket descriptor of the association to be closed. * how - Specifies the type of shutdown. The values are * as follows: * SHUT_RD * Disables further receive operations. No SCTP * protocol action is taken. * SHUT_WR * Disables further send operations, and initiates * the SCTP shutdown sequence. * SHUT_RDWR * Disables further send and receive operations * and initiates the SCTP shutdown sequence. */ static void sctp_shutdown(struct sock *sk, int how) { struct net *net = sock_net(sk); struct sctp_endpoint *ep; if (!sctp_style(sk, TCP)) return; ep = sctp_sk(sk)->ep; if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { struct sctp_association *asoc; inet_sk_set_state(sk, SCTP_SS_CLOSING); asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); sctp_primitive_SHUTDOWN(net, asoc, NULL); } } int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, struct sctp_info *info) { struct sctp_transport *prim; struct list_head *pos; int mask; memset(info, 0, sizeof(*info)); if (!asoc) { struct sctp_sock *sp = sctp_sk(sk); info->sctpi_s_autoclose = sp->autoclose; info->sctpi_s_adaptation_ind = sp->adaptation_ind; info->sctpi_s_pd_point = sp->pd_point; info->sctpi_s_nodelay = sp->nodelay; info->sctpi_s_disable_fragments = sp->disable_fragments; info->sctpi_s_v4mapped = sp->v4mapped; info->sctpi_s_frag_interleave = sp->frag_interleave; info->sctpi_s_type = sp->type; return 0; } info->sctpi_tag = asoc->c.my_vtag; info->sctpi_state = asoc->state; info->sctpi_rwnd = asoc->a_rwnd; info->sctpi_unackdata = asoc->unack_data; info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); info->sctpi_instrms = asoc->stream.incnt; info->sctpi_outstrms = asoc->stream.outcnt; list_for_each(pos, &asoc->base.inqueue.in_chunk_list) info->sctpi_inqueue++; list_for_each(pos, &asoc->outqueue.out_chunk_list) info->sctpi_outqueue++; info->sctpi_overall_error = asoc->overall_error_count; info->sctpi_max_burst = asoc->max_burst; info->sctpi_maxseg = asoc->frag_point; info->sctpi_peer_rwnd = asoc->peer.rwnd; info->sctpi_peer_tag = asoc->c.peer_vtag; mask = asoc->peer.ecn_capable << 1; mask = (mask | asoc->peer.ipv4_address) << 1; mask = (mask | asoc->peer.ipv6_address) << 1; mask = (mask | asoc->peer.hostname_address) << 1; mask = (mask | asoc->peer.asconf_capable) << 1; mask = (mask | asoc->peer.prsctp_capable) << 1; mask = (mask | asoc->peer.auth_capable); info->sctpi_peer_capable = mask; mask = asoc->peer.sack_needed << 1; mask = (mask | asoc->peer.sack_generation) << 1; mask = (mask | asoc->peer.zero_window_announced); info->sctpi_peer_sack = mask; info->sctpi_isacks = asoc->stats.isacks; info->sctpi_osacks = asoc->stats.osacks; info->sctpi_opackets = asoc->stats.opackets; info->sctpi_ipackets = asoc->stats.ipackets; info->sctpi_rtxchunks = asoc->stats.rtxchunks; info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; info->sctpi_idupchunks = asoc->stats.idupchunks; info->sctpi_gapcnt = asoc->stats.gapcnt; info->sctpi_ouodchunks = asoc->stats.ouodchunks; info->sctpi_iuodchunks = asoc->stats.iuodchunks; info->sctpi_oodchunks = asoc->stats.oodchunks; info->sctpi_iodchunks = asoc->stats.iodchunks; info->sctpi_octrlchunks = asoc->stats.octrlchunks; info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; prim = asoc->peer.primary_path; memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); info->sctpi_p_state = prim->state; info->sctpi_p_cwnd = prim->cwnd; info->sctpi_p_srtt = prim->srtt; info->sctpi_p_rto = jiffies_to_msecs(prim->rto); info->sctpi_p_hbinterval = prim->hbinterval; info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); info->sctpi_p_ssthresh = prim->ssthresh; info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; info->sctpi_p_flight_size = prim->flight_size; info->sctpi_p_error = prim->error_count; return 0; } EXPORT_SYMBOL_GPL(sctp_get_sctp_info); /* use callback to avoid exporting the core structure */ void sctp_transport_walk_start(struct rhashtable_iter *iter) { rhltable_walk_enter(&sctp_transport_hashtable, iter); rhashtable_walk_start(iter); } void sctp_transport_walk_stop(struct rhashtable_iter *iter) { rhashtable_walk_stop(iter); rhashtable_walk_exit(iter); } struct sctp_transport *sctp_transport_get_next(struct net *net, struct rhashtable_iter *iter) { struct sctp_transport *t; t = rhashtable_walk_next(iter); for (; t; t = rhashtable_walk_next(iter)) { if (IS_ERR(t)) { if (PTR_ERR(t) == -EAGAIN) continue; break; } if (!sctp_transport_hold(t)) continue; if (net_eq(sock_net(t->asoc->base.sk), net) && t->asoc->peer.primary_path == t) break; sctp_transport_put(t); } return t; } struct sctp_transport *sctp_transport_get_idx(struct net *net, struct rhashtable_iter *iter, int pos) { struct sctp_transport *t; if (!pos) return SEQ_START_TOKEN; while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { if (!--pos) break; sctp_transport_put(t); } return t; } int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), void *p) { int err = 0; int hash = 0; struct sctp_ep_common *epb; struct sctp_hashbucket *head; for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; hash++, head++) { read_lock_bh(&head->lock); sctp_for_each_hentry(epb, &head->chain) { err = cb(sctp_ep(epb), p); if (err) break; } read_unlock_bh(&head->lock); } return err; } EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), struct net *net, const union sctp_addr *laddr, const union sctp_addr *paddr, void *p) { struct sctp_transport *transport; int err; rcu_read_lock(); transport = sctp_addrs_lookup_transport(net, laddr, paddr); rcu_read_unlock(); if (!transport) return -ENOENT; err = cb(transport, p); sctp_transport_put(transport); return err; } EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), int (*cb_done)(struct sctp_transport *, void *), struct net *net, int *pos, void *p) { struct rhashtable_iter hti; struct sctp_transport *tsp; int ret; again: ret = 0; sctp_transport_walk_start(&hti); tsp = sctp_transport_get_idx(net, &hti, *pos + 1); for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { ret = cb(tsp, p); if (ret) break; (*pos)++; sctp_transport_put(tsp); } sctp_transport_walk_stop(&hti); if (ret) { if (cb_done && !cb_done(tsp, p)) { (*pos)++; sctp_transport_put(tsp); goto again; } sctp_transport_put(tsp); } return ret; } EXPORT_SYMBOL_GPL(sctp_for_each_transport); /* 7.2.1 Association Status (SCTP_STATUS) * Applications can retrieve current status information about an * association, including association state, peer receiver window size, * number of unacked data chunks, and number of data chunks pending * receipt. This information is read-only. */ static int sctp_getsockopt_sctp_status(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_status status; struct sctp_association *asoc = NULL; struct sctp_transport *transport; sctp_assoc_t associd; int retval = 0; if (len < sizeof(status)) { retval = -EINVAL; goto out; } len = sizeof(status); if (copy_from_user(&status, optval, len)) { retval = -EFAULT; goto out; } associd = status.sstat_assoc_id; asoc = sctp_id2assoc(sk, associd); if (!asoc) { retval = -EINVAL; goto out; } transport = asoc->peer.primary_path; status.sstat_assoc_id = sctp_assoc2id(asoc); status.sstat_state = sctp_assoc_to_state(asoc); status.sstat_rwnd = asoc->peer.rwnd; status.sstat_unackdata = asoc->unack_data; status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); status.sstat_instrms = asoc->stream.incnt; status.sstat_outstrms = asoc->stream.outcnt; status.sstat_fragmentation_point = asoc->frag_point; status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, transport->af_specific->sockaddr_len); /* Map ipv4 address into v4-mapped-on-v6 address. */ sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), (union sctp_addr *)&status.sstat_primary.spinfo_address); status.sstat_primary.spinfo_state = transport->state; status.sstat_primary.spinfo_cwnd = transport->cwnd; status.sstat_primary.spinfo_srtt = transport->srtt; status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); status.sstat_primary.spinfo_mtu = transport->pathmtu; if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) status.sstat_primary.spinfo_state = SCTP_ACTIVE; if (put_user(len, optlen)) { retval = -EFAULT; goto out; } pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", __func__, len, status.sstat_state, status.sstat_rwnd, status.sstat_assoc_id); if (copy_to_user(optval, &status, len)) { retval = -EFAULT; goto out; } out: return retval; } /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) * * Applications can retrieve information about a specific peer address * of an association, including its reachability state, congestion * window, and retransmission timer values. This information is * read-only. */ static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_paddrinfo pinfo; struct sctp_transport *transport; int retval = 0; if (len < sizeof(pinfo)) { retval = -EINVAL; goto out; } len = sizeof(pinfo); if (copy_from_user(&pinfo, optval, len)) { retval = -EFAULT; goto out; } transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, pinfo.spinfo_assoc_id); if (!transport) return -EINVAL; pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); pinfo.spinfo_state = transport->state; pinfo.spinfo_cwnd = transport->cwnd; pinfo.spinfo_srtt = transport->srtt; pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); pinfo.spinfo_mtu = transport->pathmtu; if (pinfo.spinfo_state == SCTP_UNKNOWN) pinfo.spinfo_state = SCTP_ACTIVE; if (put_user(len, optlen)) { retval = -EFAULT; goto out; } if (copy_to_user(optval, &pinfo, len)) { retval = -EFAULT; goto out; } out: return retval; } /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) * * This option is a on/off flag. If enabled no SCTP message * fragmentation will be performed. Instead if a message being sent * exceeds the current PMTU size, the message will NOT be sent and * instead a error will be indicated to the user. */ static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, char __user *optval, int __user *optlen) { int val; if (len < sizeof(int)) return -EINVAL; len = sizeof(int); val = (sctp_sk(sk)->disable_fragments == 1); if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) * * This socket option is used to specify various notifications and * ancillary data the user wishes to receive. */ static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_event_subscribe subscribe; __u8 *sn_type = (__u8 *)&subscribe; int i; if (len == 0) return -EINVAL; if (len > sizeof(struct sctp_event_subscribe)) len = sizeof(struct sctp_event_subscribe); if (put_user(len, optlen)) return -EFAULT; for (i = 0; i < len; i++) sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, SCTP_SN_TYPE_BASE + i); if (copy_to_user(optval, &subscribe, len)) return -EFAULT; return 0; } /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) * * This socket option is applicable to the UDP-style socket only. When * set it will cause associations that are idle for more than the * specified number of seconds to automatically close. An association * being idle is defined an association that has NOT sent or received * user data. The special value of '0' indicates that no automatic * close of any associations should be performed. The option expects an * integer defining the number of seconds of idle time before an * association is closed. */ static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) { /* Applicable to UDP-style socket only */ if (sctp_style(sk, TCP)) return -EOPNOTSUPP; if (len < sizeof(int)) return -EINVAL; len = sizeof(int); if (put_user(len, optlen)) return -EFAULT; if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) return -EFAULT; return 0; } /* Helper routine to branch off an association to a new socket. */ int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) { struct sctp_association *asoc = sctp_id2assoc(sk, id); struct sctp_sock *sp = sctp_sk(sk); struct socket *sock; int err = 0; /* Do not peel off from one netns to another one. */ if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) return -EINVAL; if (!asoc) return -EINVAL; /* An association cannot be branched off from an already peeled-off * socket, nor is this supported for tcp style sockets. */ if (!sctp_style(sk, UDP)) return -EINVAL; /* Create a new socket. */ err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); if (err < 0) return err; sctp_copy_sock(sock->sk, sk, asoc); /* Make peeled-off sockets more like 1-1 accepted sockets. * Set the daddr and initialize id to something more random and also * copy over any ip options. */ sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); sp->pf->copy_ip_options(sk, sock->sk); /* Populate the fields of the newsk from the oldsk and migrate the * asoc