// SPDX-License-Identifier: GPL-2.0+ // Copyright (c) 2016-2017 Hisilicon Limited. #include #include #include #ifdef CONFIG_RFS_ACCEL #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "hnae3.h" #include "hns3_enet.h" #define hns3_set_field(origin, shift, val) ((origin) |= ((val) << (shift))) #define hns3_tx_bd_count(S) DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE) #define hns3_rl_err(fmt, ...) \ do { \ if (net_ratelimit()) \ netdev_err(fmt, ##__VA_ARGS__); \ } while (0) static void hns3_clear_all_ring(struct hnae3_handle *h, bool force); static void hns3_remove_hw_addr(struct net_device *netdev); static const char hns3_driver_name[] = "hns3"; const char hns3_driver_version[] = VERMAGIC_STRING; static const char hns3_driver_string[] = "Hisilicon Ethernet Network Driver for Hip08 Family"; static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation."; static struct hnae3_client client; static int debug = -1; module_param(debug, int, 0); MODULE_PARM_DESC(debug, " Network interface message level setting"); #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \ NETIF_MSG_IFDOWN | NETIF_MSG_IFUP) #define HNS3_INNER_VLAN_TAG 1 #define HNS3_OUTER_VLAN_TAG 2 /* hns3_pci_tbl - PCI Device ID Table * * Last entry must be all 0s * * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, * Class, Class Mask, private data (not used) } */ static const struct pci_device_id hns3_pci_tbl[] = { {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA), HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC), HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA), HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC), HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC), HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, /* required last entry */ {0, } }; MODULE_DEVICE_TABLE(pci, hns3_pci_tbl); static irqreturn_t hns3_irq_handle(int irq, void *vector) { struct hns3_enet_tqp_vector *tqp_vector = vector; napi_schedule_irqoff(&tqp_vector->napi); return IRQ_HANDLED; } static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv) { struct hns3_enet_tqp_vector *tqp_vectors; unsigned int i; for (i = 0; i < priv->vector_num; i++) { tqp_vectors = &priv->tqp_vector[i]; if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED) continue; /* clear the affinity mask */ irq_set_affinity_hint(tqp_vectors->vector_irq, NULL); /* release the irq resource */ free_irq(tqp_vectors->vector_irq, tqp_vectors); tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED; } } static int hns3_nic_init_irq(struct hns3_nic_priv *priv) { struct hns3_enet_tqp_vector *tqp_vectors; int txrx_int_idx = 0; int rx_int_idx = 0; int tx_int_idx = 0; unsigned int i; int ret; for (i = 0; i < priv->vector_num; i++) { tqp_vectors = &priv->tqp_vector[i]; if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED) continue; if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) { snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1, "%s-%s-%d", priv->netdev->name, "TxRx", txrx_int_idx++); txrx_int_idx++; } else if (tqp_vectors->rx_group.ring) { snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1, "%s-%s-%d", priv->netdev->name, "Rx", rx_int_idx++); } else if (tqp_vectors->tx_group.ring) { snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1, "%s-%s-%d", priv->netdev->name, "Tx", tx_int_idx++); } else { /* Skip this unused q_vector */ continue; } tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0'; ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0, tqp_vectors->name, tqp_vectors); if (ret) { netdev_err(priv->netdev, "request irq(%d) fail\n", tqp_vectors->vector_irq); hns3_nic_uninit_irq(priv); return ret; } irq_set_affinity_hint(tqp_vectors->vector_irq, &tqp_vectors->affinity_mask); tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED; } return 0; } static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector, u32 mask_en) { writel(mask_en, tqp_vector->mask_addr); } static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector) { napi_enable(&tqp_vector->napi); /* enable vector */ hns3_mask_vector_irq(tqp_vector, 1); } static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector) { /* disable vector */ hns3_mask_vector_irq(tqp_vector, 0); disable_irq(tqp_vector->vector_irq); napi_disable(&tqp_vector->napi); } void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector, u32 rl_value) { u32 rl_reg = hns3_rl_usec_to_reg(rl_value); /* this defines the configuration for RL (Interrupt Rate Limiter). * Rl defines rate of interrupts i.e. number of interrupts-per-second * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing */ if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable && !tqp_vector->rx_group.coal.gl_adapt_enable) /* According to the hardware, the range of rl_reg is * 0-59 and the unit is 4. */ rl_reg |= HNS3_INT_RL_ENABLE_MASK; writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET); } void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector, u32 gl_value) { u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value); writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET); } void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector, u32 gl_value) { u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value); writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET); } static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector, struct hns3_nic_priv *priv) { /* initialize the configuration for interrupt coalescing. * 1. GL (Interrupt Gap Limiter) * 2. RL (Interrupt Rate Limiter) * * Default: enable interrupt coalescing self-adaptive and GL */ tqp_vector->tx_group.coal.gl_adapt_enable = 1; tqp_vector->rx_group.coal.gl_adapt_enable = 1; tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K; tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K; tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW; tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW; } static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector, struct hns3_nic_priv *priv) { struct hnae3_handle *h = priv->ae_handle; hns3_set_vector_coalesce_tx_gl(tqp_vector, tqp_vector->tx_group.coal.int_gl); hns3_set_vector_coalesce_rx_gl(tqp_vector, tqp_vector->rx_group.coal.int_gl); hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting); } static int hns3_nic_set_real_num_queue(struct net_device *netdev) { struct hnae3_handle *h = hns3_get_handle(netdev); struct hnae3_knic_private_info *kinfo = &h->kinfo; unsigned int queue_size = kinfo->rss_size * kinfo->num_tc; int i, ret; if (kinfo->num_tc <= 1) { netdev_reset_tc(netdev); } else { ret = netdev_set_num_tc(netdev, kinfo->num_tc); if (ret) { netdev_err(netdev, "netdev_set_num_tc fail, ret=%d!\n", ret); return ret; } for (i = 0; i < HNAE3_MAX_TC; i++) { if (!kinfo->tc_info[i].enable) continue; netdev_set_tc_queue(netdev, kinfo->tc_info[i].tc, kinfo->tc_info[i].tqp_count, kinfo->tc_info[i].tqp_offset); } } ret = netif_set_real_num_tx_queues(netdev, queue_size); if (ret) { netdev_err(netdev, "netif_set_real_num_tx_queues fail, ret=%d!\n", ret); return ret; } ret = netif_set_real_num_rx_queues(netdev, queue_size); if (ret) { netdev_err(netdev, "netif_set_real_num_rx_queues fail, ret=%d!\n", ret); return ret; } return 0; } static u16 hns3_get_max_available_channels(struct hnae3_handle *h) { u16 alloc_tqps, max_rss_size, rss_size; h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size); rss_size = alloc_tqps / h->kinfo.num_tc; return min_t(u16, rss_size, max_rss_size); } static void hns3_tqp_enable(struct hnae3_queue *tqp) { u32 rcb_reg; rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG); rcb_reg |= BIT(HNS3_RING_EN_B); hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg); } static void hns3_tqp_disable(struct hnae3_queue *tqp) { u32 rcb_reg; rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG); rcb_reg &= ~BIT(HNS3_RING_EN_B); hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg); } static void hns3_free_rx_cpu_rmap(struct net_device *netdev) { #ifdef CONFIG_RFS_ACCEL free_irq_cpu_rmap(netdev->rx_cpu_rmap); netdev->rx_cpu_rmap = NULL; #endif } static int hns3_set_rx_cpu_rmap(struct net_device *netdev) { #ifdef CONFIG_RFS_ACCEL struct hns3_nic_priv *priv = netdev_priv(netdev); struct hns3_enet_tqp_vector *tqp_vector; int i, ret; if (!netdev->rx_cpu_rmap) { netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num); if (!netdev->rx_cpu_rmap) return -ENOMEM; } for (i = 0; i < priv->vector_num; i++) { tqp_vector = &priv->tqp_vector[i]; ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap, tqp_vector->vector_irq); if (ret) { hns3_free_rx_cpu_rmap(netdev); return ret; } } #endif return 0; } static int hns3_nic_net_up(struct net_device *netdev) { struct hns3_nic_priv *priv = netdev_priv(netdev); struct hnae3_handle *h = priv->ae_handle; int i, j; int ret; ret = hns3_nic_reset_all_ring(h); if (ret) return ret; /* the device can work without cpu rmap, only aRFS needs it */ ret = hns3_set_rx_cpu_rmap(netdev); if (ret) netdev_warn(netdev, "set rx cpu rmap fail, ret=%d!\n", ret); /* get irq resource for all vectors */ ret = hns3_nic_init_irq(priv); if (ret) { netdev_err(netdev, "init irq failed! ret=%d\n", ret); goto free_rmap; } clear_bit(HNS3_NIC_STATE_DOWN, &priv->state); /* enable the vectors */ for (i = 0; i < priv->vector_num; i++) hns3_vector_enable(&priv->tqp_vector[i]); /* enable rcb */ for (j = 0; j < h->kinfo.num_tqps; j++) hns3_tqp_enable(h->kinfo.tqp[j]); /* start the ae_dev */ ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0; if (ret) goto out_start_err; return 0; out_start_err: set_bit(HNS3_NIC_STATE_DOWN, &priv->state); while (j--) hns3_tqp_disable(h->kinfo.tqp[j]); for (j = i - 1; j >= 0; j--) hns3_vector_disable(&priv->tqp_vector[j]); hns3_nic_uninit_irq(priv); free_rmap: hns3_free_rx_cpu_rmap(netdev); return ret; } static void hns3_config_xps(struct hns3_nic_priv *priv) { int i; for (i = 0; i < priv->vector_num; i++) { struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i]; struct hns3_enet_ring *ring = tqp_vector->tx_group.ring; while (ring) { int ret; ret = netif_set_xps_queue(priv->netdev, &tqp_vector->affinity_mask, ring->tqp->tqp_index); if (ret) netdev_warn(priv->netdev, "set xps queue failed: %d", ret); ring = ring->next; } } } static int hns3_nic_net_open(struct net_device *netdev) { struct hns3_nic_priv *priv = netdev_priv(netdev); struct hnae3_handle *h = hns3_get_handle(netdev); struct hnae3_knic_private_info *kinfo; int i, ret; if (hns3_nic_resetting(netdev)) return -EBUSY; netif_carrier_off(netdev); ret = hns3_nic_set_real_num_queue(netdev); if (ret) return ret; ret = hns3_nic_net_up(netdev); if (ret) { netdev_err(netdev, "net up fail, ret=%d!\n", ret); return ret; } kinfo = &h->kinfo; for (i = 0; i < HNAE3_MAX_USER_PRIO; i++) netdev_set_prio_tc_map(netdev, i, kinfo->prio_tc[i]); if (h->ae_algo->ops->set_timer_task) h->ae_algo->ops->set_timer_task(priv->ae_handle, true); hns3_config_xps(priv); netif_dbg(h, drv, netdev, "net open\n"); return 0; } static void hns3_reset_tx_queue(struct hnae3_handle *h) { struct net_device *ndev = h->kinfo.netdev; struct hns3_nic_priv *priv = netdev_priv(ndev); struct netdev_queue *dev_queue; u32 i; for (i = 0; i < h->kinfo.num_tqps; i++) { dev_queue = netdev_get_tx_queue(ndev, priv->ring[i].queue_index); netdev_tx_reset_queue(dev_queue); } } static void hns3_nic_net_down(struct net_device *netdev) { struct hns3_nic_priv *priv = netdev_priv(netdev); struct hnae3_handle *h = hns3_get_handle(netdev); const struct hnae3_ae_ops *ops; int i; /* disable vectors */ for (i = 0; i < priv->vector_num; i++) hns3_vector_disable(&priv->tqp_vector[i]); /* disable rcb */ for (i = 0; i < h->kinfo.num_tqps; i++) hns3_tqp_disable(h->kinfo.tqp[i]); /* stop ae_dev */ ops = priv->ae_handle->ae_algo->ops; if (ops->stop) ops->stop(priv->ae_handle); hns3_free_rx_cpu_rmap(netdev); /* free irq resources */ hns3_nic_uninit_irq(priv); /* delay ring buffer clearing to hns3_reset_notify_uninit_enet * during reset process, because driver may not be able * to disable the ring through firmware when downing the netdev. */ if (!hns3_nic_resetting(netdev)) hns3_clear_all_ring(priv->ae_handle, false); hns3_reset_tx_queue(priv->ae_handle); } static int hns3_nic_net_stop(struct net_device *netdev) { struct hns3_nic_priv *priv = netdev_priv(netdev); struct hnae3_handle *h = hns3_get_handle(netdev); if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state)) return 0; netif_dbg(h, drv, netdev, "net stop\n"); if (h->ae_algo->ops->set_timer_task) h->ae_algo->ops->set_timer_task(priv->ae_handle, false); netif_tx_stop_all_queues(netdev); netif_carrier_off(netdev); hns3_nic_net_down(netdev); return 0; } static int hns3_nic_uc_sync(struct net_device *netdev, const unsigned char *addr) { struct hnae3_handle *h = hns3_get_handle(netdev); if (h->ae_algo->ops->add_uc_addr) return h->ae_algo->ops->add_uc_addr(h, addr); return 0; } static int hns3_nic_uc_unsync(struct net_device *netdev, const unsigned char *addr) { struct hnae3_handle *h = hns3_get_handle(netdev); if (h->ae_algo->ops->rm_uc_addr) return h->ae_algo->ops->rm_uc_addr(h, addr); return 0; } static int hns3_nic_mc_sync(struct net_device *netdev, const unsigned char *addr) { struct hnae3_handle *h = hns3_get_handle(netdev); if (h->ae_algo->ops->add_mc_addr) return h->ae_algo->ops->add_mc_addr(h, addr); return 0; } static int hns3_nic_mc_unsync(struct net_device *netdev, const unsigned char *addr) { struct hnae3_handle *h = hns3_get_handle(netdev); if (h->ae_algo->ops->rm_mc_addr) return h->ae_algo->ops->rm_mc_addr(h, addr); return 0; } static u8 hns3_get_netdev_flags(struct net_device *netdev) { u8 flags = 0; if (netdev->flags & IFF_PROMISC) { flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE; } else { flags |= HNAE3_VLAN_FLTR; if (netdev->flags & IFF_ALLMULTI) flags |= HNAE3_USER_MPE; } return flags; } static void hns3_nic_set_rx_mode(struct net_device *netdev) { struct hnae3_handle *h = hns3_get_handle(netdev); u8 new_flags; int ret; new_flags = hns3_get_netdev_flags(netdev); ret = __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync); if (ret) { netdev_err(netdev, "sync uc address fail\n"); if (ret == -ENOSPC) new_flags |= HNAE3_OVERFLOW_UPE; } if (netdev->flags & IFF_MULTICAST) { ret = __dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync); if (ret) { netdev_err(netdev, "sync mc address fail\n"); if (ret == -ENOSPC) new_flags |= HNAE3_OVERFLOW_MPE; } } /* User mode Promisc mode enable and vlan filtering is disabled to * let all packets in. MAC-VLAN Table overflow Promisc enabled and * vlan fitering is enabled */ hns3_enable_vlan_filter(netdev, new_flags & HNAE3_VLAN_FLTR); h->netdev_flags = new_flags; hns3_update_promisc_mode(netdev, new_flags); } int hns3_update_promisc_mode(struct net_device *netdev, u8 promisc_flags) { struct hns3_nic_priv *priv = netdev_priv(netdev); struct hnae3_handle *h = priv->ae_handle; if (h->ae_algo->ops->set_promisc_mode) { return h->ae_algo->ops->set_promisc_mode(h, promisc_flags & HNAE3_UPE, promisc_flags & HNAE3_MPE); } return 0; } void hns3_enable_vlan_filter(struct net_device *netdev, bool enable) { struct hns3_nic_priv *priv = netdev_priv(netdev); struct hnae3_handle *h = priv->ae_handle; bool last_state; if (h->pdev->revision >= 0x21 && h->ae_algo->ops->enable_vlan_filter) { last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false; if (enable != last_state) { netdev_info(netdev, "%s vlan filter\n", enable ? "enable" : "disable"); h->ae_algo->ops->enable_vlan_filter(h, enable); } } } static int hns3_set_tso(struct sk_buff *skb, u32 *paylen, u16 *mss, u32 *type_cs_vlan_tso) { u32 l4_offset, hdr_len; union l3_hdr_info l3; union l4_hdr_info l4; u32 l4_paylen; int ret; if (!skb_is_gso(skb)) return 0; ret = skb_cow_head(skb, 0); if (unlikely(ret < 0)) return ret; l3.hdr = skb_network_header(skb); l4.hdr = skb_transport_header(skb); /* Software should clear the IPv4's checksum field when tso is * needed. */ if (l3.v4->version == 4) l3.v4->check = 0; /* tunnel packet */ if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | SKB_GSO_GRE_CSUM | SKB_GSO_UDP_TUNNEL | SKB_GSO_UDP_TUNNEL_CSUM)) { if ((!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) && (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { /* Software should clear the udp's checksum * field when tso is needed. */ l4.udp->check = 0; } /* reset l3&l4 pointers from outer to inner headers */ l3.hdr = skb_inner_network_header(skb); l4.hdr = skb_inner_transport_header(skb); /* Software should clear the IPv4's checksum field when * tso is needed. */ if (l3.v4->version == 4) l3.v4->check = 0; } /* normal or tunnel packet */ l4_offset = l4.hdr - skb->data; hdr_len = (l4.tcp->doff << 2) + l4_offset; /* remove payload length from inner pseudo checksum when tso */ l4_paylen = skb->len - l4_offset; csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(l4_paylen)); /* find the txbd field values */ *paylen = skb->len - hdr_len; hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1); /* get MSS for TSO */ *mss = skb_shinfo(skb)->gso_size; return 0; } static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto, u8 *il4_proto) { union l3_hdr_info l3; unsigned char *l4_hdr; unsigned char *exthdr; u8 l4_proto_tmp; __be16 frag_off; /* find outer header point */ l3.hdr = skb_network_header(skb); l4_hdr = skb_transport_header(skb); if (skb->protocol == htons(ETH_P_IPV6)) { exthdr = l3.hdr + sizeof(*l3.v6); l4_proto_tmp = l3.v6->nexthdr; if (l4_hdr != exthdr) ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto_tmp, &frag_off); } else if (skb->protocol == htons(ETH_P_IP)) { l4_proto_tmp = l3.v4->protocol; } else { return -EINVAL; } *ol4_proto = l4_proto_tmp; /* tunnel packet */ if (!skb->encapsulation) { *il4_proto = 0; return 0; } /* find inner header point */ l3.hdr = skb_inner_network_header(skb); l4_hdr = skb_inner_transport_header(skb); if (l3.v6->version == 6) { exthdr = l3.hdr + sizeof(*l3.v6); l4_proto_tmp = l3.v6->nexthdr; if (l4_hdr != exthdr) ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto_tmp, &frag_off); } else if (l3.v4->version == 4) { l4_proto_tmp = l3.v4->protocol; } *il4_proto = l4_proto_tmp; return 0; } /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL * and it is udp packet, which has a dest port as the IANA assigned. * the hardware is expected to do the checksum offload, but the * hardware will not do the checksum offload when udp dest port is * 4789. */ static bool hns3_tunnel_csum_bug(struct sk_buff *skb) { union l4_hdr_info l4; l4.hdr = skb_transport_header(skb); if (!(!skb->encapsulation && l4.udp->dest == htons(IANA_VXLAN_UDP_PORT))) return false; skb_checksum_help(skb); return true; } static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto, u32 *ol_type_vlan_len_msec) { u32 l2_len, l3_len, l4_len; unsigned char *il2_hdr; union l3_hdr_info l3; union l4_hdr_info l4; l3.hdr = skb_network_header(skb); l4.hdr = skb_transport_header(skb); /* compute OL2 header size, defined in 2 Bytes */ l2_len = l3.hdr - skb->data; hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1); /* compute OL3 header size, defined in 4 Bytes */ l3_len = l4.hdr - l3.hdr; hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2); il2_hdr = skb_inner_mac_header(skb); /* compute OL4 header size, defined in 4 Bytes */ l4_len = il2_hdr - l4.hdr; hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2); /* define outer network header type */ if (skb->protocol == htons(ETH_P_IP)) { if (skb_is_gso(skb)) hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S, HNS3_OL3T_IPV4_CSUM); else hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S, HNS3_OL3T_IPV4_NO_CSUM); } else if (skb->protocol == htons(ETH_P_IPV6)) { hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S, HNS3_OL3T_IPV6); } if (ol4_proto == IPPROTO_UDP) hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S, HNS3_TUN_MAC_IN_UDP); else if (ol4_proto == IPPROTO_GRE) hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S, HNS3_TUN_NVGRE); } static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto, u8 il4_proto, u32 *type_cs_vlan_tso, u32 *ol_type_vlan_len_msec) { unsigned char *l2_hdr = skb->data; u32 l4_proto = ol4_proto; union l4_hdr_info l4; union l3_hdr_info l3; u32 l2_len, l3_len; l4.hdr = skb_transport_header(skb); l3.hdr = skb_network_header(skb); /* handle encapsulation skb */ if (skb->encapsulation) { /* If this is a not UDP/GRE encapsulation skb */ if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) { /* drop the skb tunnel packet if hardware don't support, * because hardware can't calculate csum when TSO. */ if (skb_is_gso(skb)) return -EDOM; /* the stack computes the IP header already, * driver calculate l4 checksum when not TSO. */ skb_checksum_help(skb); return 0; } hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec); /* switch to inner header */ l2_hdr = skb_inner_mac_header(skb); l3.hdr = skb_inner_network_header(skb); l4.hdr = skb_inner_transport_header(skb); l4_proto = il4_proto; } if (l3.v4->version == 4) { hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S, HNS3_L3T_IPV4); /* the stack computes the IP header already, the only time we * need the hardware to recompute it is in the case of TSO. */ if (skb_is_gso(skb)) hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1); } else if (l3.v6->version == 6) { hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S, HNS3_L3T_IPV6); } /* compute inner(/normal) L2 header size, defined in 2 Bytes */ l2_len = l3.hdr - l2_hdr; hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1); /* compute inner(/normal) L3 header size, defined in 4 Bytes */ l3_len = l4.hdr - l3.hdr; hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2); /* compute inner(/normal) L4 header size, defined in 4 Bytes */ switch (l4_proto) { case IPPROTO_TCP: hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1); hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S, HNS3_L4T_TCP); hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S, l4.tcp->doff); break; case IPPROTO_UDP: if (hns3_tunnel_csum_bug(skb)) break; hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1); hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S, HNS3_L4T_UDP); hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S, (sizeof(struct udphdr) >> 2)); break; case IPPROTO_SCTP: hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1); hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S, HNS3_L4T_SCTP); hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S, (sizeof(struct sctphdr) >> 2)); break; default: /* drop the skb tunnel packet if hardware don't support, * because hardware can't calculate csum when TSO. */ if (skb_is_gso(skb)) return -EDOM; /* the stack computes the IP header already, * driver calculate l4 checksum when not TSO. */ skb_checksum_help(skb); return 0; } return 0; } static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring, struct sk_buff *skb) { struct hnae3_handle *handle = tx_ring->tqp->handle; struct vlan_ethhdr *vhdr; int rc; if (!(skb->protocol == htons(ETH_P_8021Q) || skb_vlan_tag_present(skb))) return 0; /* Since HW limitation, if port based insert VLAN enabled, only one VLAN * header is allowed in skb, otherwise it will cause RAS error. */ if (unlikely(skb_vlan_tagged_multi(skb) && handle->port_base_vlan_state == HNAE3_PORT_BASE_VLAN_ENABLE)) return -EINVAL; if (skb->protocol == htons(ETH_P_8021Q) && !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { /* When HW VLAN acceleration is turned off, and the stack * sets the protocol to 802.1q, the driver just need to * set the protocol to the encapsulated ethertype. */ skb->protocol = vlan_get_protocol(skb); return 0; } if (skb_vlan_tag_present(skb)) { /* Based on hw strategy, use out_vtag in two layer tag case, * and use inner_vtag in one tag case. */ if (skb->protocol == htons(ETH_P_8021Q) && handle->port_base_vlan_state == HNAE3_PORT_BASE_VLAN_DISABLE) rc = HNS3_OUTER_VLAN_TAG; else rc = HNS3_INNER_VLAN_TAG; skb->protocol = vlan_get_protocol(skb); return rc; } rc = skb_cow_head(skb, 0); if (unlikely(rc < 0)) return rc; vhdr = (struct vlan_ethhdr *)skb->data; vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT) & VLAN_PRIO_MASK); skb->protocol = vlan_get_protocol(skb); return 0; } static int hns3_fill_skb_desc(struct hns3_enet_ring *ring, struct sk_buff *skb, struct hns3_desc *desc) { u32 ol_type_vlan_len_msec = 0; u32 type_cs_vlan_tso = 0; u32 paylen = skb->len; u16 inner_vtag = 0; u16 out_vtag = 0; u16 mss = 0; int ret; ret = hns3_handle_vtags(ring, skb); if (unlikely(ret < 0)) { u64_stats_update_begin(&ring->syncp); ring->stats.tx_vlan_err++; u64_stats_update_end(&ring->syncp); return ret; } else if (ret == HNS3_INNER_VLAN_TAG) { inner_vtag = skb_vlan_tag_get(skb); inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) & VLAN_PRIO_MASK; hns3_set_field(type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1); } else if (ret == HNS3_OUTER_VLAN_TAG) { out_vtag = skb_vlan_tag_get(skb); out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) & VLAN_PRIO_MASK; hns3_set_field(ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B, 1); } if (skb->ip_summed == CHECKSUM_PARTIAL) { u8 ol4_proto, il4_proto; skb_reset_mac_len(skb); ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto); if (unlikely(ret < 0)) { u64_stats_update_begin(&ring->syncp); ring->stats.tx_l4_proto_err++; u64_stats_update_end(&ring->syncp); return ret; } ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto, &type_cs_vlan_tso, &ol_type_vlan_len_msec); if (unlikely(ret < 0)) { u64_stats_update_begin(&ring->syncp); ring->stats.tx_l2l3l4_err++; u64_stats_update_end(&ring->syncp); return ret; } ret = hns3_set_tso(skb, &paylen, &mss, &type_cs_vlan_tso); if (unlikely(ret < 0)) { u64_stats_update_begin(&ring->syncp); ring->stats.tx_tso_err++; u64_stats_update_end(&ring->syncp); return ret; } } /* Set txbd */ desc->tx.ol_type_vlan_len_msec = cpu_to_le32(ol_type_vlan_len_msec); desc->tx.type_cs_vlan_tso_len = cpu_to_le32(type_cs_vlan_tso); desc->tx.paylen = cpu_to_le32(paylen); desc->tx.mss = cpu_to_le16(mss); desc->tx.vlan_tag = cpu_to_le16(inner_vtag); desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag); return 0; } static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv, unsigned int size, enum hns_desc_type type) { #define HNS3_LIKELY_BD_NUM 1 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; struct hns3_desc *desc = &ring->desc[ring->next_to_use]; struct device *dev = ring_to_dev(ring); skb_frag_t *frag; unsigned int frag_buf_num; int k, sizeoflast; dma_addr_t dma; if (type == DESC_TYPE_SKB) { struct sk_buff *skb = (struct sk_buff *)priv; int ret; ret = hns3_fill_skb_desc(ring, skb, desc); if (unlikely(ret < 0)) return ret; dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE); } else { frag = (skb_frag_t *)priv; dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE); } if (unlikely(dma_mapping_error(dev, dma))) { u64_stats_update_begin(&ring->syncp); ring->stats.sw_err_cnt++; u64_stats_update_end(&ring->syncp); return -ENOMEM; } desc_cb->length = size; if (likely(size <= HNS3_MAX_BD_SIZE)) { desc_cb->priv = priv; desc_cb->dma = dma; desc_cb->type = type; desc->addr = cpu_to_le64(dma); desc->tx.send_size = cpu_to_le16(size); desc->tx.bdtp_fe_sc_vld_ra_ri = cpu_to_le16(BIT(HNS3_TXD_VLD_B)); ring_ptr_move_fw(ring, next_to_use); return HNS3_LIKELY_BD_NUM; } frag_buf_num = hns3_tx_bd_count(size); sizeoflast = size & HNS3_TX_LAST_SIZE_M; sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE; /* When frag size is bigger than hardware limit, split this frag */ for (k = 0; k < frag_buf_num; k++) { /* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */ desc_cb->priv = priv; desc_cb->dma = dma + HNS3_MAX_BD_SIZE * k; desc_cb->type = (type == DESC_TYPE_SKB && !k) ? DESC_TYPE_SKB : DESC_TYPE_PAGE; /* now, fill the descriptor */ desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k); desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ? (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE); desc->tx.bdtp_fe_sc_vld_ra_ri = cpu_to_le16(BIT(HNS3_TXD_VLD_B)); /* move ring pointer to next */ ring_ptr_move_fw(ring, next_to_use); desc_cb = &ring->desc_cb[ring->next_to_use]; desc = &ring->desc[ring->next_to_use]; } return frag_buf_num; } static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size, unsigned int bd_num) { unsigned int size; int i; size = skb_headlen(skb); while (size > HNS3_MAX_BD_SIZE) { bd_size[bd_num++] = HNS3_MAX_BD_SIZE; size -= HNS3_MAX_BD_SIZE; if (bd_num > HNS3_MAX_TSO_BD_NUM) return bd_num; } if (size) { bd_size[bd_num++] = size; if (bd_num > HNS3_MAX_TSO_BD_NUM) return bd_num; } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; size = skb_frag_size(frag); if (!size) continue; while (size > HNS3_MAX_BD_SIZE) { bd_size[bd_num++] = HNS3_MAX_BD_SIZE; size -= HNS3_MAX_BD_SIZE; if (bd_num > HNS3_MAX_TSO_BD_NUM) return bd_num; } bd_size[bd_num++] = size; if (bd_num > HNS3_MAX_TSO_BD_NUM) return bd_num; } return bd_num; } static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size) { struct sk_buff *frag_skb; unsigned int bd_num = 0; /* If the total len is within the max bd limit */ if (likely(skb->len <= HNS3_MAX_BD_SIZE && !skb_has_frag_list(skb) && skb_shinfo(skb)->nr_frags < HNS3_MAX_NON_TSO_BD_NUM)) return skb_shinfo(skb)->nr_frags + 1U; /* The below case will always be linearized, return * HNS3_MAX_BD_NUM_TSO + 1U to make sure it is linearized. */ if (unlikely(skb->len > HNS3_MAX_TSO_SIZE || (!skb_is_gso(skb) && skb->len > HNS3_MAX_NON_TSO_SIZE))) return HNS3_MAX_TSO_BD_NUM + 1U; bd_num = hns3_skb_bd_num(skb, bd_size, bd_num); if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM) return bd_num; skb_walk_frags(skb, frag_skb) { bd_num = hns3_skb_bd_num(frag_skb, bd_size, bd_num); if (bd_num > HNS3_MAX_TSO_BD_NUM) return bd_num; } return bd_num; } static unsigned int hns3_gso_hdr_len(struct sk_buff *skb) { if (!skb->encapsulation) return skb_transport_offset(skb) + tcp_hdrlen(skb); return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb); } /* HW need every continuous 8 buffer data to be larger than MSS, * we simplify it by ensuring skb_headlen + the first continuous * 7 frags to to be larger than gso header len + mss, and the remaining * continuous 7 frags to be larger than MSS except the last 7 frags. */ static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size, unsigned int bd_num) { unsigned int tot_len = 0; int i; for (i = 0; i < HNS3_MAX_NON_TSO_BD_NUM - 1U; i++) tot_len += bd_size[i]; /* ensure the first 8 frags is greater than mss + header */ if (tot_len + bd_size[HNS3_MAX_NON_TSO_BD_NUM - 1U] < skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb)) return true; /* ensure every continuous 7 buffer is greater than mss * except the last one. */ for (i = 0; i < bd_num - HNS3_MAX_NON_TSO_BD_NUM; i++) { tot_len -= bd_size[i]; tot_len += bd_size[i + HNS3_MAX_NON_TSO_BD_NUM - 1U]; if (tot_len < skb_shinfo(skb)->gso_size) return true; } return false; } static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring, struct sk_buff **out_skb) { unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U]; struct sk_buff *skb = *out_skb; unsigned int bd_num; bd_num = hns3_tx_bd_num(skb, bd_size); if (unlikely(bd_num > HNS3_MAX_NON_TSO_BD_NUM)) { struct sk_buff *new_skb; if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) && !hns3_skb_need_linearized(skb, bd_size, bd_num)) goto out; /* manual split the send packet */ new_skb = skb_copy(skb, GFP_ATOMIC); if (!new_skb) return -ENOMEM; dev_kfree_skb_any(skb); *out_skb = new_skb; bd_num = hns3_tx_bd_count(new_skb->len); if ((skb_is_gso(new_skb) && bd_num > HNS3_MAX_TSO_BD_NUM) || (!skb_is_gso(new_skb) && bd_num > HNS3_MAX_NON_TSO_BD_NUM)) return -ENOMEM; u64_stats_update_begin(&ring->syncp); ring->stats.tx_copy++; u64_stats_update_end(&ring->syncp); } out: if (unlikely(ring_space(ring) < bd_num)) return -EBUSY; return bd_num; } static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig) { struct device *dev = ring_to_dev(ring); unsigned int i; for (i = 0; i < ring->desc_num; i++) { /* check if this is where we started */ if (ring->next_to_use == next_to_use_orig) break; /* rollback one */ ring_ptr_move_bw(ring, next_to_use); /* unmap the descriptor dma address */ if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB) dma_unmap_single(dev, ring->desc_cb[ring->next_to_use].dma, ring->desc_cb[ring->next_to_use].length, DMA_TO_DEVICE); else if (ring->desc_cb[ring->next_to_use].length) dma_unmap_page(dev, ring->desc_cb[ring->next_to_use].dma, ring->desc_cb[ring->next_to_use].length, DMA_TO_DEVICE); ring->desc_cb[ring->next_to_use].length = 0; ring->desc_cb[ring->next_to_use].dma = 0; } } static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring, struct sk_buff *skb, enum hns_desc_type type) { unsigned int size = skb_headlen(skb); int i, ret, bd_num = 0; if (size) { ret = hns3_fill_desc(ring, skb, size, type); if (unlikely(ret < 0)) return ret; bd_num += ret; } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; size = skb_frag_size(frag); if (!size) continue; ret = hns3_fill_desc(ring, frag, size, DESC_TYPE_PAGE); if (unlikely(ret < 0)) return ret; bd_num += ret; } return bd_num; } netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev) { struct hns3_nic_priv *priv = netdev_priv(netdev); struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping]; struct netdev_queue *dev_queue; int pre_ntu, next_to_use_head; struct sk_buff *frag_skb; int bd_num = 0; int ret; /* Prefetch the data used later */ prefetch(skb->data); ret = hns3_nic_maybe_stop_tx(ring, &skb); if (unlikely(ret <= 0)) { if (ret == -EBUSY) { u64_stats_update_begin(&ring->syncp); ring->stats.tx_busy++; u64_stats_update_end(&ring->syncp); goto out_net_tx_busy; } else if (ret == -ENOMEM) { u64_stats_update_begin(&ring->syncp); ring->stats.sw_err_cnt++; u64_stats_update_end(&ring->syncp); } hns3_rl_err(netdev, "xmit error: %d!\n", ret); goto out_err_tx_ok; } next_to_use_head = ring->next_to_use; ret = hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB); if (unlikely(ret < 0)) goto fill_err; bd_num += ret; if (!skb_has_frag_list(skb)) goto out; skb_walk_frags(skb, frag_skb) { ret = hns3_fill_skb_to_desc(ring, frag_skb, DESC_TYPE_PAGE); if (unlikely(ret < 0)) goto fill_err; bd_num += ret; } out: pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) : (ring->desc_num - 1); ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |= cpu_to_le16(BIT(HNS3_TXD_FE_B)); /* Complete translate all packets */ dev_queue = netdev_get_tx_queue(netdev, ring->queue_index); netdev_tx_sent_queue(dev_queue, skb->len); wmb(); /* Commit all data before submit */ hnae3_queue_xmit(ring->tqp, bd_num); return NETDEV_TX_OK; fill_err: hns3_clear_desc(ring, next_to_use_head); out_err_tx_ok: dev_kfree_skb_any(skb); return NETDEV_TX_OK; out_net_tx_busy: netif_stop_subqueue(netdev, ring->queue_index); smp_mb(); /* Commit all data before submit */ return NETDEV_TX_BUSY; } static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p) { struct hnae3_handle *h = hns3_get_handle(netdev); struct sockaddr *mac_addr = p; int ret; if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data)) return -EADDRNOTAVAIL; if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) { netdev_info(netdev, "already using mac address %pM\n", mac_addr->sa_data); return 0; } /* For VF device, if there is a perm_addr, then the user will not * be allowed to change the address. */ if (!hns3_is_phys_func(h->pdev) && !is_zero_ether_addr(netdev->perm_addr)) { netdev_err(netdev, "has permanent MAC %pM, user MAC %pM not allow\n", netdev->perm_addr, mac_addr->sa_data); return -EPERM; } ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false); if (ret) { netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret); return ret; } ether_addr_copy(netdev->dev_addr, mac_addr->sa_data); return 0; } static int hns3_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { struct hnae3_handle *h = hns3_get_handle(netdev); if (!netif_running(netdev)) return -EINVAL; if (!h->ae_algo->ops->do_ioctl) return -EOPNOTSUPP; return h->ae_algo->ops->do_ioctl(h, ifr, cmd); } static int hns3_nic_set_features(struct net_device *netdev, netdev_features_t features) { netdev_features_t changed = netdev->features ^ features; struct hns3_nic_priv *priv = netdev_priv(netdev); struct hnae3_handle *h = priv->ae_handle; bool enable; int ret; if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) { enable = !!(features & NETIF_F_GRO_HW); ret = h->ae_algo->ops->set_gro_en(h, enable); if (ret) return ret; } if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) && h->ae_algo->ops->enable_vlan_filter) { enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER); h->ae_algo->ops->enable_vlan_filter(h, enable); } if ((changed & NETIF_F_HW_VLAN_CTAG_RX) && h->ae_algo->ops->enable_hw_strip_rxvtag) { enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable); if (ret) return ret; } if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) { enable = !!(features & NETIF_F_NTUPLE); h->ae_algo->ops->enable_fd(h, enable); } netdev->features = features; return 0; } static void hns3_nic_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) { struct hns3_nic_priv *priv = netdev_priv(netdev); int queue_num = priv->ae_handle->kinfo.num_tqps; struct hnae3_handle *handle = priv->ae_handle; struct hns3_enet_ring *ring; u64 rx_length_errors = 0; u64 rx_crc_errors = 0; u64 rx_multicast = 0; unsigned int start; u64 tx_errors = 0; u64 rx_errors = 0; unsigned int idx; u64 tx_bytes = 0; u64 rx_bytes = 0; u64 tx_pkts = 0; u64 rx_pkts = 0; u64 tx_drop = 0; u64 rx_drop = 0; if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) return; handle->ae_algo->ops->update_stats(handle, &netdev->stats); for (idx = 0; idx < queue_num; idx++) { /* fetch the tx stats */ ring = &priv->ring[idx]; do { start = u64_stats_fetch_begin_irq(&ring->syncp); tx_bytes += ring->stats.tx_bytes; tx_pkts += ring->stats.tx_pkts; tx_drop += ring->stats.sw_err_cnt; tx_drop += ring->stats.tx_vlan_err; tx_drop += ring->stats.tx_l4_proto_err; tx_drop += ring->stats.tx_l2l3l4_err; tx_drop += ring->stats.tx_tso_err; tx_errors += ring->stats.sw_err_cnt; tx_errors += ring->stats.tx_vlan_err; tx_errors += ring->stats.tx_l4_proto_err; tx_errors += ring->stats.tx_l2l3l4_err; tx_errors += ring->stats.tx_tso_err; } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); /* fetch the rx stats */ ring = &priv->ring[idx + queue_num]; do { start = u64_stats_fetch_begin_irq(&ring->syncp); rx_bytes += ring->stats.rx_bytes; rx_pkts += ring->stats.rx_pkts; rx_drop += ring->stats.l2_err; rx_errors += ring->stats.l2_err; rx_errors += ring->stats.l3l4_csum_err; rx_crc_errors += ring->stats.l2_err; rx_multicast += ring->stats.rx_multicast; rx_length_errors += ring->stats.err_pkt_len; } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); } stats->tx_bytes = tx_bytes; stats->tx_packets = tx_pkts; stats->rx_bytes = rx_bytes; stats->rx_packets = rx_pkts; stats->rx_errors = rx_errors; stats->multicast = rx_multicast; stats->rx_length_errors = rx_length_errors; stats->rx_crc_errors = rx_crc_errors; stats->rx_missed_errors = netdev->stats.rx_missed_errors; stats->tx_errors = tx_errors; stats->rx_dropped = rx_drop; stats->tx_dropped = tx_drop; stats->collisions = netdev->stats.collisions; stats->rx_over_errors = netdev->stats.rx_over_errors; stats->rx_frame_errors = netdev->stats.rx_frame_errors; stats->rx_fifo_errors = netdev->stats.rx_fifo_errors; stats->tx_aborted_errors = netdev->stats.tx_aborted_errors; stats->tx_carrier_errors = netdev->stats.tx_carrier_errors; stats->tx_fifo_errors = netdev->stats.tx_fifo_errors; stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors; stats->tx_window_errors = netdev->stats.tx_window_errors; stats->rx_compressed = netdev->stats.rx_compressed; stats->tx_compressed = netdev->stats.tx_compressed; } static int hns3_setup_tc(struct net_device *netdev, void *type_data) { struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map; struct hnae3_knic_private_info *kinfo; u8 tc = mqprio_qopt->qopt.num_tc; u16 mode = mqprio_qopt->mode; u8 hw = mqprio_qopt->qopt.hw; struct hnae3_handle *h; if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS && mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0))) return -EOPNOTSUPP; if (tc > HNAE3_MAX_TC) return -EINVAL; if (!netdev) return -EINVAL; h = hns3_get_handle(netdev); kinfo = &h->kinfo; netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc); return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ? kinfo->dcb_ops->setup_tc(h, tc, prio_tc) : -EOPNOTSUPP; } static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type, void *type_data) { if (type != TC_SETUP_QDISC_MQPRIO) return -EOPNOTSUPP; return hns3_setup_tc(dev, type_data); } static int hns3_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) { struct hnae3_handle *h = hns3_get_handle(netdev); int ret = -EIO; if (h->ae_algo->ops->set_vlan_filter) ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false); return ret; } static int hns3_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) { struct hnae3_handle *h = hns3_get_handle(netdev); int ret = -EIO; if (h->ae_algo->ops->set_vlan_filter) ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true); return ret; } static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan, u8 qos, __be16 vlan_proto) { struct hnae3_handle *h = hns3_get_handle(netdev); int ret = -EIO; netif_dbg(h, drv, netdev, "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=%u\n", vf, vlan, qos, vlan_proto); if (h->ae_algo->ops->set_vf_vlan_filter) ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan, qos, vlan_proto); return ret; } static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable) { struct hnae3_handle *handle = hns3_get_handle(netdev); if (hns3_nic_resetting(netdev)) return -EBUSY; if (!handle->ae_algo->ops->set_vf_spoofchk) return -EOPNOTSUPP; return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable); } static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable) { struct