/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * DOC: Panel Self Refresh (PSR/SRD) * * Since Haswell Display controller supports Panel Self-Refresh on display * panels witch have a remote frame buffer (RFB) implemented according to PSR * spec in eDP1.3. PSR feature allows the display to go to lower standby states * when system is idle but display is on as it eliminates display refresh * request to DDR memory completely as long as the frame buffer for that * display is unchanged. * * Panel Self Refresh must be supported by both Hardware (source) and * Panel (sink). * * PSR saves power by caching the framebuffer in the panel RFB, which allows us * to power down the link and memory controller. For DSI panels the same idea * is called "manual mode". * * The implementation uses the hardware-based PSR support which automatically * enters/exits self-refresh mode. The hardware takes care of sending the * required DP aux message and could even retrain the link (that part isn't * enabled yet though). The hardware also keeps track of any frontbuffer * changes to know when to exit self-refresh mode again. Unfortunately that * part doesn't work too well, hence why the i915 PSR support uses the * software frontbuffer tracking to make sure it doesn't miss a screen * update. For this integration intel_psr_invalidate() and intel_psr_flush() * get called by the frontbuffer tracking code. Note that because of locking * issues the self-refresh re-enable code is done from a work queue, which * must be correctly synchronized/cancelled when shutting down the pipe." */ #include #include "intel_drv.h" #include "i915_drv.h" static bool is_edp_psr(struct intel_dp *intel_dp) { return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED; } static bool vlv_is_psr_active_on_pipe(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t val; val = I915_READ(VLV_PSRSTAT(pipe)) & VLV_EDP_PSR_CURR_STATE_MASK; return (val == VLV_EDP_PSR_ACTIVE_NORFB_UP) || (val == VLV_EDP_PSR_ACTIVE_SF_UPDATE); } static void intel_psr_write_vsc(struct intel_dp *intel_dp, struct edp_vsc_psr *vsc_psr) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc); u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder); u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder); uint32_t *data = (uint32_t *) vsc_psr; unsigned int i; /* As per BSPec (Pipe Video Data Island Packet), we need to disable the video DIP being updated before program video DIP data buffer registers for DIP being updated. */ I915_WRITE(ctl_reg, 0); POSTING_READ(ctl_reg); for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) { if (i < sizeof(struct edp_vsc_psr)) I915_WRITE(data_reg + i, *data++); else I915_WRITE(data_reg + i, 0); } I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW); POSTING_READ(ctl_reg); } static void vlv_psr_setup_vsc(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc = intel_dig_port->base.base.crtc; enum pipe pipe = to_intel_crtc(crtc)->pipe; uint32_t val; /* VLV auto-generate VSC package as per EDP 1.3 spec, Table 3.10 */ val = I915_READ(VLV_VSCSDP(pipe)); val &= ~VLV_EDP_PSR_SDP_FREQ_MASK; val |= VLV_EDP_PSR_SDP_FREQ_EVFRAME; I915_WRITE(VLV_VSCSDP(pipe), val); } static void hsw_psr_setup_vsc(struct intel_dp *intel_dp) { struct edp_vsc_psr psr_vsc; /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */ memset(&psr_vsc, 0, sizeof(psr_vsc)); psr_vsc.sdp_header.HB0 = 0; psr_vsc.sdp_header.HB1 = 0x7; psr_vsc.sdp_header.HB2 = 0x2; psr_vsc.sdp_header.HB3 = 0x8; intel_psr_write_vsc(intel_dp, &psr_vsc); } static void vlv_psr_enable_sink(struct intel_dp *intel_dp) { drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, DP_PSR_ENABLE); } static void hsw_psr_enable_sink(struct intel_dp *intel_dp) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; uint32_t aux_clock_divider; int precharge = 0x3; bool only_standby = dev_priv->vbt.psr.full_link; static const uint8_t aux_msg[] = { [0] = DP_AUX_NATIVE_WRITE << 4, [1] = DP_SET_POWER >> 8, [2] = DP_SET_POWER & 0xff, [3] = 1 - 1, [4] = DP_SET_POWER_D0, }; int i; BUILD_BUG_ON(sizeof(aux_msg) > 20); aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0); if (IS_BROADWELL(dev) && dig_port->port != PORT_A) only_standby = true; /* Enable PSR in sink */ if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE); else drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE); /* Setup AUX registers */ for (i = 0; i < sizeof(aux_msg); i += 4) I915_WRITE(EDP_PSR_AUX_DATA1(dev) + i, intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i)); I915_WRITE(EDP_PSR_AUX_CTL(dev), DP_AUX_CH_CTL_TIME_OUT_400us | (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT)); } static void vlv_psr_enable_source(struct intel_dp *intel_dp) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc = dig_port->base.base.crtc; enum pipe pipe = to_intel_crtc(crtc)->pipe; /* Transition from PSR_state 0 to PSR_state 1, i.e. PSR Inactive */ I915_WRITE(VLV_PSRCTL(pipe), VLV_EDP_PSR_MODE_SW_TIMER | VLV_EDP_PSR_SRC_TRANSMITTER_STATE | VLV_EDP_PSR_ENABLE); } static void vlv_psr_activate(struct intel_dp *intel_dp) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc = dig_port->base.base.crtc; enum pipe pipe = to_intel_crtc(crtc)->pipe; /* Let's do the transition from PSR_state 1 to PSR_state 2 * that is PSR transition to active - static frame transmission. * Then Hardware is responsible for the transition to PSR_state 3 * that is PSR active - no Remote Frame Buffer (RFB) update. */ I915_WRITE(VLV_PSRCTL(pipe), I915_READ(VLV_PSRCTL(pipe)) | VLV_EDP_PSR_ACTIVE_ENTRY); } static void hsw_psr_enable_source(struct intel_dp *intel_dp) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; uint32_t max_sleep_time = 0x1f; /* Lately it was identified that depending on panel idle frame count * calculated at HW can be off by 1. So let's use what came * from VBT + 1 and at minimum 2 to be on the safe side. */ uint32_t idle_frames = dev_priv->vbt.psr.idle_frames ? dev_priv->vbt.psr.idle_frames + 1 : 2; uint32_t val = 0x0; const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES; bool only_standby = dev_priv->vbt.psr.full_link; if (IS_BROADWELL(dev) && dig_port->port != PORT_A) only_standby = true; if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) { val |= EDP_PSR_LINK_STANDBY; val |= EDP_PSR_TP2_TP3_TIME_0us; val |= EDP_PSR_TP1_TIME_0us; val |= EDP_PSR_SKIP_AUX_EXIT; } else val |= EDP_PSR_LINK_DISABLE; I915_WRITE(EDP_PSR_CTL(dev), val | (IS_BROADWELL(dev) ? 0 : link_entry_time) | max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT | idle_frames << EDP_PSR_IDLE_FRAME_SHIFT | EDP_PSR_ENABLE); } static bool intel_psr_match_conditions(struct intel_dp *intel_dp) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc = dig_port->base.base.crtc; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); lockdep_assert_held(&dev_priv->psr.lock); WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex)); WARN_ON(!drm_modeset_is_locked(&crtc->mutex)); dev_priv->psr.source_ok = false; if (IS_HASWELL(dev) && dig_port->port != PORT_A) { DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n"); return false; } if (!i915.enable_psr) { DRM_DEBUG_KMS("PSR disable by flag\n"); return false; } if (IS_HASWELL(dev) && I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) & S3D_ENABLE) { DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n"); return false; } if (IS_HASWELL(dev) && intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n"); return false; } dev_priv->psr.source_ok = true; return true; } static void intel_psr_activate(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE); WARN_ON(dev_priv->psr.active); lockdep_assert_held(&dev_priv->psr.lock); /* Enable/Re-enable PSR on the host */ if (HAS_DDI(dev)) /* On HSW+ after we enable PSR on source it will activate it * as soon as it match configure idle_frame count. So * we just actually enable it here on activation time. */ hsw_psr_enable_source(intel_dp); else vlv_psr_activate(intel_dp); dev_priv->psr.active = true; } /** * intel_psr_enable - Enable PSR * @intel_dp: Intel DP * * This function can only be called after the pipe is fully trained and enabled. */ void intel_psr_enable(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; if (!HAS_PSR(dev)) { DRM_DEBUG_KMS("PSR not supported on this