to the newsk. */ err = sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); if (err) { sock_release(sock); sock = NULL; } *sockp = sock; return err; } EXPORT_SYMBOL(sctp_do_peeloff); static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, struct file **newfile, unsigned flags) { struct socket *newsock; int retval; retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); if (retval < 0) goto out; /* Map the socket to an unused fd that can be returned to the user. */ retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); if (retval < 0) { sock_release(newsock); goto out; } *newfile = sock_alloc_file(newsock, 0, NULL); if (IS_ERR(*newfile)) { put_unused_fd(retval); retval = PTR_ERR(*newfile); *newfile = NULL; return retval; } pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, retval); peeloff->sd = retval; if (flags & SOCK_NONBLOCK) (*newfile)->f_flags |= O_NONBLOCK; out: return retval; } static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) { sctp_peeloff_arg_t peeloff; struct file *newfile = NULL; int retval = 0; if (len < sizeof(sctp_peeloff_arg_t)) return -EINVAL; len = sizeof(sctp_peeloff_arg_t); if (copy_from_user(&peeloff, optval, len)) return -EFAULT; retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); if (retval < 0) goto out; /* Return the fd mapped to the new socket. */ if (put_user(len, optlen)) { fput(newfile); put_unused_fd(retval); return -EFAULT; } if (copy_to_user(optval, &peeloff, len)) { fput(newfile); put_unused_fd(retval); return -EFAULT; } fd_install(retval, newfile); out: return retval; } static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, char __user *optval, int __user *optlen) { sctp_peeloff_flags_arg_t peeloff; struct file *newfile = NULL; int retval = 0; if (len < sizeof(sctp_peeloff_flags_arg_t)) return -EINVAL; len = sizeof(sctp_peeloff_flags_arg_t); if (copy_from_user(&peeloff, optval, len)) return -EFAULT; retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, &newfile, peeloff.flags); if (retval < 0) goto out; /* Return the fd mapped to the new socket. */ if (put_user(len, optlen)) { fput(newfile); put_unused_fd(retval); return -EFAULT; } if (copy_to_user(optval, &peeloff, len)) { fput(newfile); put_unused_fd(retval); return -EFAULT; } fd_install(retval, newfile); out: return retval; } /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) * * Applications can enable or disable heartbeats for any peer address of * an association, modify an address's heartbeat interval, force a * heartbeat to be sent immediately, and adjust the address's maximum * number of retransmissions sent before an address is considered * unreachable. The following structure is used to access and modify an * address's parameters: * * struct sctp_paddrparams { * sctp_assoc_t spp_assoc_id; * struct sockaddr_storage spp_address; * uint32_t spp_hbinterval; * uint16_t spp_pathmaxrxt; * uint32_t spp_pathmtu; * uint32_t spp_sackdelay; * uint32_t spp_flags; * }; * * spp_assoc_id - (one-to-many style socket) This is filled in the * application, and identifies the association for * this query. * spp_address - This specifies which address is of interest. * spp_hbinterval - This contains the value of the heartbeat interval, * in milliseconds. If a value of zero * is present in this field then no changes are to * be made to this parameter. * spp_pathmaxrxt - This contains the maximum number of * retransmissions before this address shall be * considered unreachable. If a value of zero * is present in this field then no changes are to * be made to this parameter. * spp_pathmtu - When Path MTU discovery is disabled the value * specified here will be the "fixed" path mtu. * Note that if the spp_address field is empty * then all associations on this address will * have this fixed path mtu set upon them. * * spp_sackdelay - When delayed sack is enabled, this value specifies * the number of milliseconds that sacks will be delayed * for. This value will apply to all addresses of an * association if the spp_address field is empty. Note * also, that if delayed sack is enabled and this * value is set to 0, no change is made to the last * recorded delayed sack timer value. * * spp_flags - These flags are used to control various features * on an association. The flag field may contain * zero or more of the following options. * * SPP_HB_ENABLE - Enable heartbeats on the * specified address. Note that if the address * field is empty all addresses for the association * have heartbeats enabled upon them. * * SPP_HB_DISABLE - Disable heartbeats on the * speicifed address. Note that if the address * field is empty all addresses for the association * will have their heartbeats disabled. Note also * that SPP_HB_ENABLE and SPP_HB_DISABLE are * mutually exclusive, only one of these two should * be specified. Enabling both fields will have * undetermined results. * * SPP_HB_DEMAND - Request a user initiated heartbeat * to be made immediately. * * SPP_PMTUD_ENABLE - This field will enable PMTU * discovery upon the specified address. Note that * if the address feild is empty then all addresses * on the association are effected. * * SPP_PMTUD_DISABLE - This field will disable PMTU * discovery upon the specified address. Note that * if the address feild is empty then all addresses * on the association are effected. Not also that * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually * exclusive. Enabling both will have undetermined * results. * * SPP_SACKDELAY_ENABLE - Setting this flag turns * on delayed sack. The time specified in spp_sackdelay * is used to specify the sack delay for this address. Note * that if spp_address is empty then all addresses will * enable delayed sack and take on the sack delay * value specified in spp_sackdelay. * SPP_SACKDELAY_DISABLE - Setting this flag turns * off delayed sack. If the spp_address field is blank then * delayed sack is disabled for the entire association. Note * also that this field is mutually exclusive to * SPP_SACKDELAY_ENABLE, setting both will have undefined * results. * * SPP_IPV6_FLOWLABEL: Setting this flag enables the * setting of the IPV6 flow label value. The value is * contained in the spp_ipv6_flowlabel field. * Upon retrieval, this flag will be set to indicate that * the spp_ipv6_flowlabel field has a valid value returned. * If a specific destination address is set (in the * spp_address field), then the value returned is that of * the address. If just an association is specified (and * no address), then the association's default flow label * is returned. If neither an association nor a destination * is specified, then the socket's default flow label is * returned. For non-IPv6 sockets, this flag will be left * cleared. * * SPP_DSCP: Setting this flag enables the setting of the * Differentiated Services Code Point (DSCP) value * associated with either the association or a specific * address. The value is obtained in the spp_dscp field. * Upon retrieval, this flag will be set to indicate that * the spp_dscp field has a valid value returned. If a * specific destination address is set when called (in the * spp_address field), then that specific destination * address's DSCP value is returned. If just an association * is specified, then the association's default DSCP is * returned. If neither an association nor a destination is * specified, then the socket's default DSCP is returned. * * spp_ipv6_flowlabel * - This field is used in conjunction with the * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. * The 20 least significant bits are used for the flow * label. This setting has precedence over any IPv6-layer * setting. * * spp_dscp - This field is used in conjunction with the SPP_DSCP flag * and contains the DSCP. The 6 most significant bits are * used for the DSCP. This setting has precedence over any * IPv4- or IPv6- layer setting. */ static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_paddrparams params; struct sctp_transport *trans = NULL; struct sctp_association *asoc = NULL; struct sctp_sock *sp = sctp_sk(sk); if (len >= sizeof(params)) len = sizeof(params); else if (len >= ALIGN(offsetof(struct sctp_paddrparams, spp_ipv6_flowlabel), 4)) len = ALIGN(offsetof(struct sctp_paddrparams, spp_ipv6_flowlabel), 4); else return -EINVAL; if (copy_from_user(¶ms, optval, len)) return -EFAULT; /* If an address other than INADDR_ANY is specified, and * no transport is found, then the request is invalid. */ if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { trans = sctp_addr_id2transport(sk, ¶ms.spp_address, params.spp_assoc_id); if (!trans) { pr_debug("%s: failed no transport\n", __func__); return -EINVAL; } } /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the * socket is a one to many style socket, and an association * was not found, then the id was invalid. */ asoc = sctp_id2assoc(sk, params.spp_assoc_id); if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) { pr_debug("%s: failed no association\n", __func__); return -EINVAL; } if (trans) { /* Fetch transport values. */ params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); params.spp_pathmtu = trans->pathmtu; params.spp_pathmaxrxt = trans->pathmaxrxt; params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); /*draft-11 doesn't say what to return in spp_flags*/ params.spp_flags = trans->param_flags; if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { params.spp_ipv6_flowlabel = trans->flowlabel & SCTP_FLOWLABEL_VAL_MASK; params.spp_flags |= SPP_IPV6_FLOWLABEL; } if (trans->dscp & SCTP_DSCP_SET_MASK) { params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; params.spp_flags |= SPP_DSCP; } } else if (asoc) { /* Fetch association values. */ params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); params.spp_pathmtu = asoc->pathmtu; params.spp_pathmaxrxt = asoc->pathmaxrxt; params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); /*draft-11 doesn't say what to return in spp_flags*/ params.spp_flags = asoc->param_flags; if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { params.spp_ipv6_flowlabel = asoc->flowlabel & SCTP_FLOWLABEL_VAL_MASK; params.spp_flags |= SPP_IPV6_FLOWLABEL; } if (asoc->dscp & SCTP_DSCP_SET_MASK) { params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; params.spp_flags |= SPP_DSCP; } } else { /* Fetch socket values. */ params.spp_hbinterval = sp->hbinterval; params.spp_pathmtu = sp->pathmtu; params.spp_sackdelay = sp->sackdelay; params.spp_pathmaxrxt = sp->pathmaxrxt; /*draft-11 doesn't say what to return in spp_flags*/ params.spp_flags = sp->param_flags; if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { params.spp_ipv6_flowlabel = sp->flowlabel & SCTP_FLOWLABEL_VAL_MASK; params.spp_flags |= SPP_IPV6_FLOWLABEL; } if (sp->dscp & SCTP_DSCP_SET_MASK) { params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; params.spp_flags |= SPP_DSCP; } } if (copy_to_user(optval, ¶ms, len)) return -EFAULT; if (put_user(len, optlen)) return -EFAULT; return 0; } /* * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) * * This option will effect the way delayed acks are performed. This * option allows you to get or set the delayed ack time, in * milliseconds. It also allows changing the delayed ack frequency. * Changing the frequency to 1 disables the delayed sack algorithm. If * the assoc_id is 0, then this sets or gets the endpoints default * values. If the assoc_id field is non-zero, then the set or get * effects the specified association for the one to many model (the * assoc_id field is ignored by the one to one model). Note that if * sack_delay or sack_freq are 0 when setting this option, then the * current values will remain unchanged. * * struct sctp_sack_info { * sctp_assoc_t sack_assoc_id; * uint32_t sack_delay; * uint32_t sack_freq; * }; * * sack_assoc_id - This parameter, indicates which association the user * is performing an action upon. Note that if this field's value is * zero then the endpoints default value is changed (effecting future * associations only). * * sack_delay - This parameter contains the number of milliseconds that * the user is requesting the delayed ACK timer be set to. Note that * this value is defined in the standard to be between 200 and 500 * milliseconds. * * sack_freq - This parameter contains the number of packets that must * be received before a sack is sent without waiting for the delay * timer to expire. The default value for this is 2, setting this * value to 1 will disable the delayed sack algorithm. */ static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_sack_info params; struct sctp_association *asoc = NULL; struct sctp_sock *sp = sctp_sk(sk); if (len >= sizeof(struct sctp_sack_info)) { len = sizeof(struct sctp_sack_info); if (copy_from_user(¶ms, optval, len)) return -EFAULT; } else if (len == sizeof(struct sctp_assoc_value)) { pr_warn_ratelimited(DEPRECATED "%s (pid %d) " "Use of struct sctp_assoc_value in delayed_ack socket option.