/* * Copyright (C) 2009, 2010 Red Hat Inc, Steven Rostedt * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License (not later!) * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * The parts for function graph printing was taken and modified from the * Linux Kernel that were written by * - Copyright (C) 2009 Frederic Weisbecker, * Frederic Weisbecker gave his permission to relicense the code to * the Lesser General Public License. */ #include #include #include #include #include #include #include #include #include #include "event-parse.h" #include "event-utils.h" static const char *input_buf; static unsigned long long input_buf_ptr; static unsigned long long input_buf_siz; static int is_flag_field; static int is_symbolic_field; static int show_warning = 1; #define do_warning(fmt, ...) \ do { \ if (show_warning) \ warning(fmt, ##__VA_ARGS__); \ } while (0) #define do_warning_event(event, fmt, ...) \ do { \ if (!show_warning) \ continue; \ \ if (event) \ warning("[%s:%s] " fmt, event->system, \ event->name, ##__VA_ARGS__); \ else \ warning(fmt, ##__VA_ARGS__); \ } while (0) static void init_input_buf(const char *buf, unsigned long long size) { input_buf = buf; input_buf_siz = size; input_buf_ptr = 0; } const char *pevent_get_input_buf(void) { return input_buf; } unsigned long long pevent_get_input_buf_ptr(void) { return input_buf_ptr; } struct event_handler { struct event_handler *next; int id; const char *sys_name; const char *event_name; pevent_event_handler_func func; void *context; }; struct pevent_func_params { struct pevent_func_params *next; enum pevent_func_arg_type type; }; struct pevent_function_handler { struct pevent_function_handler *next; enum pevent_func_arg_type ret_type; char *name; pevent_func_handler func; struct pevent_func_params *params; int nr_args; }; static unsigned long long process_defined_func(struct trace_seq *s, void *data, int size, struct event_format *event, struct print_arg *arg); static void free_func_handle(struct pevent_function_handler *func); /** * pevent_buffer_init - init buffer for parsing * @buf: buffer to parse * @size: the size of the buffer * * For use with pevent_read_token(), this initializes the internal * buffer that pevent_read_token() will parse. */ void pevent_buffer_init(const char *buf, unsigned long long size) { init_input_buf(buf, size); } void breakpoint(void) { static int x; x++; } struct print_arg *alloc_arg(void) { return calloc(1, sizeof(struct print_arg)); } struct cmdline { char *comm; int pid; }; static int cmdline_cmp(const void *a, const void *b) { const struct cmdline *ca = a; const struct cmdline *cb = b; if (ca->pid < cb->pid) return -1; if (ca->pid > cb->pid) return 1; return 0; } struct cmdline_list { struct cmdline_list *next; char *comm; int pid; }; static int cmdline_init(struct pevent *pevent) { struct cmdline_list *cmdlist = pevent->cmdlist; struct cmdline_list *item; struct cmdline *cmdlines; int i; cmdlines = malloc(sizeof(*cmdlines) * pevent->cmdline_count); if (!cmdlines) return -1; i = 0; while (cmdlist) { cmdlines[i].pid = cmdlist->pid; cmdlines[i].comm = cmdlist->comm; i++; item = cmdlist; cmdlist = cmdlist->next; free(item); } qsort(cmdlines, pevent->cmdline_count, sizeof(*cmdlines), cmdline_cmp); pevent->cmdlines = cmdlines; pevent->cmdlist = NULL; return 0; } static const char *find_cmdline(struct pevent *pevent, int pid) { const struct cmdline *comm; struct cmdline key; if (!pid) return ""; if (!pevent->cmdlines && cmdline_init(pevent)) return ""; key.pid = pid; comm = bsearch(&key, pevent->cmdlines, pevent->cmdline_count, sizeof(*pevent->cmdlines), cmdline_cmp); if (comm) return comm->comm; return "<...>"; } /** * pevent_pid_is_registered - return if a pid has a cmdline registered * @pevent: handle for the pevent * @pid: The pid to check if it has a cmdline registered with. * * Returns 1 if the pid has a cmdline mapped to it * 0 otherwise. */ int pevent_pid_is_registered(struct pevent *pevent, int pid) { const struct cmdline *comm; struct cmdline key; if (!pid) return 1; if (!pevent->cmdlines && cmdline_init(pevent)) return 0; key.pid = pid; comm = bsearch(&key, pevent->cmdlines, pevent->cmdline_count, sizeof(*pevent->cmdlines), cmdline_cmp); if (comm) return 1; return 0; } /* * If the command lines have been converted to an array, then * we must add this pid. This is much slower than when cmdlines * are added before the array is initialized. */ static int add_new_comm(struct pevent *pevent, const char *comm, int pid) { struct cmdline *cmdlines = pevent->cmdlines; const struct cmdline *cmdline; struct cmdline key; if (!pid) return 0; /* avoid duplicates */ key.pid = pid; cmdline = bsearch(&key, pevent->cmdlines, pevent->cmdline_count, sizeof(*pevent->cmdlines), cmdline_cmp); if (cmdline) { errno = EEXIST; return -1; } cmdlines = realloc(cmdlines, sizeof(*cmdlines) * (pevent->cmdline_count + 1)); if (!cmdlines) { errno = ENOMEM; return -1; } cmdlines[pevent->cmdline_count].comm = strdup(comm); if (!cmdlines[pevent->cmdline_count].comm) { free(cmdlines); errno = ENOMEM; return -1; } cmdlines[pevent->cmdline_count].pid = pid; if (cmdlines[pevent->cmdline_count].comm) pevent->cmdline_count++; qsort(cmdlines, pevent->cmdline_count, sizeof(*cmdlines), cmdline_cmp); pevent->cmdlines = cmdlines; return 0; } /** * pevent_register_comm - register a pid / comm mapping * @pevent: handle for the pevent * @comm: the command line to register * @pid: the pid to map the command line to * * This adds a mapping to search for command line names with * a given pid. The comm is duplicated. */ int pevent_register_comm(struct pevent *pevent, const char *comm, int pid) { struct cmdline_list *item; if (pevent->cmdlines) return add_new_comm(pevent, comm, pid); item = malloc(sizeof(*item)); if (!item) return -1; if (comm) item->comm = strdup(comm); else item->comm = strdup("<...>"); if (!item->comm) { free(item); return -1; } item->pid = pid; item->next = pevent->cmdlist; pevent->cmdlist = item; pevent->cmdline_count++; return 0; } int pevent_register_trace_clock(struct pevent *pevent, const char *trace_clock) { pevent->trace_clock = strdup(trace_clock); if (!pevent->trace_clock) { errno = ENOMEM; return -1; } return 0; } struct func_map { unsigned long long addr; char *func; char *mod; }; struct func_list { struct func_list *next; unsigned long long addr; char *func; char *mod; }; static int func_cmp(const void *a, const void *b) { const struct func_map *fa = a; const struct func_map *fb = b; if (fa->addr < fb->addr) return -1; if (fa->addr > fb->addr) return 1; return 0; } /* * We are searching for a record in between, not an exact * match. */ static int func_bcmp(const void *a, const void *b) { const struct func_map *fa = a; const struct func_map *fb = b; if ((fa->addr == fb->addr) || (fa->addr > fb->addr && fa->addr < (fb+1)->addr)) return 0; if (fa->addr < fb->addr) return -1; return 1; } static int func_map_init(struct pevent *pevent) { struct func_list *funclist; struct func_list *item; struct func_map *func_map; int i; func_map = malloc(sizeof(*func_map) * (pevent->func_count + 1)); if (!func_map) return -1; funclist = pevent->funclist; i = 0; while (funclist) { func_map[i].func = funclist->func; func_map[i].addr = funclist->addr; func_map[i].mod = funclist->mod; i++; item = funclist; funclist = funclist->next; free(item); } qsort(func_map, pevent->func_count, sizeof(*func_map), func_cmp); /* * Add a special record at the end. */ func_map[pevent->func_count].func = NULL; func_map[pevent->func_count].addr = 0; func_map[pevent->func_count].mod = NULL; pevent->func_map = func_map; pevent->funclist = NULL; return 0; } static struct func_map * __find_func(struct pevent *pevent, unsigned long long addr) { struct func_map *func; struct func_map key; if (!pevent->func_map) func_map_init(pevent); key.addr = addr; func = bsearch(&key, pevent->func_map, pevent->func_count, sizeof(*pevent->func_map), func_bcmp); return func; } struct func_resolver { pevent_func_resolver_t *func; void *priv; struct func_map map; }; /** * pevent_set_function_resolver - set an alternative function resolver * @pevent: handle for the pevent * @resolver: function to be used * @priv: resolver function private state. * * Some tools may have already a way to resolve kernel functions, allow them to * keep using it instead of duplicating all the entries inside * pevent->funclist. */ int pevent_set_function_resolver(struct pevent *pevent, pevent_func_resolver_t *func, void *priv) { struct func_resolver *resolver = malloc(sizeof(*resolver)); if (resolver == NULL) return -1; resolver->func = func; resolver->priv = priv; free(pevent->func_resolver); pevent->func_resolver = resolver; return 0; } /** * pevent_reset_function_resolver - reset alternative function resolver * @pevent: handle for the pevent * * Stop using whatever alternative resolver was set, use the default * one instead. */ void pevent_reset_function_resolver(struct pevent *pevent) { free(pevent->func_resolver); pevent->func_resolver = NULL; } static struct func_map * find_func(struct pevent *pevent, unsigned long long addr) { struct func_map *map; if (!pevent->func_resolver) return __find_func(pevent, addr); map = &pevent->func_resolver->map; map->mod = NULL; map->addr = addr; map->func = pevent->func_resolver->func(pevent->func_resolver->priv, &map->addr, &map->mod); if (map->func == NULL) return NULL; return map; } /** * pevent_find_function - find a function by a given address * @pevent: handle for the pevent * @addr: the address to find the function with * * Returns a pointer to the function stored that has the given * address. Note, the address does not have to be exact, it * will select the function that would contain the address. */ const char *pevent_find_function(struct pevent *pevent, unsigned long long addr) { struct func_map *map; map = find_func(pevent, addr); if (!map) return NULL; return map->func; } /** * pevent_find_function_address - find a function address by a given address * @pevent: handle for the pevent * @addr: the address to find the function with * * Returns the address the function starts at. This can be used in * conjunction with pevent_find_function to print both the function * name and the function offset. */ unsigned long long pevent_find_function_address(struct pevent *pevent, unsigned long long addr) { struct func_map *map; map = find_func(pevent, addr); if (!map) return 0; return map->addr; } /** * pevent_register_function - register a function with a given address * @pevent: handle for the pevent * @function: the function name to register * @addr: the address the function starts at * @mod: the kernel module the function may be in (NULL for none) * * This registers a function name with an address and module. * The @func passed in is duplicated. */ int pevent_register_function(struct pevent *pevent, char *func, unsigned long long addr, char *mod) { struct func_list *item = malloc(sizeof(*item)); if (!item) return -1; item->next = pevent->funclist; item->func = strdup(func); if (!item->func) goto out_free; if (mod) { item->mod = strdup(mod); if (!item->mod) goto out_free_func; } else item->mod = NULL; item->addr = addr; pevent->funclist = item; pevent->func_count++; return 0; out_free_func: free(item->func); item->func = NULL; out_free: free(item); errno = ENOMEM; return -1; } /** * pevent_print_funcs - print out the stored functions * @pevent: handle for the pevent * * This prints out the stored functions. */ void pevent_print_funcs(struct pevent *pevent) { int i; if (!pevent->func_map) func_map_init(pevent); for (i = 0; i < (int)pevent->func_count; i++) { printf("%016llx %s", pevent->func_map[i].addr, pevent->func_map[i].func); if (pevent->func_map[i].mod) printf(" [%s]\n", pevent->func_map[i].mod); else printf("\n"); } } struct printk_map { unsigned long long addr; char *printk; }; struct printk_list { struct printk_list *next; unsigned long long addr; char *printk; }; static int printk_cmp(const void *a, const void *b) { const struct printk_map *pa = a; const struct printk_map *pb = b; if (pa->addr < pb->addr) return -1; if (pa->addr > pb->addr) return 1; return 0; } static int printk_map_init(struct pevent *pevent) { struct printk_list *printklist; struct printk_list *item; struct printk_map *printk_map; int i; printk_map = malloc(sizeof(*printk_map) * (pevent->printk_count + 1)); if (!printk_map) return -1; printklist = pevent->printklist; i = 0; while (printklist) { printk_map[i].printk = printklist->printk; printk_map[i].addr = printklist->addr; i++; item = printklist; printklist = printklist->next; free(item); } qsort(printk_map, pevent->printk_count, sizeof(*printk_map), printk_cmp); pevent->printk_map = printk_map; pevent->printklist = NULL; return 0; } static struct printk_map * find_printk(struct pevent *pevent, unsigned long long addr) { struct printk_map *printk; struct printk_map key; if (!pevent->printk_map && printk_map_init(pevent)) return NULL; key.addr = addr; printk = bsearch(&key, pevent->printk_map, pevent->printk_count, sizeof(*pevent->printk_map), printk_cmp); return printk; } /** * pevent_register_print_string - register a string by its address * @pevent: handle for the pevent * @fmt: the string format to register * @addr: the address the string was located at * * This registers a string by the address it was stored in the kernel. * The @fmt passed in is duplicated. */ int pevent_register_print_string(struct pevent *pevent, const char *fmt, unsigned long long addr) { struct printk_list *item = malloc(sizeof(*item)); char *p; if (!item) return -1; item->next = pevent->printklist; item->addr = addr; /* Strip off quotes and '\n' from the end */ if (fmt[0] == '"') fmt++; item->printk = strdup(fmt); if (!item->printk) goto out_free; p = item->printk + strlen(item->printk) - 1; if (*p == '"') *p = 0; p -= 2; if (strcmp(p, "\\n") == 0) *p = 0; pevent->printklist = item; pevent->printk_count++; return 0; out_free: free(item); errno = ENOMEM; return -1; } /** * pevent_print_printk - print out the stored strings * @pevent: handle for the pevent * * This prints the string formats that were stored. */ void pevent_print_printk(struct pevent *pevent) { int i; if (!pevent->printk_map) printk_map_init(pevent); for (i = 0; i < (int)pevent->printk_count; i++) { printf("%016llx %s\n", pevent->printk_map[i].addr, pevent->printk_map[i].printk); } } static struct event_format *alloc_event(void) { return calloc(1, sizeof(struct event_format)); } static int add_event(struct pevent *pevent, struct event_format *event) { int i; struct event_format **events = realloc(pevent->events, sizeof(event) * (pevent->nr_events + 1)); if (!events) return -1; pevent->events = events; for (i = 0; i < pevent->nr_events; i++) { if (pevent->events[i]->id > event->id) break; } if (i < pevent->nr_events) memmove(&pevent->events[i + 1], &pevent->events[i], sizeof(event) * (pevent->nr_events - i)); pevent->events[i] = event; pevent->nr_events++; event->pevent = pevent; return 0; } static int event_item_type(enum event_type type) { switch (type) { case EVENT_ITEM ... EVENT_SQUOTE: return 1; case EVENT_ERROR ... EVENT_DELIM: default: return 0; } } static void free_flag_sym(struct print_flag_sym *fsym) { struct print_flag_sym *next; while (fsym) { next = fsym->next; free(fsym->value); free(fsym->str); free(fsym); fsym = next; } } static void free_arg(struct print_arg *arg) { struct print_arg *farg; if (!arg) return; switch (arg->type) { case PRINT_ATOM: free(arg->atom.atom); break; case PRINT_FIELD: free(arg->field.name); break; case PRINT_FLAGS: free_arg(arg->flags.field); free(arg->flags.delim); free_flag_sym(arg->flags.flags); break; case PRINT_SYMBOL: free_arg(arg->symbol.field); free_flag_sym(arg->symbol.symbols); break; case PRINT_HEX: free_arg(arg->hex.field); free_arg(arg->hex.size); break; case PRINT_INT_ARRAY: free_arg(arg->int_array.field); free_arg(arg->int_array.count); free_arg(arg->int_array.el_size); break; case PRINT_TYPE: free(arg->typecast.type); free_arg(arg->typecast.item); break; case PRINT_STRING: case PRINT_BSTRING: free(arg->string.string); break; case PRINT_BITMASK: free(arg->bitmask.bitmask); break; case PRINT_DYNAMIC_ARRAY: case PRINT_DYNAMIC_ARRAY_LEN: free(arg->dynarray.index); break; case PRINT_OP: free(arg->op.op); free_arg(arg->op.left); free_arg(arg->op.right); break; case PRINT_FUNC: while (arg->func.args) { farg = arg->func.args; arg->func.args = farg->next; free_arg(farg); } break; case PRINT_NULL: default: break; } free(arg); } static enum event_type get_type(int ch) { if (ch == '\n') return EVENT_NEWLINE; if (isspace(ch)) return EVENT_SPACE; if (isalnum(ch) || ch == '_') return EVENT_ITEM; if (ch == '\'') return EVENT_SQUOTE; if (ch == '"') return EVENT_DQUOTE; if (!isprint(ch)) return EVENT_NONE; if (ch == '(' || ch == ')' || ch == ',') return EVENT_DELIM; return EVENT_OP; } static int __read_char(void) { if (input_buf_ptr >= input_buf_siz) return -1; return input_buf[input_buf_ptr++]; } static int __peek_char(void) { if (input_buf_ptr >= input_buf_siz) return -1; return input_buf[input_buf_ptr]; } /** * pevent_peek_char - peek at the next character that will be read * * Returns the next character read, or -1 if end of buffer. */ int pevent_peek_char(void) { return __peek_char(); } static int extend_token(char **tok, char *buf, int size) { char *newtok = realloc(*tok, size); if (!newtok) { free(*tok); *tok = NULL; return -1; } if (!