hnae3_handle *handle = hns3_get_handle(netdev); if (!handle->ae_algo->ops->set_vf_trust) return -EOPNOTSUPP; return handle->ae_algo->ops->set_vf_trust(handle, vf, enable); } static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu) { struct hnae3_handle *h = hns3_get_handle(netdev); int ret; if (hns3_nic_resetting(netdev)) return -EBUSY; if (!h->ae_algo->ops->set_mtu) return -EOPNOTSUPP; netif_dbg(h, drv, netdev, "change mtu from %u to %d\n", netdev->mtu, new_mtu); ret = h->ae_algo->ops->set_mtu(h, new_mtu); if (ret) netdev_err(netdev, "failed to change MTU in hardware %d\n", ret); else netdev->mtu = new_mtu; return ret; } static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev) { struct hns3_nic_priv *priv = netdev_priv(ndev); struct hnae3_handle *h = hns3_get_handle(ndev); struct hns3_enet_ring *tx_ring = NULL; struct napi_struct *napi; int timeout_queue = 0; int hw_head, hw_tail; int fbd_num, fbd_oft; int ebd_num, ebd_oft; int bd_num, bd_err; int ring_en, tc; int i; /* Find the stopped queue the same way the stack does */ for (i = 0; i < ndev->num_tx_queues; i++) { struct netdev_queue *q; unsigned long trans_start; q = netdev_get_tx_queue(ndev, i); trans_start = q->trans_start; if (netif_xmit_stopped(q) && time_after(jiffies, (trans_start + ndev->watchdog_timeo))) { timeout_queue = i; break; } } if (i == ndev->num_tx_queues) { netdev_info(ndev, "no netdev TX timeout queue found, timeout count: %llu\n", priv->tx_timeout_count); return false; } priv->tx_timeout_count++; tx_ring = &priv->ring[timeout_queue]; napi = &tx_ring->tqp_vector->napi; netdev_info(ndev, "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n", priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use, tx_ring->next_to_clean, napi->state); netdev_info(ndev, "tx_pkts: %llu, tx_bytes: %llu, io_err_cnt: %llu, sw_err_cnt: %llu\n", tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes, tx_ring->stats.io_err_cnt, tx_ring->stats.sw_err_cnt); netdev_info(ndev, "seg_pkt_cnt: %llu, tx_err_cnt: %llu, restart_queue: %llu, tx_busy: %llu\n", tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_err_cnt, tx_ring->stats.restart_queue, tx_ring->stats.tx_busy); /* When mac received many pause frames continuous, it's unable to send * packets, which may cause tx timeout */ if (h->ae_algo->ops->get_mac_stats) { struct hns3_mac_stats mac_stats; h->ae_algo->ops->get_mac_stats(h, &mac_stats); netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n", mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt); } hw_head = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG); hw_tail = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG); fbd_num = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_FBDNUM_REG); fbd_oft = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_OFFSET_REG); ebd_num = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_EBDNUM_REG); ebd_oft = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_EBD_OFFSET_REG); bd_num = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_BD_NUM_REG); bd_err = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_BD_ERR_REG); ring_en = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_EN_REG); tc = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TC_REG); netdev_info(ndev, "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n", bd_num, hw_head, hw_tail, bd_err, readl(tx_ring->tqp_vector->mask_addr)); netdev_info(ndev, "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n", ring_en, tc, fbd_num, fbd_oft, ebd_num, ebd_oft); return true; } static void hns3_nic_net_timeout(struct net_device *ndev) { struct hns3_nic_priv *priv = netdev_priv(ndev); struct hnae3_handle *h = priv->ae_handle; if (!hns3_get_tx_timeo_queue_info(ndev)) return; /* request the reset, and let the hclge to determine * which reset level should be done */ if (h->ae_algo->ops->reset_event) h->ae_algo->ops->reset_event(h->pdev, h); } #ifdef CONFIG_RFS_ACCEL static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, u16 rxq_index, u32 flow_id) { struct hnae3_handle *h = hns3_get_handle(dev); struct flow_keys fkeys; if (!h->ae_algo->ops->add_arfs_entry) return -EOPNOTSUPP; if (skb->encapsulation) return -EPROTONOSUPPORT; if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0)) return -EPROTONOSUPPORT; if ((fkeys.basic.n_proto != htons(ETH_P_IP) && fkeys.basic.n_proto != htons(ETH_P_IPV6)) || (fkeys.basic.ip_proto != IPPROTO_TCP && fkeys.basic.ip_proto != IPPROTO_UDP)) return -EPROTONOSUPPORT; return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys); } #endif static int hns3_nic_get_vf_config(struct net_device *ndev, int vf, struct ifla_vf_info *ivf) { struct hnae3_handle *h = hns3_get_handle(ndev); if (!h->ae_algo->ops->get_vf_config) return -EOPNOTSUPP; return h->ae_algo->ops->get_vf_config(h, vf, ivf); } static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf, int link_state) { struct hnae3_handle *h = hns3_get_handle(ndev); if (!h->ae_algo->ops->set_vf_link_state) return -EOPNOTSUPP; return h->ae_algo->ops->set_vf_link_state(h, vf, link_state); } static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf, int min_tx_rate, int max_tx_rate) { struct hnae3_handle *h = hns3_get_handle(ndev); if (!h->ae_algo->ops->set_vf_rate) return -EOPNOTSUPP; return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate, false); } static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac) { struct hnae3_handle *h = hns3_get_handle(netdev); if (!h->ae_algo->ops->set_vf_mac) return -EOPNOTSUPP; if (is_multicast_ether_addr(mac)) { netdev_err(netdev, "Invalid MAC:%pM specified. Could not set MAC\n", mac); return -EINVAL; } return h->ae_algo->ops->set_vf_mac(h, vf_id, mac); } static const struct net_device_ops hns3_nic_netdev_ops = { .ndo_open = hns3_nic_net_open, .ndo_stop = hns3_nic_net_stop, .ndo_start_xmit = hns3_nic_net_xmit, .ndo_tx_timeout = hns3_nic_net_timeout, .ndo_set_mac_address = hns3_nic_net_set_mac_address, .ndo_do_ioctl = hns3_nic_do_ioctl, .ndo_change_mtu = hns3_nic_change_mtu, .ndo_set_features = hns3_nic_set_features, .ndo_get_stats64 = hns3_nic_get_stats64, .ndo_setup_tc = hns3_nic_setup_tc, .ndo_set_rx_mode = hns3_nic_set_rx_mode, .ndo_vlan_rx_add_vid = hns3_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = hns3_vlan_rx_kill_vid, .ndo_set_vf_vlan = hns3_ndo_set_vf_vlan, .ndo_set_vf_spoofchk = hns3_set_vf_spoofchk, .ndo_set_vf_trust = hns3_set_vf_trust, #ifdef CONFIG_RFS_ACCEL .ndo_rx_flow_steer = hns3_rx_flow_steer, #endif .ndo_get_vf_config = hns3_nic_get_vf_config, .ndo_set_vf_link_state = hns3_nic_set_vf_link_state, .ndo_set_vf_rate = hns3_nic_set_vf_rate, .ndo_set_vf_mac = hns3_nic_set_vf_mac, }; bool hns3_is_phys_func(struct pci_dev *pdev) { u32 dev_id = pdev->device; switch (dev_id) { case HNAE3_DEV_ID_GE: case HNAE3_DEV_ID_25GE: case HNAE3_DEV_ID_25GE_RDMA: case HNAE3_DEV_ID_25GE_RDMA_MACSEC: case HNAE3_DEV_ID_50GE_RDMA: case HNAE3_DEV_ID_50GE_RDMA_MACSEC: case HNAE3_DEV_ID_100G_RDMA_MACSEC: return true; case HNAE3_DEV_ID_100G_VF: case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF: return false; default: dev_warn(&pdev->dev, "un-recognized pci device-id %d", dev_id); } return false; } static void hns3_disable_sriov(struct pci_dev *pdev) { /* If our VFs are assigned we cannot shut down SR-IOV * without causing issues, so just leave the hardware * available but disabled */ if (pci_vfs_assigned(pdev)) { dev_warn(&pdev->dev, "disabling driver while VFs are assigned\n"); return; } pci_disable_sriov(pdev); } static void hns3_get_dev_capability(struct pci_dev *pdev, struct hnae3_ae_dev *ae_dev) { if (pdev->revision >= 0x21) { hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_FD_B, 1); hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_GRO_B, 1); } } /* hns3_probe - Device initialization routine * @pdev: PCI device information struct * @ent: entry in hns3_pci_tbl * * hns3_probe initializes a PF identified by a pci_dev structure. * The OS initialization, configuring of the PF private structure, * and a hardware reset occur. * * Returns 0 on success, negative on failure */ static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct hnae3_ae_dev *ae_dev; int ret; ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL); if (!ae_dev) { ret = -ENOMEM; return ret; } ae_dev->pdev = pdev; ae_dev->flag = ent->driver_data; ae_dev->reset_type = HNAE3_NONE_RESET; hns3_get_dev_capability(pdev, ae_dev); pci_set_drvdata(pdev, ae_dev); ret = hnae3_register_ae_dev(ae_dev); if (ret) { devm_kfree(&pdev->dev, ae_dev); pci_set_drvdata(pdev, NULL); } return ret; } /* hns3_remove - Device removal routine * @pdev: PCI device information struct */ static void hns3_remove(struct pci_dev *pdev) { struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV)) hns3_disable_sriov(pdev); hnae3_unregister_ae_dev(ae_dev); pci_set_drvdata(pdev, NULL); } /** * hns3_pci_sriov_configure * @pdev: pointer to a pci_dev structure * @num_vfs: number of VFs to allocate * * Enable or change the number of VFs. Called when the user updates the number * of VFs in sysfs. **/ static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs) { int ret; if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) { dev_warn(&pdev->dev, "Can not config SRIOV\n"); return -EINVAL; } if (num_vfs) { ret = pci_enable_sriov(pdev, num_vfs); if (ret) dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret); else return num_vfs; } else if (!pci_vfs_assigned(pdev)) { pci_disable_sriov(pdev); } else { dev_warn(&pdev->dev, "Unable to free VFs because some are assigned to VMs.\n"); } return 0; } static void hns3_shutdown(struct pci_dev *pdev) { struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); hnae3_unregister_ae_dev(ae_dev); devm_kfree(&pdev->dev, ae_dev); pci_set_drvdata(pdev, NULL); if (system_state == SYSTEM_POWER_OFF) pci_set_power_state(pdev, PCI_D3hot); } static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); pci_ers_result_t ret; dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state); if (state == pci_channel_io_perm_failure) return PCI_ERS_RESULT_DISCONNECT; if (!ae_dev || !ae_dev->ops) { dev_err(&pdev->dev, "Can't recover - error happened before device initialized\n"); return PCI_ERS_RESULT_NONE; } if (ae_dev->ops->handle_hw_ras_error) ret = ae_dev->ops->handle_hw_ras_error(ae_dev); else return PCI_ERS_RESULT_NONE; return ret; } static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev) { struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); const struct hnae3_ae_ops *ops; enum hnae3_reset_type reset_type; struct device *dev = &pdev->dev; if (!ae_dev || !ae_dev->ops) return PCI_ERS_RESULT_NONE; ops = ae_dev->ops; /* request the reset */ if (ops->reset_event && ops->get_reset_level && ops->set_default_reset_request) { if (ae_dev->hw_err_reset_req) { reset_type = ops->get_reset_level(ae_dev, &ae_dev->hw_err_reset_req); ops->set_default_reset_request(ae_dev, reset_type); dev_info(dev, "requesting reset due to PCI error\n"); ops->reset_event(pdev, NULL); } return PCI_ERS_RESULT_RECOVERED; } return PCI_ERS_RESULT_DISCONNECT; } static void hns3_reset_prepare(struct pci_dev *pdev) { struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); dev_info(&pdev->dev, "hns3 flr prepare\n"); if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare) ae_dev->ops->flr_prepare(ae_dev); } static void hns3_reset_done(struct pci_dev *pdev) { struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); dev_info(&pdev->dev, "hns3 flr done\n"); if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done) ae_dev->ops->flr_done(ae_dev); } static const struct pci_error_handlers hns3_err_handler = { .error_detected = hns3_error_detected, .slot_reset = hns3_slot_reset, .reset_prepare = hns3_reset_prepare, .reset_done = hns3_reset_done, }; static struct pci_driver hns3_driver = { .name = hns3_driver_name, .id_table = hns3_pci_tbl, .probe = hns3_probe, .remove = hns3_remove, .shutdown = hns3_shutdown, .sriov_configure = hns3_pci_sriov_configure, .err_handler = &hns3_err_handler, }; /* set default feature to hns3 */ static void hns3_set_default_feature(struct net_device *netdev) { struct hnae3_handle *h = hns3_get_handle(netdev); struct pci_dev *pdev = h->pdev; netdev->priv_flags |= IFF_UNICAST_FLT; netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC | NETIF_F_TSO_MANGLEID | NETIF_F_FRAGLIST; netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST; netdev->vlan_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST; netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST; if (pdev->revision >= 0x21) { netdev->hw_features |= NETIF_F_GRO_HW; netdev->features |= NETIF_F_GRO_HW; if (!