\n" "Use struct sctp_sack_info instead\n", current->comm, task_pid_nr(current)); if (copy_from_user(¶ms, optval, len)) return -EFAULT; } else return -EINVAL; /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the * socket is a one to many style socket, and an association * was not found, then the id was invalid. */ asoc = sctp_id2assoc(sk, params.sack_assoc_id); if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) { /* Fetch association values. */ if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { params.sack_delay = jiffies_to_msecs(asoc->sackdelay); params.sack_freq = asoc->sackfreq; } else { params.sack_delay = 0; params.sack_freq = 1; } } else { /* Fetch socket values. */ if (sp->param_flags & SPP_SACKDELAY_ENABLE) { params.sack_delay = sp->sackdelay; params.sack_freq = sp->sackfreq; } else { params.sack_delay = 0; params.sack_freq = 1; } } if (copy_to_user(optval, ¶ms, len)) return -EFAULT; if (put_user(len, optlen)) return -EFAULT; return 0; } /* 7.1.3 Initialization Parameters (SCTP_INITMSG) * * Applications can specify protocol parameters for the default association * initialization. The option name argument to setsockopt() and getsockopt() * is SCTP_INITMSG. * * Setting initialization parameters is effective only on an unconnected * socket (for UDP-style sockets only future associations are effected * by the change). With TCP-style sockets, this option is inherited by * sockets derived from a listener socket. */ static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) { if (len < sizeof(struct sctp_initmsg)) return -EINVAL; len = sizeof(struct sctp_initmsg); if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) return -EFAULT; return 0; } static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_association *asoc; int cnt = 0; struct sctp_getaddrs getaddrs; struct sctp_transport *from; void __user *to; union sctp_addr temp; struct sctp_sock *sp = sctp_sk(sk); int addrlen; size_t space_left; int bytes_copied; if (len < sizeof(struct sctp_getaddrs)) return -EINVAL; if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) return -EFAULT; /* For UDP-style sockets, id specifies the association to query. */ asoc = sctp_id2assoc(sk, getaddrs.assoc_id); if (!asoc) return -EINVAL; to = optval + offsetof(struct sctp_getaddrs, addrs); space_left = len - offsetof(struct sctp_getaddrs, addrs); list_for_each_entry(from, &asoc->peer.transport_addr_list, transports) { memcpy(&temp, &from->ipaddr, sizeof(temp)); addrlen = sctp_get_pf_specific(sk->sk_family) ->addr_to_user(sp, &temp); if (space_left < addrlen) return -ENOMEM; if (copy_to_user(to, &temp, addrlen)) return -EFAULT; to += addrlen; cnt++; space_left -= addrlen; } if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) return -EFAULT; bytes_copied = ((char __user *)to) - optval; if (put_user(bytes_copied, optlen)) return -EFAULT; return 0; } static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, size_t space_left, int *bytes_copied) { struct sctp_sockaddr_entry *addr; union sctp_addr temp; int cnt = 0; int addrlen; struct net *net = sock_net(sk); rcu_read_lock(); list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { if (!addr->valid) continue; if ((PF_INET == sk->sk_family) && (AF_INET6 == addr->a.sa.sa_family)) continue; if ((PF_INET6 == sk->sk_family) && inet_v6_ipv6only(sk) && (AF_INET == addr->a.sa.sa_family)) continue; memcpy(&temp, &addr->a, sizeof(temp)); if (!temp.v4.sin_port) temp.v4.sin_port = htons(port); addrlen = sctp_get_pf_specific(sk->sk_family) ->addr_to_user(sctp_sk(sk), &temp); if (space_left < addrlen) { cnt = -ENOMEM; break; } memcpy(to, &temp, addrlen); to += addrlen; cnt++; space_left -= addrlen; *bytes_copied += addrlen; } rcu_read_unlock(); return cnt; } static int sctp_getsockopt_local_addrs(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_bind_addr *bp; struct sctp_association *asoc; int cnt = 0; struct sctp_getaddrs getaddrs; struct sctp_sockaddr_entry *addr; void __user *to; union sctp_addr temp; struct sctp_sock *sp = sctp_sk(sk); int addrlen; int err = 0; size_t space_left; int bytes_copied = 0; void *addrs; void *buf; if (len < sizeof(struct sctp_getaddrs)) return -EINVAL; if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) return -EFAULT; /* * For UDP-style sockets, id specifies the association to query. * If the id field is set to the value '0' then the locally bound * addresses are returned without regard to any particular * association. */ if (0 == getaddrs.assoc_id) { bp = &sctp_sk(sk)->ep->base.bind_addr; } else { asoc = sctp_id2assoc(sk, getaddrs.assoc_id); if (!asoc) return -EINVAL; bp = &asoc->base.bind_addr; } to = optval + offsetof(struct sctp_getaddrs, addrs); space_left = len - offsetof(struct sctp_getaddrs, addrs); addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); if (!addrs) return -ENOMEM; /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid * addresses from the global local address list. */ if (sctp_list_single_entry(&bp->address_list)) { addr = list_entry(bp->address_list.next, struct sctp_sockaddr_entry, list); if (sctp_is_any(sk, &addr->a)) { cnt = sctp_copy_laddrs(sk, bp->port, addrs, space_left, &bytes_copied); if (cnt < 0) { err = cnt; goto out; } goto copy_getaddrs; } } buf = addrs; /* Protection on the bound address list is not needed since * in the socket option context we hold a socket lock and * thus the bound address list can't change. */ list_for_each_entry(addr, &bp->address_list, list) { memcpy(&temp, &addr->a, sizeof(temp)); addrlen = sctp_get_pf_specific(sk->sk_family) ->addr_to_user(sp, &temp); if (space_left < addrlen) { err = -ENOMEM; /*fixme: right error?*/ goto out; } memcpy(buf, &temp, addrlen); buf += addrlen; bytes_copied += addrlen; cnt++; space_left -= addrlen; } copy_getaddrs: if (copy_to_user(to, addrs, bytes_copied)) { err = -EFAULT; goto out; } if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { err = -EFAULT; goto out; } /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, * but we can't change it anymore. */ if (put_user(bytes_copied, optlen)) err = -EFAULT; out: kfree(addrs); return err; } /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) * * Requests that the local SCTP stack use the enclosed peer address as * the association primary. The enclosed address must be one of the * association peer's addresses. */ static int sctp_getsockopt_primary_addr(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_prim prim; struct sctp_association *asoc; struct sctp_sock *sp = sctp_sk(sk); if (len < sizeof(struct sctp_prim)) return -EINVAL; len = sizeof(struct sctp_prim); if (copy_from_user(&prim, optval, len)) return -EFAULT; asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); if (!asoc) return -EINVAL; if (!asoc->peer.primary_path) return -ENOTCONN; memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, asoc->peer.primary_path->af_specific->sockaddr_len); sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, (union sctp_addr *)&prim.ssp_addr); if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &prim, len)) return -EFAULT; return 0; } /* * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) * * Requests that the local endpoint set the specified Adaptation Layer * Indication parameter for all future INIT and INIT-ACK exchanges. */ static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_setadaptation adaptation; if (len < sizeof(struct sctp_setadaptation)) return -EINVAL; len = sizeof(struct sctp_setadaptation); adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &adaptation, len)) return -EFAULT; return 0; } /* * * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) * * Applications that wish to use the sendto() system call may wish to * specify a default set of parameters that would normally be supplied * through the inclusion of ancillary data. This socket option allows * such an application to set the default sctp_sndrcvinfo structure. * The application that wishes to use this socket option simply passes * in to this call the sctp_sndrcvinfo structure defined in Section * 5.2.2) The input parameters accepted by this call include * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, * sinfo_timetolive. The user must provide the sinfo_assoc_id field in * to this call if the caller is using the UDP model. * * For getsockopt, it get the default sctp_sndrcvinfo structure. */ static int sctp_getsockopt_default_send_param(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_association *asoc; struct sctp_sndrcvinfo info; if (len < sizeof(info)) return -EINVAL; len = sizeof(info); if (copy_from_user(&info, optval, len)) return -EFAULT; asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) { info.sinfo_stream = asoc->default_stream; info.sinfo_flags = asoc->default_flags; info.sinfo_ppid = asoc->default_ppid; info.sinfo_context = asoc->default_context; info.sinfo_timetolive = asoc->default_timetolive; } else { info.sinfo_stream = sp->default_stream; info.sinfo_flags = sp->default_flags; info.sinfo_ppid = sp->default_ppid; info.sinfo_context = sp->default_context; info.sinfo_timetolive = sp->default_timetolive; } if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &info, len)) return -EFAULT; return 0; } /* RFC6458, Section 8.1.31. Set/get Default Send Parameters * (SCTP_DEFAULT_SNDINFO) */ static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_association *asoc; struct sctp_sndinfo info; if (len < sizeof(info)) return -EINVAL; len = sizeof(info); if (copy_from_user(&info, optval, len)) return -EFAULT; asoc = sctp_id2assoc(sk, info.snd_assoc_id); if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) { info.snd_sid = asoc->default_stream; info.snd_flags = asoc->default_flags; info.snd_ppid = asoc->default_ppid; info.snd_context = asoc->default_context; } else { info.snd_sid = sp->default_stream; info.snd_flags = sp->default_flags; info.snd_ppid = sp->default_ppid; info.snd_context = sp->default_context; } if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &info, len)) return -EFAULT; return 0; } /* * * 7.1.5 SCTP_NODELAY * * Turn on/off any Nagle-like algorithm. This means that packets are * generally sent as soon as possible and no unnecessary delays are * introduced, at the cost of more packets in the network. Expects an * integer boolean flag. */ static int sctp_getsockopt_nodelay(struct sock *sk, int len, char __user *optval, int __user *optlen) { int val; if (len < sizeof(int)) return -EINVAL; len = sizeof(int); val = (sctp_sk(sk)->nodelay == 1); if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } /* * * 7.1.1 SCTP_RTOINFO * * The protocol parameters used to initialize and bound retransmission * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access * and modify these parameters. * All parameters are time values, in milliseconds. A value of 0, when * modifying the parameters, indicates that the current value should not * be changed. * */ static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_rtoinfo rtoinfo; struct sctp_association *asoc; if (len < sizeof (struct sctp_rtoinfo)) return -EINVAL; len = sizeof(struct sctp_rtoinfo); if (copy_from_user(&rtoinfo, optval, len)) return -EFAULT; asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; /* Values corresponding to the specific association. */ if (asoc) { rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); } else { /* Values corresponding to the endpoint. */ struct sctp_sock *sp = sctp_sk(sk); rtoinfo.srto_initial = sp->rtoinfo.srto_initial; rtoinfo.srto_max = sp->rtoinfo.srto_max; rtoinfo.srto_min = sp->rtoinfo.srto_min; } if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &rtoinfo, len)) return -EFAULT; return 0; } /* * * 7.1.2 SCTP_ASSOCINFO * * This option is used to tune the maximum retransmission attempts * of the association. * Returns an error if the new association retransmission value is * greater than the sum of the retransmission value of the peer. * See [SCTP] for more information. * */ static int sctp_getsockopt_associnfo(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_assocparams assocparams; struct sctp_association *asoc; struct list_head *pos; int cnt = 0; if (len < sizeof (struct sctp_assocparams)) return -EINVAL; len = sizeof(struct sctp_assocparams); if (copy_from_user(&assocparams, optval, len)) return -EFAULT; asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; /* Values correspoinding to