*tok) strcpy(newtok, buf); else strcat(newtok, buf); *tok = newtok; return 0; } static enum event_type force_token(const char *str, char **tok); static enum event_type __read_token(char **tok) { char buf[BUFSIZ]; int ch, last_ch, quote_ch, next_ch; int i = 0; int tok_size = 0; enum event_type type; *tok = NULL; ch = __read_char(); if (ch < 0) return EVENT_NONE; type = get_type(ch); if (type == EVENT_NONE) return type; buf[i++] = ch; switch (type) { case EVENT_NEWLINE: case EVENT_DELIM: if (asprintf(tok, "%c", ch) < 0) return EVENT_ERROR; return type; case EVENT_OP: switch (ch) { case '-': next_ch = __peek_char(); if (next_ch == '>') { buf[i++] = __read_char(); break; } /* fall through */ case '+': case '|': case '&': case '>': case '<': last_ch = ch; ch = __peek_char(); if (ch != last_ch) goto test_equal; buf[i++] = __read_char(); switch (last_ch) { case '>': case '<': goto test_equal; default: break; } break; case '!': case '=': goto test_equal; default: /* what should we do instead? */ break; } buf[i] = 0; *tok = strdup(buf); return type; test_equal: ch = __peek_char(); if (ch == '=') buf[i++] = __read_char(); goto out; case EVENT_DQUOTE: case EVENT_SQUOTE: /* don't keep quotes */ i--; quote_ch = ch; last_ch = 0; concat: do { if (i == (BUFSIZ - 1)) { buf[i] = 0; tok_size += BUFSIZ; if (extend_token(tok, buf, tok_size) < 0) return EVENT_NONE; i = 0; } last_ch = ch; ch = __read_char(); buf[i++] = ch; /* the '\' '\' will cancel itself */ if (ch == '\\' && last_ch == '\\') last_ch = 0; } while (ch != quote_ch || last_ch == '\\'); /* remove the last quote */ i--; /* * For strings (double quotes) check the next token. * If it is another string, concatinate the two. */ if (type == EVENT_DQUOTE) { unsigned long long save_input_buf_ptr = input_buf_ptr; do { ch = __read_char(); } while (isspace(ch)); if (ch == '"') goto concat; input_buf_ptr = save_input_buf_ptr; } goto out; case EVENT_ERROR ... EVENT_SPACE: case EVENT_ITEM: default: break; } while (get_type(__peek_char()) == type) { if (i == (BUFSIZ - 1)) { buf[i] = 0; tok_size += BUFSIZ; if (extend_token(tok, buf, tok_size) < 0) return EVENT_NONE; i = 0; } ch = __read_char(); buf[i++] = ch; } out: buf[i] = 0; if (extend_token(tok, buf, tok_size + i + 1) < 0) return EVENT_NONE; if (type == EVENT_ITEM) { /* * Older versions of the kernel has a bug that * creates invalid symbols and will break the mac80211 * parsing. This is a work around to that bug. * * See Linux kernel commit: * 811cb50baf63461ce0bdb234927046131fc7fa8b */ if (strcmp(*tok, "LOCAL_PR_FMT") == 0) { free(*tok); *tok = NULL; return force_token("\"\%s\" ", tok); } else if (strcmp(*tok, "STA_PR_FMT") == 0) { free(*tok); *tok = NULL; return force_token("\" sta:%pM\" ", tok); } else if (strcmp(*tok, "VIF_PR_FMT") == 0) { free(*tok); *tok = NULL; return force_token("\" vif:%p(%d)\" ", tok); } } return type; } static enum event_type force_token(const char *str, char **tok) { const char *save_input_buf; unsigned long long save_input_buf_ptr; unsigned long long save_input_buf_siz; enum event_type type; /* save off the current input pointers */ save_input_buf = input_buf; save_input_buf_ptr = input_buf_ptr; save_input_buf_siz = input_buf_siz; init_input_buf(str, strlen(str)); type = __read_token(tok); /* reset back to original token */ input_buf = save_input_buf; input_buf_ptr = save_input_buf_ptr; input_buf_siz = save_input_buf_siz; return type; } static void free_token(char *tok) { if (tok) free(tok); } static enum event_type read_token(char **tok) { enum event_type type; for (;;) { type = __read_token(tok); if (type != EVENT_SPACE) return type; free_token(*tok); } /* not reached */ *tok = NULL; return EVENT_NONE; } /** * pevent_read_token - access to utilites to use the pevent parser * @tok: The token to return * * This will parse tokens from the string given by * pevent_init_data(). * * Returns the token type. */ enum event_type pevent_read_token(char **tok) { return read_token(tok); } /** * pevent_free_token - free a token returned by pevent_read_token * @token: the token to free */ void pevent_free_token(char *token) { free_token(token); } /* no newline */ static enum event_type read_token_item(char **tok) { enum event_type type; for (;;) { type = __read_token(tok); if (type != EVENT_SPACE && type != EVENT_NEWLINE) return type; free_token(*tok); *tok = NULL; } /* not reached */ *tok = NULL; return EVENT_NONE; } static int test_type(enum event_type type, enum event_type expect) { if (type != expect) { do_warning("Error: expected type %d but read %d", expect, type); return -1; } return 0; } static int test_type_token(enum event_type type, const char *token, enum event_type expect, const char *expect_tok) { if (type != expect) { do_warning("Error: expected type %d but read %d", expect, type); return -1; } if (strcmp(token, expect_tok) != 0) { do_warning("Error: expected '%s' but read '%s'", expect_tok, token); return -1; } return 0; } static int __read_expect_type(enum event_type expect, char **tok, int newline_ok) { enum event_type type; if (newline_ok) type = read_token(tok); else type = read_token_item(tok); return test_type(type, expect); } static int read_expect_type(enum event_type expect, char **tok) { return __read_expect_type(expect, tok, 1); } static int __read_expected(enum event_type expect, const char *str, int newline_ok) { enum event_type type; char *token; int ret; if (newline_ok) type = read_token(&token); else type = read_token_item(&token); ret = test_type_token(type, token, expect, str); free_token(token); return ret; } static int read_expected(enum event_type expect, const char *str) { return __read_expected(expect, str, 1); } static int read_expected_item(enum event_type expect, const char *str) { return __read_expected(expect, str, 0); } static char *event_read_name(void) { char *token; if (read_expected(EVENT_ITEM, "name") < 0) return NULL; if (read_expected(EVENT_OP, ":") < 0) return NULL; if (read_expect_type(EVENT_ITEM, &token) < 0) goto fail; return token; fail: free_token(token); return NULL; } static int event_read_id(void) { char *token; int id; if (read_expected_item(EVENT_ITEM, "ID") < 0) return -1; if (read_expected(EVENT_OP, ":") < 0) return -1; if (read_expect_type(EVENT_ITEM, &token) < 0) goto fail; id = strtoul(token, NULL, 0); free_token(token); return id; fail: free_token(token); return -1; } static int field_is_string(struct format_field *field) { if ((field->flags & FIELD_IS_ARRAY) && (strstr(field->type, "char") || strstr(field->type, "u8") || strstr(field->type, "s8"))) return 1; return 0; } static int field_is_dynamic(struct format_field *field) { if (strncmp(field->type, "__data_loc", 10) == 0) return 1; return 0; } static int field_is_long(struct format_field *field) { /* includes long long */ if (strstr(field->type, "long")) return 1; return 0; } static unsigned int type_size(const char *name) { /* This covers all FIELD_IS_STRING types. */ static struct { const char *type; unsigned int size; } table[] = { { "u8", 1 }, { "u16", 2 }, { "u32", 4 }, { "u64", 8 }, { "s8", 1 }, { "s16", 2 }, { "s32", 4 }, { "s64", 8 }, { "char", 1 }, { }, }; int i; for (i = 0; table[i].type; i++) { if (!strcmp(table[i].type, name)) return table[i].size; } return 0; } static int event_read_fields(struct event_format *event, struct format_field **fields) { struct format_field *field = NULL; enum event_type type; char *token; char *last_token; int count = 0; do { unsigned int size_dynamic = 0; type = read_token(&token); if (type == EVENT_NEWLINE) { free_token(token); return count; } count++; if (test_type_token(type, token, EVENT_ITEM, "field")) goto fail; free_token(token); type = read_token(&token); /* * The ftrace fields may still use the "special" name. * Just ignore it. */ if (event->flags & EVENT_FL_ISFTRACE && type == EVENT_ITEM && strcmp(token, "special") == 0) { free_token(token); type = read_token(&token); } if (test_type_token(type, token, EVENT_OP, ":") < 0) goto fail; free_token(token); if (read_expect_type(EVENT_ITEM, &token) < 0) goto fail; last_token = token; field = calloc(1, sizeof(*field)); if (!field) goto fail; field->event = event; /* read the rest of the type */ for (;;) { type = read_token(&token); if (type == EVENT_ITEM || (type == EVENT_OP && strcmp(token, "*") == 0) || /* * Some of the ftrace fields are broken and have * an illegal "." in them. */ (event->flags & EVENT_FL_ISFTRACE && type == EVENT_OP && strcmp(token, ".") == 0)) { if (strcmp(token, "*") == 0) field->flags |= FIELD_IS_POINTER; if (field->type) { char *new_type; new_type = realloc(field->type, strlen(field->type) + strlen(last_token) + 2); if (!new_type) { free(last_token); goto fail; } field->type = new_type; strcat(field->type, " "); strcat(field->type, last_token); free(last_token); } else field->type = last_token; last_token = token; continue; } break; } if (!field->type) { do_warning_event(event, "%s: no type found", __func__); goto fail; } field->name = field->alias = last_token; if (test_type(type, EVENT_OP)) goto fail; if (strcmp(token, "[") == 0) { enum event_type last_type = type; char *brackets = token; char *new_brackets; int len; field->flags |= FIELD_IS_ARRAY; type = read_token(&token); if (type == EVENT_ITEM) field->arraylen = strtoul(token, NULL, 0); else field->arraylen = 0; while (strcmp(token, "]") != 0) { if (last_type == EVENT_ITEM && type == EVENT_ITEM) len = 2; else len = 1; last_type = type; new_brackets = realloc(brackets, strlen(brackets) + strlen(token) + len); if (!new_brackets) { free(brackets); goto fail; } brackets = new_brackets; if (len == 2) strcat(brackets, " "); strcat(brackets, token); /* We only care about the last token */ field->arraylen = strtoul(token, NULL, 0); free_token(token); type = read_token(&token); if (type == EVENT_NONE) { do_warning_event(event, "failed to find token"); goto fail; } } free_token(token); new_brackets = realloc(brackets, strlen(brackets) + 2); if (!new_brackets) { free(brackets); goto fail; } brackets = new_brackets; strcat(brackets, "]"); /* add brackets to type */ type = read_token(&token); /* * If the next token is not an OP, then it is of * the format: type [] item; */ if (type == EVENT_ITEM) { char *new_type; new_type = realloc(field->type, strlen(field->type) + strlen(field->name) + strlen(brackets) + 2); if (!new_type) { free(brackets); goto fail; } field->type = new_type; strcat(field->type, " "); strcat(field->type, field->name); size_dynamic = type_size(field->name); free_token(field->name); strcat(field->type, brackets); field->name = field->alias = token; type = read_token(&token); } else { char *new_type; new_type = realloc(field->type, strlen(field->type) + strlen(brackets) + 1); if (!new_type) { free(brackets); goto fail; } field->type = new_type; strcat(field->type, brackets); } free(brackets); } if (field_is_string(field)) field->flags |= FIELD_IS_STRING; if (field_is_dynamic(field)) field->flags |= FIELD_IS_DYNAMIC; if (field_is_long(field)) field->flags |= FIELD_IS_LONG; if (test_type_token(type, token, EVENT_OP, ";")) goto fail; free_token(token); if (read_expected(EVENT_ITEM, "offset") < 0) goto fail_expect; if (read_expected(EVENT_OP, ":") < 0) goto fail_expect; if (read_expect_type(EVENT_ITEM, &token)) goto fail; field->offset = strtoul(token, NULL, 0); free_token(token); if (read_expected(EVENT_OP, ";") < 0) goto fail_expect; if (read_expected(EVENT_ITEM, "size") < 0) goto fail_expect; if (read_expected(EVENT_OP, ":") < 0) goto fail_expect; if (read_expect_type(EVENT_ITEM, &token)) goto fail; field->size = strtoul(token, NULL, 0); free_token(token); if (read_expected(EVENT_OP, ";") < 0) goto fail_expect; type = read_token(&token); if (type != EVENT_NEWLINE) { /* newer versions of the kernel have a "signed" type */ if (test_type_token(type, token, EVENT_ITEM, "signed")) goto fail; free_token(token); if (read_expected(EVENT_OP, ":") < 0) goto fail_expect; if (read_expect_type(EVENT_ITEM, &token)) goto fail; if (strtoul(token, NULL, 0)) field->flags |= FIELD_IS_SIGNED; free_token(token); if (read_expected(EVENT_OP, ";") < 0) goto fail_expect; if (read_expect_type(EVENT_NEWLINE, &token)) goto fail; } free_token(token); if (field->flags & FIELD_IS_ARRAY) { if (field->arraylen) field->elementsize = field->size / field->arraylen; else if (field->flags & FIELD_IS_DYNAMIC) field->elementsize = size_dynamic; else if (field->flags & FIELD_IS_STRING) field->elementsize = 1; else if (field->flags & FIELD_IS_LONG) field->elementsize = event->pevent ? event->pevent->long_size : sizeof(long); } else field->elementsize = field->size; *fields = field; fields = &field->next; } while (1); return 0; fail: free_token(token); fail_expect: if (field) { free(field->type); free(field->name); free(field); } return -1; } static int event_read_format(struct event_format *event) { char *token; int ret; if (read_expected_item(EVENT_ITEM, "format") < 0) return -1; if (read_expected(EVENT_OP, ":") < 0) return -1; if (read_expect_type(EVENT_NEWLINE, &token)) goto fail; free_token(token); ret = event_read_fields(event, &event->format.common_fields); if (ret < 0) return ret; event->format.nr_common = ret; ret = event_read_fields(event, &event->format.fields); if (ret < 0) return ret; event->format.nr_fields = ret; return 0; fail: free_token(token); return -1; } static enum event_type process_arg_token(struct event_format *event, struct print_arg *arg, char **tok, enum event_type type); static enum event_type process_arg(struct event_format *event, struct print_arg *arg, char **tok) { enum event_type type; char *token; type = read_token(&token); *tok = token; return process_arg_token(event, arg, tok, type); } static enum event_type process_op(struct event_format *event, struct print_arg *arg, char **tok); /* * For __print_symbolic() and __print_flags, we need to completely * evaluate the first argument, which defines what to print next. */ static enum event_type process_field_arg(struct event_format *event, struct print_arg *arg, char **tok) { enum event_type type; type = process_arg(event, arg, tok); while (type == EVENT_OP) { type = process_op(event, arg, tok); } return type; } static enum event_type process_cond(struct event_format *event, struct print_arg *top, char **tok) { struct print_arg *arg, *left, *right; enum event_type type; char *token = NULL; arg = alloc_arg(); left = alloc_arg(); right = alloc_arg(); if (!arg || !left || !right) { do_warning_event(event, "%s: not enough memory!", __func__); /* arg will be freed at out_free */ free_arg(left); free_arg(right); goto out_free; } arg->type = PRINT_OP; arg->op.left = left; arg->op.right = right; *tok = NULL; type = process_arg(event, left, &token); again: if (type == EVENT_ERROR) goto out_free; /* Handle other operations in the arguments */ if (type == EVENT_OP && strcmp(token, ":") != 0) { type = process_op(event, left, &token); goto again; } if (test_type_token(type, token, EVENT_OP, ":")) goto out_free; arg->op.op = token; type = process_arg(event, right, &token); top->op.right = arg; *tok = token; return type; out_free: /* Top may point to itself */ top->op.right = NULL; free_token(token); free_arg(arg); return EVENT_ERROR; } static enum event_type process_array(struct event_format *event, struct print_arg *top, char **tok) { struct print_arg *arg; enum event_type type; char *token = NULL; arg = alloc_arg(); if (!arg) { do_warning_event(event, "%s: not enough memory!", __func__); /* '*tok' is set to top->op.op. No need to free. */ *tok = NULL; return EVENT_ERROR; } *tok = NULL; type = process_arg(event, arg, &token); if (test_type_token(type, token, EVENT_OP, "]")) goto out_free; top->op.right = arg; free_token(token); type = read_token_item(&token); *tok = token; return type; out_free: free_token(token); free_arg(arg); return EVENT_ERROR; } static int get_op_prio(char *op) { if (!op[1]) { switch (op[0]) { case '~': case '!': return 4; case '*': case '/': case '%': return 6; case '+': case '-': return 7; /* '>>' and '<<' are 8 */ case '<': case '>': return 9; /* '==' and '!