(h->flags & HNAE3_SUPPORT_VF)) { netdev->hw_features |= NETIF_F_NTUPLE; netdev->features |= NETIF_F_NTUPLE; } } } static int hns3_alloc_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb) { unsigned int order = hns3_page_order(ring); struct page *p; p = dev_alloc_pages(order); if (!p) return -ENOMEM; cb->priv = p; cb->page_offset = 0; cb->reuse_flag = 0; cb->buf = page_address(p); cb->length = hns3_page_size(ring); cb->type = DESC_TYPE_PAGE; return 0; } static void hns3_free_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb) { if (cb->type == DESC_TYPE_SKB) dev_kfree_skb_any((struct sk_buff *)cb->priv); else if (!HNAE3_IS_TX_RING(ring)) put_page((struct page *)cb->priv); memset(cb, 0, sizeof(*cb)); } static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb) { cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0, cb->length, ring_to_dma_dir(ring)); if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma))) return -EIO; return 0; } static void hns3_unmap_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb) { if (cb->type == DESC_TYPE_SKB) dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length, ring_to_dma_dir(ring)); else if (cb->length) dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length, ring_to_dma_dir(ring)); } static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i) { hns3_unmap_buffer(ring, &ring->desc_cb[i]); ring->desc[i].addr = 0; } static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i) { struct hns3_desc_cb *cb = &ring->desc_cb[i]; if (!ring->desc_cb[i].dma) return; hns3_buffer_detach(ring, i); hns3_free_buffer(ring, cb); } static void hns3_free_buffers(struct hns3_enet_ring *ring) { int i; for (i = 0; i < ring->desc_num; i++) hns3_free_buffer_detach(ring, i); } /* free desc along with its attached buffer */ static void hns3_free_desc(struct hns3_enet_ring *ring) { int size = ring->desc_num * sizeof(ring->desc[0]); hns3_free_buffers(ring); if (ring->desc) { dma_free_coherent(ring_to_dev(ring), size, ring->desc, ring->desc_dma_addr); ring->desc = NULL; } } static int hns3_alloc_desc(struct hns3_enet_ring *ring) { int size = ring->desc_num * sizeof(ring->desc[0]); ring->desc = dma_alloc_coherent(ring_to_dev(ring), size, &ring->desc_dma_addr, GFP_KERNEL); if (!ring->desc) return -ENOMEM; return 0; } static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb) { int ret; ret = hns3_alloc_buffer(ring, cb); if (ret) goto out; ret = hns3_map_buffer(ring, cb); if (ret) goto out_with_buf; return 0; out_with_buf: hns3_free_buffer(ring, cb); out: return ret; } static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i) { int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]); if (ret) return ret; ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma); return 0; } /* Allocate memory for raw pkg, and map with dma */ static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring) { int i, j, ret; for (i = 0; i < ring->desc_num; i++) { ret = hns3_alloc_buffer_attach(ring, i); if (ret) goto out_buffer_fail; } return 0; out_buffer_fail: for (j = i - 1; j >= 0; j--) hns3_free_buffer_detach(ring, j); return ret; } /* detach a in-used buffer and replace with a reserved one */ static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i, struct hns3_desc_cb *res_cb) { hns3_unmap_buffer(ring, &ring->desc_cb[i]); ring->desc_cb[i] = *res_cb; ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma); ring->desc[i].rx.bd_base_info = 0; } static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i) { ring->desc_cb[i].reuse_flag = 0; ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma + ring->desc_cb[i].page_offset); ring->desc[i].rx.bd_base_info = 0; } static void hns3_nic_reclaim_desc(struct hns3_enet_ring *ring, int head, int *bytes, int *pkts) { int ntc = ring->next_to_clean; struct hns3_desc_cb *desc_cb; while (head != ntc) { desc_cb = &ring->desc_cb[ntc]; (*pkts) += (desc_cb->type == DESC_TYPE_SKB); (*bytes) += desc_cb->length; /* desc_cb will be cleaned, after hnae3_free_buffer_detach */ hns3_free_buffer_detach(ring, ntc); if (++ntc == ring->desc_num) ntc = 0; /* Issue prefetch for next Tx descriptor */ prefetch(&ring->desc_cb[ntc]); } /* This smp_store_release() pairs with smp_load_acquire() in * ring_space called by hns3_nic_net_xmit. */ smp_store_release(&ring->next_to_clean, ntc); } static int is_valid_clean_head(struct hns3_enet_ring *ring, int h) { int u = ring->next_to_use; int c = ring->next_to_clean; if (unlikely(h > ring->desc_num)) return 0; return u > c ? (h > c && h <= u) : (h > c || h <= u); } void hns3_clean_tx_ring(struct hns3_enet_ring *ring) { struct net_device *netdev = ring->tqp->handle->kinfo.netdev; struct hns3_nic_priv *priv = netdev_priv(netdev); struct netdev_queue *dev_queue; int bytes, pkts; int head; head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG); if (is_ring_empty(ring) || head == ring->next_to_clean) return; /* no data to poll */ rmb(); /* Make sure head is ready before touch any data */ if (unlikely(!is_valid_clean_head(ring, head))) { netdev_err(netdev, "wrong head (%d, %d-%d)\n", head, ring->next_to_use, ring->next_to_clean); u64_stats_update_begin(&ring->syncp); ring->stats.io_err_cnt++; u64_stats_update_end(&ring->syncp); return; } bytes = 0; pkts = 0; hns3_nic_reclaim_desc(ring, head, &bytes, &pkts); ring->tqp_vector->tx_group.total_bytes += bytes; ring->tqp_vector->tx_group.total_packets += pkts; u64_stats_update_begin(&ring->syncp); ring->stats.tx_bytes += bytes; ring->stats.tx_pkts += pkts; u64_stats_update_end(&ring->syncp); dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index); netdev_tx_completed_queue(dev_queue, pkts, bytes); if (unlikely(pkts && netif_carrier_ok(netdev) && ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) { /* Make sure that anybody stopping the queue after this * sees the new next_to_clean. */ smp_mb(); if (netif_tx_queue_stopped(dev_queue) && !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) { netif_tx_wake_queue(dev_queue); ring->stats.restart_queue++; } } } static int hns3_desc_unused(struct hns3_enet_ring *ring) { int ntc = ring->next_to_clean; int ntu = ring->next_to_use; return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu; } static void hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring, int cleand_count) { struct hns3_desc_cb *desc_cb; struct hns3_desc_cb res_cbs; int i, ret; for (i = 0; i < cleand_count; i++) { desc_cb = &ring->desc_cb[ring->next_to_use]; if (desc_cb->reuse_flag) { u64_stats_update_begin(&ring->syncp); ring->stats.reuse_pg_cnt++; u64_stats_update_end(&ring->syncp); hns3_reuse_buffer(ring, ring->next_to_use); } else { ret = hns3_reserve_buffer_map(ring, &res_cbs); if (ret) { u64_stats_update_begin(&ring->syncp); ring->stats.sw_err_cnt++; u64_stats_update_end(&ring->syncp); hns3_rl_err(ring->tqp_vector->napi.dev, "alloc rx buffer failed: %d\n", ret); break; } hns3_replace_buffer(ring, ring->next_to_use, &res_cbs); u64_stats_update_begin(&ring->syncp); ring->stats.non_reuse_pg++; u64_stats_update_end(&ring->syncp); } ring_ptr_move_fw(ring, next_to_use); } wmb(); /* Make all data has been write before submit */ writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG); } static void hns3_nic_reuse_page(struct sk_buff *skb, int i, struct hns3_enet_ring *ring, int pull_len, struct hns3_desc_cb *desc_cb) { struct hns3_desc *desc = &ring->desc[ring->next_to_clean]; int size = le16_to_cpu(desc->rx.size); u32 truesize = hns3_buf_size(ring); skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len, size - pull_len, truesize); /* Avoid re-using remote pages, or the stack is still using the page * when page_offset rollback to zero, flag default unreuse */ if (unlikely(page_to_nid(desc_cb->priv) != numa_mem_id()) || (!desc_cb->page_offset && page_count(desc_cb->priv) > 1)) return; /* Move offset up to the next cache line */ desc_cb->page_offset += truesize; if (desc_cb->page_offset + truesize <= hns3_page_size(ring)) { desc_cb->reuse_flag = 1; /* Bump ref count on page before it is given */ get_page(desc_cb->priv); } else if (page_count(desc_cb->priv) == 1) { desc_cb->reuse_flag = 1; desc_cb->page_offset = 0; get_page(desc_cb->priv); } } static int hns3_gro_complete(struct sk_buff *skb, u32 l234info) { __be16 type = skb->protocol; struct tcphdr *th; int depth = 0; while (eth_type_vlan(type)) { struct vlan_hdr *vh; if ((depth + VLAN_HLEN) > skb_headlen(skb)) return -EFAULT; vh = (struct vlan_hdr *)(skb->data + depth); type = vh->h_vlan_encapsulated_proto; depth += VLAN_HLEN; } skb_set_network_header(skb, depth); if (type == htons(ETH_P_IP)) { const struct iphdr *iph = ip_hdr(skb); depth += sizeof(struct iphdr); skb_set_transport_header(skb, depth); th = tcp_hdr(skb); th->check = ~tcp_v4_check(skb->len - depth, iph->saddr, iph->daddr, 0); } else if (type == htons(ETH_P_IPV6)) { const struct ipv6hdr *iph = ipv6_hdr(skb); depth += sizeof(struct ipv6hdr); skb_set_transport_header(skb, depth); th = tcp_hdr(skb); th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr, &iph->daddr, 0); } else { hns3_rl_err(skb->dev, "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n", be16_to_cpu(type), depth); return -EFAULT; } skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count; if (th->cwr) skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; if (l234info & BIT(HNS3_RXD_GRO_FIXID_B)) skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID; skb->csum_start = (unsigned char *)th - skb->head; skb->csum_offset = offsetof(struct tcphdr, check); skb->ip_summed = CHECKSUM_PARTIAL; return 0; } static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb, u32 l234info, u32 bd_base_info, u32 ol_info) { struct net_device *netdev = ring->tqp->handle->kinfo.netdev; int l3_type, l4_type; int ol4_type; skb->ip_summed = CHECKSUM_NONE; skb_checksum_none_assert(skb); if (!(netdev->features & NETIF_F_RXCSUM)) return; /* check if hardware has done checksum */ if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B))) return; if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) | BIT(HNS3_RXD_OL3E_B) | BIT(HNS3_RXD_OL4E_B)))) { u64_stats_update_begin(&ring->syncp); ring->stats.l3l4_csum_err++; u64_stats_update_end(&ring->syncp); return; } ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M, HNS3_RXD_OL4ID_S); switch (ol4_type) { case HNS3_OL4_TYPE_MAC_IN_UDP: case HNS3_OL4_TYPE_NVGRE: skb->csum_level = 1; /* fall through */ case HNS3_OL4_TYPE_NO_TUN: l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S); l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M, HNS3_RXD_L4ID_S); /* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */ if ((l3_type == HNS3_L3_TYPE_IPV4 || l3_type == HNS3_L3_TYPE_IPV6) && (l4_type == HNS3_L4_TYPE_UDP || l4_type == HNS3_L4_TYPE_TCP || l4_type == HNS3_L4_TYPE_SCTP)) skb->ip_summed = CHECKSUM_UNNECESSARY; break; default: break; } } static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb) { if (skb_has_frag_list(skb)) napi_gro_flush(&ring->tqp_vector->napi, false); napi_gro_receive(&ring->tqp_vector->napi, skb); } static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring, struct hns3_desc *desc, u32 l234info, u16 *vlan_tag) { struct hnae3_handle *handle = ring->tqp->handle; struct pci_dev *pdev = ring->tqp->handle->pdev; if (pdev->revision == 0x20) { *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag); if (!(*vlan_tag & VLAN_VID_MASK)) *vlan_tag = le16_to_cpu(desc->rx.vlan_tag); return (*vlan_tag != 0); } #define HNS3_STRP_OUTER_VLAN 0x1 #define HNS3_STRP_INNER_VLAN 0x2 #define HNS3_STRP_BOTH 0x3 /* Hardware always insert VLAN tag into RX descriptor when * remove the tag from packet, driver needs to determine * reporting which tag to stack. */ switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M, HNS3_RXD_STRP_TAGP_S)) { case HNS3_STRP_OUTER_VLAN: if (handle->port_base_vlan_state != HNAE3_PORT_BASE_VLAN_DISABLE) return false; *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag); return true; case HNS3_STRP_INNER_VLAN: if (handle->port_base_vlan_state != HNAE3_PORT_BASE_VLAN_DISABLE) return false; *vlan_tag = le16_to_cpu(desc->rx.vlan_tag); return true; case HNS3_STRP_BOTH: if (handle->port_base_vlan_state == HNAE3_PORT_BASE_VLAN_DISABLE) *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag); else *vlan_tag = le16_to_cpu(desc->rx.vlan_tag); return true; default: return false; } } static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length, unsigned char *va) { #define HNS3_NEED_ADD_FRAG 1 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean]; struct net_device *netdev = ring->tqp->handle->kinfo.netdev; struct sk_buff *skb; ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE); skb = ring->skb; if (unlikely(!skb)) { hns3_rl_err(netdev, "alloc rx skb fail\n"); u64_stats_update_begin(&ring->syncp); ring->stats.sw_err_cnt++; u64_stats_update_end(&ring->syncp); return -ENOMEM; } prefetchw(skb->data); ring->pending_buf = 1; ring->frag_num = 0; ring->tail_skb = NULL; if (length <= HNS3_RX_HEAD_SIZE) { memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long))); /* We can reuse buffer as-is, just make sure it is local */ if (likely(page_to_nid(desc_cb->priv) == numa_mem_id())) desc_cb->reuse_flag = 1; else /* This page cannot be reused so discard it */ put_page(desc_cb->priv); ring_ptr_move_fw(ring, next_to_clean); return 0; } u64_stats_update_begin(&ring->syncp); ring->stats.seg_pkt_cnt++; u64_stats_update_end(&ring->syncp); ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE); __skb_put(skb, ring->pull_len); hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len, desc_cb); ring_ptr_move_fw(ring, next_to_clean); return HNS3_NEED_ADD_FRAG; } static int hns3_add_frag(struct hns3_enet_ring *ring, struct hns3_desc *desc, struct sk_buff **out_skb, bool pending) { struct sk_buff *skb = *out_skb; struct sk_buff *head_skb = *out_skb; struct sk_buff *new_skb; struct hns3_desc_cb *desc_cb; struct hns3_desc *pre_desc; u32 bd_base_info; int pre_bd; /* if there is pending bd, the SW param next_to_clean has moved * to next and the next is NULL */ if (pending) { pre_bd = (ring->next_to_clean - 1 + ring->desc_num) % ring->desc_num; pre_desc = &ring->desc[pre_bd]; bd_base_info = le32_to_cpu(pre_desc->rx.bd_base_info); } else { bd_base_info = le32_to_cpu(desc->rx.bd_base_info); } while (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { desc = &ring->desc[ring->next_to_clean]; desc_cb = &ring->desc_cb[ring->next_to_clean]; bd_base_info = le32_to_cpu(desc->rx.bd_base_info); /* make sure HW write desc complete */ dma_rmb(); if (!