platform\n"); return; } if (!is_edp_psr(intel_dp)) { DRM_DEBUG_KMS("PSR not supported by this panel\n"); return; } mutex_lock(&dev_priv->psr.lock); if (dev_priv->psr.enabled) { DRM_DEBUG_KMS("PSR already in use\n"); goto unlock; } if (!intel_psr_match_conditions(intel_dp)) goto unlock; dev_priv->psr.busy_frontbuffer_bits = 0; if (HAS_DDI(dev)) { hsw_psr_setup_vsc(intel_dp); /* Avoid continuous PSR exit by masking memup and hpd */ I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP | EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP); /* Enable PSR on the panel */ hsw_psr_enable_sink(intel_dp); } else { vlv_psr_setup_vsc(intel_dp); /* Enable PSR on the panel */ vlv_psr_enable_sink(intel_dp); /* On HSW+ enable_source also means go to PSR entry/active * state as soon as idle_frame achieved and here would be * to soon. However on VLV enable_source just enable PSR * but let it on inactive state. So we might do this prior * to active transition, i.e. here. */ vlv_psr_enable_source(intel_dp); } dev_priv->psr.enabled = intel_dp; unlock: mutex_unlock(&dev_priv->psr.lock); } static void vlv_psr_disable(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(intel_dig_port->base.base.crtc); uint32_t val; if (dev_priv->psr.active) { /* Put VLV PSR back to PSR_state 0 that is PSR Disabled. */ if (wait_for((I915_READ(VLV_PSRSTAT(intel_crtc->pipe)) & VLV_EDP_PSR_IN_TRANS) == 0, 1)) WARN(1, "PSR transition took longer than expected\n"); val = I915_READ(VLV_PSRCTL(intel_crtc->pipe)); val &= ~VLV_EDP_PSR_ACTIVE_ENTRY; val &= ~VLV_EDP_PSR_ENABLE; val &= ~VLV_EDP_PSR_MODE_MASK; I915_WRITE(VLV_PSRCTL(intel_crtc->pipe), val); dev_priv->psr.active = false; } else { WARN_ON(vlv_is_psr_active_on_pipe(dev, intel_crtc->pipe)); } } static void hsw_psr_disable(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; if (dev_priv->psr.active) { I915_WRITE(EDP_PSR_CTL(dev), I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE); /* Wait till PSR is idle */ if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) & EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10)) DRM_ERROR("Timed out waiting for PSR Idle State\n"); dev_priv->psr.active = false; } else { WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE); } } /** * intel_psr_disable - Disable PSR * @intel_dp: Intel DP * * This function needs to be called before disabling pipe. */ void intel_psr_disable(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; mutex_lock(&dev_priv->psr.lock); if (!dev_priv->psr.enabled) { mutex_unlock(&dev_priv->psr.lock); return; } if (HAS_DDI(dev)) hsw_psr_disable(intel_dp); else vlv_psr_disable(intel_dp); dev_priv->psr.enabled = NULL; mutex_unlock(&dev_priv->psr.lock); cancel_delayed_work_sync(&dev_priv->psr.work); } static void intel_psr_work(struct work_struct *work) { struct drm_i915_private *dev_priv = container_of(work, typeof(*dev_priv), psr.work.work); struct intel_dp *intel_dp = dev_priv->psr.enabled; struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc; enum pipe pipe = to_intel_crtc(crtc)->pipe; /* We have to make sure PSR is ready for re-enable * otherwise it keeps disabled until next full enable/disable cycle. * PSR might take some time to get fully disabled * and be ready for re-enable. */ if (HAS_DDI(dev_priv->dev)) { if (wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev_priv->dev)) & EDP_PSR_STATUS_STATE_MASK) == 0, 50)) { DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n"); return; } } else { if (wait_for((I915_READ(VLV_PSRSTAT(pipe)) & VLV_EDP_PSR_IN_TRANS) == 0, 1)) { DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n"); return; } } mutex_lock(&dev_priv->psr.lock); intel_dp = dev_priv->psr.enabled; if (!intel_dp) goto unlock; /* * The delayed work can race with an invalidate hence we need to * recheck. Since psr_flush first clears this and then reschedules we * won't ever miss a flush when bailing out here. */ if (dev_priv->psr.busy_frontbuffer_bits) goto unlock; intel_psr_activate(intel_dp); unlock: mutex_unlock(&dev_priv->psr.lock); } static void intel_psr_exit(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_dp *intel_dp = dev_priv->psr.enabled; struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc; enum pipe pipe = to_intel_crtc(crtc)->pipe; u32 val; if (!dev_priv->psr.active) return; if (HAS_DDI(dev)) { val = I915_READ(EDP_PSR_CTL(dev)); WARN_ON(!