=' are 10 */ case '&': return 11; case '^': return 12; case '|': return 13; case '?': return 16; default: do_warning("unknown op '%c'", op[0]); return -1; } } else { if (strcmp(op, "++") == 0 || strcmp(op, "--") == 0) { return 3; } else if (strcmp(op, ">>") == 0 || strcmp(op, "<<") == 0) { return 8; } else if (strcmp(op, ">=") == 0 || strcmp(op, "<=") == 0) { return 9; } else if (strcmp(op, "==") == 0 || strcmp(op, "!=") == 0) { return 10; } else if (strcmp(op, "&&") == 0) { return 14; } else if (strcmp(op, "||") == 0) { return 15; } else { do_warning("unknown op '%s'", op); return -1; } } } static int set_op_prio(struct print_arg *arg) { /* single ops are the greatest */ if (!arg->op.left || arg->op.left->type == PRINT_NULL) arg->op.prio = 0; else arg->op.prio = get_op_prio(arg->op.op); return arg->op.prio; } /* Note, *tok does not get freed, but will most likely be saved */ static enum event_type process_op(struct event_format *event, struct print_arg *arg, char **tok) { struct print_arg *left, *right = NULL; enum event_type type; char *token; /* the op is passed in via tok */ token = *tok; if (arg->type == PRINT_OP && !arg->op.left) { /* handle single op */ if (token[1]) { do_warning_event(event, "bad op token %s", token); goto out_free; } switch (token[0]) { case '~': case '!': case '+': case '-': break; default: do_warning_event(event, "bad op token %s", token); goto out_free; } /* make an empty left */ left = alloc_arg(); if (!left) goto out_warn_free; left->type = PRINT_NULL; arg->op.left = left; right = alloc_arg(); if (!right) goto out_warn_free; arg->op.right = right; /* do not free the token, it belongs to an op */ *tok = NULL; type = process_arg(event, right, tok); } else if (strcmp(token, "?") == 0) { left = alloc_arg(); if (!left) goto out_warn_free; /* copy the top arg to the left */ *left = *arg; arg->type = PRINT_OP; arg->op.op = token; arg->op.left = left; arg->op.prio = 0; /* it will set arg->op.right */ type = process_cond(event, arg, tok); } else if (strcmp(token, ">>") == 0 || strcmp(token, "<<") == 0 || strcmp(token, "&") == 0 || strcmp(token, "|") == 0 || strcmp(token, "&&") == 0 || strcmp(token, "||") == 0 || strcmp(token, "-") == 0 || strcmp(token, "+") == 0 || strcmp(token, "*") == 0 || strcmp(token, "^") == 0 || strcmp(token, "/") == 0 || strcmp(token, "<") == 0 || strcmp(token, ">") == 0 || strcmp(token, "<=") == 0 || strcmp(token, ">=") == 0 || strcmp(token, "==") == 0 || strcmp(token, "!=") == 0) { left = alloc_arg(); if (!left) goto out_warn_free; /* copy the top arg to the left */ *left = *arg; arg->type = PRINT_OP; arg->op.op = token; arg->op.left = left; arg->op.right = NULL; if (set_op_prio(arg) == -1) { event->flags |= EVENT_FL_FAILED; /* arg->op.op (= token) will be freed at out_free */ arg->op.op = NULL; goto out_free; } type = read_token_item(&token); *tok = token; /* could just be a type pointer */ if ((strcmp(arg->op.op, "*") == 0) && type == EVENT_DELIM && (strcmp(token, ")") == 0)) { char *new_atom; if (left->type != PRINT_ATOM) { do_warning_event(event, "bad pointer type"); goto out_free; } new_atom = realloc(left->atom.atom, strlen(left->atom.atom) + 3); if (!new_atom) goto out_warn_free; left->atom.atom = new_atom; strcat(left->atom.atom, " *"); free(arg->op.op); *arg = *left; free(left); return type; } right = alloc_arg(); if (!right) goto out_warn_free; type = process_arg_token(event, right, tok, type); if (type == EVENT_ERROR) { free_arg(right); /* token was freed in process_arg_token() via *tok */ token = NULL; goto out_free; } if (right->type == PRINT_OP && get_op_prio(arg->op.op) < get_op_prio(right->op.op)) { struct print_arg tmp; /* rotate ops according to the priority */ arg->op.right = right->op.left; tmp = *arg; *arg = *right; *right = tmp; arg->op.left = right; } else { arg->op.right = right; } } else if (strcmp(token, "[") == 0) { left = alloc_arg(); if (!left) goto out_warn_free; *left = *arg; arg->type = PRINT_OP; arg->op.op = token; arg->op.left = left; arg->op.prio = 0; /* it will set arg->op.right */ type = process_array(event, arg, tok); } else { do_warning_event(event, "unknown op '%s'", token); event->flags |= EVENT_FL_FAILED; /* the arg is now the left side */ goto out_free; } if (type == EVENT_OP && strcmp(*tok, ":") != 0) { int prio; /* higher prios need to be closer to the root */ prio = get_op_prio(*tok); if (prio > arg->op.prio) return process_op(event, arg, tok); return process_op(event, right, tok); } return type; out_warn_free: do_warning_event(event, "%s: not enough memory!", __func__); out_free: free_token(token); *tok = NULL; return EVENT_ERROR; } static enum event_type process_entry(struct event_format *event __maybe_unused, struct print_arg *arg, char **tok) { enum event_type type; char *field; char *token; if (read_expected(EVENT_OP, "->") < 0) goto out_err; if (read_expect_type(EVENT_ITEM, &token) < 0) goto out_free; field = token; arg->type = PRINT_FIELD; arg->field.name = field; if (is_flag_field) { arg->field.field = pevent_find_any_field(event, arg->field.name); arg->field.field->flags |= FIELD_IS_FLAG; is_flag_field = 0; } else if (is_symbolic_field) { arg->field.field = pevent_find_any_field(event, arg->field.name); arg->field.field->flags |= FIELD_IS_SYMBOLIC; is_symbolic_field = 0; } type = read_token(&token); *tok = token; return type; out_free: free_token(token); out_err: *tok = NULL; return EVENT_ERROR; } static int alloc_and_process_delim(struct event_format *event, char *next_token, struct print_arg **print_arg) { struct print_arg *field; enum event_type type; char *token; int ret = 0; field = alloc_arg(); if (!field) { do_warning_event(event, "%s: not enough memory!", __func__); errno = ENOMEM; return -1; } type = process_arg(event, field, &token); if (test_type_token(type, token, EVENT_DELIM, next_token)) { errno = EINVAL; ret = -1; free_arg(field); goto out_free_token; } *print_arg = field; out_free_token: free_token(token); return ret; } static char *arg_eval (struct print_arg *arg); static unsigned long long eval_type_str(unsigned long long val, const char *type, int pointer) { int sign = 0; char *ref; int len; len = strlen(type); if (pointer) { if (type[len-1] != '*') { do_warning("pointer expected with non pointer type"); return val; } ref = malloc(len); if (!ref) { do_warning("%s: not enough memory!", __func__); return val; } memcpy(ref, type, len); /* chop off the " *" */ ref[len - 2] = 0; val = eval_type_str(val, ref, 0); free(ref); return val; } /* check if this is a pointer */ if (type[len - 1] == '*') return val; /* Try to figure out the arg size*/ if (strncmp(type, "struct", 6) == 0) /* all bets off */ return val; if (strcmp(type, "u8") == 0) return val & 0xff; if (strcmp(type, "u16") == 0) return val & 0xffff; if (strcmp(type, "u32") == 0) return val & 0xffffffff; if (strcmp(type, "u64") == 0 || strcmp(type, "s64")) return val; if (strcmp(type, "s8") == 0) return (unsigned long long)(char)val & 0xff; if (strcmp(type, "s16") == 0) return (unsigned long long)(short)val & 0xffff; if (strcmp(type, "s32") == 0) return (unsigned long long)(int)val & 0xffffffff; if (strncmp(type, "unsigned ", 9) == 0) { sign = 0; type += 9; } if (strcmp(type, "char") == 0) { if (sign) return (unsigned long long)(char)val & 0xff; else return val & 0xff; } if (strcmp(type, "short") == 0) { if (sign) return (unsigned long long)(short)val & 0xffff; else return val & 0xffff; } if (strcmp(type, "int") == 0) { if (sign) return (unsigned long long)(int)val & 0xffffffff; else return val & 0xffffffff; } return val; } /* * Try to figure out the type. */ static unsigned long long eval_type(unsigned long long val, struct print_arg *arg, int pointer) { if (arg->type != PRINT_TYPE) { do_warning("expected type argument"); return 0; } return eval_type_str(val, arg->typecast.type, pointer); } static int arg_num_eval(struct print_arg *arg, long long *val) { long long left, right; int ret = 1; switch (arg->type) { case PRINT_ATOM: *val = strtoll(arg->atom.atom, NULL, 0); break; case PRINT_TYPE: ret = arg_num_eval(arg->typecast.item, val); if (!ret) break; *val = eval_type(*val, arg, 0); break; case PRINT_OP: switch (arg->op.op[0]) { case '|': ret = arg_num_eval(arg->op.left, &left); if (!ret) break; ret = arg_num_eval(arg->op.right, &right); if (!ret) break; if (arg->op.op[1]) *val = left || right; else *val = left | right; break; case '&': ret = arg_num_eval(arg->op.left, &left); if (!ret) break; ret = arg_num_eval(arg->op.right, &right); if (!ret) break; if (arg->op.op[1]) *val = left && right; else *val = left & right; break; case '<': ret = arg_num_eval(arg->op.left, &left); if (!ret) break; ret = arg_num_eval(arg->op.right, &right); if (!ret) break; switch (arg->op.op[1]) { case 0: *val = left < right; break; case '<': *val = left << right; break; case '=': *val = left <= right; break; default: do_warning("unknown op '%s'", arg->op.op); ret = 0; } break; case '>': ret = arg_num_eval(arg->op.left, &left); if (!ret) break; ret = arg_num_eval(arg->op.right, &right); if (!ret) break; switch (arg->op.op[1]) { case 0: *val = left > right; break; case '>': *val = left >> right; break; case '=': *val = left >= right; break; default: do_warning("unknown op '%s'", arg->op.op); ret = 0; } break; case '=': ret = arg_num_eval(arg->op.left, &left); if (!ret) break; ret = arg_num_eval(arg->op.right, &right); if (!ret) break; if (arg->op.op[1] != '=') { do_warning("unknown op '%s'", arg->op.op); ret = 0; } else *val = left == right; break; case '!': ret = arg_num_eval(arg->op.left, &left); if (!ret) break; ret = arg_num_eval(arg->op.right, &right); if (!ret) break; switch (arg->op.op[1]) { case '=': *val = left != right; break; default: do_warning("unknown op '%s'", arg->op.op); ret = 0; } break; case '-': /* check for negative */ if (arg->op.left->type == PRINT_NULL) left = 0; else ret = arg_num_eval(arg->op.left, &left); if (!ret) break; ret = arg_num_eval(arg->op.right, &right); if (!ret) break; *val = left - right; break; case '+': if (arg->op.left->type == PRINT_NULL) left = 0; else ret = arg_num_eval(arg->op.left, &left); if (!ret) break; ret = arg_num_eval(arg->op.right, &right); if (!ret) break; *val = left + right; break; default: do_warning("unknown op '%s'", arg->op.op); ret = 0; } break; case PRINT_NULL: case PRINT_FIELD ... PRINT_SYMBOL: case PRINT_STRING: case PRINT_BSTRING: case PRINT_BITMASK: default: do_warning("invalid eval type %d", arg->type); ret = 0; } return ret; } static char *arg_eval (struct print_arg *arg) { long long val; static char buf[20]; switch (arg->type) { case PRINT_ATOM: return arg->atom.atom; case PRINT_TYPE: return arg_eval(arg->typecast.item); case PRINT_OP: if (!arg_num_eval(arg, &val)) break; sprintf(buf, "%lld", val); return buf; case PRINT_NULL: case PRINT_FIELD ... PRINT_SYMBOL: case PRINT_STRING: case PRINT_BSTRING: case PRINT_BITMASK: default: do_warning("invalid eval type %d", arg->type); break; } return NULL; } static enum event_type process_fields(struct event_format *event, struct print_flag_sym **list, char **tok) { enum event_type type; struct print_arg *arg = NULL; struct print_flag_sym *field; char *token = *tok; char *value; do { free_token(token); type = read_token_item(&token); if (test_type_token(type, token, EVENT_OP, "{")) break; arg = alloc_arg(); if (!arg) goto out_free; free_token(token); type = process_arg(event, arg, &token); if (type == EVENT_OP) type = process_op(event, arg, &token); if (type == EVENT_ERROR) goto out_free; if (test_type_token(type, token, EVENT_DELIM, ",")) goto out_free; field = calloc(1, sizeof(*field)); if (!field) goto out_free; value = arg_eval(arg); if (value == NULL) goto out_free_field; field->value = strdup(value); if (field->value == NULL) goto out_free_field; free_arg(arg); arg = alloc_arg(); if (!arg) goto out_free; free_token(token); type = process_arg(event, arg, &token); if (test_type_token(type, token, EVENT_OP, "}")) goto out_free_field; value = arg_eval(arg); if (value == NULL) goto out_free_field; field->str = strdup(value); if (field->str == NULL) goto out_free_field; free_arg(arg); arg = NULL; *list = field; list = &field->next; free_token(token); type = read_token_item(&token); } while (type == EVENT_DELIM && strcmp(token, ",") == 0); *tok = token; return type; out_free_field: free_flag_sym(field); out_free: free_arg(arg); free_token(token); *tok = NULL; return EVENT_ERROR; } static enum event_type process_flags(struct event_format *event, struct print_arg *arg, char **tok) { struct print_arg *field; enum event_type type; char *token = NULL; memset(arg, 0, sizeof(*arg)); arg->type = PRINT_FLAGS; field = alloc_arg(); if (!field) { do_warning_event(event, "%s: not enough memory!", __func__); goto out_free; } type = process_field_arg(event, field, &token); /* Handle operations in the first argument */ while (type == EVENT_OP) type = process_op(event, field, &token); if (test_type_token(type, token, EVENT_DELIM, ",")) goto out_free_field; free_token(token); arg->flags.field = field; type = read_token_item(&token); if (event_item_type(type)) { arg->flags.delim = token; type = read_token_item(&token); } if (test_type_token(type, token, EVENT_DELIM, ",")) goto out_free; type = process_fields(event, &arg->flags.flags, &token); if (test_type_token(type, token, EVENT_DELIM, ")")) goto out_free; free_token(token); type = read_token_item(tok); return type; out_free_field: free_arg(field); out_free: free_token(token); *tok = NULL; return EVENT_ERROR; } static enum event_type process_symbols(struct event_format *event, struct print_arg *arg, char **tok) { struct print_arg *field; enum event_type type; char *token = NULL; memset(arg, 0, sizeof(*arg)); arg->type = PRINT_SYMBOL; field = alloc_arg(); if (!field) { do_warning_event(event, "%s: not enough memory!", __func__); goto out_free; } type = process_field_arg(event, field, &token); if (test_type_token(type, token, EVENT_DELIM, ",")) goto out_free_field; arg->symbol.field = field; type = process_fields(event, &arg->symbol.symbols, &token); if (test_type_token(type, token, EVENT_DELIM, ")")) goto out_free; free_token(token); type = read_token_item(tok); return type; out_free_field: free_arg(field); out_free: free_token(token); *tok = NULL; return EVENT_ERROR; } static enum event_type process_hex(struct event_format *event, struct print_arg *arg, char **tok) { memset(arg, 0, sizeof(*arg)); arg->type = PRINT_HEX; if (alloc_and_process_delim(event, ",", &arg->hex.field)) goto out; if (alloc_and_process_delim(event, ")", &arg->hex.size)) goto free_field; return read_token_item(tok); free_field: free_arg(arg->hex.field); out: *tok = NULL; return EVENT_ERROR; } static enum event_type process_int_array(struct event_format *event, struct print_arg *arg, char **tok) { memset(arg, 0, sizeof(*arg)); arg->type = PRINT_INT_ARRAY; if (alloc_and_process_delim(event, ",", &arg->int_array.field)) goto out; if (alloc_and_process_delim(event, ",", &arg->int_array.count)) goto free_field; if (alloc_and_process_delim(event, ")", &arg->int_array.el_size)) goto free_size; return read_token_item(tok); free_size: free_arg(arg->int_array.count); free_field: free_arg(arg->int_array.field); out: *tok = NULL; return EVENT_ERROR; } static enum event_type process_dynamic_array(struct event_format *event, struct print_arg *arg, char **tok) { struct format_field *field; enum event_type type; char *token; memset(arg, 0, sizeof(*arg)); arg->type = PRINT_DYNAMIC_ARRAY; /* * The item within the parenthesis is another field that holds * the index into where the array starts. */ type = read_token(&token); *tok = token; if (type != EVENT_ITEM) goto out_free; /* Find the field */ field = pevent_find_field(event, token); if (!field) goto out_free; arg->dynarray.field = field; arg->dynarray.index = 0; if (read_expected(EVENT_DELIM, ")") < 0) goto out_free; free_token(token); type = read_token_item(&token); *tok = token; if (type != EVENT_OP || strcmp(token, "[") != 0) return type; free_token(token); arg = alloc_arg(); if (!arg) { do_warning_event(event, "%s: not enough memory!", __func__); *tok = NULL; return EVENT_ERROR; } type = process_arg(event, arg, &token); if (type == EVENT_ERROR) goto out_free_arg; if (!test_type_token(type, token, EVENT_OP, "]")) goto out_free_arg; free_token(token); type = read_token_item(tok); return type; out_free_arg: free_arg(arg); out_free: free_token(token); *tok = NULL; return EVENT_ERROR; } static enum event_type process_dynamic_array_len(struct event_format *event, struct print_arg *arg, char **tok) { struct format_field *field; enum event_type type; char *token; if (read_expect_type(EVENT_ITEM, &token) < 0) goto out_free; arg->type = PRINT_DYNAMIC_ARRAY_LEN; /* Find the field */ field = pevent_find_field(event, token); if (!field) goto out_free; arg->dynarray.field = field; arg->dynarray.index = 0; if (read_expected(EVENT_DELIM, ")") < 0) goto out_err; type = read_token(&token); *tok = token; return type; out_free: free_token(token); out_err: *tok = NULL; return EVENT_ERROR; } static enum event_type process_paren(struct event_format *event, struct print_arg *arg, char **tok) { struct print_arg *item_arg; enum event_type type; char *token; type = process_arg(event, arg, &token); if (type == EVENT_ERROR) goto out_free; if (type == EVENT_OP) type = process_op(event, arg, &token); if (type == EVENT_ERROR) goto out_free; if (test_type_token(type, token, EVENT_DELIM, ")")) goto out_free; free_token(token); type = read_token_item(&token); /* * If the next token is an item or another open paren, then * this was a typecast. */ if (event_item_type(type) || (type == EVENT_DELIM && strcmp(token, "(") == 0)) { /* make this a typecast and contine */ /* prevous must be an atom */ if (arg->type != PRINT_ATOM) { do_warning_event(event, "previous needed to be PRINT_ATOM"); goto out_free; } item_arg = alloc_arg(); if (!item_arg) { do_warning_event(event, "%s: not enough memory!", __func__); goto out_free; } arg->type = PRINT_TYPE; arg->typecast.type = arg->atom.atom; arg->typecast.item = item_arg; type = process_arg_token(event, item_arg, &token, type); } *tok = token; return type; out_free: free_token(token); *tok = NULL; return EVENT_ERROR; } static enum event_type process_str(struct event_format *event __maybe_unused, struct print_arg *arg, char **tok) { enum event_type type; char *token; if (read_expect_type(EVENT_ITEM, &token) < 0) goto out_free; arg->type = PRINT_STRING; arg->string.string = token; arg->string.offset = -1; if (read_expected(EVENT_DELIM, ")") < 0) goto out_err; type = read_token(&token); *tok = token; return type; out_free: free_token(token); out_err: *tok = NULL; return EVENT_ERROR; } static enum event_type process_bitmask(struct event_format *event __maybe_unused, struct print_arg *arg, char **tok) { enum event_type type; char *token; if (read_expect_type(EVENT_ITEM, &token) < 0) goto out_free; arg->type = PRINT_BITMASK; arg->bitmask.bitmask = token; arg->bitmask.offset = -1; if (read_expected(EVENT_DELIM, ")") < 0) goto out_err; type = read_token(&token); *tok = token; return type; out_free: free_token(token); out_err: *tok = NULL; return EVENT_ERROR; } static struct pevent_function_handler * find_func_handler(struct pevent *pevent, char *func_name) { struct pevent_function_handler *func; if (!pevent) return NULL; for (func = pevent->func_handlers; func; func = func->next) { if (strcmp(func->name, func_name) == 0) break; } return func; } static void remove_func_handler(struct pevent *pevent, char *func_name) { struct pevent_function_handler *func; struct pevent_function_handler **next; next = &pevent->func_handlers; while ((func = *next)) { if (strcmp(func->name, func_name) == 0) { *next = func->next; free_func_handle(func); break; } next = &func->next; } } static enum event_type process_func_handler(struct event_format *event, struct pevent_function_handler *func, struct print_arg *arg, char **tok) { struct print_arg **next_arg; struct print_arg *farg; enum event_type type; char *token; int i; arg->type = PRINT_FUNC; arg->func.func = func; *tok = NULL; next_arg = &(arg->func.args); for (i = 0; i < func->nr_args; i++) { farg = alloc_arg(); if (!farg) { do_warning_event(event, "%s: not enough memory!", __func__); return EVENT_ERROR; } type = process_arg(event, farg, &token); if (i < (func->nr_args - 1)) { if (type != EVENT_DELIM || strcmp(token, ",") != 0) { do_warning_event(event, "Error: function '%s()' expects %d arguments but event %s only uses %d", func->name, func->nr_args, event->name, i + 1); goto err; } } else { if (type != EVENT_DELIM || strcmp(token, ")") != 0) { do_warning_event(event, "Error: function '%s()' only expects %d arguments but event %s has more", func->name, func->nr_args, event->name); goto err; } } *next_arg = farg; next_arg = &(farg->next); free_token(token); } type = read_token(&token); *tok = token; return type; err: free_arg(farg); free_token(token); return EVENT_ERROR; } static enum event_type process_function(struct event_format *event, struct print_arg *arg, char *token, char **tok) { struct pevent_function_handler *func; if (strcmp(token, "__print_flags") == 0) { free_token(token); is_flag_field = 1; return process_flags(event, arg, tok); } if (strcmp(token, "__print_symbolic") == 0) { free_token(token); is_symbolic_field = 1; return process_symbols(event, arg, tok); } if (strcmp(token, "__print_hex") == 0) { free_token(token); return process_hex(event, arg, tok); } if (strcmp(token, "__print_array") == 0) { free_token(token); return process_int_array(event, arg, tok); } if (strcmp(token, "__get_str") == 0) { free_token(token); return process_str(event, arg, tok); } if (strcmp(token, "__get_bitmask") == 0) { free_token(token); return process_bitmask(event, arg, tok); } if (strcmp(token, "__get_dynamic_array") == 0) { free_token(token); return process_dynamic_array(event, arg, tok); } if (strcmp(token, "__get_dynamic_array_len") == 0) { free_token(token); return process_dynamic_array_len(event, arg, tok); } func = find_func_handler(event->pevent, token); if (func) { free_token(token); return process_func_handler(event, func, arg, tok); } do_warning_event(event, "function %s not defined", token); free_token(token); return EVENT_ERROR; } static enum event_type process_arg_token(struct event_format *event, struct print_arg *arg, char **tok, enum event_type type) { char *token; char *atom; token = *tok; switch (type) { case EVENT_ITEM: if (strcmp(token, "REC") == 0) { free_token(token); type = process_entry(event, arg, &token); break; } atom = token; /* test the next token */ type = read_token_item(&token); /* * If the next token is a parenthesis, then this * is a function. */ if (type == EVENT_DELIM && strcmp(token, "(") == 0) { free_token(token); token = NULL; /* this will free atom. */ type = process_function(event, arg, atom, &token); break; } /* atoms can be more than one token long */ while (type == EVENT_ITEM) { char *new_atom; new_atom = realloc(atom, strlen(atom) + strlen(token) + 2); if (!new_atom) { free(atom); *tok = NULL; free_token(token); return EVENT_ERROR; } atom = new_atom; strcat(atom, " "); strcat(atom, token); free_token(token); type = read_token_item(&token); } arg->type = PRINT_ATOM; arg->atom.atom = atom; break; case EVENT_DQUOTE: case EVENT_SQUOTE: arg->type = PRINT_ATOM; arg->atom.atom = token; type = read_token_item(&token); break; case EVENT_DELIM: if (strcmp(token, "(") == 0) { free_token(token); type = process_paren(event, arg, &token); break; } case EVENT_OP: /* handle single ops */ arg->type = PRINT_OP; arg->op.op = token; arg->op.left = NULL; type = process_op(event, arg, &token); /* On error, the op is freed */ if (type == EVENT_ERROR) arg->op.op = NULL; /* return error type if errored */ break; case EVENT_ERROR ... EVENT_NEWLINE: default: do_warning_event(event, "unexpected type %d", type); return EVENT_ERROR; } *tok = token; return type; } static int event_read_print_args(struct event_format *event, struct print_arg **list) { enum event_type type = EVENT_ERROR; struct print_arg *arg; char *token; int args = 0; do { if (type == EVENT_NEWLINE) { type = read_token_item(&token); continue; } arg = alloc_arg(); if (!arg) { do_warning_event(event, "%s: not enough memory!", __func__); return -1; } type = process_arg(event, arg, &token); if (type == EVENT_ERROR) { free_token(token); free_arg(arg); return -1; } *list = arg; args++; if (type == EVENT_OP) { type = process_op(event, arg, &token); free_token(token); if (type == EVENT_ERROR) { *list = NULL; free_arg(arg); return -1; } list = &arg->next; continue; } if (type == EVENT_DELIM && strcmp(token, ",") == 0) { free_token(token); *list = arg; list = &arg->next; continue; } break; } while (type != EVENT_NONE); if (type != EVENT_NONE && type != EVENT_ERROR) free_token(token); return args; } static int event_read_print(struct event_format *event) { enum event_type type; char *token; int ret; if (read_expected_item(EVENT_ITEM, "print") < 0) return -1; if (read_expected(EVENT_ITEM, "fmt") < 0) return -1; if (read_expected(EVENT_OP, ":") < 0) return -1; if (read_expect_type(EVENT_DQUOTE, &token) < 0) goto fail; concat: event->print_fmt.format = token; event->print_fmt.args = NULL; /* ok to have no arg */ type = read_token_item(&token); if (type == EVENT_NONE) return 0; /* Handle concatenation of print lines */ if (type == EVENT_DQUOTE) { char *cat; if (asprintf(&cat, "%s%s", event->print_fmt.format, token) < 0) goto fail; free_token(token); free_token(event->print_fmt.format); event->print_fmt.format = NULL; token = cat; goto concat; } if (test_type_token(type, token, EVENT_DELIM, ",")) goto fail; free_token(token); ret = event_read_print_args(event, &event->print_fmt.args); if (ret < 0) return -1; return ret; fail: free_token(token); return -1; } /** * pevent_find_common_field - return a common field by event * @event: handle for the event * @name: the name of the common field to return * * Returns a common field from the event by the given @name. * This only searchs the common fields and not all field. */ struct format_field * pevent_find_common_field(struct event_format *event, const char *name) { struct format_field *format; for (format = event->format.common_fields; format; format = format->next) { if (strcmp(format->name, name) == 0) break; } return format; } /** * pevent_find_field - find a non-common field * @event: handle for the event * @name: the name of the non-common field * * Returns a non-common field by the given @name. * This does not search common fields. */ struct format_field * pevent_find_field(struct event_format *event, const char *name) { struct format_field *format; for (format = event->format.fields; format; format = format->next) { if (strcmp(format->name, name) == 0) break; } return format; } /** * pevent_find_any_field - find any field by name * @event: handle for the event * @name: the name of the field * * Returns a field by the given @name. * This searchs the common field names first, then * the non-common ones if a common one was not found. */ struct format_field * pevent_find_any_field(struct event_format *event, const char *name) { struct format_field *format; format = pevent_find_common_field(event, name); if (format) return format; return pevent_find_field(event, name); } /** * pevent_read_number - read a number from data * @pevent: handle for the pevent * @ptr: the raw data * @size: the size of the data that holds the number * * Returns the number (converted to host) from the * raw data. */ unsigned long long pevent_read_number(struct pevent *pevent, const void *ptr, int size) { switch (size) { case 1: return *(unsigned char *)ptr; case 2: return data2host2(pevent, ptr); case 4: return data2host4(pevent, ptr); case 8: return data2host8(pevent, ptr); default: /* BUG! */ return 0; } } /** * pevent_read_number_field - read a number from data * @field: a handle to the field * @data: the raw data to read * @value: the value to place the number in * * Reads raw data according to a field offset and size, * and translates it into @value. * * Returns 0 on success, -1 otherwise. */ int pevent_read_number_field(struct format_field *field, const void *data, unsigned long long *value) { if (!field) return -1; switch (field->size) { case 1: case 2: case 4: case 8: *value = pevent_read_number(field->event->pevent, data + field->offset, field->size); return 0; default: return -1; } } static int get_common_info(struct pevent *pevent, const char *type, int *offset, int *size) { struct event_format *event; struct format_field *field; /* * All events should have the same common elements. * Pick any event to find where the type is; */ if (!pevent->events) { do_warning("no event_list!"); return -1; } event = pevent->events[0]; field = pevent_find_common_field(event, type); if (!field) return -1; *offset = field->offset; *size = field->size; return 0; } static int __parse_common(struct pevent *pevent, void *data, int *size, int *offset, const char *name) { int ret; if (!*size) { ret = get_common_info(pevent, name, offset, size); if (ret < 0) return ret; } return pevent_read_number(pevent, data + *offset, *size); } static int trace_parse_common_type(struct pevent *pevent, void *data) { return __parse_common(pevent, data, &pevent->type_size, &pevent->type_offset, "common_type"); } static int parse_common_pid(struct pevent *pevent, void *data) { return __parse_common(pevent, data, &pevent->pid_size, &pevent->pid_offset, "common_pid"); } static int parse_common_pc(struct pevent *pevent, void *data) { return __parse_common(pevent, data, &pevent->pc_size, &pevent->pc_offset, "common_preempt_count"); } static int parse_common_flags(struct pevent *pevent, void *data) { return __parse_common(pevent, data, &pevent->flags_size, &pevent->flags_offset, "common_flags"); } static int parse_common_lock_depth(struct pevent *pevent, void *data) { return __parse_common(pevent, data, &pevent->ld_size, &pevent->ld_offset, "common_lock_depth"); } static int parse_common_migrate_disable(struct pevent *pevent, void *data) { return __parse_common(pevent, data, &pevent->ld_size, &pevent->ld_offset, "common_migrate_disable"); } static int events_id_cmp(const void *a, const void *b); /** * pevent_find_event - find an event by given id * @pevent: a handle to the pevent * @id: the id of the event * * Returns an event that has a given @id. */ struct event_format *pevent_find_event(struct pevent *pevent, int id) { struct event_format **eventptr; struct event_format key; struct event_format *pkey = &key; /* Check cache first */ if (pevent->last_event && pevent->last_event->id == id) return pevent->last_event; key.id = id; eventptr = bsearch(&pkey, pevent->events, pevent->nr_events, sizeof(*pevent->events), events_id_cmp); if (eventptr) { pevent->last_event = *eventptr; return *eventptr; } return NULL; } /** * pevent_find_event_by_name - find an event by given name * @pevent: a handle to the pevent * @sys: the system name to search for * @name: the name of the event to search for * * This returns an event with a given @name and under the system * @sys. If @sys is NULL the first event with @name is returned. */ struct event_format * pevent_find_event_by_name(struct pevent *pevent, const char *sys, const char *name) { struct event_format *event; int i; if (pevent->last_event && strcmp(pevent->last_event->name, name) == 0 && (!sys || strcmp(pevent->last_event->system, sys) == 0)) return pevent->last_event; for (i = 0; i < pevent->nr_events; i++) { event = pevent->events[i]; if (strcmp(event->name, name) == 0) { if (!sys) break; if (strcmp(event->system, sys) == 0) break; } } if (i == pevent->nr_events) event = NULL; pevent->last_event = event; return event; } static unsigned long long eval_num_arg(void *data, int size, struct event_format *event, struct print_arg *arg) { struct pevent *pevent = event->pevent; unsigned long long val = 0; unsigned long long left, right; struct print_arg *typearg = NULL; struct print_arg *larg; unsigned long offset; unsigned int field_size; switch (arg->type) { case PRINT_NULL: /* ?? */ return 0; case PRINT_ATOM: return strtoull(arg->atom.atom, NULL, 0); case PRINT_FIELD: if (!arg->field.field) { arg->field.field = pevent_find_any_field(event, arg->field.name); if (!arg->field.field) goto out_warning_field; } /* must be a number */ val = pevent_read_number(pevent, data + arg->field.field->offset, arg->field.field->size); break; case PRINT_FLAGS: case PRINT_SYMBOL: case PRINT_INT_ARRAY: case PRINT_HEX: break; case PRINT_TYPE: val = eval_num_arg(data, size, event, arg->typecast.item); return eval_type(val, arg, 0); case PRINT_STRING: case PRINT_BSTRING: case PRINT_BITMASK: return 0; case PRINT_FUNC: { struct trace_seq s; trace_seq_init(&s); val = process_defined_func(&s, data, size, event, arg); trace_seq_destroy(&s); return val; } case PRINT_OP: if (strcmp(arg->op.op, "[") == 0) { /* * Arrays are special, since we don't want * to read the arg as is. */ right = eval_num_arg(data, size, event, arg->op.right); /* handle typecasts */ larg = arg->op.left; while (larg->type == PRINT_TYPE) { if (!typearg) typearg = larg; larg = larg->typecast.item; } /* Default to long size */ field_size = pevent->long_size; switch (larg->type) { case PRINT_DYNAMIC_ARRAY: offset = pevent_read_number(pevent, data + larg->dynarray.field->offset, larg->dynarray.field->size); if (larg->dynarray.field->elementsize) field_size = larg->dynarray.field->elementsize; /* * The actual length of the dynamic array is stored * in the top half of the field, and the offset * is in the bottom half of the 32 bit field. */ offset &= 0xffff; offset += right; break; case PRINT_FIELD: if (!larg->field.field) { larg->field.field = pevent_find_any_field(event, larg->field.name); if (!larg->field.field) { arg = larg; goto out_warning_field; } } field_size = larg->field.field->elementsize; offset = larg->field.field->offset + right * larg->field.field->elementsize; break; default: goto default_op; /* oops, all bets off */ } val = pevent_read_number(pevent, data + offset, field_size); if (typearg) val = eval_type(val, typearg, 1); break; } else if (strcmp(arg->op.op, "?") == 0) { left = eval_num_arg(data, size, event, arg->op.left); arg = arg->op.right; if (left) val = eval_num_arg(data, size, event, arg->op.left); else val = eval_num_arg(data, size, event, arg->op.right); break; } default_op: left = eval_num_arg(data, size, event, arg->op.left); right = eval_num_arg(data, size, event, arg->op.right); switch (arg->op.op[0]) { case '!': switch (arg->op.op[1]) { case 0: val = !right; break; case '=': val = left != right; break; default: goto out_warning_op; } break; case '~': val = ~right; break; case '|': if (arg->op.op[1]) val = left || right; else val = left | right; break; case '&': if (arg->op.op[1]) val = left && right; else val = left & right; break; case '<': switch (arg->op.op[1]) { case 0: val = left < right; break; case '<': val = left << right; break; case '=': val = left <= right; break; default: goto out_warning_op; } break; case '>': switch (arg->op.op[1]) { case 0: val = left > right; break; case '>': val = left >> right; break; case '=': val = left >= right; break; default: goto out_warning_op; } break; case '=': if (arg->op.op[1] != '=') goto out_warning_op; val = left == right; break; case '-': val = left - right; break; case '+': val = left + right; break; case '/': val = left / right; break; case '*': val = left * right; break; default: goto out_warning_op; } break; case PRINT_DYNAMIC_ARRAY_LEN: offset = pevent_read_number(pevent, data + arg->dynarray.field->offset, arg->dynarray.field->size); /* * The total allocated length of the dynamic array is * stored in the top half of the field, and the offset * is in the bottom half of the 32 bit field. */ val = (unsigned long long)(offset >> 16); break; case PRINT_DYNAMIC_ARRAY: /* Without [], we pass the address to the dynamic data */ offset = pevent_read_number(pevent, data + arg->dynarray.field->offset, arg->dynarray.field->size); /* * The total allocated length of the dynamic array is * stored in the top half of the field, and the offset * is in the bottom half of the 32 bit field. */ offset &= 0xffff; val = (unsigned long long)((unsigned long)data + offset); break; default: /* not sure what to do there */ return 0; } return val; out_warning_op: do_warning_event(event, "%s: unknown op '%s'", __func__, arg->op.op); return 0; out_warning_field: do_warning_event(event, "%s: field %s not found", __func__, arg->field.name); return 0; } struct flag { const char *name; unsigned long long value; }; static const struct flag flags[] = { { "HI_SOFTIRQ", 0 }, { "TIMER_SOFTIRQ", 1 }, { "NET_TX_SOFTIRQ", 2 }, { "NET_RX_SOFTIRQ", 3 }, { "BLOCK_SOFTIRQ", 4 }, { "IRQ_POLL_SOFTIRQ", 5 }, { "TASKLET_SOFTIRQ", 6 }, { "SCHED_SOFTIRQ", 7 }, { "HRTIMER_SOFTIRQ", 8 }, { "RCU_SOFTIRQ", 9 }, { "HRTIMER_NORESTART", 0 }, { "HRTIMER_RESTART", 1 }, }; static long long eval_flag(const char *flag) { int i; /* * Some flags in the format files do not get converted. * If the flag is not numeric, see if it is something that * we already know about. */ if (isdigit(flag[0])) return strtoull(flag, NULL, 0); for (i = 0; i < (int)(sizeof(flags)/sizeof(flags[0])); i++) if (strcmp(flags[i].name, flag) == 0) return flags[i].value; return -1LL; } static void print_str_to_seq(struct trace_seq *s, const char *format, int len_arg, const char *str) { if (len_arg >= 0) trace_seq_printf(s, format, len_arg, str); else trace_seq_printf(s, format, str); } static void print_bitmask_to_seq(struct pevent *pevent, struct trace_seq *s, const char *format, int len_arg, const void *data, int size) { int nr_bits = size * 8; int str_size = (nr_bits + 3) / 4; int len = 0; char buf[3]; char *str; int index; int i; /* * The kernel likes to put in commas every 32 bits, we * can do the same. */ str_size += (nr_bits - 1) / 32; str = malloc(str_size + 1); if (!str) { do_warning("%s: not enough memory!", __func__); return; } str[str_size] = 0; /* Start out with -2 for the two chars per byte */ for (i = str_size - 2; i >= 0; i -= 2) { /* * data points to a bit mask of size bytes. * In the kernel, this is an array of long words, thus * endianess is very important. */ if (pevent->file_bigendian) index = size - (len + 1); else index = len; snprintf(buf, 3, "%02x", *((unsigned char *)data + index)); memcpy(str + i, buf, 2); len++; if (!(len & 3) && i > 0) { i--; str[i] = ','; } } if (len_arg >= 0) trace_seq_printf(s, format, len_arg, str); else trace_seq_printf(s, format, str); free(str); } static void print_str_arg(struct trace_seq *s, void *data, int size, struct event_format *event, const char *format, int len_arg, struct print_arg *arg) { struct pevent *pevent = event->pevent; struct print_flag_sym *flag; struct format_field *field; struct printk_map *printk; long long val, fval; unsigned long long addr; char *str; unsigned char *hex; int print; int i, len; switch (arg->type) { case PRINT_NULL: /* ?? */ return; case PRINT_ATOM: print_str_to_seq(s, format, len_arg, arg->atom.atom); return; case PRINT_FIELD: field = arg->field.field; if (!field) { field = pevent_find_any_field(event, arg->field.name); if (!field) { str = arg->field.name; goto out_warning_field; } arg->field.field = field; } /* Zero sized fields, mean the rest of the data */ len = field->size ? : size - field->offset; /* * Some events pass in pointers. If this is not an array * and the size is the same as long_size, assume that it * is a pointer. */ if (!(field->flags & FIELD_IS_ARRAY) && field->size == pevent->long_size) { /* Handle heterogeneous recording and processing * architectures * * CASE I: * Traces recorded on 32-bit devices (32-bit * addressing) and processed on 64-bit devices: * In this case, only 32 bits should be read. * * CASE II: * Traces recorded on 64 bit devices and processed * on 32-bit devices: * In this case, 64 bits must be read. */ addr = (pevent->long_size == 8) ? *(unsigned long long *)(data + field->offset) : (unsigned long long)*(unsigned int *)(data + field->offset); /* Check if it matches a print format */ printk = find_printk(pevent, addr); if (printk) trace_seq_puts(s, printk->printk); else trace_seq_printf(s, "%llx", addr); break; } str = malloc(len + 1); if (!str) { do_warning_event(event, "%s: not enough memory!", __func__); return; } memcpy(str, data + field->offset, len); str[len] = 0; print_str_to_seq(s, format, len_arg, str); free(str); break; case PRINT_FLAGS: val = eval_num_arg(data, size, event, arg->flags.field); print = 0; for (flag = arg->flags.flags; flag; flag = flag->next) { fval = eval_flag(flag->value); if (!val && fval < 0) { print_str_to_seq(s, format, len_arg, flag->str); break; } if (fval > 0 && (val & fval) == fval) { if (print && arg->flags.delim) trace_seq_puts(s, arg->flags.delim); print_str_to_seq(s, format, len_arg, flag->str); print = 1; val &= ~fval; } } break; case PRINT_SYMBOL: val = eval_num_arg(data, size, event, arg->symbol.field); for (flag = arg->symbol.symbols; flag; flag = flag->next) { fval = eval_flag(flag->value); if (val == fval) { print_str_to_seq(s, format, len_arg, flag->str); break; } } break; case PRINT_HEX: if (arg->hex.field->type == PRINT_DYNAMIC_ARRAY) { unsigned long offset; offset = pevent_read_number(pevent, data + arg->hex.field->dynarray.field->offset, arg->hex.field->dynarray.field->size); hex = data + (offset & 0xffff); } else { field = arg->hex.field->field.field; if (!field) { str = arg->hex.field->field.name; field = pevent_find_any_field(event, str); if (!field) goto out_warning_field; arg->hex.field->field.field = field; } hex = data + field->offset; } len = eval_num_arg(data, size, event, arg->hex.size); for (i = 0; i < len; i++) { if (i) trace_seq_putc(s, ' '); trace_seq_printf(s, "%02x", hex[i]); } break; case PRINT_INT_ARRAY: { void *num; int el_size; if (arg->int_array.field->type == PRINT_DYNAMIC_ARRAY) { unsigned long offset; struct format_field *field = arg->int_array.field->dynarray.field; offset = pevent_read_number(pevent, data + field->offset, field->size); num = data + (offset & 0xffff); } else { field = arg->int_array.field->field.field; if (!field) { str = arg->int_array.field->field.name; field = pevent_find_any_field(event, str); if (!field) goto out_warning_field; arg->int_array.field->field.field = field; } num = data + field->offset; } len = eval_num_arg(data, size, event, arg->int_array.count); el_size = eval_num_arg(data, size, event, arg->int_array.el_size); for (i = 0; i < len; i++) { if (i) trace_seq_putc(s, ' '); if (el_size == 1) { trace_seq_printf(s, "%u", *(uint8_t *)num); } else if (el_size == 2) { trace_seq_printf(s, "%u", *(uint16_t *)num); } else if (el_size == 4) { trace_seq_printf(s, "%u", *(uint32_t *)num); } else if (el_size == 8) { trace_seq_printf(s, "%"PRIu64, *(uint64_t *)num); } else { trace_seq_printf(s, "BAD SIZE:%d 0x%x", el_size, *(uint8_t *)num); el_size = 1; } num += el_size; } break; } case PRINT_TYPE: break; case PRINT_STRING: { int str_offset; if (arg->string.offset == -1) { struct format_field *f; f = pevent_find_any_field(event, arg->string.string); arg->string.offset = f->offset; } str_offset = data2host4(pevent, data + arg->string.offset); str_offset &= 0xffff; print_str_to_seq(s, format, len_arg, ((char *)data) + str_offset); break; } case PRINT_BSTRING: print_str_to_seq(s, format, len_arg, arg->string.string); break; case PRINT_BITMASK: { int bitmask_offset; int bitmask_size; if (arg->bitmask.offset == -1) { struct format_field *f; f = pevent_find_any_field(event, arg->bitmask.bitmask); arg->bitmask.offset = f->offset; } bitmask_offset = data2host4(pevent, data + arg->bitmask.offset); bitmask_size = bitmask_offset >> 16; bitmask_offset &= 0xffff; print_bitmask_to_seq(pevent, s, format, len_arg, data + bitmask_offset, bitmask_size); break; } case PRINT_OP: /* * The only op for string should be ? : */ if (arg->op.op[0] != '?') return; val = eval_num_arg(data, size, event, arg->op.left); if (val) print_str_arg(s, data, size, event, format, len_arg, arg->op.right->op.left); else print_str_arg(s, data, size, event, format, len_arg, arg->op.right->op.right); break; case PRINT_FUNC: process_defined_func(s, data, size, event, arg); break; default: /* well... */ break; } return; out_warning_field: do_warning_event(event, "%s: field %s not found", __func__, arg->field.name); } static unsigned long long process_defined_func(struct trace_seq *s, void *data, int size, struct event_format *event, struct print_arg *arg) { struct pevent_function_handler *func_handle = arg->func.func; struct pevent_func_params *param; unsigned long long *args; unsigned long long ret; struct print_arg *farg; struct trace_seq str; struct save_str { struct save_str *next; char *str; } *strings = NULL, *string; int i; if (!func_handle->nr_args) { ret = (*func_handle->func)(s, NULL); goto out; } farg = arg->func.args; param = func_handle->params; ret = ULLONG_MAX; args = malloc(sizeof(*args) * func_handle->nr_args); if (!args) goto out; for (i = 0; i < func_handle->nr_args; i++) { switch (param->type) { case PEVENT_FUNC_ARG_INT: case PEVENT_FUNC_ARG_LONG: case PEVENT_FUNC_ARG_PTR: args[i] = eval_num_arg(data, size, event, farg); break; case PEVENT_FUNC_ARG_STRING: trace_seq_init(&str); print_str_arg(&str, data, size, event, "%s", -1, farg); trace_seq_terminate(&str); string = malloc(sizeof(*string)); if (!string) { do_warning_event(event, "%s(%d): malloc str", __func__, __LINE__); goto out_free; } string->next = strings; string->str = strdup(str.buffer); if (!string->str) { free(string); do_warning_event(event, "%s(%d): malloc str", __func__, __LINE__); goto out_free; } args[i] = (uintptr_t)string->str; strings = string; trace_seq_destroy(&str); break; default: /* * Something went totally wrong, this is not * an input error, something in this code broke. */ do_warning_event(event, "Unexpected end of arguments\n"); goto out_free; } farg = farg->next; param = param->next; } ret = (*func_handle->func)(s, args); out_free: free(args); while (strings) { string = strings; strings = string->next; free(string->str); free(string); } out: /* TBD : handle return type here */ return ret; } static void free_args(struct print_arg *args) { struct print_arg *next; while (args) { next = args->next; free_arg(args); args = next; } } static struct print_arg *make_bprint_args(char *fmt, void *data, int size, struct event_format *event) { struct pevent *pevent = event->pevent; struct format_field *field, *ip_field; struct print_arg *args, *arg, **next; unsigned long long ip, val; char *ptr; void *bptr; int vsize; field = pevent->bprint_buf_field; ip_field = pevent->bprint_ip_field; if (!field) { field = pevent_find_field(event, "buf"); if (!field) { do_warning_event(event, "can't find buffer field for binary printk"); return NULL; } ip_field = pevent_find_field(event, "ip"); if (!ip_field) { do_warning_event(event, "can't find ip field for binary printk"); return NULL; } pevent->bprint_buf_field = field; pevent->bprint_ip_field = ip_field; } ip = pevent_read_number(pevent, data + ip_field->offset, ip_field->size); /* * The first arg is the IP pointer. */ args = alloc_arg(); if (!args) { do_warning_event(event, "%s(%d): not enough memory!", __func__, __LINE__); return NULL; } arg = args; arg->next = NULL; next = &arg->next; arg->type = PRINT_ATOM; if (asprintf(&arg->atom.atom, "%lld", ip) < 0) goto out_free; /* skip the first "%ps: " */ for (ptr = fmt + 5, bptr = data + field->offset; bptr < data + size && *ptr; ptr++) { int ls = 0; if (*ptr == '%') { process_again: ptr++; switch (*ptr) { case '%': break; case 'l': ls++; goto process_again; case 'L': ls = 2; goto process_again; case '0' ... '9': goto process_again; case '.': goto process_again; case 'z': case 'Z': ls = 1; goto process_again; case 'p': ls = 1; /* fall through */ case 'd': case 'u': case 'x': case 'i': switch (ls) { case 0: vsize = 4; break; case 1: vsize = pevent->long_size; break; case 2: vsize = 8; break; default: vsize = ls; /* ? */ break; } /* fall through */ case '*': if (*ptr == '*') vsize = 4; /* the pointers are always 4 bytes aligned */ bptr = (void *)(((unsigned long)bptr + 3) & ~3); val = pevent_read_number(pevent, bptr, vsize); bptr += vsize; arg = alloc_arg(); if (!arg) { do_warning_event(event, "%s(%d): not enough memory!", __func__, __LINE__); goto out_free; } arg->next = NULL; arg->type = PRINT_ATOM; if (asprintf(&arg->atom.atom, "%lld", val) < 0) { free(arg); goto out_free; } *next = arg; next = &arg->next; /* * The '*' case means that an arg is used as the length. * We need to continue to figure out for what. */ if (*ptr == '*') goto process_again; break; case 's': arg = alloc_arg(); if (!arg) { do_warning_event(event, "%s(%d): not enough memory!", __func__, __LINE__); goto out_free; } arg->next = NULL; arg->type = PRINT_BSTRING; arg->string.string = strdup(bptr); if (!arg->string.string) goto out_free; bptr += strlen(bptr) + 1; *next = arg; next = &arg->next; default: break; } } } return args; out_free: free_args(args); return NULL; } static char * get_bprint_format(void *data, int size __maybe_unused, struct event_format *event) { struct pevent *pevent = event->pevent; unsigned long long addr; struct format_field *field; struct printk_map *printk; char *format; field = pevent->bprint_fmt_field; if (!field) { field = pevent_find_field(event, "fmt"); if (!field) { do_warning_event(event, "can't find format field for binary printk"); return NULL; } pevent->bprint_fmt_field = field; } addr = pevent_read_number(pevent, data + field->offset, field->size); printk = find_printk(pevent, addr); if (!printk) { if (asprintf(&format, "%%pf: (NO FORMAT FOUND at %llx)\n", addr) < 0) return NULL; return format; } if (asprintf(&format, "%s: %s", "%pf", printk->printk) < 0) return NULL; return format; } static void print_mac_arg(struct trace_seq *s, int mac, void *data, int size, struct event_format *event, struct print_arg *arg) { unsigned char *buf; const char *fmt = "%.2x:%.2x:%.2x:%.2x:%.2x:%.2x"; if (arg->type == PRINT_FUNC) { process_defined_func(s, data, size, event, arg); return; } if (arg->type != PRINT_FIELD) { trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d", arg->type); return; } if (mac == 'm') fmt = "%.2x%.2x%.2x%.2x%.2x%.2x"; if (!arg->field.field) { arg->field.field = pevent_find_any_field(event, arg->field.name); if (!arg->field.field) { do_warning_event(event, "%s: field %s not found", __func__, arg->field.name); return; } } if (arg->field.field->size != 6) { trace_seq_printf(s, "INVALIDMAC"); return; } buf = data + arg->field.field->offset; trace_seq_printf(s, fmt, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]); } static void print_ip4_addr(struct trace_seq *s, char i, unsigned char *buf) { const char *fmt; if (i == 'i') fmt = "%03d.