the specific association */ if (asoc) { assocparams.sasoc_asocmaxrxt = asoc->max_retrans; assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; assocparams.sasoc_local_rwnd = asoc->a_rwnd; assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); list_for_each(pos, &asoc->peer.transport_addr_list) { cnt++; } assocparams.sasoc_number_peer_destinations = cnt; } else { /* Values corresponding to the endpoint */ struct sctp_sock *sp = sctp_sk(sk); assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; assocparams.sasoc_cookie_life = sp->assocparams.sasoc_cookie_life; assocparams.sasoc_number_peer_destinations = sp->assocparams. sasoc_number_peer_destinations; } if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &assocparams, len)) return -EFAULT; return 0; } /* * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) * * This socket option is a boolean flag which turns on or off mapped V4 * addresses. If this option is turned on and the socket is type * PF_INET6, then IPv4 addresses will be mapped to V6 representation. * If this option is turned off, then no mapping will be done of V4 * addresses and a user will receive both PF_INET6 and PF_INET type * addresses on the socket. */ static int sctp_getsockopt_mappedv4(struct sock *sk, int len, char __user *optval, int __user *optlen) { int val; struct sctp_sock *sp = sctp_sk(sk); if (len < sizeof(int)) return -EINVAL; len = sizeof(int); val = sp->v4mapped; if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } /* * 7.1.29. Set or Get the default context (SCTP_CONTEXT) * (chapter and verse is quoted at sctp_setsockopt_context()) */ static int sctp_getsockopt_context(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_assoc_value params; struct sctp_association *asoc; if (len < sizeof(struct sctp_assoc_value)) return -EINVAL; len = sizeof(struct sctp_assoc_value); if (copy_from_user(¶ms, optval, len)) return -EFAULT; asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; params.assoc_value = asoc ? asoc->default_rcv_context : sctp_sk(sk)->default_rcv_context; if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, ¶ms, len)) return -EFAULT; return 0; } /* * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) * This option will get or set the maximum size to put in any outgoing * SCTP DATA chunk. If a message is larger than this size it will be * fragmented by SCTP into the specified size. Note that the underlying * SCTP implementation may fragment into smaller sized chunks when the * PMTU of the underlying association is smaller than the value set by * the user. The default value for this option is '0' which indicates * the user is NOT limiting fragmentation and only the PMTU will effect * SCTP's choice of DATA chunk size. Note also that values set larger * than the maximum size of an IP datagram will effectively let SCTP * control fragmentation (i.e. the same as setting this option to 0). * * The following structure is used to access and modify this parameter: * * struct sctp_assoc_value { * sctp_assoc_t assoc_id; * uint32_t assoc_value; * }; * * assoc_id: This parameter is ignored for one-to-one style sockets. * For one-to-many style sockets this parameter indicates which * association the user is performing an action upon. Note that if * this field's value is zero then the endpoints default value is * changed (effecting future associations only). * assoc_value: This parameter specifies the maximum size in bytes. */ static int sctp_getsockopt_maxseg(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_assoc_value params; struct sctp_association *asoc; if (len == sizeof(int)) { pr_warn_ratelimited(DEPRECATED "%s (pid %d) " "Use of int in maxseg socket option.\n" "Use struct sctp_assoc_value instead\n", current->comm, task_pid_nr(current)); params.assoc_id = SCTP_FUTURE_ASSOC; } else if (len >= sizeof(struct sctp_assoc_value)) { len = sizeof(struct sctp_assoc_value); if (copy_from_user(¶ms, optval, len)) return -EFAULT; } else return -EINVAL; asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) params.assoc_value = asoc->frag_point; else params.assoc_value = sctp_sk(sk)->user_frag; if (put_user(len, optlen)) return -EFAULT; if (len == sizeof(int)) { if (copy_to_user(optval, ¶ms.assoc_value, len)) return -EFAULT; } else { if (copy_to_user(optval, ¶ms, len)) return -EFAULT; } return 0; } /* * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) */ static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, char __user *optval, int __user *optlen) { int val; if (len < sizeof(int)) return -EINVAL; len = sizeof(int); val = sctp_sk(sk)->frag_interleave; if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } /* * 7.1.25. Set or Get the sctp partial delivery point * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) */ static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, char __user *optval, int __user *optlen) { u32 val; if (len < sizeof(u32)) return -EINVAL; len = sizeof(u32); val = sctp_sk(sk)->pd_point; if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } /* * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) * (chapter and verse is quoted at sctp_setsockopt_maxburst()) */ static int sctp_getsockopt_maxburst(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_assoc_value params; struct sctp_association *asoc; if (len == sizeof(int)) { pr_warn_ratelimited(DEPRECATED "%s (pid %d) " "Use of int in max_burst socket option.\n" "Use struct sctp_assoc_value instead\n", current->comm, task_pid_nr(current)); params.assoc_id = SCTP_FUTURE_ASSOC; } else if (len >= sizeof(struct sctp_assoc_value)) { len = sizeof(struct sctp_assoc_value); if (copy_from_user(¶ms, optval, len)) return -EFAULT; } else return -EINVAL; asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; if (len == sizeof(int)) { if (copy_to_user(optval, ¶ms.assoc_value, len)) return -EFAULT; } else { if (copy_to_user(optval, ¶ms, len)) return -EFAULT; } return 0; } static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_endpoint *ep = sctp_sk(sk)->ep; struct sctp_hmacalgo __user *p = (void __user *)optval; struct sctp_hmac_algo_param *hmacs; __u16 data_len = 0; u32 num_idents; int i; if (!ep->auth_enable) return -EACCES; hmacs = ep->auth_hmacs_list; data_len = ntohs(hmacs->param_hdr.length) - sizeof(struct sctp_paramhdr); if (len < sizeof(struct sctp_hmacalgo) + data_len) return -EINVAL; len = sizeof(struct sctp_hmacalgo) + data_len; num_idents = data_len / sizeof(u16); if (put_user(len, optlen)) return -EFAULT; if (put_user(num_idents, &p->shmac_num_idents)) return -EFAULT; for (i = 0; i < num_idents; i++) { __u16 hmacid = ntohs(hmacs->hmac_ids[i]); if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) return -EFAULT; } return 0; } static int sctp_getsockopt_active_key(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_endpoint *ep = sctp_sk(sk)->ep; struct sctp_authkeyid val; struct sctp_association *asoc; if (!ep->auth_enable) return -EACCES; if (len < sizeof(struct sctp_authkeyid)) return -EINVAL; len = sizeof(struct sctp_authkeyid); if (copy_from_user(&val, optval, len)) return -EFAULT; asoc = sctp_id2assoc(sk, val.scact_assoc_id); if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) return -EINVAL; if (asoc) val.scact_keynumber = asoc->active_key_id; else val.scact_keynumber = ep->active_key_id; if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_endpoint *ep = sctp_sk(sk)->ep; struct sctp_authchunks __user *p = (void __user *)optval; struct sctp_authchunks val; struct sctp_association *asoc; struct sctp_chunks_param *ch; u32 num_chunks = 0; char __user *to; if (!ep->auth_enable) return -EACCES; if (len < sizeof(struct sctp_authchunks)) return -EINVAL; if (copy_from_user(&val, optval, sizeof(val))) return -EFAULT; to = p->gauth_chunks; asoc = sctp_id2assoc(sk, val.gauth_assoc_id); if (!asoc) return -EINVAL; ch = asoc->peer.peer_chunks; if (!ch) goto num; /* See if the user provided enough room for all the data */ num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); if (len < num_chunks) return -EINVAL; if (copy_to_user(to, ch->chunks, num_chunks)) return -EFAULT; num: len = sizeof(struct sctp_authchunks) + num_chunks; if (put_user(len, optlen)) return -EFAULT; if (put_user(num_chunks, &p->gauth_number_of_chunks)) return -EFAULT; return 0; } static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_endpoint *ep = sctp_sk(sk)->ep; struct sctp_authchunks __user *p = (void __user *)optval; struct sctp_authchunks val; struct sctp_association *asoc; struct sctp_chunks_param *ch; u32 num_chunks = 0; char __user *to; if (!ep->auth_enable) return -EACCES; if (len < sizeof(struct sctp_authchunks)) return -EINVAL; if (copy_from_user(&val, optval, sizeof(val))) return -EFAULT; to = p->gauth_chunks; asoc = sctp_id2assoc(sk, val.gauth_assoc_id); if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; ch = asoc ? (struct sctp_chunks_param *)asoc->c.auth_chunks : ep->auth_chunk_list; if (!ch) goto num; num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); if (len < sizeof(struct sctp_authchunks) + num_chunks) return -EINVAL; if (copy_to_user(to, ch->chunks, num_chunks)) return -EFAULT; num: len = sizeof(struct sctp_authchunks) + num_chunks; if (put_user(len, optlen)) return -EFAULT; if (put_user(num_chunks, &p->gauth_number_of_chunks)) return -EFAULT; return 0; } /* * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) * This option gets the current number of associations that are attached * to a one-to-many style socket. The option value is an uint32_t. */ static int sctp_getsockopt_assoc_number(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_association *asoc; u32 val = 0; if (sctp_style(sk, TCP)) return -EOPNOTSUPP; if (len < sizeof(u32)) return -EINVAL; len = sizeof(u32); list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { val++; } if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } /* * 8.1.23 SCTP_AUTO_ASCONF * See the corresponding setsockopt entry as description */ static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, char __user *optval, int __user *optlen) { int val = 0; if (len < sizeof(int)) return -EINVAL; len = sizeof(int); if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) val = 1; if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } /* * 8.2.6. Get the Current Identifiers of Associations * (SCTP_GET_ASSOC_ID_LIST) * * This option gets the current list of SCTP association identifiers of * the SCTP associations handled by a one-to-many style socket. */ static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_association *asoc; struct sctp_assoc_ids *ids; u32 num = 0; if (sctp_style(sk, TCP)) return -EOPNOTSUPP; if (len < sizeof(struct sctp_assoc_ids)) return -EINVAL; list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { num++; } if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) return -EINVAL; len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; ids = kmalloc(len, GFP_USER | __GFP_NOWARN); if (unlikely(!ids)) return -ENOMEM; ids->gaids_number_of_ids = num; num = 0; list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { ids->gaids_assoc_id[num++] = asoc->assoc_id; } if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { kfree(ids); return -EFAULT; } kfree(ids); return 0; } /* * SCTP_PEER_ADDR_THLDS * * This option allows us to fetch the partially failed threshold for one or all * transports in an association. See Section 6.1 of: * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt */ static int sctp_getsockopt_paddr_thresholds(struct sock *sk, char __user *optval, int len, int __user *optlen) { struct sctp_paddrthlds val; struct sctp_transport *trans; struct sctp_association *asoc; if (len < sizeof(struct sctp_paddrthlds)) return -EINVAL; len = sizeof(struct sctp_paddrthlds); if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) return -EFAULT; if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { trans = sctp_addr_id2transport(sk, &val.spt_address, val.spt_assoc_id); if (!trans) return -ENOENT; val.spt_pathmaxrxt = trans->pathmaxrxt; val.spt_pathpfthld = trans->pf_retrans; return 0; } asoc = sctp_id2assoc(sk, val.spt_assoc_id); if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) { val.spt_pathpfthld = asoc->pf_retrans; val.spt_pathmaxrxt = asoc->pathmaxrxt; } else { struct sctp_sock *sp = sctp_sk(sk); val.spt_pathpfthld = sp->pf_retrans; val.spt_pathmaxrxt = sp->pathmaxrxt; } if (put_user(len, optlen) || copy_to_user(optval, &val, len)) return -EFAULT; return 0; } /* * SCTP_GET_ASSOC_STATS * * This option retrieves local per endpoint statistics. It is modeled * after OpenSolaris' implementation */ static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_assoc_stats