(val & EDP_PSR_ENABLE)); I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE); dev_priv->psr.active = false; } else { val = I915_READ(VLV_PSRCTL(pipe)); /* Here we do the transition from PSR_state 3 to PSR_state 5 * directly once PSR State 4 that is active with single frame * update can be skipped. PSR_state 5 that is PSR exit then * Hardware is responsible to transition back to PSR_state 1 * that is PSR inactive. Same state after * vlv_edp_psr_enable_source. */ val &= ~VLV_EDP_PSR_ACTIVE_ENTRY; I915_WRITE(VLV_PSRCTL(pipe), val); /* Send AUX wake up - Spec says after transitioning to PSR * active we have to send AUX wake up by writing 01h in DPCD * 600h of sink device. * XXX: This might slow down the transition, but without this * HW doesn't complete the transition to PSR_state 1 and we * never get the screen updated. */ drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0); } dev_priv->psr.active = false; } /** * intel_psr_invalidate - Invalidade PSR * @dev: DRM device * @frontbuffer_bits: frontbuffer plane tracking bits * * Since the hardware frontbuffer tracking has gaps we need to integrate * with the software frontbuffer tracking. This function gets called every * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be * disabled if the frontbuffer mask contains a buffer relevant to PSR. * * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits." */ void intel_psr_invalidate(struct drm_device *dev, unsigned frontbuffer_bits) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc; enum pipe pipe; mutex_lock(&dev_priv->psr.lock); if (!dev_priv->psr.enabled) { mutex_unlock(&dev_priv->psr.lock); return; } crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc; pipe = to_intel_crtc(crtc)->pipe; intel_psr_exit(dev); frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits; mutex_unlock(&dev_priv->psr.lock); } /** * intel_psr_flush - Flush PSR * @dev: DRM device * @frontbuffer_bits: frontbuffer plane tracking bits * * Since the hardware frontbuffer tracking has gaps we need to integrate * with the software frontbuffer tracking. This function gets called every * time frontbuffer rendering has completed and flushed out to memory. PSR * can be enabled again if no other frontbuffer relevant to PSR is dirty. * * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits. */ void intel_psr_flush(struct drm_device *dev, unsigned frontbuffer_bits) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc; enum pipe pipe; mutex_lock(&dev_priv->psr.lock); if (!dev_priv->psr.enabled) { mutex_unlock(&dev_priv->psr.lock); return; } crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc; pipe = to_intel_crtc(crtc)->pipe; dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits; /* * On Haswell sprite plane updates don't result in a psr invalidating * signal in the hardware. Which means we need to manually fake this in * software for all flushes, not just when we've seen a preceding * invalidation through frontbuffer rendering. */ if (IS_HASWELL(dev) && (frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe))) intel_psr_exit(dev); /* * On Valleyview and Cherryview we don't use hardware tracking so * any plane updates or cursor moves don't result in a PSR * invalidating. Which means we need to manually fake this in * software for all flushes, not just when we've seen a preceding * invalidation through frontbuffer rendering. */ if (!HAS_DDI(dev)) intel_psr_exit(dev); if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits) schedule_delayed_work(&dev_priv->psr.work, msecs_to_jiffies(100)); mutex_unlock(&dev_priv->psr.lock); } /** * intel_psr_init - Init basic PSR work and mutex. * @dev: DRM device * * This function is called only once at driver load to initialize basic * PSR stuff. */ void intel_psr_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; INIT_DELAYED_WORK(&dev_priv->psr.work, intel_psr_work); mutex_init(&dev_priv->psr.lock); }