%03d.%03d.%03d"; else fmt = "%d.%d.%d.%d"; trace_seq_printf(s, fmt, buf[0], buf[1], buf[2], buf[3]); } static inline bool ipv6_addr_v4mapped(const struct in6_addr *a) { return ((unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) | (unsigned long)(a->s6_addr32[2] ^ htonl(0x0000ffff))) == 0UL; } static inline bool ipv6_addr_is_isatap(const struct in6_addr *addr) { return (addr->s6_addr32[2] | htonl(0x02000000)) == htonl(0x02005EFE); } static void print_ip6c_addr(struct trace_seq *s, unsigned char *addr) { int i, j, range; unsigned char zerolength[8]; int longest = 1; int colonpos = -1; uint16_t word; uint8_t hi, lo; bool needcolon = false; bool useIPv4; struct in6_addr in6; memcpy(&in6, addr, sizeof(struct in6_addr)); useIPv4 = ipv6_addr_v4mapped(&in6) || ipv6_addr_is_isatap(&in6); memset(zerolength, 0, sizeof(zerolength)); if (useIPv4) range = 6; else range = 8; /* find position of longest 0 run */ for (i = 0; i < range; i++) { for (j = i; j < range; j++) { if (in6.s6_addr16[j] != 0) break; zerolength[i]++; } } for (i = 0; i < range; i++) { if (zerolength[i] > longest) { longest = zerolength[i]; colonpos = i; } } if (longest == 1) /* don't compress a single 0 */ colonpos = -1; /* emit address */ for (i = 0; i < range; i++) { if (i == colonpos) { if (needcolon || i == 0) trace_seq_printf(s, ":"); trace_seq_printf(s, ":"); needcolon = false; i += longest - 1; continue; } if (needcolon) { trace_seq_printf(s, ":"); needcolon = false; } /* hex u16 without leading 0s */ word = ntohs(in6.s6_addr16[i]); hi = word >> 8; lo = word & 0xff; if (hi) trace_seq_printf(s, "%x%02x", hi, lo); else trace_seq_printf(s, "%x", lo); needcolon = true; } if (useIPv4) { if (needcolon) trace_seq_printf(s, ":"); print_ip4_addr(s, 'I', &in6.s6_addr[12]); } return; } static void print_ip6_addr(struct trace_seq *s, char i, unsigned char *buf) { int j; for (j = 0; j < 16; j += 2) { trace_seq_printf(s, "%02x%02x", buf[j], buf[j+1]); if (i == 'I' && j < 14) trace_seq_printf(s, ":"); } } /* * %pi4 print an IPv4 address with leading zeros * %pI4 print an IPv4 address without leading zeros * %pi6 print an IPv6 address without colons * %pI6 print an IPv6 address with colons * %pI6c print an IPv6 address in compressed form with colons * %pISpc print an IP address based on sockaddr; p adds port. */ static int print_ipv4_arg(struct trace_seq *s, const char *ptr, char i, void *data, int size, struct event_format *event, struct print_arg *arg) { unsigned char *buf; if (arg->type == PRINT_FUNC) { process_defined_func(s, data, size, event, arg); return 0; } if (arg->type != PRINT_FIELD) { trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d", arg->type); return 0; } if (!arg->field.field) { arg->field.field = pevent_find_any_field(event, arg->field.name); if (!arg->field.field) { do_warning("%s: field %s not found", __func__, arg->field.name); return 0; } } buf = data + arg->field.field->offset; if (arg->field.field->size != 4) { trace_seq_printf(s, "INVALIDIPv4"); return 0; } print_ip4_addr(s, i, buf); return 0; } static int print_ipv6_arg(struct trace_seq *s, const char *ptr, char i, void *data, int size, struct event_format *event, struct print_arg *arg) { char have_c = 0; unsigned char *buf; int rc = 0; /* pI6c */ if (i == 'I' && *ptr == 'c') { have_c = 1; ptr++; rc++; } if (arg->type == PRINT_FUNC) { process_defined_func(s, data, size, event, arg); return rc; } if (arg->type != PRINT_FIELD) { trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d", arg->type); return rc; } if (!arg->field.field) { arg->field.field = pevent_find_any_field(event, arg->field.name); if (!arg->field.field) { do_warning("%s: field %s not found", __func__, arg->field.name); return rc; } } buf = data + arg->field.field->offset; if (arg->field.field->size != 16) { trace_seq_printf(s, "INVALIDIPv6"); return rc; } if (have_c) print_ip6c_addr(s, buf); else print_ip6_addr(s, i, buf); return rc; } static int print_ipsa_arg(struct trace_seq *s, const char *ptr, char i, void *data, int size, struct event_format *event, struct print_arg *arg) { char have_c = 0, have_p = 0; unsigned char *buf; struct sockaddr_storage *sa; int rc = 0; /* pISpc */ if (i == 'I') { if (*ptr == 'p') { have_p = 1; ptr++; rc++; } if (*ptr == 'c') { have_c = 1; ptr++; rc++; } } if (arg->type == PRINT_FUNC) { process_defined_func(s, data, size, event, arg); return rc; } if (arg->type != PRINT_FIELD) { trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d", arg->type); return rc; } if (!arg->field.field) { arg->field.field = pevent_find_any_field(event, arg->field.name); if (!arg->field.field) { do_warning("%s: field %s not found", __func__, arg->field.name); return rc; } } sa = (struct sockaddr_storage *) (data + arg->field.field->offset); if (sa->ss_family == AF_INET) { struct sockaddr_in *sa4 = (struct sockaddr_in *) sa; if (arg->field.field->size < sizeof(struct sockaddr_in)) { trace_seq_printf(s, "INVALIDIPv4"); return rc; } print_ip4_addr(s, i, (unsigned char *) &sa4->sin_addr); if (have_p) trace_seq_printf(s, ":%d", ntohs(sa4->sin_port)); } else if (sa->ss_family == AF_INET6) { struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *) sa; if (arg->field.field->size < sizeof(struct sockaddr_in6)) { trace_seq_printf(s, "INVALIDIPv6"); return rc; } if (have_p) trace_seq_printf(s, "["); buf = (unsigned char *) &sa6->sin6_addr; if (have_c) print_ip6c_addr(s, buf); else print_ip6_addr(s, i, buf); if (have_p) trace_seq_printf(s, "]:%d", ntohs(sa6->sin6_port)); } return rc; } static int print_ip_arg(struct trace_seq *s, const char *ptr, void *data, int size, struct event_format *event, struct print_arg *arg) { char i = *ptr; /* 'i' or 'I' */ char ver; int rc = 0; ptr++; rc++; ver = *ptr; ptr++; rc++; switch (ver) { case '4': rc += print_ipv4_arg(s, ptr, i, data, size, event, arg); break; case '6': rc += print_ipv6_arg(s, ptr, i, data, size, event, arg); break; case 'S': rc += print_ipsa_arg(s, ptr, i, data, size, event, arg); break; default: return 0; } return rc; } static int is_printable_array(char *p, unsigned int len) { unsigned int i; for (i = 0; i < len && p[i]; i++) if (!isprint(p[i]) && !isspace(p[i])) return 0; return 1; } static void print_event_fields(struct trace_seq *s, void *data, int size __maybe_unused, struct event_format *event) { struct format_field *field; unsigned long long val; unsigned int offset, len, i; field = event->format.fields; while (field) { trace_seq_printf(s, " %s=", field->name); if (field->flags & FIELD_IS_ARRAY) { offset = field->offset; len = field->size; if (field->flags & FIELD_IS_DYNAMIC) { val = pevent_read_number(event->pevent, data + offset, len); offset = val; len = offset >> 16; offset &= 0xffff; } if (field->flags & FIELD_IS_STRING && is_printable_array(data + offset, len)) { trace_seq_printf(s, "%s", (char *)data + offset); } else { trace_seq_puts(s, "ARRAY["); for (i = 0; i < len; i++) { if (i) trace_seq_puts(s, ", "); trace_seq_printf(s, "%02x", *((unsigned char *)data + offset + i)); } trace_seq_putc(s, ']'); field->flags &= ~FIELD_IS_STRING; } } else { val = pevent_read_number(event->pevent, data + field->offset, field->size); if (field->flags & FIELD_IS_POINTER) { trace_seq_printf(s, "0x%llx", val); } else if (field->flags & FIELD_IS_SIGNED) { switch (field->size) { case 4: /* * If field is long then print it in hex. * A long usually stores pointers. */ if (field->flags & FIELD_IS_LONG) trace_seq_printf(s, "0x%x", (int)val); else trace_seq_printf(s, "%d", (int)val); break; case 2: trace_seq_printf(s, "%2d", (short)val); break; case 1: trace_seq_printf(s, "%1d", (char)val); break; default: trace_seq_printf(s, "%lld", val); } } else { if (field->flags & FIELD_IS_LONG) trace_seq_printf(s, "0x%llx", val); else trace_seq_printf(s, "%llu", val); } } field = field->next; } } static void pretty_print(struct trace_seq *s, void *data, int size, struct event_format *event) { struct pevent *pevent = event->pevent; struct print_fmt *print_fmt = &event->print_fmt; struct print_arg *arg = print_fmt->args; struct print_arg *args = NULL; const char *ptr = print_fmt->format; unsigned long long val; struct func_map *func; const char *saveptr; struct trace_seq p; char *bprint_fmt = NULL; char format[32]; int show_func; int len_as_arg; int len_arg; int len; int ls; if (event->flags & EVENT_FL_FAILED) { trace_seq_printf(s, "[FAILED TO PARSE]"); print_event_fields(s, data, size, event); return; } if (event->flags & EVENT_FL_ISBPRINT) { bprint_fmt = get_bprint_format(data, size, event); args = make_bprint_args(bprint_fmt, data, size, event); arg = args; ptr = bprint_fmt; } for (; *ptr; ptr++) { ls = 0; if (*ptr == '\\') { ptr++; switch (*ptr) { case 'n': trace_seq_putc(s, '\n'); break; case 't': trace_seq_putc(s, '\t'); break; case 'r': trace_seq_putc(s, '\r'); break; case '\\': trace_seq_putc(s, '\\'); break; default: trace_seq_putc(s, *ptr); break; } } else if (*ptr == '%') { saveptr = ptr; show_func = 0; len_as_arg = 0; cont_process: ptr++; switch (*ptr) { case '%': trace_seq_putc(s, '%'); break; case '#': /* FIXME: need to handle properly */ goto cont_process; case 'h': ls--; goto cont_process; case 'l': ls++; goto cont_process; case 'L': ls = 2; goto cont_process; case '*': /* The argument is the length. */ if (!arg) { do_warning_event(event, "no argument match"); event->flags |= EVENT_FL_FAILED; goto out_failed; } len_arg = eval_num_arg(data, size, event, arg); len_as_arg = 1; arg = arg->next; goto cont_process; case '.': case 'z': case 'Z': case '0' ... '9': case '-': goto cont_process; case 'p': if (pevent->long_size == 4) ls = 1; else ls = 2; if (*(ptr+1) == 'F' || *(ptr+1) == 'f' || *(ptr+1) == 'S' || *(ptr+1) == 's') { ptr++; show_func = *ptr; } else if (*(ptr+1) == 'M' || *(ptr+1) == 'm') { print_mac_arg(s, *(ptr+1), data, size, event, arg); ptr++; arg = arg->next; break; } else if (*(ptr+1) == 'I' || *(ptr+1) == 'i') { int n; n = print_ip_arg(s, ptr+1, data, size, event, arg); if (n > 0) { ptr += n; arg = arg->next; break; } } /* fall through */ case 'd': case 'i': case 'x': case 'X': case 'u': if (!arg) { do_warning_event(event, "no argument match"); event->flags |= EVENT_FL_FAILED; goto out_failed; } len = ((unsigned long)ptr + 1) - (unsigned long)saveptr; /* should never happen */ if (len > 31) { do_warning_event(event, "bad format!"); event->flags |= EVENT_FL_FAILED; len = 31; } memcpy(format, saveptr, len); format[len] = 0; val = eval_num_arg(data, size, event, arg); arg = arg->next; if (show_func) { func = find_func(pevent, val); if (func) { trace_seq_puts(s, func->func); if (show_func == 'F') trace_seq_printf(s, "+0x%llx", val - func->addr); break; } } if (pevent->long_size == 8 && ls && sizeof(long) != 8) { char *p; ls = 2; /* make %l into %ll */ p = strchr(format, 'l'); if (p) memmove(p+1, p, strlen(p)+1); else if (strcmp(format, "%p") == 0) strcpy(format, "0x%llx"); } switch (ls) { case -2: if (len_as_arg) trace_seq_printf(s, format, len_arg, (char)val); else trace_seq_printf(s, format, (char)val); break; case -1: if (len_as_arg) trace_seq_printf(s, format, len_arg, (short)val); else trace_seq_printf(s, format, (short)val); break; case 0: if (len_as_arg) trace_seq_printf(s, format, len_arg, (int)val); else trace_seq_printf(s, format, (int)val); break; case 1: if (len_as_arg) trace_seq_printf(s, format, len_arg, (long)val); else trace_seq_printf(s, format, (long)val); break; case 2: if (len_as_arg) trace_seq_printf(s, format, len_arg, (long long)val); else trace_seq_printf(s, format, (long long)val); break; default: do_warning_event(event, "bad count (%d)", ls); event->flags |= EVENT_FL_FAILED; } break; case 's': if (!arg) { do_warning_event(event, "no matching argument"); event->flags |= EVENT_FL_FAILED; goto out_failed; } len = ((unsigned long)ptr + 1) - (unsigned long)saveptr; /* should never happen */ if (len > 31) { do_warning_event(event, "bad format!"); event->flags |= EVENT_FL_FAILED; len = 31; } memcpy(format, saveptr, len); format[len] = 0; if (!len_as_arg) len_arg = -1; /* Use helper trace_seq */ trace_seq_init(&p); print_str_arg(&p, data, size, event, format, len_arg, arg); trace_seq_terminate(&p); trace_seq_puts(s, p.buffer); trace_seq_destroy(&p); arg = arg->next; break; default: trace_seq_printf(s, ">%c<", *ptr); } } else trace_seq_putc(s, *ptr); } if (event->flags & EVENT_FL_FAILED) { out_failed: trace_seq_printf(s, "[FAILED TO PARSE]"); } if (args) { free_args(args); free(bprint_fmt); } } /** * pevent_data_lat_fmt - parse the data for the latency format * @pevent: a handle to the pevent * @s: the trace_seq to write to * @record: the record to read from * * This parses out the Latency format (interrupts disabled, * need rescheduling, in hard/soft interrupt, preempt count * and lock depth) and places it into the trace_seq. */ void pevent_data_lat_fmt(struct pevent *pevent, struct trace_seq *s, struct pevent_record *record) { static int check_lock_depth = 1; static int check_migrate_disable = 1; static int lock_depth_exists; static int migrate_disable_exists; unsigned int lat_flags; unsigned int pc; int lock_depth; int migrate_disable; int hardirq; int softirq; void *data = record->data; lat_flags = parse_common_flags(pevent, data); pc = parse_common_pc(pevent, data); /* lock_depth may not always exist */ if (lock_depth_exists) lock_depth = parse_common_lock_depth(pevent, data); else if (check_lock_depth) { lock_depth = parse_common_lock_depth(pevent, data); if (lock_depth < 0) check_lock_depth = 0; else lock_depth_exists = 1; } /* migrate_disable may not always exist */ if (migrate_disable_exists) migrate_disable = parse_common_migrate_disable(pevent, data); else if (check_migrate_disable) { migrate_disable = parse_common_migrate_disable(pevent, data); if (migrate_disable < 0) check_migrate_disable = 0; else migrate_disable_exists = 1; } hardirq = lat_flags & TRACE_FLAG_HARDIRQ; softirq = lat_flags & TRACE_FLAG_SOFTIRQ; trace_seq_printf(s, "%c%c%c", (lat_flags & TRACE_FLAG_IRQS_OFF) ? 'd' : (lat_flags & TRACE_FLAG_IRQS_NOSUPPORT) ? 'X' : '.', (lat_flags & TRACE_FLAG_NEED_RESCHED) ? 'N' : '.', (hardirq && softirq) ? 'H' : hardirq ? 'h' : softirq ? 's' : '.'); if (pc) trace_seq_printf(s, "%x", pc); else trace_seq_putc(s, '.'); if (migrate_disable_exists) { if (migrate_disable < 0) trace_seq_putc(s, '.'); else trace_seq_printf(s, "%d", migrate_disable); } if (lock_depth_exists) { if (lock_depth < 0) trace_seq_putc(s, '.'); else trace_seq_printf(s, "%d", lock_depth); } trace_seq_terminate(s); } /** * pevent_data_type - parse out the given event type * @pevent: a handle to the pevent * @rec: the record to read from * * This returns the event id from the @rec. */ int pevent_data_type(struct pevent *pevent, struct pevent_record *rec) { return trace_parse_common_type(pevent, rec->data); } /** * pevent_data_event_from_type - find the event by a given type * @pevent: a handle to the pevent * @type: the type of the event. * * This returns the event form a given @type; */ struct event_format *pevent_data_event_from_type(struct pevent *pevent, int type) { return pevent_find_event(pevent, type); } /** * pevent_data_pid - parse the PID from raw data * @pevent: a handle to the pevent * @rec: the record to parse * * This returns the PID from a raw data. */ int pevent_data_pid(struct pevent *pevent, struct pevent_record *rec) { return parse_common_pid(pevent, rec->data); } /** * pevent_data_comm_from_pid - return the command line from PID * @pevent: a handle to the pevent * @pid: the PID of the task to search for * * This returns a pointer to the command line that has the given * @pid. */ const char *pevent_data_comm_from_pid(struct pevent *pevent, int pid) { const char *comm; comm = find_cmdline(pevent, pid); return comm; } static struct cmdline * pid_from_cmdlist(struct pevent *pevent, const char *comm, struct cmdline *next) { struct cmdline_list *cmdlist = (struct cmdline_list *)next; if (cmdlist) cmdlist = cmdlist->next; else cmdlist = pevent->cmdlist; while (cmdlist && strcmp(cmdlist->comm, comm) != 0) cmdlist = cmdlist->next; return (struct cmdline *)cmdlist; } /** * pevent_data_pid_from_comm - return the pid from a given comm * @pevent: a handle to the pevent * @comm: the cmdline to find the pid from * @next: the cmdline structure to find the next comm * * This returns the cmdline structure that holds a pid for a given * comm, or NULL if none found. As there may be more than one pid for * a given comm, the result of this call can be passed back into * a recurring call in the @next paramater, and then it will find the * next pid. * Also, it does a linear seach, so it may be slow. */ struct cmdline *pevent_data_pid_from_comm(struct pevent *pevent, const char *comm, struct cmdline *next) { struct cmdline *cmdline; /* * If the cmdlines have not been converted yet, then use * the list. */ if (!pevent->cmdlines) return pid_from_cmdlist(pevent, comm, next); if (next) { /* * The next pointer could have been still from * a previous call before cmdlines were created */ if (next < pevent->cmdlines || next >= pevent->cmdlines + pevent->cmdline_count) next = NULL; else cmdline = next++; } if (!next) cmdline = pevent->cmdlines; while (cmdline < pevent->cmdlines + pevent->cmdline_count) { if (strcmp(cmdline->comm, comm) == 0) return cmdline; cmdline++; } return NULL; } /** * pevent_cmdline_pid - return the pid associated to a given cmdline * @cmdline: The cmdline structure to get the pid from * * Returns the pid for a give cmdline. If @cmdline is NULL, then * -1 is returned. */ int pevent_cmdline_pid(struct pevent *pevent, struct cmdline *cmdline) { struct cmdline_list *cmdlist = (struct cmdline_list *)cmdline; if (!cmdline) return -1; /* * If cmdlines have not been created yet, or cmdline is * not part of the array, then treat it as a cmdlist instead. */ if (!pevent->cmdlines || cmdline < pevent->cmdlines || cmdline >= pevent->cmdlines + pevent->cmdline_count) return cmdlist->pid; return cmdline->pid; } /** * pevent_data_comm_from_pid - parse the data into the print format * @s: the trace_seq to write to * @event: the handle to the event * @record: the record to read from * * This parses the raw @data using the given @event information and * writes the print format into the trace_seq. */ void pevent_event_info(struct trace_seq *s, struct event_format *event, struct pevent_record *record) { int print_pretty = 1; if (event->pevent->print_raw || (event->flags & EVENT_FL_PRINTRAW)) print_event_fields(s, record->data, record->size, event); else { if (event->handler && !