sas; struct sctp_association *asoc = NULL; /* User must provide at least the assoc id */ if (len < sizeof(sctp_assoc_t)) return -EINVAL; /* Allow the struct to grow and fill in as much as possible */ len = min_t(size_t, len, sizeof(sas)); if (copy_from_user(&sas, optval, len)) return -EFAULT; asoc = sctp_id2assoc(sk, sas.sas_assoc_id); if (!asoc) return -EINVAL; sas.sas_rtxchunks = asoc->stats.rtxchunks; sas.sas_gapcnt = asoc->stats.gapcnt; sas.sas_outofseqtsns = asoc->stats.outofseqtsns; sas.sas_osacks = asoc->stats.osacks; sas.sas_isacks = asoc->stats.isacks; sas.sas_octrlchunks = asoc->stats.octrlchunks; sas.sas_ictrlchunks = asoc->stats.ictrlchunks; sas.sas_oodchunks = asoc->stats.oodchunks; sas.sas_iodchunks = asoc->stats.iodchunks; sas.sas_ouodchunks = asoc->stats.ouodchunks; sas.sas_iuodchunks = asoc->stats.iuodchunks; sas.sas_idupchunks = asoc->stats.idupchunks; sas.sas_opackets = asoc->stats.opackets; sas.sas_ipackets = asoc->stats.ipackets; /* New high max rto observed, will return 0 if not a single * RTO update took place. obs_rto_ipaddr will be bogus * in such a case */ sas.sas_maxrto = asoc->stats.max_obs_rto; memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, sizeof(struct sockaddr_storage)); /* Mark beginning of a new observation period */ asoc->stats.max_obs_rto = asoc->rto_min; if (put_user(len, optlen)) return -EFAULT; pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); if (copy_to_user(optval, &sas, len)) return -EFAULT; return 0; } static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, char __user *optval, int __user *optlen) { int val = 0; if (len < sizeof(int)) return -EINVAL; len = sizeof(int); if (sctp_sk(sk)->recvrcvinfo) val = 1; if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, char __user *optval, int __user *optlen) { int val = 0; if (len < sizeof(int)) return -EINVAL; len = sizeof(int); if (sctp_sk(sk)->recvnxtinfo) val = 1; if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } static int sctp_getsockopt_pr_supported(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_assoc_value params; struct sctp_association *asoc; int retval = -EFAULT; if (len < sizeof(params)) { retval = -EINVAL; goto out; } len = sizeof(params); if (copy_from_user(¶ms, optval, len)) goto out; asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) { retval = -EINVAL; goto out; } params.assoc_value = asoc ? asoc->prsctp_enable : sctp_sk(sk)->ep->prsctp_enable; if (put_user(len, optlen)) goto out; if (copy_to_user(optval, ¶ms, len)) goto out; retval = 0; out: return retval; } static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_default_prinfo info; struct sctp_association *asoc; int retval = -EFAULT; if (len < sizeof(info)) { retval = -EINVAL; goto out; } len = sizeof(info); if (copy_from_user(&info, optval, len)) goto out; asoc = sctp_id2assoc(sk, info.pr_assoc_id); if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) { retval = -EINVAL; goto out; } if (asoc) { info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); info.pr_value = asoc->default_timetolive; } else { struct sctp_sock *sp = sctp_sk(sk); info.pr_policy = SCTP_PR_POLICY(sp->default_flags); info.pr_value = sp->default_timetolive; } if (put_user(len, optlen)) goto out; if (copy_to_user(optval, &info, len)) goto out; retval = 0; out: return retval; } static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_prstatus params; struct sctp_association *asoc; int policy; int retval = -EINVAL; if (len < sizeof(params)) goto out; len = sizeof(params); if (copy_from_user(¶ms, optval, len)) { retval = -EFAULT; goto out; } policy = params.sprstat_policy; if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) goto out; asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); if (!asoc) goto out; if (policy == SCTP_PR_SCTP_ALL) { params.sprstat_abandoned_unsent = 0; params.sprstat_abandoned_sent = 0; for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { params.sprstat_abandoned_unsent += asoc->abandoned_unsent[policy]; params.sprstat_abandoned_sent += asoc->abandoned_sent[policy]; } } else { params.sprstat_abandoned_unsent = asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; params.sprstat_abandoned_sent = asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; } if (put_user(len, optlen)) { retval = -EFAULT; goto out; } if (copy_to_user(optval, ¶ms, len)) { retval = -EFAULT; goto out; } retval = 0; out: return retval; } static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_stream_out_ext *streamoute; struct sctp_association *asoc; struct sctp_prstatus params; int retval = -EINVAL; int policy; if (len < sizeof(params)) goto out; len = sizeof(params); if (copy_from_user(¶ms, optval, len)) { retval = -EFAULT; goto out; } policy = params.sprstat_policy; if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) goto out; asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) goto out; streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; if (!streamoute) { /* Not allocated yet, means all stats are 0 */ params.sprstat_abandoned_unsent = 0; params.sprstat_abandoned_sent = 0; retval = 0; goto out; } if (policy == SCTP_PR_SCTP_ALL) { params.sprstat_abandoned_unsent = 0; params.sprstat_abandoned_sent = 0; for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { params.sprstat_abandoned_unsent += streamoute->abandoned_unsent[policy]; params.sprstat_abandoned_sent += streamoute->abandoned_sent[policy]; } } else { params.sprstat_abandoned_unsent = streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; params.sprstat_abandoned_sent = streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; } if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { retval = -EFAULT; goto out; } retval = 0; out: return retval; } static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_assoc_value params; struct sctp_association *asoc; int retval = -EFAULT; if (len < sizeof(params)) { retval = -EINVAL; goto out; } len = sizeof(params); if (copy_from_user(¶ms, optval, len)) goto out; asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) { retval = -EINVAL; goto out; } params.assoc_value = asoc ? asoc->reconf_enable : sctp_sk(sk)->ep->reconf_enable; if (put_user(len, optlen)) goto out; if (copy_to_user(optval, ¶ms, len)) goto out; retval = 0; out: return retval; } static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_assoc_value params; struct sctp_association *asoc; int retval = -EFAULT; if (len < sizeof(params)) { retval = -EINVAL; goto out; } len = sizeof(params); if (copy_from_user(¶ms, optval, len)) goto out; asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) { retval = -EINVAL; goto out; } params.assoc_value = asoc ? asoc->strreset_enable : sctp_sk(sk)->ep->strreset_enable; if (put_user(len, optlen)) goto out; if (copy_to_user(optval, ¶ms, len)) goto out; retval = 0; out: return retval; } static int sctp_getsockopt_scheduler(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_assoc_value params; struct sctp_association *asoc; int retval = -EFAULT; if (len < sizeof(params)) { retval = -EINVAL; goto out; } len = sizeof(params); if (copy_from_user(¶ms, optval, len)) goto out; asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) { retval = -EINVAL; goto out; } params.assoc_value = asoc ? sctp_sched_get_sched(asoc) : sctp_sk(sk)->default_ss; if (put_user(len, optlen)) goto out; if (copy_to_user(optval, ¶ms, len)) goto out; retval = 0; out: return retval; } static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_stream_value params; struct sctp_association *asoc; int retval = -EFAULT; if (len < sizeof(params)) { retval = -EINVAL; goto out; } len = sizeof(params); if (copy_from_user(¶ms, optval, len)) goto out; asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc) { retval = -EINVAL; goto out; } retval = sctp_sched_get_value(asoc, params.stream_id, ¶ms.stream_value); if (retval) goto out; if (put_user(len, optlen)) { retval = -EFAULT; goto out; } if (copy_to_user(optval, ¶ms, len)) { retval = -EFAULT; goto out; } out: return retval; } static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_assoc_value params; struct sctp_association *asoc; int retval = -EFAULT; if (len < sizeof(params)) { retval = -EINVAL; goto out; } len = sizeof(params); if (copy_from_user(¶ms, optval, len)) goto out; asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) { retval = -EINVAL; goto out; } params.assoc_value = asoc ? asoc->intl_enable : sctp_sk(sk)->strm_interleave; if (put_user(len, optlen)) goto out; if (copy_to_user(optval, ¶ms, len)) goto out; retval = 0; out: return retval; } static int sctp_getsockopt_reuse_port(struct sock *sk, int len, char __user *optval, int __user *optlen) { int val; if (len < sizeof(int)) return -EINVAL; len = sizeof(int); val = sctp_sk(sk)->reuse; if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_association *asoc; struct sctp_event param; __u16 subscribe; if (len < sizeof(param)) return -EINVAL; len = sizeof(param); if (copy_from_user(¶m, optval, len)) return -EFAULT; if (param.se_type < SCTP_SN_TYPE_BASE || param.se_type > SCTP_SN_TYPE_MAX) return -EINVAL; asoc = sctp_id2assoc(sk, param.se_assoc_id); if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, ¶m, len)) return -EFAULT; return 0; } static int sctp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen) { int retval = 0; int len; pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); /* I can hardly begin to describe how wrong this is. This is * so broken as to be worse than useless. The API draft * REALLY is NOT helpful here... I am not convinced that the * semantics of getsockopt() with a level OTHER THAN SOL_SCTP * are at all well-founded. */ if (level != SOL_SCTP) { struct sctp_af *af = sctp_sk(sk)->pf->af; retval = af->getsockopt(sk, level, optname, optval, optlen); return retval; } if (get_user(len, optlen)) return -EFAULT; if (len < 0) return -EINVAL; lock_sock(sk); switch (optname) { case SCTP_STATUS: retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); break; case SCTP_DISABLE_FRAGMENTS: retval = sctp_getsockopt_disable_fragments(sk, len, optval, optlen); break; case SCTP_EVENTS: retval = sctp_getsockopt_events(sk, len, optval, optlen); break; case SCTP_AUTOCLOSE: retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); break; case SCTP_SOCKOPT_PEELOFF: retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); break; case SCTP_SOCKOPT_PEELOFF_FLAGS: retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); break; case SCTP_PEER_ADDR_PARAMS: retval = sctp_getsockopt_peer_addr_params(sk, len, optval, optlen); break; case SCTP_DELAYED_SACK: retval = sctp_getsockopt_delayed_ack(sk, len, optval, optlen); break; case SCTP_INITMSG: retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); break; case SCTP_GET_PEER_ADDRS: retval = sctp_getsockopt_peer_addrs(sk, len, optval, optlen); break; case SCTP_GET_LOCAL_ADDRS: retval = sctp_getsockopt_local_addrs(sk, len, optval, optlen); break; case SCTP_SOCKOPT_CONNECTX3: retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); break; case SCTP_DEFAULT_SEND_PARAM: retval = sctp_getsockopt_default_send_param(sk, len, optval, optlen); break; case SCTP_DEFAULT_SNDINFO: retval = sctp_getsockopt_default_sndinfo(sk, len, optval, optlen); break; case SCTP_PRIMARY_ADDR: retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); break; case SCTP_NODELAY: retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); break; case SCTP_RTOINFO: retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); break; case SCTP_ASSOCINFO: retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); break; case SCTP_I_WANT_MAPPED_V4_ADDR: retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); break; case SCTP_MAXSEG: retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); break; case SCTP_GET_PEER_ADDR_INFO: retval = sctp_getsockopt_peer_addr_info(sk, len, optval, optlen); break; case SCTP_ADAPTATION_LAYER: retval = sctp_getsockopt_adaptation_layer(sk, len, optval, optlen); break; case SCTP_CONTEXT: retval = sctp_getsockopt_context(sk, len, optval, optlen); break; case SCTP_FRAGMENT_INTERLEAVE: retval = sctp_getsockopt_fragment_interleave(sk, len, optval, optlen); break; case SCTP_PARTIAL_DELIVERY_POINT: retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, optlen); break; case SCTP_MAX_BURST: retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); break; case SCTP_AUTH_KEY: case SCTP_AUTH_CHUNK: case SCTP_AUTH_DELETE_KEY: case SCTP_AUTH_DEACTIVATE_KEY: retval = -EOPNOTSUPP; break; case SCTP_HMAC_IDENT: retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); break; case SCTP_AUTH_ACTIVE_KEY: retval = sctp_getsockopt_active_key(sk, len, optval, optlen); break; case