(bd_base_info & BIT(HNS3_RXD_VLD_B))) return -ENXIO; if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) { new_skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE); if (unlikely(!new_skb)) { hns3_rl_err(ring->tqp_vector->napi.dev, "alloc rx fraglist skb fail\n"); return -ENXIO; } ring->frag_num = 0; if (ring->tail_skb) { ring->tail_skb->next = new_skb; ring->tail_skb = new_skb; } else { skb_shinfo(skb)->frag_list = new_skb; ring->tail_skb = new_skb; } } if (ring->tail_skb) { head_skb->truesize += hns3_buf_size(ring); head_skb->data_len += le16_to_cpu(desc->rx.size); head_skb->len += le16_to_cpu(desc->rx.size); skb = ring->tail_skb; } hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb); ring_ptr_move_fw(ring, next_to_clean); ring->pending_buf++; } return 0; } static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb, u32 l234info, u32 bd_base_info, u32 ol_info) { u32 l3_type; skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info, HNS3_RXD_GRO_SIZE_M, HNS3_RXD_GRO_SIZE_S); /* if there is no HW GRO, do not set gro params */ if (!skb_shinfo(skb)->gso_size) { hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info); return 0; } NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info, HNS3_RXD_GRO_COUNT_M, HNS3_RXD_GRO_COUNT_S); l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S); if (l3_type == HNS3_L3_TYPE_IPV4) skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; else if (l3_type == HNS3_L3_TYPE_IPV6) skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; else return -EFAULT; return hns3_gro_complete(skb, l234info); } static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring, struct sk_buff *skb, u32 rss_hash) { struct hnae3_handle *handle = ring->tqp->handle; enum pkt_hash_types rss_type; if (rss_hash) rss_type = handle->kinfo.rss_type; else rss_type = PKT_HASH_TYPE_NONE; skb_set_hash(skb, rss_hash, rss_type); } static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb) { struct net_device *netdev = ring->tqp->handle->kinfo.netdev; enum hns3_pkt_l2t_type l2_frame_type; u32 bd_base_info, l234info, ol_info; struct hns3_desc *desc; unsigned int len; int pre_ntc, ret; /* bdinfo handled below is only valid on the last BD of the * current packet, and ring->next_to_clean indicates the first * descriptor of next packet, so need - 1 below. */ pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) : (ring->desc_num - 1); desc = &ring->desc[pre_ntc]; bd_base_info = le32_to_cpu(desc->rx.bd_base_info); l234info = le32_to_cpu(desc->rx.l234_info); ol_info = le32_to_cpu(desc->rx.ol_info); /* Based on hw strategy, the tag offloaded will be stored at * ot_vlan_tag in two layer tag case, and stored at vlan_tag * in one layer tag case. */ if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) { u16 vlan_tag; if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag)) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); } if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) | BIT(HNS3_RXD_L2E_B))))) { u64_stats_update_begin(&ring->syncp); if (l234info & BIT(HNS3_RXD_L2E_B)) ring->stats.l2_err++; else ring->stats.err_pkt_len++; u64_stats_update_end(&ring->syncp); return -EFAULT; } len = skb->len; /* Do update ip stack process */ skb->protocol = eth_type_trans(skb, netdev); /* This is needed in order to enable forwarding support */ ret = hns3_set_gro_and_checksum(ring, skb, l234info, bd_base_info, ol_info); if (unlikely(ret)) { u64_stats_update_begin(&ring->syncp); ring->stats.rx_err_cnt++; u64_stats_update_end(&ring->syncp); return ret; } l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M, HNS3_RXD_DMAC_S); u64_stats_update_begin(&ring->syncp); ring->stats.rx_pkts++; ring->stats.rx_bytes += len; if (l2_frame_type == HNS3_L2_TYPE_MULTICAST) ring->stats.rx_multicast++; u64_stats_update_end(&ring->syncp); ring->tqp_vector->rx_group.total_bytes += len; hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash)); return 0; } static int hns3_handle_rx_bd(struct hns3_enet_ring *ring, struct sk_buff **out_skb) { struct sk_buff *skb = ring->skb; struct hns3_desc_cb *desc_cb; struct hns3_desc *desc; unsigned int length; u32 bd_base_info; int ret; desc = &ring->desc[ring->next_to_clean]; desc_cb = &ring->desc_cb[ring->next_to_clean]; prefetch(desc); length = le16_to_cpu(desc->rx.size); bd_base_info = le32_to_cpu(desc->rx.bd_base_info); /* Check valid BD */ if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B)))) return -ENXIO; if (!skb) ring->va = (unsigned char *)desc_cb->buf + desc_cb->page_offset; /* Prefetch first cache line of first page * Idea is to cache few bytes of the header of the packet. Our L1 Cache * line size is 64B so need to prefetch twice to make it 128B. But in * actual we can have greater size of caches with 128B Level 1 cache * lines. In such a case, single fetch would suffice to cache in the * relevant part of the header. */ prefetch(ring->va); #if L1_CACHE_BYTES < 128 prefetch(ring->va + L1_CACHE_BYTES); #endif if (!skb) { ret = hns3_alloc_skb(ring, length, ring->va); *out_skb = skb = ring->skb; if (ret < 0) /* alloc buffer fail */ return ret; if (ret > 0) { /* need add frag */ ret = hns3_add_frag(ring, desc, &skb, false); if (ret) return ret; /* As the head data may be changed when GRO enable, copy * the head data in after other data rx completed */ memcpy(skb->data, ring->va, ALIGN(ring->pull_len, sizeof(long))); } } else { ret = hns3_add_frag(ring, desc, &skb, true); if (ret) return ret; /* As the head data may be changed when GRO enable, copy * the head data in after other data rx completed */ memcpy(skb->data, ring->va, ALIGN(ring->pull_len, sizeof(long))); } ret = hns3_handle_bdinfo(ring, skb); if (unlikely(ret)) { dev_kfree_skb_any(skb); return ret; } skb_record_rx_queue(skb, ring->tqp->tqp_index); *out_skb = skb; return 0; } int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget, void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *)) { #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16 int unused_count = hns3_desc_unused(ring); struct sk_buff *skb = ring->skb; int recv_pkts = 0; int recv_bds = 0; int err, num; num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG); num -= unused_count; unused_count -= ring->pending_buf; if (num <= 0) goto out; rmb(); /* Make sure num taken effect before the other data is touched */ while (recv_pkts < budget && recv_bds < num) { /* Reuse or realloc buffers */ if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) { hns3_nic_alloc_rx_buffers(ring, unused_count); unused_count = hns3_desc_unused(ring) - ring->pending_buf; } /* Poll one pkt */ err = hns3_handle_rx_bd(ring, &skb); if (unlikely(!skb)) /* This fault cannot be repaired */ goto out; if (err == -ENXIO) { /* Do not get FE for the packet */ goto out; } else if (unlikely(err)) { /* Do jump the err */ recv_bds += ring->pending_buf; unused_count += ring->pending_buf; ring->skb = NULL; ring->pending_buf = 0; continue; } rx_fn(ring, skb); recv_bds += ring->pending_buf; unused_count += ring->pending_buf; ring->skb = NULL; ring->pending_buf = 0; recv_pkts++; } out: /* Make all data has been write before submit */ if (unused_count > 0) hns3_nic_alloc_rx_buffers(ring, unused_count); return recv_pkts; } static bool hns3_get_new_flow_lvl(struct hns3_enet_ring_group *ring_group) { #define HNS3_RX_LOW_BYTE_RATE 10000 #define HNS3_RX_MID_BYTE_RATE 20000 #define HNS3_RX_ULTRA_PACKET_RATE 40 enum hns3_flow_level_range new_flow_level; struct hns3_enet_tqp_vector *tqp_vector; int packets_per_msecs, bytes_per_msecs; u32 time_passed_ms; tqp_vector = ring_group->ring->tqp_vector; time_passed_ms = jiffies_to_msecs(jiffies - tqp_vector->last_jiffies); if (!time_passed_ms) return false; do_div(ring_group->total_packets, time_passed_ms); packets_per_msecs = ring_group->total_packets; do_div(ring_group->total_bytes, time_passed_ms); bytes_per_msecs = ring_group->total_bytes; new_flow_level = ring_group->coal.flow_level; /* Simple throttlerate management * 0-10MB/s lower (50000 ints/s) * 10-20MB/s middle (20000 ints/s) * 20-1249MB/s high (18000 ints/s) * > 40000pps ultra (8000 ints/s) */ switch (new_flow_level) { case HNS3_FLOW_LOW: if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE) new_flow_level = HNS3_FLOW_MID; break; case HNS3_FLOW_MID: if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE) new_flow_level = HNS3_FLOW_HIGH; else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE) new_flow_level = HNS3_FLOW_LOW; break; case HNS3_FLOW_HIGH: case HNS3_FLOW_ULTRA: default: if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE) new_flow_level = HNS3_FLOW_MID; break; } if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE && &tqp_vector->rx_group == ring_group) new_flow_level = HNS3_FLOW_ULTRA; ring_group->total_bytes = 0; ring_group->total_packets = 0; ring_group->coal.flow_level = new_flow_level; return true; } static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group) { struct hns3_enet_tqp_vector *tqp_vector; u16 new_int_gl; if (!ring_group->ring) return false; tqp_vector = ring_group->ring->tqp_vector; if (!tqp_vector->last_jiffies) return false; if (ring_group->total_packets == 0) { ring_group->coal.int_gl = HNS3_INT_GL_50K; ring_group->coal.flow_level = HNS3_FLOW_LOW; return true; } if (!hns3_get_new_flow_lvl(ring_group)) return false; new_int_gl = ring_group->coal.int_gl; switch (ring_group->coal.flow_level) { case HNS3_FLOW_LOW: new_int_gl = HNS3_INT_GL_50K; break; case HNS3_FLOW_MID: new_int_gl = HNS3_INT_GL_20K; break; case HNS3_FLOW_HIGH: new_int_gl = HNS3_INT_GL_18K; break; case HNS3_FLOW_ULTRA: new_int_gl = HNS3_INT_GL_8K; break; default: break; } if (new_int_gl != ring_group->coal.int_gl) { ring_group->coal.int_gl = new_int_gl; return true; } return false; } static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector) { struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group; struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group; bool rx_update, tx_update; /* update param every 1000ms */ if (time_before(jiffies, tqp_vector->last_jiffies + msecs_to_jiffies(1000))) return; if (rx_group->coal.gl_adapt_enable) { rx_update = hns3_get_new_int_gl(rx_group); if (rx_update) hns3_set_vector_coalesce_rx_gl(tqp_vector, rx_group->coal.int_gl); } if (tx_group->coal.gl_adapt_enable) { tx_update = hns3_get_new_int_gl(tx_group); if (tx_update) hns3_set_vector_coalesce_tx_gl(tqp_vector, tx_group->coal.int_gl); } tqp_vector->last_jiffies = jiffies; } static int hns3_nic_common_poll(struct napi_struct *napi, int budget) { struct hns3_nic_priv *priv = netdev_priv(napi->dev); struct hns3_enet_ring *ring; int rx_pkt_total = 0; struct hns3_enet_tqp_vector *tqp_vector = container_of(napi, struct hns3_enet_tqp_vector, napi); bool clean_complete = true; int rx_budget = budget; if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) { napi_complete(napi); return 0; } /* Since the actual Tx work is minimal, we can give the Tx a larger * budget and be more aggressive about cleaning up the Tx descriptors. */ hns3_for_each_ring(ring, tqp_vector->tx_group) hns3_clean_tx_ring(ring); /* make sure rx ring budget not smaller than 1 */ if (tqp_vector->num_tqps > 1) rx_budget = max(budget / tqp_vector->num_tqps, 1); hns3_for_each_ring(ring, tqp_vector->rx_group) { int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget, hns3_rx_skb); if (rx_cleaned >= rx_budget) clean_complete = false; rx_pkt_total += rx_cleaned; } tqp_vector->rx_group.total_packets += rx_pkt_total; if (!clean_complete) return budget; if (napi_complete(napi) && likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) { hns3_update_new_int_gl(tqp_vector); hns3_mask_vector_irq(tqp_vector, 1); } return rx_pkt_total; } static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector, struct hnae3_ring_chain_node *head) { struct pci_dev *pdev = tqp_vector->handle->pdev; struct hnae3_ring_chain_node *cur_chain = head; struct hnae3_ring_chain_node *chain; struct hns3_enet_ring *tx_ring; struct hns3_enet_ring *rx_ring; tx_ring = tqp_vector->tx_group.ring; if (tx_ring) { cur_chain->tqp_index = tx_ring->tqp->tqp_index; hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B, HNAE3_RING_TYPE_TX); hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M, HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX); cur_chain->next = NULL; while (tx_ring->next) { tx_ring = tx_ring->next; chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL); if (!chain) goto err_free_chain; cur_chain->next = chain; chain->tqp_index = tx_ring->tqp->tqp_index; hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B, HNAE3_RING_TYPE_TX); hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M, HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX); cur_chain = chain; } } rx_ring = tqp_vector->rx_group.ring; if (!tx_ring && rx_ring) { cur_chain->next = NULL; cur_chain->tqp_index = rx_ring->tqp->tqp_index; hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B, HNAE3_RING_TYPE_RX); hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M, HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX); rx_ring = rx_ring->next; } while (rx_ring) { chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL); if (!chain) goto err_free_chain; cur_chain->next = chain; chain->tqp_index = rx_ring->tqp->tqp_index; hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B, HNAE3_RING_TYPE_RX); hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M, HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX); cur_chain = chain; rx_ring = rx_ring->next; } return 0; err_free_chain: cur_chain = head->next; while (cur_chain) { chain = cur_chain->next; devm_kfree(&pdev->dev, cur_chain); cur_chain = chain; } head->next = NULL; return -ENOMEM; } static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector, struct hnae3_ring_chain_node *head) { struct pci_dev *pdev = tqp_vector->handle->pdev; struct hnae3_ring_chain_node *chain_tmp, *chain; chain = head->next; while (chain) { chain_tmp = chain->next; devm_kfree(&pdev->dev, chain); chain = chain_tmp; } } static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group, struct hns3_enet_ring *ring) { ring->next = group->ring; group->ring = ring; group->count++; } static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv) { struct pci_dev *pdev = priv->ae_handle->pdev; struct hns3_enet_tqp_vector *tqp_vector; int num_vectors = priv->vector_num; int numa_node; int vector_i; numa_node = dev_to_node(&pdev->dev); for (vector_i = 0; vector_i < num_vectors; vector_i++) { tqp_vector = &priv->tqp_vector[vector_i]; cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node), &tqp_vector->affinity_mask); } } static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv) { struct hnae3_ring_chain_node vector_ring_chain; struct hnae3_handle *h = priv->ae_handle; struct hns3_enet_tqp_vector *tqp_vector; int ret = 