(event->flags & EVENT_FL_NOHANDLE)) print_pretty = event->handler(s, record, event, event->context); if (print_pretty) pretty_print(s, record->data, record->size, event); } trace_seq_terminate(s); } static bool is_timestamp_in_us(char *trace_clock, bool use_trace_clock) { if (!use_trace_clock) return true; if (!strcmp(trace_clock, "local") || !strcmp(trace_clock, "global") || !strcmp(trace_clock, "uptime") || !strcmp(trace_clock, "perf")) return true; /* trace_clock is setting in tsc or counter mode */ return false; } void pevent_print_event(struct pevent *pevent, struct trace_seq *s, struct pevent_record *record, bool use_trace_clock) { static const char *spaces = " "; /* 20 spaces */ struct event_format *event; unsigned long secs; unsigned long usecs; unsigned long nsecs; const char *comm; void *data = record->data; int type; int pid; int len; int p; bool use_usec_format; use_usec_format = is_timestamp_in_us(pevent->trace_clock, use_trace_clock); if (use_usec_format) { secs = record->ts / NSECS_PER_SEC; nsecs = record->ts - secs * NSECS_PER_SEC; } if (record->size < 0) { do_warning("ug! negative record size %d", record->size); return; } type = trace_parse_common_type(pevent, data); event = pevent_find_event(pevent, type); if (!event) { do_warning("ug! no event found for type %d", type); return; } pid = parse_common_pid(pevent, data); comm = find_cmdline(pevent, pid); if (pevent->latency_format) { trace_seq_printf(s, "%8.8s-%-5d %3d", comm, pid, record->cpu); pevent_data_lat_fmt(pevent, s, record); } else trace_seq_printf(s, "%16s-%-5d [%03d]", comm, pid, record->cpu); if (use_usec_format) { if (pevent->flags & PEVENT_NSEC_OUTPUT) { usecs = nsecs; p = 9; } else { usecs = (nsecs + 500) / NSECS_PER_USEC; p = 6; } trace_seq_printf(s, " %5lu.%0*lu: %s: ", secs, p, usecs, event->name); } else trace_seq_printf(s, " %12llu: %s: ", record->ts, event->name); /* Space out the event names evenly. */ len = strlen(event->name); if (len < 20) trace_seq_printf(s, "%.*s", 20 - len, spaces); pevent_event_info(s, event, record); } static int events_id_cmp(const void *a, const void *b) { struct event_format * const * ea = a; struct event_format * const * eb = b; if ((*ea)->id < (*eb)->id) return -1; if ((*ea)->id > (*eb)->id) return 1; return 0; } static int events_name_cmp(const void *a, const void *b) { struct event_format * const * ea = a; struct event_format * const * eb = b; int res; res = strcmp((*ea)->name, (*eb)->name); if (res) return res; res = strcmp((*ea)->system, (*eb)->system); if (res) return res; return events_id_cmp(a, b); } static int events_system_cmp(const void *a, const void *b) { struct event_format * const * ea = a; struct event_format * const * eb = b; int res; res = strcmp((*ea)->system, (*eb)->system); if (res) return res; res = strcmp((*ea)->name, (*eb)->name); if (res) return res; return events_id_cmp(a, b); } struct event_format **pevent_list_events(struct pevent *pevent, enum event_sort_type sort_type) { struct event_format **events; int (*sort)(const void *a, const void *b); events = pevent->sort_events; if (events && pevent->last_type == sort_type) return events; if (!events) { events = malloc(sizeof(*events) * (pevent->nr_events + 1)); if (!events) return NULL; memcpy(events, pevent->events, sizeof(*events) * pevent->nr_events); events[pevent->nr_events] = NULL; pevent->sort_events = events; /* the internal events are sorted by id */ if (sort_type == EVENT_SORT_ID) { pevent->last_type = sort_type; return events; } } switch (sort_type) { case EVENT_SORT_ID: sort = events_id_cmp; break; case EVENT_SORT_NAME: sort = events_name_cmp; break; case EVENT_SORT_SYSTEM: sort = events_system_cmp; break; default: return events; } qsort(events, pevent->nr_events, sizeof(*events), sort); pevent->last_type = sort_type; return events; } static struct format_field ** get_event_fields(const char *type, const char *name, int count, struct format_field *list) { struct format_field **fields; struct format_field *field; int i = 0; fields = malloc(sizeof(*fields) * (count + 1)); if (!fields) return NULL; for (field = list; field; field = field->next) { fields[i++] = field; if (i == count + 1) { do_warning("event %s has more %s fields than specified", name, type); i--; break; } } if (i != count) do_warning("event %s has less %s fields than specified", name, type); fields[i] = NULL; return fields; } /** * pevent_event_common_fields - return a list of common fields for an event * @event: the event to return the common fields of. * * Returns an allocated array of fields. The last item in the array is NULL. * The array must be freed with free(). */ struct format_field **pevent_event_common_fields(struct event_format *event) { return get_event_fields("common", event->name, event->format.nr_common, event->format.common_fields); } /** * pevent_event_fields - return a list of event specific fields for an event * @event: the event to return the fields of. * * Returns an allocated array of fields. The last item in the array is NULL. * The array must be freed with free(). */ struct format_field **pevent_event_fields(struct event_format *event) { return get_event_fields("event", event->name, event->format.nr_fields, event->format.fields); } static void print_fields(struct trace_seq *s, struct print_flag_sym *field) { trace_seq_printf(s, "{ %s, %s }", field->value, field->str); if (field->next) { trace_seq_puts(s, ", "); print_fields(s, field->next); } } /* for debugging */ static void print_args(struct print_arg *args) { int print_paren = 1; struct trace_seq s; switch (args->type) { case PRINT_NULL: printf("null"); break; case PRINT_ATOM: printf("%s", args->atom.atom); break; case PRINT_FIELD: printf("REC->%s", args->field.name); break; case PRINT_FLAGS: printf("__print_flags("); print_args(args->flags.field); printf(", %s, ", args->flags.delim); trace_seq_init(&s); print_fields(&s, args->flags.flags); trace_seq_do_printf(&s); trace_seq_destroy(&s); printf(")"); break; case PRINT_SYMBOL: printf("__print_symbolic("); print_args(args->symbol.field); printf(", "); trace_seq_init(&s); print_fields(&s, args->symbol.symbols); trace_seq_do_printf(&s); trace_seq_destroy(&s); printf(")"); break; case PRINT_HEX: printf("__print_hex("); print_args(args->hex.field); printf(", "); print_args(args->hex.size); printf(")"); break; case PRINT_INT_ARRAY: printf("__print_array("); print_args(args->int_array.field); printf(", "); print_args(args->int_array.count); printf(", "); print_args(args->int_array.el_size); printf(")"); break; case PRINT_STRING: case PRINT_BSTRING: printf("__get_str(%s)", args->string.string); break; case PRINT_BITMASK: printf("__get_bitmask(%s)", args->bitmask.bitmask); break; case PRINT_TYPE: printf("(%s)", args->typecast.type); print_args(args->typecast.item); break; case PRINT_OP: if (strcmp(args->op.op, ":") == 0) print_paren = 0; if (print_paren) printf("("); print_args(args->op.left); printf(" %s ", args->op.op); print_args(args->op.right); if (print_paren) printf(")"); break; default: /* we should warn... */ return; } if (args->next) { printf("\n"); print_args(args->next); } } static void parse_header_field(const char *field, int *offset, int *size, int mandatory) { unsigned long long save_input_buf_ptr; unsigned long long save_input_buf_siz; char *token; int type; save_input_buf_ptr = input_buf_ptr; save_input_buf_siz = input_buf_siz; if (read_expected(EVENT_ITEM, "field") < 0) return; if (read_expected(EVENT_OP, ":") < 0) return; /* type */ if (read_expect_type(EVENT_ITEM, &token) < 0) goto fail; free_token(token); /* * If this is not a mandatory field, then test it first. */ if (mandatory) { if (read_expected(EVENT_ITEM, field) < 0) return; } else { if (read_expect_type(EVENT_ITEM, &token) < 0) goto fail; if (strcmp(token, field) != 0) goto discard; free_token(token); } if (read_expected(EVENT_OP, ";") < 0) return; if (read_expected(EVENT_ITEM, "offset") < 0) return; if (read_expected(EVENT_OP, ":") < 0) return; if (read_expect_type(EVENT_ITEM, &token) < 0) goto fail; *offset = atoi(token); free_token(token); if (read_expected(EVENT_OP, ";") < 0) return; if (read_expected(EVENT_ITEM, "size") < 0) return; if (read_expected(EVENT_OP, ":") < 0) return; if (read_expect_type(EVENT_ITEM, &token) < 0) goto fail; *size = atoi(token); free_token(token); if (read_expected(EVENT_OP, ";") < 0) return; type = read_token(&token); if (type != EVENT_NEWLINE) { /* newer versions of the kernel have a "signed" type */ if (type != EVENT_ITEM) goto fail; if (strcmp(token, "signed") != 0) goto fail; free_token(token); if (read_expected(EVENT_OP, ":") < 0) return; if (read_expect_type(EVENT_ITEM, &token)) goto fail; free_token(token); if (read_expected(EVENT_OP, ";") < 0) return; if (read_expect_type(EVENT_NEWLINE, &token)) goto fail; } fail: free_token(token); return; discard: input_buf_ptr = save_input_buf_ptr; input_buf_siz = save_input_buf_siz; *offset = 0; *size = 0; free_token(token); } /** * pevent_parse_header_page - parse the data stored in the header page * @pevent: the handle to the pevent * @buf: the buffer storing the header page format string * @size: the size of @buf * @long_size: the long size to use if there is no header * * This parses the header page format for information on the * ring buffer used. The @buf should be copied from * * /sys/kernel/debug/tracing/events/header_page */ int pevent_parse_header_page(struct pevent *pevent, char *buf, unsigned long size, int long_size) { int ignore; if (!size) { /* * Old kernels did not have header page info. * Sorry but we just use what we find here in user space. */ pevent->header_page_ts_size = sizeof(long long); pevent->header_page_size_size = long_size; pevent->header_page_data_offset = sizeof(long long) + long_size; pevent->old_format = 1; return -1; } init_input_buf(buf, size); parse_header_field("timestamp", &pevent->header_page_ts_offset, &pevent->header_page_ts_size, 1); parse_header_field("commit", &pevent->header_page_size_offset, &pevent->header_page_size_size, 1); parse_header_field("overwrite", &pevent->header_page_overwrite, &ignore, 0); parse_header_field("data", &pevent->header_page_data_offset, &pevent->header_page_data_size, 1); return 0; } static int event_matches(struct event_format *event, int id, const char *sys_name, const char *event_name) { if (id >= 0 && id != event->id) return 0; if (event_name && (strcmp(event_name, event->name) != 0)) return 0; if (sys_name && (strcmp(sys_name, event->system) != 0)) return 0; return 1; } static void free_handler(struct event_handler *handle) { free((void *)handle->sys_name); free((void *)handle->event_name); free(handle); } static int find_event_handle(struct pevent *pevent, struct event_format *event) { struct event_handler *handle, **next; for (next = &pevent->handlers; *next; next = &(*next)->next) { handle = *next; if (event_matches(event, handle->id, handle->sys_name, handle->event_name)) break; } if (!(*next)) return 0; pr_stat("overriding event (%d) %s:%s with new print handler", event->id, event->system, event->name); event->handler = handle->func; event->context = handle->context; *next = handle->next; free_handler(handle); return 1; } /** * __pevent_parse_format - parse the event format * @buf: the buffer storing the event format string * @size: the size of @buf * @sys: the system the event belongs to * * This parses the event format and creates an event structure * to quickly parse raw data for a given event. * * These files currently come from: * * /sys/kernel/debug/tracing/events/.../.../format */ enum pevent_errno __pevent_parse_format(struct event_format **eventp, struct pevent *pevent, const char *buf, unsigned long size, const char *sys) { struct event_format *event; int ret; init_input_buf(buf, size); *eventp = event = alloc_event(); if (!event) return PEVENT_ERRNO__MEM_ALLOC_FAILED; event->name = event_read_name(); if (!event->name) { /* Bad event? */ ret = PEVENT_ERRNO__MEM_ALLOC_FAILED; goto event_alloc_failed; } if (strcmp(sys, "ftrace") == 0) { event->flags |= EVENT_FL_ISFTRACE; if (strcmp(event->name, "bprint") == 0) event->flags |= EVENT_FL_ISBPRINT; } event->id = event_read_id(); if (event->id < 0) { ret = PEVENT_ERRNO__READ_ID_FAILED; /* * This isn't an allocation error actually. * But as the ID is critical, just bail out. */ goto event_alloc_failed; } event->system = strdup(sys); if (!event->system) { ret = PEVENT_ERRNO__MEM_ALLOC_FAILED; goto event_alloc_failed; } /* Add pevent to event so that it can be referenced */ event->pevent = pevent; ret = event_read_format(event); if (ret < 0) { ret = PEVENT_ERRNO__READ_FORMAT_FAILED; goto event_parse_failed; } /* * If the event has an override, don't print warnings if the event * print format fails to parse. */ if (pevent && find_event_handle(pevent, event)) show_warning = 0; ret = event_read_print(event); show_warning = 1; if (ret < 0) { ret = PEVENT_ERRNO__READ_PRINT_FAILED; goto event_parse_failed; } if (!ret && (event->flags & EVENT_FL_ISFTRACE)) { struct format_field *field; struct print_arg *arg, **list; /* old ftrace had no args */ list = &event->print_fmt.args; for (field = event->format.fields; field; field = field->next) { arg = alloc_arg(); if (!arg) { event->flags |= EVENT_FL_FAILED; return PEVENT_ERRNO__OLD_FTRACE_ARG_FAILED; } arg->type = PRINT_FIELD; arg->field.name = strdup(field->name); if (!arg->field.name) { event->flags |= EVENT_FL_FAILED; free_arg(arg); return PEVENT_ERRNO__OLD_FTRACE_ARG_FAILED; } arg->field.field = field; *list = arg; list = &arg->next; } return 0; } return 0; event_parse_failed: event->flags |= EVENT_FL_FAILED; return ret; event_alloc_failed: free(event->system); free(event->name); free(event); *eventp = NULL; return ret; } static enum pevent_errno __pevent_parse_event(struct pevent *pevent, struct event_format **eventp, const char *buf, unsigned long size, const char *sys) { int ret = __pevent_parse_format(eventp, pevent, buf, size, sys); struct event_format *event = *eventp; if (event == NULL) return ret; if (pevent && add_event(pevent, event)) { ret = PEVENT_ERRNO__MEM_ALLOC_FAILED; goto event_add_failed; } #define PRINT_ARGS 0 if (PRINT_ARGS && event->print_fmt.args) print_args(event->print_fmt.args); return 0; event_add_failed: pevent_free_format(event); return ret; } /** * pevent_parse_format - parse the event format * @pevent: the handle to the pevent * @eventp: returned format * @buf: the buffer storing the event format string * @size: the size of @buf * @sys: the system the event belongs to * * This parses the event format and creates an event structure * to quickly parse raw data for a given event. * * These files currently come from: * * /sys/kernel/debug/tracing/events/.../.../format */ enum pevent_errno pevent_parse_format(struct pevent *pevent, struct event_format **eventp, const