SCTP_PEER_AUTH_CHUNKS: retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, optlen); break; case SCTP_LOCAL_AUTH_CHUNKS: retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, optlen); break; case SCTP_GET_ASSOC_NUMBER: retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); break; case SCTP_GET_ASSOC_ID_LIST: retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); break; case SCTP_AUTO_ASCONF: retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); break; case SCTP_PEER_ADDR_THLDS: retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); break; case SCTP_GET_ASSOC_STATS: retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); break; case SCTP_RECVRCVINFO: retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); break; case SCTP_RECVNXTINFO: retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); break; case SCTP_PR_SUPPORTED: retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); break; case SCTP_DEFAULT_PRINFO: retval = sctp_getsockopt_default_prinfo(sk, len, optval, optlen); break; case SCTP_PR_ASSOC_STATUS: retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, optlen); break; case SCTP_PR_STREAM_STATUS: retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, optlen); break; case SCTP_RECONFIG_SUPPORTED: retval = sctp_getsockopt_reconfig_supported(sk, len, optval, optlen); break; case SCTP_ENABLE_STREAM_RESET: retval = sctp_getsockopt_enable_strreset(sk, len, optval, optlen); break; case SCTP_STREAM_SCHEDULER: retval = sctp_getsockopt_scheduler(sk, len, optval, optlen); break; case SCTP_STREAM_SCHEDULER_VALUE: retval = sctp_getsockopt_scheduler_value(sk, len, optval, optlen); break; case SCTP_INTERLEAVING_SUPPORTED: retval = sctp_getsockopt_interleaving_supported(sk, len, optval, optlen); break; case SCTP_REUSE_PORT: retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); break; case SCTP_EVENT: retval = sctp_getsockopt_event(sk, len, optval, optlen); break; default: retval = -ENOPROTOOPT; break; } release_sock(sk); return retval; } static int sctp_hash(struct sock *sk) { /* STUB */ return 0; } static void sctp_unhash(struct sock *sk) { /* STUB */ } /* Check if port is acceptable. Possibly find first available port. * * The port hash table (contained in the 'global' SCTP protocol storage * returned by struct sctp_protocol *sctp_get_protocol()). The hash * table is an array of 4096 lists (sctp_bind_hashbucket). Each * list (the list number is the port number hashed out, so as you * would expect from a hash function, all the ports in a given list have * such a number that hashes out to the same list number; you were * expecting that, right?); so each list has a set of ports, with a * link to the socket (struct sock) that uses it, the port number and * a fastreuse flag (FIXME: NPI ipg). */ static struct sctp_bind_bucket *sctp_bucket_create( struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) { struct sctp_sock *sp = sctp_sk(sk); bool reuse = (sk->sk_reuse || sp->reuse); struct sctp_bind_hashbucket *head; /* hash list */ kuid_t uid = sock_i_uid(sk); struct sctp_bind_bucket *pp; unsigned short snum; int ret; snum = ntohs(addr->v4.sin_port); pr_debug("%s: begins, snum:%d\n", __func__, snum); local_bh_disable(); if (snum == 0) { /* Search for an available port. */ int low, high, remaining, index; unsigned int rover; struct net *net = sock_net(sk); inet_get_local_port_range(net, &low, &high); remaining = (high - low) + 1; rover = prandom_u32() % remaining + low; do { rover++; if ((rover < low) || (rover > high)) rover = low; if (inet_is_local_reserved_port(net, rover)) continue; index = sctp_phashfn(sock_net(sk), rover); head = &sctp_port_hashtable[index]; spin_lock(&head->lock); sctp_for_each_hentry(pp, &head->chain) if ((pp->port == rover) && net_eq(sock_net(sk), pp->net)) goto next; break; next: spin_unlock(&head->lock); } while (--remaining > 0); /* Exhausted local port range during search? */ ret = 1; if (remaining <= 0) goto fail; /* OK, here is the one we will use. HEAD (the port * hash table list entry) is non-NULL and we hold it's * mutex. */ snum = rover; } else { /* We are given an specific port number; we verify * that it is not being used. If it is used, we will * exahust the search in the hash list corresponding * to the port number (snum) - we detect that with the * port iterator, pp being NULL. */ head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; spin_lock(&head->lock); sctp_for_each_hentry(pp, &head->chain) { if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) goto pp_found; } } pp = NULL; goto pp_not_found; pp_found: if (!hlist_empty(&pp->owner)) { /* We had a port hash table hit - there is an * available port (pp != NULL) and it is being * used by other socket (pp->owner not empty); that other * socket is going to be sk2. */ struct sock *sk2; pr_debug("%s: found a possible match\n", __func__); if ((pp->fastreuse && reuse && sk->sk_state != SCTP_SS_LISTENING) || (pp->fastreuseport && sk->sk_reuseport && uid_eq(pp->fastuid, uid))) goto success; /* Run through the list of sockets bound to the port * (pp->port) [via the pointers bind_next and * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, * we get the endpoint they describe and run through * the endpoint's list of IP (v4 or v6) addresses, * comparing each of the addresses with the address of * the socket sk. If we find a match, then that means * that this port/socket (sk) combination are already * in an endpoint. */ sk_for_each_bound(sk2, &pp->owner) { struct sctp_sock *sp2 = sctp_sk(sk2); struct sctp_endpoint *ep2 = sp2->ep; if (sk == sk2 || (reuse && (sk2->sk_reuse || sp2->reuse) && sk2->sk_state != SCTP_SS_LISTENING) || (sk->sk_reuseport && sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)))) continue; if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, sp2, sp)) { ret = (long)sk2; goto fail_unlock; } } pr_debug("%s: found a match\n", __func__); } pp_not_found: /* If there was a hash table miss, create a new port. */ ret = 1; if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) goto fail_unlock; /* In either case (hit or miss), make sure fastreuse is 1 only * if sk->sk_reuse is too (that is, if the caller requested * SO_REUSEADDR on this socket -sk-). */ if (hlist_empty(&pp->owner)) { if (reuse && sk->sk_state != SCTP_SS_LISTENING) pp->fastreuse = 1; else pp->fastreuse = 0; if (sk->sk_reuseport) { pp->fastreuseport = 1; pp->fastuid = uid; } else { pp->fastreuseport = 0; } } else { if (pp->fastreuse && (!reuse || sk->sk_state == SCTP_SS_LISTENING)) pp->fastreuse = 0; if (pp->fastreuseport && (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) pp->fastreuseport = 0; } /* We are set, so fill up all the data in the hash table * entry, tie the socket list information with the rest of the * sockets FIXME: Blurry, NPI (ipg). */ success: if (!sp->bind_hash) { inet_sk(sk)->inet_num = snum; sk_add_bind_node(sk, &pp->owner); sp->bind_hash = pp; } ret = 0; fail_unlock: spin_unlock(&head->lock); fail: local_bh_enable(); return ret; } /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral * port is requested. */ static int sctp_get_port(struct sock *sk, unsigned short snum) { union sctp_addr addr; struct sctp_af *af = sctp_sk(sk)->pf->af; /* Set up a dummy address struct from the sk. */ af->from_sk(&addr, sk); addr.v4.sin_port = htons(snum); /* Note: sk->sk_num gets filled in if ephemeral port request. */ return !!sctp_get_port_local(sk, &addr); } /* * Move a socket to LISTENING state. */ static int sctp_listen_start(struct sock *sk, int backlog) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_endpoint *ep = sp->ep; struct crypto_shash *tfm = NULL; char alg[32]; /* Allocate HMAC for generating cookie. */ if (!sp->hmac && sp->sctp_hmac_alg) { sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); tfm = crypto_alloc_shash(alg, 0, 0); if (IS_ERR(tfm)) { net_info_ratelimited("failed to load transform for %s: %ld\n", sp->sctp_hmac_alg, PTR_ERR(tfm)); return -ENOSYS; } sctp_sk(sk)->hmac = tfm; } /* * If a bind() or sctp_bindx() is not called prior to a listen() * call that allows new associations to be accepted, the system * picks an ephemeral port and will choose an address set equivalent * to binding with a wildcard address. * * This is not currently spelled out in the SCTP sockets * extensions draft, but follows the practice as seen in TCP * sockets. * */ inet_sk_set_state(sk, SCTP_SS_LISTENING); if (!ep->base.bind_addr.port) { if (sctp_autobind(sk)) return -EAGAIN; } else { if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { inet_sk_set_state(sk, SCTP_SS_CLOSED); return -EADDRINUSE; } } sk->sk_max_ack_backlog = backlog; return sctp_hash_endpoint(ep); } /* * 4.1.3 / 5.1.3 listen() * * By default, new associations are not accepted for UDP style sockets. * An application uses listen() to mark a socket as being able to * accept new associations. * * On TCP style sockets, applications use listen() to ready the SCTP * endpoint for accepting inbound associations. * * On both types of endpoints a backlog of '0' disables listening. * * Move a socket to LISTENING state. */ int sctp_inet_listen(struct socket *sock, int backlog) { struct sock *sk = sock->sk; struct sctp_endpoint *ep = sctp_sk(sk)->ep; int err = -EINVAL; if (unlikely(backlog < 0)) return err; lock_sock(sk); /* Peeled-off sockets are not allowed to listen(). */ if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) goto out; if (sock->state != SS_UNCONNECTED) goto out; if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) goto out; /* If backlog is zero, disable listening. */ if (!backlog) { if (sctp_sstate(sk, CLOSED)) goto out; err = 0; sctp_unhash_endpoint(ep); sk->sk_state = SCTP_SS_CLOSED; if (sk->sk_reuse || sctp_sk(sk)->reuse) sctp_sk(sk)->bind_hash->fastreuse = 1; goto out; } /* If we are already listening, just update the backlog */ if (sctp_sstate(sk, LISTENING)) sk->sk_max_ack_backlog = backlog; else { err = sctp_listen_start(sk, backlog); if (err) goto out; } err = 0; out: release_sock(sk); return err; } /* * This function is done by modeling the current datagram_poll() and the * tcp_poll(). Note that, based on these implementations, we don't * lock the socket in this function, even though it seems that, * ideally, locking or some other mechanisms can be used to ensure * the integrity of the counters (sndbuf and wmem_alloc) used * in this place. We assume that we don't need locks either until proven * otherwise. * * Another thing to note is that we include the Async I/O support * here, again, by modeling the current TCP/UDP code. We don't have * a good way to test with it yet. */ __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) { struct sock *sk = sock->sk; struct sctp_sock *sp = sctp_sk(sk); __poll_t mask; poll_wait(file, sk_sleep(sk), wait); sock_rps_record_flow(sk); /* A TCP-style listening socket becomes readable when the accept queue * is not empty. */ if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) return (!list_empty(&sp->ep->asocs)) ? (EPOLLIN | EPOLLRDNORM) : 0; mask = 0; /* Is there any exceptional events? */ if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) mask |= EPOLLERR | (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); if (sk->sk_shutdown & RCV_SHUTDOWN) mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; if (sk->sk_shutdown == SHUTDOWN_MASK) mask |= EPOLLHUP; /* Is it readable? Reconsider this code with TCP-style support. */ if (!skb_queue_empty(&sk->sk_receive_queue)) mask |= EPOLLIN | EPOLLRDNORM; /* The association is either gone or not ready. */ if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) return mask; /* Is it writable? */ if (sctp_writeable(sk)) { mask |= EPOLLOUT | EPOLLWRNORM; } else { sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); /* * Since the socket is not locked, the buffer * might be made available after the writeable check and * before the bit is set. This could cause a lost I/O * signal. tcp_poll() has a race breaker for this race * condition. Based on their implementation, we put * in the following code to cover it as well. */ if (sctp_writeable(sk)) mask |= EPOLLOUT | EPOLLWRNORM; } return mask; } /******************************************************************** * 2nd Level Abstractions ********************************************************************/ static struct sctp_bind_bucket *sctp_bucket_create( struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) { struct sctp_bind_bucket *pp; pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); if (pp) { SCTP_DBG_OBJCNT_INC(bind_bucket); pp->port = snum; pp->fastreuse = 0; INIT_HLIST_HEAD(&pp->owner); pp->net = net; hlist_add_head(&pp->node, &head->chain); } return pp; } /* Caller must hold hashbucket lock for this tb with local BH disabled */ static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) { if (pp && hlist_empty(&pp->owner)) { __hlist_del(&pp->node); kmem_cache_free(sctp_bucket_cachep, pp); SCTP_DBG_OBJCNT_DEC(bind_bucket); } } /* Release this socket's reference to a local port. */ static inline void __sctp_put_port(struct sock *sk) { struct sctp_bind_hashbucket *head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), inet_sk(sk)->inet_num)]; struct sctp_bind_bucket *pp; spin_lock(&head->lock); pp = sctp_sk(sk)->bind_hash; __sk_del_bind_node(sk); sctp_sk(sk)->bind_hash = NULL; inet_sk(sk)->inet_num = 0; sctp_bucket_destroy(pp); spin_unlock(&head->lock); } void sctp_put_port(struct sock *sk) { local_bh_disable(); __sctp_put_port(sk); local_bh_enable(); } /* * The system picks an ephemeral port and choose an address set equivalent * to binding with a wildcard address. * One of those addresses will be the primary address for the association. * This automatically enables the multihoming capability of SCTP. */ static int sctp_autobind(struct sock *sk) { union sctp_addr autoaddr; struct sctp_af *af; __be16 port; /* Initialize a local sockaddr structure to INADDR_ANY. */ af = sctp_sk(sk)->pf->af; port = htons(inet_sk(sk)->inet_num); af->inaddr_any(&autoaddr, port); return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); } /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. * * From RFC 2292 * 4.2 The cmsghdr Structure * * * When ancillary data is sent or received, any number of ancillary data * objects can be specified by the msg_control and msg_controllen members of * the msghdr structure, because each object is preceded by * a cmsghdr structure defining the object's length (the cmsg_len member). * Historically Berkeley-derived implementations have passed only one object * at a time, but this API allows multiple objects to be * passed in a single call to sendmsg() or recvmsg(). The following example * shows two ancillary data objects in a control buffer. * * |<--------------------------- msg_controllen -------------------------->| * | | * * |<----- ancillary data object ----->|<----- ancillary data object ----->| * * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| * | | | * * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | * * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | * | | | | | * * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| * * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| * * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ * ^ * | * * msg_control * points here */ static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) { struct msghdr *my_msg = (struct msghdr *)msg; struct cmsghdr *cmsg; for_each_cmsghdr(cmsg, my_msg) { if (!CMSG_OK(my_msg, cmsg)) return -EINVAL; /* Should we parse this header or ignore? */ if (cmsg->cmsg_level != IPPROTO_SCTP) continue; /* Strictly check lengths following example in SCM code. */ switch (cmsg->cmsg_type) { case SCTP_INIT: /* SCTP Socket API Extension * 5.3.1 SCTP Initiation Structure (SCTP_INIT) * * This cmsghdr structure provides information for * initializing new SCTP associations with sendmsg(). * The SCTP_INITMSG socket option uses this same data * structure. This structure is not used for * recvmsg(). * * cmsg_level cmsg_type cmsg_data[] * ------------ ------------ ---------------------- * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg */ if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) return -EINVAL; cmsgs->init = CMSG_DATA(cmsg); break; case SCTP_SNDRCV: /* SCTP Socket API Extension * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) * * This cmsghdr structure specifies SCTP options for * sendmsg() and describes SCTP header information * about a received message through recvmsg(). * * cmsg_level cmsg_type cmsg_data[] * ------------ ------------ ---------------------- * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo */ if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) return -EINVAL; cmsgs->srinfo = CMSG_DATA(cmsg); if (cmsgs->srinfo->sinfo_flags & ~(SCTP_UNORDERED | SCTP_ADDR_OVER | SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) return -EINVAL; break; case SCTP_SNDINFO: /* SCTP Socket API Extension * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) * * This cmsghdr structure specifies SCTP options for * sendmsg(). This structure and SCTP_RCVINFO replaces * SCTP_SNDRCV which has been deprecated. * * cmsg_level cmsg_type cmsg_data[] * ------------ ------------ --------------------- * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo */ if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) return -EINVAL; cmsgs->sinfo = CMSG_DATA(cmsg); if (cmsgs->sinfo->snd_flags & ~(SCTP_UNORDERED | SCTP_ADDR_OVER | SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) return -EINVAL; break; case SCTP_PRINFO: /* SCTP Socket API Extension * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) * * This cmsghdr structure specifies SCTP options for sendmsg(). * * cmsg_level cmsg_type cmsg_data[] * ------------ ------------ --------------------- * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo */ if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) return -EINVAL; cmsgs->prinfo = CMSG_DATA(cmsg); if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) return -EINVAL; if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) cmsgs->prinfo->pr_value = 0; break; case SCTP_AUTHINFO: /* SCTP Socket API Extension * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) * * This cmsghdr structure specifies SCTP options for sendmsg(). * * cmsg_level cmsg_type cmsg_data[] * ------------ ------------ --------------------- * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo */ if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) return -EINVAL; cmsgs->authinfo = CMSG_DATA(cmsg); break; case SCTP_DSTADDRV4: case SCTP_DSTADDRV6: /* SCTP Socket API Extension * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) * * This cmsghdr structure specifies SCTP options for sendmsg(). * * cmsg_level cmsg_type cmsg_data[] * ------------ ------------ --------------------- * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr * ------------ ------------ --------------------- * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr */ cmsgs->addrs_msg = my_msg; break; default: return -EINVAL; } } return 0; } /* * Wait for a packet.. * Note: This function is the same function as in core/datagram.c * with a few modifications to make lksctp work. */ static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) { int error; DEFINE_WAIT(wait); prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); /* Socket errors? */ error = sock_error(sk); if (error) goto out; if (!skb_queue_empty(&sk->sk_receive_queue)) goto ready; /* Socket shut down? */ if (sk->sk_shutdown & RCV_SHUTDOWN) goto out; /* Sequenced packets can come disconnected. If so we report the * problem. */ error = -ENOTCONN; /* Is there a good reason to think that we may receive some data? */ if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) goto out; /* Handle signals. */ if (signal_pending(current)) goto interrupted; /* Let another process have a go. Since we are going to sleep * anyway. Note: This may cause odd behaviors if the message * does not fit in the user's buffer, but this seems to be the * only way to honor MSG_DONTWAIT realistically. */ release_sock(sk); *timeo_p = schedule_timeout(*timeo_p); lock_sock(sk); ready: finish_wait(sk_sleep(sk), &wait); return 0; interrupted: error = sock_intr_errno(*timeo_p); out: finish_wait(sk_sleep(sk), &wait); *err = error; return error; } /* Receive a datagram. * Note: This is pretty much the same routine as in core/datagram.c * with a few changes to make lksctp work. */ struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, int noblock, int *err) { int error; struct sk_buff *skb; long timeo; timeo = sock_rcvtimeo(sk, noblock); pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, MAX_SCHEDULE_TIMEOUT); do { /* Again only user level code calls this function, * so nothing interrupt level * will suddenly eat the receive_queue. * * Look at current nfs client by the way... * However, this function was correct in any case. 8) */ if (flags & MSG_PEEK) { skb = skb_peek(&sk->sk_receive_queue); if (skb) refcount_inc(&skb->users); } else { skb = __skb_dequeue(&sk->sk_receive_queue); } if (skb) return skb; /* Caller is allowed not to check sk->sk_err before calling. */ error = sock_error(sk); if (error) goto no_packet; if (sk->sk_shutdown & RCV_SHUTDOWN) break; if (sk_can_busy_loop(sk)) { sk_busy_loop(sk, noblock); if (!skb_queue_empty(&sk->sk_receive_queue)) continue; } /* User doesn't want to wait. */ error = -EAGAIN; if (!timeo) goto no_packet; } while (sctp_wait_for_packet(sk, err, &timeo) == 0); return NULL; no_packet: *err = error; return NULL; } /* If sndbuf has changed, wake up per association sndbuf waiters. */ static void __sctp_write_space(struct sctp_association *asoc) { struct sock *sk = asoc->base.sk; if (sctp_wspace(asoc) <= 0) return; if (waitqueue_active(&asoc->wait)) wake_up_interruptible(&asoc->wait); if (sctp_writeable(sk)) { struct socket_wq *wq; rcu_read_lock(); wq = rcu_dereference(sk->sk_wq); if (wq) { if (waitqueue_active(&wq->wait)) wake_up_interruptible(&wq->wait); /* Note that we try to include the Async I/O support * here by modeling from the current TCP/UDP code. * We have not tested with it yet. */ if (!(sk->sk_shutdown & SEND_SHUTDOWN)) sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); } rcu_read_unlock(); } } static void sctp_wake_up_waiters(struct sock *sk, struct sctp_association *asoc) { struct sctp_association *tmp = asoc; /* We do accounting for the sndbuf space per association, * so we only need to wake our own association. */ if (asoc->ep->sndbuf_policy) return __sctp_write_space(asoc); /* If association goes down and is just flushing its * outq, then just normally notify others. */ if (asoc->base.dead) return sctp_write_space(sk); /* Accounting for the sndbuf space is per socket, so we * need to wake up others, try to be fair and in case of * other associations, let them have a go first instead * of just doing a sctp_write_space() call. * * Note that we reach sctp_wake_up_waiters() only when * associations free up queued chunks, thus we are under * lock and the list of associations on a socket is * guaranteed not to change. */ for (tmp = list_next_entry(tmp, asocs); 1; tmp = list_next_entry(tmp, asocs)) { /* Manually skip the head element. */ if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) continue; /* Wake up association. */ __sctp_write_space(tmp); /* We've reached the end. */ if (tmp == asoc) break; } } /* Do accounting for the sndbuf space. * Decrement the used sndbuf space of the corresponding association by the * data size which was just transmitted(freed). */ static void sctp_wfree(struct sk_buff *skb) { struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; struct sctp_association *asoc = chunk->asoc; struct sock *sk = asoc->base.sk; sk_mem_uncharge(sk, skb->truesize); sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc)); if (chunk->shkey) { struct sctp_shared_key *shkey = chunk->shkey; /* refcnt == 2 and !list_empty mean after this release, it's * not being used anywhere, and it's time to notify userland * that this shkey can be freed if it's been deactivated. */ if (shkey->deactivated && !list_empty(&shkey->key_list) && refcount_read(&shkey->refcnt) == 2) { struct sctp_ulpevent *ev; ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, SCTP_AUTH_FREE_KEY, GFP_KERNEL); if (ev) asoc->stream.si->enqueue_event(&asoc->ulpq, ev); } sctp_auth_shkey_release(chunk->shkey); } sock_wfree(skb); sctp_wake_up_waiters(sk, asoc); sctp_association_put(asoc); } /* Do accounting for the receive space on the socket. * Accounting for the association is done in ulpevent.c * We set this as a destructor for the cloned data skbs so that * accounting is done at the correct time. */ void sctp_sock_rfree(struct sk_buff *skb) { struct sock *sk = skb->sk; struct sctp_ulpevent *event = sctp_skb2event(skb); atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); /* * Mimic the behavior of sock_rfree */ sk_mem_uncharge(sk, event->rmem_len); } /* Helper function to wait for space in the sndbuf. */ static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, size_t msg_len) { struct sock *sk = asoc->base.sk; long current_timeo = *timeo_p; DEFINE_WAIT(wait); int err = 0; pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, *timeo_p, msg_len); /* Increment the association's refcnt. */ sctp_association_hold(asoc); /* Wait on the association specific sndbuf space. */ for (;;) { prepare_to_wait_exclusive(&asoc->wait, &wait, TASK_INTERRUPTIBLE); if (asoc->base.dead) goto do_dead; if (!