0; int i; hns3_nic_set_cpumask(priv); for (i = 0; i < priv->vector_num; i++) { tqp_vector = &priv->tqp_vector[i]; hns3_vector_gl_rl_init_hw(tqp_vector, priv); tqp_vector->num_tqps = 0; } for (i = 0; i < h->kinfo.num_tqps; i++) { u16 vector_i = i % priv->vector_num; u16 tqp_num = h->kinfo.num_tqps; tqp_vector = &priv->tqp_vector[vector_i]; hns3_add_ring_to_group(&tqp_vector->tx_group, &priv->ring[i]); hns3_add_ring_to_group(&tqp_vector->rx_group, &priv->ring[i + tqp_num]); priv->ring[i].tqp_vector = tqp_vector; priv->ring[i + tqp_num].tqp_vector = tqp_vector; tqp_vector->num_tqps++; } for (i = 0; i < priv->vector_num; i++) { tqp_vector = &priv->tqp_vector[i]; tqp_vector->rx_group.total_bytes = 0; tqp_vector->rx_group.total_packets = 0; tqp_vector->tx_group.total_bytes = 0; tqp_vector->tx_group.total_packets = 0; tqp_vector->handle = h; ret = hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain); if (ret) goto map_ring_fail; ret = h->ae_algo->ops->map_ring_to_vector(h, tqp_vector->vector_irq, &vector_ring_chain); hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain); if (ret) goto map_ring_fail; netif_napi_add(priv->netdev, &tqp_vector->napi, hns3_nic_common_poll, NAPI_POLL_WEIGHT); } return 0; map_ring_fail: while (i--) netif_napi_del(&priv->tqp_vector[i].napi); return ret; } static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv) { #define HNS3_VECTOR_PF_MAX_NUM 64 struct hnae3_handle *h = priv->ae_handle; struct hns3_enet_tqp_vector *tqp_vector; struct hnae3_vector_info *vector; struct pci_dev *pdev = h->pdev; u16 tqp_num = h->kinfo.num_tqps; u16 vector_num; int ret = 0; u16 i; /* RSS size, cpu online and vector_num should be the same */ /* Should consider 2p/4p later */ vector_num = min_t(u16, num_online_cpus(), tqp_num); vector_num = min_t(u16, vector_num, HNS3_VECTOR_PF_MAX_NUM); vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector), GFP_KERNEL); if (!vector) return -ENOMEM; /* save the actual available vector number */ vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector); priv->vector_num = vector_num; priv->tqp_vector = (struct hns3_enet_tqp_vector *) devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector), GFP_KERNEL); if (!priv->tqp_vector) { ret = -ENOMEM; goto out; } for (i = 0; i < priv->vector_num; i++) { tqp_vector = &priv->tqp_vector[i]; tqp_vector->idx = i; tqp_vector->mask_addr = vector[i].io_addr; tqp_vector->vector_irq = vector[i].vector; hns3_vector_gl_rl_init(tqp_vector, priv); } out: devm_kfree(&pdev->dev, vector); return ret; } static void hns3_clear_ring_group(struct hns3_enet_ring_group *group) { group->ring = NULL; group->count = 0; } static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv) { struct hnae3_ring_chain_node vector_ring_chain; struct hnae3_handle *h = priv->ae_handle; struct hns3_enet_tqp_vector *tqp_vector; int i; for (i = 0; i < priv->vector_num; i++) { tqp_vector = &priv->tqp_vector[i]; if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring) continue; hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain); h->ae_algo->ops->unmap_ring_from_vector(h, tqp_vector->vector_irq, &vector_ring_chain); hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain); if (tqp_vector->irq_init_flag == HNS3_VECTOR_INITED) { irq_set_affinity_hint(tqp_vector->vector_irq, NULL); free_irq(tqp_vector->vector_irq, tqp_vector); tqp_vector->irq_init_flag = HNS3_VECTOR_NOT_INITED; } hns3_clear_ring_group(&tqp_vector->rx_group); hns3_clear_ring_group(&tqp_vector->tx_group); netif_napi_del(&priv->tqp_vector[i].napi); } } static int hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv) { struct hnae3_handle *h = priv->ae_handle; struct pci_dev *pdev = h->pdev; int i, ret; for (i = 0; i < priv->vector_num; i++) { struct hns3_enet_tqp_vector *tqp_vector; tqp_vector = &priv->tqp_vector[i]; ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq); if (ret) return ret; } devm_kfree(&pdev->dev, priv->tqp_vector); return 0; } static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv, unsigned int ring_type) { int queue_num = priv->ae_handle->kinfo.num_tqps; struct hns3_enet_ring *ring; int desc_num; if (ring_type == HNAE3_RING_TYPE_TX) { ring = &priv->ring[q->tqp_index]; desc_num = priv->ae_handle->kinfo.num_tx_desc; ring->queue_index = q->tqp_index; ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET; } else { ring = &priv->ring[q->tqp_index + queue_num]; desc_num = priv->ae_handle->kinfo.num_rx_desc; ring->queue_index = q->tqp_index; ring->io_base = q->io_base; } hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type); ring->tqp = q; ring->desc = NULL; ring->desc_cb = NULL; ring->dev = priv->dev; ring->desc_dma_addr = 0; ring->buf_size = q->buf_size; ring->desc_num = desc_num; ring->next_to_use = 0; ring->next_to_clean = 0; } static void hns3_queue_to_ring(struct hnae3_queue *tqp, struct hns3_nic_priv *priv) { hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX); hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX); } static int hns3_get_ring_config(struct hns3_nic_priv *priv) { struct hnae3_handle *h = priv->ae_handle; struct pci_dev *pdev = h->pdev; int i; priv->ring = devm_kzalloc(&pdev->dev, array3_size(h->kinfo.num_tqps, sizeof(*priv->ring), 2), GFP_KERNEL); if (!priv->ring) return -ENOMEM; for (i = 0; i < h->kinfo.num_tqps; i++) hns3_queue_to_ring(h->kinfo.tqp[i], priv); return 0; } static void hns3_put_ring_config(struct hns3_nic_priv *priv) { if (!priv->ring) return; devm_kfree(priv->dev, priv->ring); priv->ring = NULL; } static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring) { int ret; if (ring->desc_num <= 0 || ring->buf_size <= 0) return -EINVAL; ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num, sizeof(ring->desc_cb[0]), GFP_KERNEL); if (!ring->desc_cb) { ret = -ENOMEM; goto out; } ret = hns3_alloc_desc(ring); if (ret) goto out_with_desc_cb; if (!HNAE3_IS_TX_RING(ring)) { ret = hns3_alloc_ring_buffers(ring); if (ret) goto out_with_desc; } return 0; out_with_desc: hns3_free_desc(ring); out_with_desc_cb: devm_kfree(ring_to_dev(ring), ring->desc_cb); ring->desc_cb = NULL; out: return ret; } void hns3_fini_ring(struct hns3_enet_ring *ring) { hns3_free_desc(ring); devm_kfree(ring_to_dev(ring), ring->desc_cb); ring->desc_cb = NULL; ring->next_to_clean = 0; ring->next_to_use = 0; ring->pending_buf = 0; if (ring->skb) { dev_kfree_skb_any(ring->skb); ring->skb = NULL; } } static int hns3_buf_size2type(u32 buf_size) { int bd_size_type; switch (buf_size) { case 512: bd_size_type = HNS3_BD_SIZE_512_TYPE; break; case 1024: bd_size_type = HNS3_BD_SIZE_1024_TYPE; break; case 2048: bd_size_type = HNS3_BD_SIZE_2048_TYPE; break; case 4096: bd_size_type = HNS3_BD_SIZE_4096_TYPE; break; default: bd_size_type = HNS3_BD_SIZE_2048_TYPE; } return bd_size_type; } static void hns3_init_ring_hw(struct hns3_enet_ring *ring) { dma_addr_t dma = ring->desc_dma_addr; struct hnae3_queue *q = ring->tqp; if (!HNAE3_IS_TX_RING(ring)) { hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma); hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG, (u32)((dma >> 31) >> 1)); hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG, hns3_buf_size2type(ring->buf_size)); hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG, ring->desc_num / 8 - 1); } else { hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG, (u32)dma); hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG, (u32)((dma >> 31) >> 1)); hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG, ring->desc_num / 8 - 1); } } static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv) { struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo; int i; for (i = 0; i < HNAE3_MAX_TC; i++) { struct hnae3_tc_info *tc_info = &kinfo->tc_info[i]; int j; if (!tc_info->enable) continue; for (j = 0; j < tc_info->tqp_count; j++) { struct hnae3_queue *q; q = priv->ring[tc_info->tqp_offset + j].tqp; hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG, tc_info->tc); } } } int hns3_init_all_ring(struct hns3_nic_priv *priv) { struct hnae3_handle *h = priv->ae_handle; int ring_num = h->kinfo.num_tqps * 2; int i, j; int ret; for (i = 0; i < ring_num; i++) { ret = hns3_alloc_ring_memory(&priv->ring[i]); if (ret) { dev_err(priv->dev, "Alloc ring memory fail! ret=%d\n", ret); goto out_when_alloc_ring_memory; } u64_stats_init(&priv->ring[i].syncp); } return 0; out_when_alloc_ring_memory: for (j = i - 1; j >= 0; j--) hns3_fini_ring(&priv->ring[j]); return -ENOMEM; } int hns3_uninit_all_ring(struct hns3_nic_priv *priv) { struct hnae3_handle *h = priv->ae_handle; int i; for (i = 0; i < h->kinfo.num_tqps; i++) { hns3_fini_ring(&priv->ring[i]); hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]); } return 0; } /* Set mac addr if it is configured. or leave it to the AE driver */ static int hns3_init_mac_addr(struct net_device *netdev) { struct hns3_nic_priv *priv = netdev_priv(netdev); struct hnae3_handle *h = priv->ae_handle; u8 mac_addr_temp[ETH_ALEN]; int ret = 0; if (h->ae_algo->ops->get_mac_addr) h->ae_algo->ops->get_mac_addr(h, mac_addr_temp); /* Check if the MAC address is valid, if not get a random one */ if (!is_valid_ether_addr(mac_addr_temp)) { eth_hw_addr_random(netdev); dev_warn(priv->dev, "using random MAC address %pM\n", netdev->dev_addr); } else { ether_addr_copy(netdev->dev_addr, mac_addr_temp); ether_addr_copy(netdev->perm_addr, mac_addr_temp); } if (h->ae_algo->ops->set_mac_addr) ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true); return ret; } static int hns3_init_phy(struct net_device *netdev) { struct hnae3_handle *h = hns3_get_handle(netdev); int ret = 0; if (h->ae_algo->ops->mac_connect_phy) ret = h->ae_algo->ops->mac_connect_phy(h); return ret; } static void hns3_uninit_phy(struct net_device *netdev) { struct hnae3_handle *h = hns3_get_handle(netdev); if (h->ae_algo->ops->mac_disconnect_phy) h->ae_algo->ops->mac_disconnect_phy(h); } static int hns3_restore_fd_rules(struct net_device *netdev) { struct hnae3_handle *h = hns3_get_handle(netdev); int ret = 0; if (h->ae_algo->ops->restore_fd_rules) ret = h->ae_algo->ops->restore_fd_rules(h); return ret; } static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list) { struct hnae3_handle *h = hns3_get_handle(netdev); if (h->ae_algo->ops->del_all_fd_entries) h->ae_algo->ops->del_all_fd_entries(h, clear_list); } static int hns3_client_start(struct hnae3_handle *handle) { if (!handle->ae_algo->ops->client_start) return 0; return handle->ae_algo->ops->client_start(handle); } static void hns3_client_stop(struct hnae3_handle *handle) { if (!handle->ae_algo->ops->client_stop) return; handle->ae_algo->ops->client_stop(handle); } static void hns3_info_show(struct hns3_nic_priv *priv) { struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo; dev_info(priv->dev, "MAC address: %pM\n", priv->netdev->dev_addr); dev_info(priv->dev, "Task queue pairs numbers: %d\n", kinfo->num_tqps); dev_info(priv->dev, "RSS size: %d\n", kinfo->rss_size); dev_info(priv->dev, "Allocated RSS size: %d\n", kinfo->req_rss_size); dev_info(priv->dev, "RX buffer length: %d\n", kinfo->rx_buf_len); dev_info(priv->dev, "Desc num per TX queue: %d\n", kinfo->num_tx_desc); dev_info(priv->dev, "Desc num per RX queue: %d\n", kinfo->num_rx_desc); dev_info(priv->dev, "Total number of enabled TCs: %d\n", kinfo->num_tc); dev_info(priv->dev, "Max mtu size: %d\n", priv->netdev->max_mtu); } static int hns3_client_init(struct hnae3_handle *handle) { struct pci_dev *pdev = handle->pdev; u16 alloc_tqps, max_rss_size; struct hns3_nic_priv *priv; struct net_device *netdev; int ret; handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps, &max_rss_size); netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps); if (!netdev) return -ENOMEM; priv = netdev_priv(netdev); priv->dev = &pdev->dev; priv->netdev = netdev; priv->ae_handle = handle; priv->tx_timeout_count = 0; set_bit(HNS3_NIC_STATE_DOWN, &priv->state); handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL); handle->kinfo.netdev = netdev; handle->priv = (void *)priv; hns3_init_mac_addr(netdev); hns3_set_default_feature(netdev); netdev->watchdog_timeo = HNS3_TX_TIMEOUT; netdev->priv_flags |= IFF_UNICAST_FLT; netdev->netdev_ops = &hns3_nic_netdev_ops; SET_NETDEV_DEV(netdev, &pdev->dev); hns3_ethtool_set_ops(netdev); /* Carrier off reporting is important to ethtool even BEFORE open */ netif_carrier_off(netdev); ret = hns3_get_ring_config(priv); if (ret) { ret = -ENOMEM; goto out_get_ring_cfg; } ret = hns3_nic_alloc_vector_data(priv); if (ret) { ret = -ENOMEM; goto out_alloc_vector_data; } ret = hns3_nic_init_vector_data(priv); if (ret) { ret = -ENOMEM; goto out_init_vector_data; } ret = hns3_init_all_ring(priv); if (ret) { ret = -ENOMEM; goto out_init_ring; } ret = hns3_init_phy(netdev); if (ret) goto out_init_phy; ret = register_netdev(netdev); if (ret) { dev_err(priv->dev, "probe register netdev fail!