char *buf, unsigned long size, const char *sys) { return __pevent_parse_event(pevent, eventp, buf, size, sys); } /** * pevent_parse_event - parse the event format * @pevent: the handle to the pevent * @buf: the buffer storing the event format string * @size: the size of @buf * @sys: the system the event belongs to * * This parses the event format and creates an event structure * to quickly parse raw data for a given event. * * These files currently come from: * * /sys/kernel/debug/tracing/events/.../.../format */ enum pevent_errno pevent_parse_event(struct pevent *pevent, const char *buf, unsigned long size, const char *sys) { struct event_format *event = NULL; return __pevent_parse_event(pevent, &event, buf, size, sys); } #undef _PE #define _PE(code, str) str static const char * const pevent_error_str[] = { PEVENT_ERRORS }; #undef _PE int pevent_strerror(struct pevent *pevent __maybe_unused, enum pevent_errno errnum, char *buf, size_t buflen) { int idx; const char *msg; if (errnum >= 0) { msg = strerror_r(errnum, buf, buflen); if (msg != buf) { size_t len = strlen(msg); memcpy(buf, msg, min(buflen - 1, len)); *(buf + min(buflen - 1, len)) = '\0'; } return 0; } if (errnum <= __PEVENT_ERRNO__START || errnum >= __PEVENT_ERRNO__END) return -1; idx = errnum - __PEVENT_ERRNO__START - 1; msg = pevent_error_str[idx]; snprintf(buf, buflen, "%s", msg); return 0; } int get_field_val(struct trace_seq *s, struct format_field *field, const char *name, struct pevent_record *record, unsigned long long *val, int err) { if (!field) { if (err) trace_seq_printf(s, "", name); return -1; } if (pevent_read_number_field(field, record->data, val)) { if (err) trace_seq_printf(s, " %s=INVALID", name); return -1; } return 0; } /** * pevent_get_field_raw - return the raw pointer into the data field * @s: The seq to print to on error * @event: the event that the field is for * @name: The name of the field * @record: The record with the field name. * @len: place to store the field length. * @err: print default error if failed. * * Returns a pointer into record->data of the field and places * the length of the field in @len. * * On failure, it returns NULL. */ void *pevent_get_field_raw(struct trace_seq *s, struct event_format *event, const char *name, struct pevent_record *record, int *len, int err) { struct format_field *field; void *data = record->data; unsigned offset; int dummy; if (!event) return NULL; field = pevent_find_field(event, name); if (!field) { if (err) trace_seq_printf(s, "", name); return NULL; } /* Allow @len to be NULL */ if (!len) len = &dummy; offset = field->offset; if (field->flags & FIELD_IS_DYNAMIC) { offset = pevent_read_number(event->pevent, data + offset, field->size); *len = offset >> 16; offset &= 0xffff; } else *len = field->size; return data + offset; } /** * pevent_get_field_val - find a field and return its value * @s: The seq to print to on error * @event: the event that the field is for * @name: The name of the field * @record: The record with the field name. * @val: place to store the value of the field. * @err: print default error if failed. * * Returns 0 on success -1 on field not found. */ int pevent_get_field_val(struct trace_seq *s, struct event_format *event, const char *name, struct pevent_record *record, unsigned long long *val, int err) { struct format_field *field; if (!event) return -1; field = pevent_find_field(event, name); return get_field_val(s, field, name, record, val, err); } /** * pevent_get_common_field_val - find a common field and return its value * @s: The seq to print to on error * @event: the event that the field is for * @name: The name of the field * @record: The record with the field name. * @val: place to store the value of the field. * @err: print default error if failed. * * Returns 0 on success -1 on field not found. */ int pevent_get_common_field_val(struct trace_seq *s, struct event_format *event, const char *name, struct pevent_record *record, unsigned long long *val, int err) { struct format_field *field; if (!event) return -1; field = pevent_find_common_field(event, name); return get_field_val(s, field, name, record, val, err); } /** * pevent_get_any_field_val - find a any field and return its value * @s: The seq to print to on error * @event: the event that the field is for * @name: The name of the field * @record: The record with the field name. * @val: place to store the value of the field. * @err: print default error if failed. * * Returns 0 on success -1 on field not found. */ int pevent_get_any_field_val(struct trace_seq *s, struct event_format *event, const char *name, struct pevent_record *record, unsigned long long *val, int err) { struct format_field *field; if (!event) return -1; field = pevent_find_any_field(event, name); return get_field_val(s, field, name, record, val, err); } /** * pevent_print_num_field - print a field and a format * @s: The seq to print to * @fmt: The printf format to print the field with. * @event: the event that the field is for * @name: The name of the field * @record: The record with the field name. * @err: print default error if failed. * * Returns: 0 on success, -1 field not found, or 1 if buffer is full. */ int pevent_print_num_field(struct trace_seq *s, const char *fmt, struct event_format *event, const char *name, struct pevent_record *record, int err) { struct format_field *field = pevent_find_field(event, name); unsigned long long val; if (!field) goto failed; if (pevent_read_number_field(field, record->data, &val)) goto failed; return trace_seq_printf(s, fmt, val); failed: if (err) trace_seq_printf(s, "CAN'T FIND FIELD \"%s\"", name); return -1; } /** * pevent_print_func_field - print a field and a format for function pointers * @s: The seq to print to * @fmt: The printf format to print the field with. * @event: the event that the field is for * @name: The name of the field * @record: The record with the field name. * @err: print default error if failed. * * Returns: 0 on success, -1 field not found, or 1 if buffer is full. */ int pevent_print_func_field(struct trace_seq *s, const char *fmt, struct event_format *event, const char *name, struct pevent_record *record, int err) { struct format_field *field = pevent_find_field(event, name); struct pevent *pevent = event->pevent; unsigned long long val; struct func_map *func; char tmp[128]; if (!field) goto failed; if (pevent_read_number_field(field, record->data, &val)) goto failed; func = find_func(pevent, val); if (func) snprintf(tmp, 128, "%s/0x%llx", func->func, func->addr - val); else sprintf(tmp, "0x%08llx", val); return trace_seq_printf(s, fmt, tmp); failed: if (err) trace_seq_printf(s, "CAN'T FIND FIELD \"%s\"", name); return -1; } static void free_func_handle(struct pevent_function_handler *func) { struct pevent_func_params *params; free(func->name); while (func->params) { params = func->params; func->params = params->next; free(params); } free(func); } /** * pevent_register_print_function - register a helper function * @pevent: the handle to the pevent * @func: the function to process the helper function * @ret_type: the return type of the helper function * @name: the name of the helper function * @parameters: A list of enum pevent_func_arg_type * * Some events may have helper functions in the print format arguments. * This allows a plugin to dynamically create a way to process one * of these functions. * * The @parameters is a variable list of pevent_func_arg_type enums that * must end with PEVENT_FUNC_ARG_VOID. */ int pevent_register_print_function(struct pevent *pevent, pevent_func_handler func, enum pevent_func_arg_type ret_type, char *name, ...) { struct pevent_function_handler *func_handle; struct pevent_func_params **next_param; struct pevent_func_params *param; enum pevent_func_arg_type type; va_list ap; int ret; func_handle = find_func_handler(pevent, name); if (func_handle) { /* * This is most like caused by the users own * plugins updating the function. This overrides the * system defaults. */ pr_stat("override of function helper '%s'", name); remove_func_handler(pevent, name); } func_handle = calloc(1, sizeof(*func_handle)); if (!func_handle) { do_warning("Failed to allocate function handler"); return PEVENT_ERRNO__MEM_ALLOC_FAILED; } func_handle->ret_type = ret_type; func_handle->name = strdup(name); func_handle->func = func; if (!func_handle->name) { do_warning("Failed to allocate function name"); free(func_handle); return PEVENT_ERRNO__MEM_ALLOC_FAILED; } next_param = &(func_handle->params); va_start(ap, name); for (;;) { type = va_arg(ap, enum pevent_func_arg_type); if (type == PEVENT_FUNC_ARG_VOID) break; if (type >= PEVENT_FUNC_ARG_MAX_TYPES) { do_warning("Invalid argument type %d", type); ret = PEVENT_ERRNO__INVALID_ARG_TYPE; goto out_free; } param = malloc(sizeof(*param)); if (!param) { do_warning("Failed to allocate function param"); ret = PEVENT_ERRNO__MEM_ALLOC_FAILED; goto out_free; } param->type = type; param->next = NULL; *next_param = param; next_param = &(param->next); func_handle->nr_args++; } va_end(ap); func_handle->next = pevent->func_handlers; pevent->func_handlers = func_handle; return 0; out_free: va_end(ap); free_func_handle(func_handle); return ret; } /** * pevent_unregister_print_function - unregister a helper function * @pevent: the handle to the pevent * @func: the function to process the helper function * @name: the name of the helper function * * This function removes existing print handler for function @name. * * Returns 0 if the handler was removed successully, -1 otherwise. */ int pevent_unregister_print_function(struct pevent *pevent, pevent_func_handler func, char *name) { struct pevent_function_handler *func_handle; func_handle = find_func_handler(pevent, name); if (func_handle && func_handle->func == func) { remove_func_handler(pevent, name); return 0; } return -1; } static struct event_format *pevent_search_event(struct pevent *pevent, int id, const char *sys_name, const char *event_name) { struct event_format *event; if (id >= 0) { /* search by id */ event = pevent_find_event(pevent, id); if (!event) return NULL; if (event_name && (strcmp(event_name, event->name) != 0)) return NULL; if (sys_name && (strcmp(sys_name, event->system) != 0)) return NULL; } else { event = pevent_find_event_by_name(pevent, sys_name, event_name); if (!event) return NULL; } return event; } /** * pevent_register_event_handler - register a way to parse an event * @pevent: the handle to the pevent * @id: the id of the event to register * @sys_name: the system name the event belongs to * @event_name: the name of the event * @func: the function to call to parse the event information * @context: the data to be passed to @func * * This function allows a developer to override the parsing of * a given event. If for some reason the default print format * is not sufficient, this function will register a function * for an event to be used to parse the data instead. * * If @id is >= 0, then it is used to find the event. * else @sys_name and @event_name are used. */ int pevent_register_event_handler(struct pevent *pevent, int id, const char *sys_name, const char *event_name, pevent_event_handler_func func, void *context) { struct event_format *event; struct event_handler *handle; event = pevent_search_event(pevent, id, sys_name, event_name); if (event == NULL) goto not_found; pr_stat("overriding event (%d) %s:%s with new print handler", event->id, event->system, event->name); event->handler = func; event->context = context; return 0; not_found: /* Save for later use. */ handle = calloc(1, sizeof(*handle)); if (!handle) { do_warning("Failed to allocate event handler"); return PEVENT_ERRNO__MEM_ALLOC_FAILED; } handle->id = id; if (event_name) handle->event_name = strdup(event_name); if (sys_name) handle->sys_name = strdup(sys_name); if ((event_name && !handle->event_name) || (sys_name && !handle->sys_name)) { do_warning("Failed to allocate event/sys name"); free((void *)handle->event_name); free((void *)handle->sys_name); free(handle); return PEVENT_ERRNO__MEM_ALLOC_FAILED; } handle->func = func; handle->next = pevent->handlers; pevent->handlers = handle; handle->context = context; return -1; } static int handle_matches(struct event_handler *handler, int id, const char *sys_name, const char *event_name, pevent_event_handler_func func, void *context) { if (id >= 0 && id != handler->id) return 0; if (event_name && (strcmp(event_name, handler->event_name) != 0)) return 0; if (sys_name && (strcmp(sys_name, handler->sys_name) != 0)) return 0; if (func != handler->func || context != handler->context) return 0; return 1; } /** * pevent_unregister_event_handler - unregister an existing event handler * @pevent: the handle to the pevent * @id: the id of the event to unregister * @sys_name: the system name the handler belongs to * @event_name: the name of the event handler * @func: the function to call to parse the event information * @context: the data to be passed to @func * * This function removes existing event handler (parser). * * If @id is >= 0, then it is used to find the event. * else @sys_name and @event_name are used. * * Returns 0 if handler was removed successfully, -1 if event was not found. */ int pevent_unregister_event_handler(struct pevent *pevent, int id, const char *sys_name, const char *event_name, pevent_event_handler_func func, void *context) { struct event_format *event; struct event_handler *handle; struct event_handler **next; event = pevent_search_event(pevent, id, sys_name, event_name); if (event == NULL) goto not_found; if (event->handler == func && event->context == context) { pr_stat("removing override handler for event (%d) %s:%s. Going back to default handler.", event->id, event->system, event->name); event->handler = NULL; event->context = NULL; return 0; } not_found: for (next = &pevent->handlers; *next; next = &(*next)->next) { handle = *next; if (handle_matches(handle, id, sys_name, event_name, func, context)) break; } if (!(*next)) return -1; *next = handle->next; free_handler(handle); return 0; } /** * pevent_alloc - create a pevent handle */ struct pevent *pevent_alloc(void) { struct pevent *pevent = calloc(1, sizeof(*pevent)); if (pevent) pevent->ref_count = 1; return pevent; } void pevent_ref(struct pevent *pevent) { pevent->ref_count++; } void pevent_free_format_field(struct format_field *field) { free(field->type); if (field->alias != field->name) free(field->alias); free(field->name); free(field); } static void free_format_fields(struct format_field *field) { struct format_field *next; while (field) { next = field->next; pevent_free_format_field(field); field = next; } } static void free_formats(struct format *format) { free_format_fields(format->common_fields); free_format_fields(format->fields); } void pevent_free_format(struct event_format *event) { free(event->name); free(event->system); free_formats(&event->format); free(event->print_fmt.format); free_args(event->print_fmt.args); free(event); } /** * pevent_free - free a pevent handle * @pevent: the pevent handle to free */ void pevent_free(struct pevent *pevent) { struct cmdline_list *cmdlist, *cmdnext; struct func_list *funclist, *funcnext; struct printk_list *printklist, *printknext; struct pevent_function_handler *func_handler; struct event_handler *handle; int i; if (!pevent) return; cmdlist = pevent->cmdlist; funclist = pevent->funclist; printklist = pevent->printklist; pevent->ref_count--; if (pevent->ref_count) return; if (pevent->cmdlines) { for (i = 0; i < pevent->cmdline_count; i++) free(pevent->cmdlines[i].comm); free(pevent->cmdlines); } while (cmdlist) { cmdnext = cmdlist->next; free(cmdlist->comm); free(cmdlist); cmdlist = cmdnext; } if (pevent->func_map) { for (i = 0; i < (int)pevent->func_count; i++) { free(pevent->func_map[i].func); free(pevent->func_map[i].mod); } free(pevent->func_map); } while (funclist) { funcnext = funclist->next; free(funclist->func); free(funclist->mod); free(funclist); funclist = funcnext; } while (pevent->func_handlers) { func_handler = pevent->func_handlers; pevent->func_handlers = func_handler->next; free_func_handle(func_handler); } if (pevent->printk_map) { for (i = 0; i < (int)pevent->printk_count; i++) free(pevent->printk_map[i].printk); free(pevent->printk_map); } while (printklist) { printknext = printklist->next; free(printklist->printk); free(printklist); printklist = printknext; } for (i = 0; i < pevent->nr_events; i++) pevent_free_format(pevent->events[i]); while (pevent->handlers) { handle = pevent->handlers; pevent->handlers = handle->next; free_handler(handle); } free(pevent->trace_clock); free(pevent->events); free(pevent->sort_events); free(pevent->func_resolver); free(pevent); } void pevent_unref(struct pevent *pevent) { pevent_free(pevent); }