*timeo_p) goto do_nonblock; if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) goto do_error; if (signal_pending(current)) goto do_interrupted; if ((int)msg_len <= sctp_wspace(asoc)) break; /* Let another process have a go. Since we are going * to sleep anyway. */ release_sock(sk); current_timeo = schedule_timeout(current_timeo); lock_sock(sk); if (sk != asoc->base.sk) goto do_error; *timeo_p = current_timeo; } out: finish_wait(&asoc->wait, &wait); /* Release the association's refcnt. */ sctp_association_put(asoc); return err; do_dead: err = -ESRCH; goto out; do_error: err = -EPIPE; goto out; do_interrupted: err = sock_intr_errno(*timeo_p); goto out; do_nonblock: err = -EAGAIN; goto out; } void sctp_data_ready(struct sock *sk) { struct socket_wq *wq; rcu_read_lock(); wq = rcu_dereference(sk->sk_wq); if (skwq_has_sleeper(wq)) wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLRDNORM | EPOLLRDBAND); sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); rcu_read_unlock(); } /* If socket sndbuf has changed, wake up all per association waiters. */ void sctp_write_space(struct sock *sk) { struct sctp_association *asoc; /* Wake up the tasks in each wait queue. */ list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { __sctp_write_space(asoc); } } /* Is there any sndbuf space available on the socket? * * Note that sk_wmem_alloc is the sum of the send buffers on all of the * associations on the same socket. For a UDP-style socket with * multiple associations, it is possible for it to be "unwriteable" * prematurely. I assume that this is acceptable because * a premature "unwriteable" is better than an accidental "writeable" which * would cause an unwanted block under certain circumstances. For the 1-1 * UDP-style sockets or TCP-style sockets, this code should work. * - Daisy */ static bool sctp_writeable(struct sock *sk) { return sk->sk_sndbuf > sk->sk_wmem_queued; } /* Wait for an association to go into ESTABLISHED state. If timeout is 0, * returns immediately with EINPROGRESS. */ static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) { struct sock *sk = asoc->base.sk; int err = 0; long current_timeo = *timeo_p; DEFINE_WAIT(wait); pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); /* Increment the association's refcnt. */ sctp_association_hold(asoc); for (;;) { prepare_to_wait_exclusive(&asoc->wait, &wait, TASK_INTERRUPTIBLE); if (!*timeo_p) goto do_nonblock; if (sk->sk_shutdown & RCV_SHUTDOWN) break; if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || asoc->base.dead) goto do_error; if (signal_pending(current)) goto do_interrupted; if (sctp_state(asoc, ESTABLISHED)) break; /* Let another process have a go. Since we are going * to sleep anyway. */ release_sock(sk); current_timeo = schedule_timeout(current_timeo); lock_sock(sk); *timeo_p = current_timeo; } out: finish_wait(&asoc->wait, &wait); /* Release the association's refcnt. */ sctp_association_put(asoc); return err; do_error: if (asoc->init_err_counter + 1 > asoc->max_init_attempts) err = -ETIMEDOUT; else err = -ECONNREFUSED; goto out; do_interrupted: err = sock_intr_errno(*timeo_p); goto out; do_nonblock: err = -EINPROGRESS; goto out; } static int sctp_wait_for_accept(struct sock *sk, long timeo) { struct sctp_endpoint *ep; int err = 0; DEFINE_WAIT(wait); ep = sctp_sk(sk)->ep; for (;;) { prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); if (list_empty(&ep->asocs)) { release_sock(sk); timeo = schedule_timeout(timeo); lock_sock(sk); } err = -EINVAL; if (!sctp_sstate(sk, LISTENING)) break; err = 0; if (!list_empty(&ep->asocs)) break; err = sock_intr_errno(timeo); if (signal_pending(current)) break; err = -EAGAIN; if (!timeo) break; } finish_wait(sk_sleep(sk), &wait); return err; } static void sctp_wait_for_close(struct sock *sk, long timeout) { DEFINE_WAIT(wait); do { prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); if (list_empty(&sctp_sk(sk)->ep->asocs)) break; release_sock(sk); timeout = schedule_timeout(timeout); lock_sock(sk); } while (!signal_pending(current) && timeout); finish_wait(sk_sleep(sk), &wait); } static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) { struct sk_buff *frag; if (!skb->data_len) goto done; /* Don't forget the fragments. */ skb_walk_frags(skb, frag) sctp_skb_set_owner_r_frag(frag, sk); done: sctp_skb_set_owner_r(skb, sk); } void sctp_copy_sock(struct sock *newsk, struct sock *sk, struct sctp_association *asoc) { struct inet_sock *inet = inet_sk(sk); struct inet_sock *newinet; struct sctp_sock *sp = sctp_sk(sk); struct sctp_endpoint *ep = sp->ep; newsk->sk_type = sk->sk_type; newsk->sk_bound_dev_if = sk->sk_bound_dev_if; newsk->sk_flags = sk->sk_flags; newsk->sk_tsflags = sk->sk_tsflags; newsk->sk_no_check_tx = sk->sk_no_check_tx; newsk->sk_no_check_rx = sk->sk_no_check_rx; newsk->sk_reuse = sk->sk_reuse; sctp_sk(newsk)->reuse = sp->reuse; newsk->sk_shutdown = sk->sk_shutdown; newsk->sk_destruct = sctp_destruct_sock; newsk->sk_family = sk->sk_family; newsk->sk_protocol = IPPROTO_SCTP; newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; newsk->sk_sndbuf = sk->sk_sndbuf; newsk->sk_rcvbuf = sk->sk_rcvbuf; newsk->sk_lingertime = sk->sk_lingertime; newsk->sk_rcvtimeo = sk->sk_rcvtimeo; newsk->sk_sndtimeo = sk->sk_sndtimeo; newsk->sk_rxhash = sk->sk_rxhash; newinet = inet_sk(newsk); /* Initialize sk's sport, dport, rcv_saddr and daddr for * getsockname() and getpeername() */ newinet->inet_sport = inet->inet_sport; newinet->inet_saddr = inet->inet_saddr; newinet->inet_rcv_saddr = inet->inet_rcv_saddr; newinet->inet_dport = htons(asoc->peer.port); newinet->pmtudisc = inet->pmtudisc; newinet->inet_id = asoc->next_tsn ^ jiffies; newinet->uc_ttl = inet->uc_ttl; newinet->mc_loop = 1; newinet->mc_ttl = 1; newinet->mc_index = 0; newinet->mc_list = NULL; if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) net_enable_timestamp(); /* Set newsk security attributes from orginal sk and connection * security attribute from ep. */ security_sctp_sk_clone(ep, sk, newsk); } static inline void sctp_copy_descendant(struct sock *sk_to, const struct sock *sk_from) { int ancestor_size = sizeof(struct inet_sock) + sizeof(struct sctp_sock) - offsetof(struct sctp_sock, auto_asconf_list); if (sk_from->sk_family == PF_INET6) ancestor_size += sizeof(struct ipv6_pinfo); __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); } /* Populate the fields of the newsk from the oldsk and migrate the assoc * and its messages to the newsk. */ static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, struct sctp_association *assoc, enum sctp_socket_type type) { struct sctp_sock *oldsp = sctp_sk(oldsk); struct sctp_sock *newsp = sctp_sk(newsk); struct sctp_bind_bucket *pp; /* hash list port iterator */ struct sctp_endpoint *newep = newsp->ep; struct sk_buff *skb, *tmp; struct sctp_ulpevent *event; struct sctp_bind_hashbucket *head; int err; /* Migrate socket buffer sizes and all the socket level options to the * new socket. */ newsk->sk_sndbuf = oldsk->sk_sndbuf; newsk->sk_rcvbuf = oldsk->sk_rcvbuf; /* Brute force copy old sctp opt. */ sctp_copy_descendant(newsk, oldsk); /* Restore the ep value that was overwritten with the above structure * copy. */ newsp->ep = newep; newsp->hmac = NULL; /* Hook this new socket in to the bind_hash list. */ head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), inet_sk(oldsk)->inet_num)]; spin_lock_bh(&head->lock); pp = sctp_sk(oldsk)->bind_hash; sk_add_bind_node(newsk, &pp->owner); sctp_sk(newsk)->bind_hash = pp; inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; spin_unlock_bh(&head->lock); /* Copy the bind_addr list from the original endpoint to the new * endpoint so that we can handle restarts properly */ err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, &oldsp->ep->base.bind_addr, GFP_KERNEL); if (err) return err; /* Move any messages in the old socket's receive queue that are for the * peeled off association to the new socket's receive queue. */ sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { event = sctp_skb2event(skb); if (event->asoc == assoc) { __skb_unlink(skb, &oldsk->sk_receive_queue); __skb_queue_tail(&newsk->sk_receive_queue, skb); sctp_skb_set_owner_r_frag(skb, newsk); } } /* Clean up any messages pending delivery due to partial * delivery. Three cases: * 1) No partial deliver; no work. * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. */ skb_queue_head_init(&newsp->pd_lobby); atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { struct sk_buff_head *queue; /* Decide which queue to move pd_lobby skbs to. */ if (assoc->ulpq.pd_mode) { queue = &newsp->pd_lobby; } else queue = &newsk->sk_receive_queue; /* Walk through the pd_lobby, looking for skbs that * need moved to the new socket. */ sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { event = sctp_skb2event(skb); if (event->asoc == assoc) { __skb_unlink(skb, &oldsp->pd_lobby); __skb_queue_tail(queue, skb); sctp_skb_set_owner_r_frag(skb, newsk); } } /* Clear up any skbs waiting for the partial * delivery to finish. */ if (assoc->ulpq.pd_mode) sctp_clear_pd(oldsk, NULL); } sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); /* Set the type of socket to indicate that it is peeled off from the * original UDP-style socket or created with the accept() call on a * TCP-style socket.. */ newsp->type = type; /* Mark the new socket "in-use" by the user so that any packets * that may arrive on the association after we've moved it are * queued to the backlog. This prevents a potential race between * backlog processing on the old socket and new-packet processing * on the new socket. * * The caller has just allocated newsk so we can guarantee that other * paths won't try to lock it and then oldsk. */ lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w); sctp_assoc_migrate(assoc, newsk); sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w); /* If the association on the newsk is already closed before accept() * is called, set RCV_SHUTDOWN flag. */ if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { inet_sk_set_state(newsk, SCTP_SS_CLOSED); newsk->sk_shutdown |= RCV_SHUTDOWN; } else { inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); } release_sock(newsk); return 0; } /* This proto struct describes the ULP interface for SCTP. */ struct proto sctp_prot = { .name = "SCTP", .owner = THIS_MODULE, .close = sctp_close, .disconnect = sctp_disconnect, .accept = sctp_accept, .ioctl = sctp_ioctl, .init = sctp_init_sock, .destroy = sctp_destroy_sock, .shutdown = sctp_shutdown, .setsockopt = sctp_setsockopt, .getsockopt = sctp_getsockopt, .sendmsg = sctp_sendmsg, .recvmsg = sctp_recvmsg, .bind = sctp_bind, .backlog_rcv = sctp_backlog_rcv, .hash = sctp_hash, .unhash = sctp_unhash, .get_port = sctp_get_port, .obj_size = sizeof(struct sctp_sock), .useroffset = offsetof(struct sctp_sock, subscribe), .usersize = offsetof(struct sctp_sock, initmsg) - offsetof(struct sctp_sock, subscribe) + sizeof_field(struct sctp_sock, initmsg), .sysctl_mem = sysctl_sctp_mem, .sysctl_rmem = sysctl_sctp_rmem, .sysctl_wmem = sysctl_sctp_wmem, .memory_pressure = &sctp_memory_pressure, .enter_memory_pressure = sctp_enter_memory_pressure, .memory_allocated = &sctp_memory_allocated, .sockets_allocated = &sctp_sockets_allocated, }; #if IS_ENABLED(CONFIG_IPV6) #include static void sctp_v6_destroy_sock(struct sock *sk) { sctp_destroy_sock(sk); inet6_destroy_sock(sk); } struct proto sctpv6_prot = { .name = "SCTPv6", .owner = THIS_MODULE, .close = sctp_close, .disconnect = sctp_disconnect, .accept = sctp_accept, .ioctl = sctp_ioctl, .init = sctp_init_sock, .destroy = sctp_v6_destroy_sock, .shutdown = sctp_shutdown, .setsockopt = sctp_setsockopt, .getsockopt = sctp_getsockopt, .sendmsg = sctp_sendmsg, .recvmsg = sctp_recvmsg, .bind = sctp_bind, .backlog_rcv = sctp_backlog_rcv, .hash = sctp_hash, .unhash = sctp_unhash, .get_port = sctp_get_port, .obj_size = sizeof(struct sctp6_sock), .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - offsetof(struct sctp6_sock, sctp.subscribe) + sizeof_field(struct sctp6_sock, sctp.initmsg), .sysctl_mem = sysctl_sctp_mem, .sysctl_rmem = sysctl_sctp_rmem, .sysctl_wmem = sysctl_sctp_wmem, .memory_pressure = &sctp_memory_pressure, .enter_memory_pressure = sctp_enter_memory_pressure, .memory_allocated = &sctp_memory_allocated, .sockets_allocated = &sctp_sockets_allocated, }; #endif /* IS_ENABLED(CONFIG_IPV6) */