\n"); goto out_reg_netdev_fail; } ret = hns3_client_start(handle); if (ret) { dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret); goto out_client_start; } hns3_dcbnl_setup(handle); hns3_dbg_init(handle); /* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */ netdev->max_mtu = HNS3_MAX_MTU; set_bit(HNS3_NIC_STATE_INITED, &priv->state); if (netif_msg_drv(handle)) hns3_info_show(priv); return ret; out_client_start: unregister_netdev(netdev); out_reg_netdev_fail: hns3_uninit_phy(netdev); out_init_phy: hns3_uninit_all_ring(priv); out_init_ring: hns3_nic_uninit_vector_data(priv); out_init_vector_data: hns3_nic_dealloc_vector_data(priv); out_alloc_vector_data: priv->ring = NULL; out_get_ring_cfg: priv->ae_handle = NULL; free_netdev(netdev); return ret; } static void hns3_client_uninit(struct hnae3_handle *handle, bool reset) { struct net_device *netdev = handle->kinfo.netdev; struct hns3_nic_priv *priv = netdev_priv(netdev); int ret; hns3_remove_hw_addr(netdev); if (netdev->reg_state != NETREG_UNINITIALIZED) unregister_netdev(netdev); hns3_client_stop(handle); hns3_uninit_phy(netdev); if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) { netdev_warn(netdev, "already uninitialized\n"); goto out_netdev_free; } hns3_del_all_fd_rules(netdev, true); hns3_clear_all_ring(handle, true); hns3_nic_uninit_vector_data(priv); ret = hns3_nic_dealloc_vector_data(priv); if (ret) netdev_err(netdev, "dealloc vector error\n"); ret = hns3_uninit_all_ring(priv); if (ret) netdev_err(netdev, "uninit ring error\n"); hns3_put_ring_config(priv); hns3_dbg_uninit(handle); out_netdev_free: free_netdev(netdev); } static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup) { struct net_device *netdev = handle->kinfo.netdev; if (!netdev) return; if (linkup) { netif_carrier_on(netdev); netif_tx_wake_all_queues(netdev); if (netif_msg_link(handle)) netdev_info(netdev, "link up\n"); } else { netif_carrier_off(netdev); netif_tx_stop_all_queues(netdev); if (netif_msg_link(handle)) netdev_info(netdev, "link down\n"); } } static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc) { struct hnae3_knic_private_info *kinfo = &handle->kinfo; struct net_device *ndev = kinfo->netdev; if (tc > HNAE3_MAX_TC) return -EINVAL; if (!ndev) return -ENODEV; return hns3_nic_set_real_num_queue(ndev); } static int hns3_recover_hw_addr(struct net_device *ndev) { struct netdev_hw_addr_list *list; struct netdev_hw_addr *ha, *tmp; int ret = 0; netif_addr_lock_bh(ndev); /* go through and sync uc_addr entries to the device */ list = &ndev->uc; list_for_each_entry_safe(ha, tmp, &list->list, list) { ret = hns3_nic_uc_sync(ndev, ha->addr); if (ret) goto out; } /* go through and sync mc_addr entries to the device */ list = &ndev->mc; list_for_each_entry_safe(ha, tmp, &list->list, list) { ret = hns3_nic_mc_sync(ndev, ha->addr); if (ret) goto out; } out: netif_addr_unlock_bh(ndev); return ret; } static void hns3_remove_hw_addr(struct net_device *netdev) { struct netdev_hw_addr_list *list; struct netdev_hw_addr *ha, *tmp; hns3_nic_uc_unsync(netdev, netdev->dev_addr); netif_addr_lock_bh(netdev); /* go through and unsync uc_addr entries to the device */ list = &netdev->uc; list_for_each_entry_safe(ha, tmp, &list->list, list) hns3_nic_uc_unsync(netdev, ha->addr); /* go through and unsync mc_addr entries to the device */ list = &netdev->mc; list_for_each_entry_safe(ha, tmp, &list->list, list) if (ha->refcount > 1) hns3_nic_mc_unsync(netdev, ha->addr); netif_addr_unlock_bh(netdev); } static void hns3_clear_tx_ring(struct hns3_enet_ring *ring) { while (ring->next_to_clean != ring->next_to_use) { ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0; hns3_free_buffer_detach(ring, ring->next_to_clean); ring_ptr_move_fw(ring, next_to_clean); } } static int hns3_clear_rx_ring(struct hns3_enet_ring *ring) { struct hns3_desc_cb res_cbs; int ret; while (ring->next_to_use != ring->next_to_clean) { /* When a buffer is not reused, it's memory has been * freed in hns3_handle_rx_bd or will be freed by * stack, so we need to replace the buffer here. */ if (!ring->desc_cb[ring->next_to_use].reuse_flag) { ret = hns3_reserve_buffer_map(ring, &res_cbs); if (ret) { u64_stats_update_begin(&ring->syncp); ring->stats.sw_err_cnt++; u64_stats_update_end(&ring->syncp); /* if alloc new buffer fail, exit directly * and reclear in up flow. */ netdev_warn(ring->tqp->handle->kinfo.netdev, "reserve buffer map failed, ret = %d\n", ret); return ret; } hns3_replace_buffer(ring, ring->next_to_use, &res_cbs); } ring_ptr_move_fw(ring, next_to_use); } /* Free the pending skb in rx ring */ if (ring->skb) { dev_kfree_skb_any(ring->skb); ring->skb = NULL; ring->pending_buf = 0; } return 0; } static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring) { while (ring->next_to_use != ring->next_to_clean) { /* When a buffer is not reused, it's memory has been * freed in hns3_handle_rx_bd or will be freed by * stack, so only need to unmap the buffer here. */ if (!ring->desc_cb[ring->next_to_use].reuse_flag) { hns3_unmap_buffer(ring, &ring->desc_cb[ring->next_to_use]); ring->desc_cb[ring->next_to_use].dma = 0; } ring_ptr_move_fw(ring, next_to_use); } } static void hns3_clear_all_ring(struct hnae3_handle *h, bool force) { struct net_device *ndev = h->kinfo.netdev; struct hns3_nic_priv *priv = netdev_priv(ndev); u32 i; for (i = 0; i < h->kinfo.num_tqps; i++) { struct hns3_enet_ring *ring; ring = &priv->ring[i]; hns3_clear_tx_ring(ring); ring = &priv->ring[i + h->kinfo.num_tqps]; /* Continue to clear other rings even if clearing some * rings failed. */ if (force) hns3_force_clear_rx_ring(ring); else hns3_clear_rx_ring(ring); } } int hns3_nic_reset_all_ring(struct hnae3_handle *h) { struct net_device *ndev = h->kinfo.netdev; struct hns3_nic_priv *priv = netdev_priv(ndev); struct hns3_enet_ring *rx_ring; int i, j; int ret; for (i = 0; i < h->kinfo.num_tqps; i++) { ret = h->ae_algo->ops->reset_queue(h, i); if (ret) return ret; hns3_init_ring_hw(&priv->ring[i]); /* We need to clear tx ring here because self test will * use the ring and will not run down before up */ hns3_clear_tx_ring(&priv->ring[i]); priv->ring[i].next_to_clean = 0; priv->ring[i].next_to_use = 0; rx_ring = &priv->ring[i + h->kinfo.num_tqps]; hns3_init_ring_hw(rx_ring); ret = hns3_clear_rx_ring(rx_ring); if (ret) return ret; /* We can not know the hardware head and tail when this * function is called in reset flow, so we reuse all desc. */ for (j = 0; j < rx_ring->desc_num; j++) hns3_reuse_buffer(rx_ring, j); rx_ring->next_to_clean = 0; rx_ring->next_to_use = 0; } hns3_init_tx_ring_tc(priv); return 0; } static void hns3_store_coal(struct hns3_nic_priv *priv) { /* ethtool only support setting and querying one coal * configuration for now, so save the vector 0' coal * configuration here in order to restore it. */ memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal, sizeof(struct hns3_enet_coalesce)); memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal, sizeof(struct hns3_enet_coalesce)); } static void hns3_restore_coal(struct hns3_nic_priv *priv) { u16 vector_num = priv->vector_num; int i; for (i = 0; i < vector_num; i++) { memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal, sizeof(struct hns3_enet_coalesce)); memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal, sizeof(struct hns3_enet_coalesce)); } } static int hns3_reset_notify_down_enet(struct hnae3_handle *handle) { struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev); struct hnae3_knic_private_info *kinfo = &handle->kinfo; struct net_device *ndev = kinfo->netdev; struct hns3_nic_priv *priv = netdev_priv(ndev); if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state)) return 0; /* it is cumbersome for hardware to pick-and-choose entries for deletion * from table space. Hence, for function reset software intervention is * required to delete the entries */ if (hns3_dev_ongoing_func_reset(ae_dev)) { hns3_remove_hw_addr(ndev); hns3_del_all_fd_rules(ndev, false); } if (!netif_running(ndev)) return 0; return hns3_nic_net_stop(ndev); } static int hns3_reset_notify_up_enet(struct hnae3_handle *handle) { struct hnae3_knic_private_info *kinfo = &handle->kinfo; struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev); int ret = 0; clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state); if (netif_running(kinfo->netdev)) { ret = hns3_nic_net_open(kinfo->netdev); if (ret) { set_bit(HNS3_NIC_STATE_RESETTING, &priv->state); netdev_err(kinfo->netdev, "net up fail, ret=%d!\n", ret); return ret; } } return ret; } static int hns3_reset_notify_init_enet(struct hnae3_handle *handle) { struct net_device *netdev = handle->kinfo.netdev; struct hns3_nic_priv *priv = netdev_priv(netdev); int ret; /* Carrier off reporting is important to ethtool even BEFORE open */ netif_carrier_off(netdev); ret = hns3_get_ring_config(priv); if (ret) return ret; ret = hns3_nic_alloc_vector_data(priv); if (ret) goto err_put_ring; hns3_restore_coal(priv); ret = hns3_nic_init_vector_data(priv); if (ret) goto err_dealloc_vector; ret = hns3_init_all_ring(priv); if (ret) goto err_uninit_vector; ret = hns3_client_start(handle); if (ret) { dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret); goto err_uninit_ring; } set_bit(HNS3_NIC_STATE_INITED, &priv->state); return ret; err_uninit_ring: hns3_uninit_all_ring(priv); err_uninit_vector: hns3_nic_uninit_vector_data(priv); err_dealloc_vector: hns3_nic_dealloc_vector_data(priv); err_put_ring: hns3_put_ring_config(priv); return ret; } static int hns3_reset_notify_restore_enet(struct hnae3_handle *handle) { struct net_device *netdev = handle->kinfo.netdev; bool vlan_filter_enable; int ret; ret = hns3_init_mac_addr(netdev); if (ret) return ret; ret = hns3_recover_hw_addr(netdev); if (ret) return ret; ret = hns3_update_promisc_mode(netdev, handle->netdev_flags); if (ret) return ret; vlan_filter_enable = netdev->flags & IFF_PROMISC ? false : true; hns3_enable_vlan_filter(netdev, vlan_filter_enable); if (handle->ae_algo->ops->restore_vlan_table) handle->ae_algo->ops->restore_vlan_table(handle); return hns3_restore_fd_rules(netdev); } static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle) { struct net_device *netdev = handle->kinfo.netdev; struct hns3_nic_priv *priv = netdev_priv(netdev); int ret; if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) { netdev_warn(netdev, "already uninitialized\n"); return 0; } hns3_clear_all_ring(handle, true); hns3_reset_tx_queue(priv->ae_handle); hns3_nic_uninit_vector_data(priv); hns3_store_coal(priv); ret = hns3_nic_dealloc_vector_data(priv); if (ret) netdev_err(netdev, "dealloc vector error\n"); ret = hns3_uninit_all_ring(priv); if (ret) netdev_err(netdev, "uninit ring error\n"); hns3_put_ring_config(priv); return ret; } static int hns3_reset_notify(struct hnae3_handle *handle, enum hnae3_reset_notify_type type) { int ret = 0; switch (type) { case HNAE3_UP_CLIENT: ret = hns3_reset_notify_up_enet(handle); break; case HNAE3_DOWN_CLIENT: ret = hns3_reset_notify_down_enet(handle); break; case HNAE3_INIT_CLIENT: ret = hns3_reset_notify_init_enet(handle); break; case HNAE3_UNINIT_CLIENT: ret = hns3_reset_notify_uninit_enet(handle); break; case HNAE3_RESTORE_CLIENT: ret = hns3_reset_notify_restore_enet(handle); break; default: break; } return ret; } static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num, bool rxfh_configured) { int ret; ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num, rxfh_configured); if (ret) { dev_err(&handle->pdev->dev, "Change tqp num(%u) fail.\n", new_tqp_num); return ret; } ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT); if (ret) return ret; ret = hns3_reset_notify(handle, HNAE3_UP_CLIENT); if (ret) hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT); return ret; } int hns3_set_channels(struct net_device *netdev, struct ethtool_channels *ch) { struct hnae3_handle *h = hns3_get_handle(netdev); struct hnae3_knic_private_info *kinfo = &h->kinfo; bool rxfh_configured = netif_is_rxfh_configured(netdev); u32 new_tqp_num = ch->combined_count; u16 org_tqp_num; int ret; if (hns3_nic_resetting(netdev)) return -EBUSY; if (ch->rx_count || ch->tx_count) return -EINVAL; if (new_tqp_num > hns3_get_max_available_channels(h) || new_tqp_num < 1) { dev_err(&netdev->dev, "Change tqps fail, the tqp range is from 1 to %d", hns3_get_max_available_channels(h)); return -EINVAL; } if (kinfo->rss_size == new_tqp_num) return 0; netif_dbg(h, drv, netdev, "set channels: tqp_num=%u, rxfh=%d\n", new_tqp_num, rxfh_configured); ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT); if (ret) return ret; ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT); if (ret) return ret; org_tqp_num = h->kinfo.num_tqps; ret = hns3_change_channels(h, new_tqp_num, rxfh_configured); if (ret) { int ret1; netdev_warn(netdev, "Change channels fail, revert to old value\n"); ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured); if (ret1) { netdev_err(netdev, "revert to old channel fail\n"); return ret1; } return ret; } return 0; } static const struct hns3_hw_error_info hns3_hw_err[] = { { .type = HNAE3_PPU_POISON_ERROR, .msg = "PPU poison" }, { .type = HNAE3_CMDQ_ECC_ERROR, .msg = "IMP CMDQ error" }, { .type = HNAE3_IMP_RD_POISON_ERROR, .msg = "IMP RD poison" }, }; static void hns3_process_hw_error(struct hnae3_handle *handle, enum hnae3_hw_error_type type) { int i; for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) { if (hns3_hw_err[i].type == type) { dev_err(&handle->pdev->dev, "Detected %s!\n", hns3_hw_err[i].msg); break; } } } static const struct hnae3_client_ops client_ops = { .init_instance = hns3_client_init, .uninit_instance = hns3_client_uninit, .link_status_change = hns3_link_status_change, .setup_tc = hns3_client_setup_tc, .reset_notify = hns3_reset_notify, .process_hw_error = hns3_process_hw_error, }; /* hns3_init_module - Driver registration routine * hns3_init_module is the first routine called when the driver is * loaded. All it does is register with the PCI subsystem. */ static int __init hns3_init_module(void) { int ret; pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string); pr_info("%s: %s\n", hns3_driver_name, hns3_copyright); client.type = HNAE3_CLIENT_KNIC; snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH - 1, "%s", hns3_driver_name); client.ops = &client_ops; INIT_LIST_HEAD(&client.node); hns3_dbg_register_debugfs(hns3_driver_name); ret = hnae3_register_client(&client); if (ret) goto err_reg_client; ret = pci_register_driver(&hns3_driver); if (ret) goto err_reg_driver; return ret; err_reg_driver: hnae3_unregister_client(&client); err_reg_client: hns3_dbg_unregister_debugfs(); return ret; } module_init(hns3_init_module); /* hns3_exit_module - Driver exit cleanup routine * hns3_exit_module is called just before the driver is removed * from memory. */ static void __exit hns3_exit_module(void) { pci_unregister_driver(&hns3_driver); hnae3_unregister_client(&client); hns3_dbg_unregister_debugfs(); } module_exit(hns3_exit_module); MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver"); MODULE_AUTHOR("Huawei Tech. Co., Ltd."); MODULE_LICENSE("GPL"); MODULE_ALIAS("pci:hns-nic"); MODULE_VERSION(HNS3_MOD_VERSION);