// SPDX-License-Identifier: GPL-2.0 OR BSD-2-Clause /* Copyright (C) 2018 KVASER AB, Sweden. All rights reserved. * Parts of this driver are based on the following: * - Kvaser linux pciefd driver (version 5.25) * - PEAK linux canfd driver * - Altera Avalon EPCS flash controller driver */ #include #include #include #include #include #include #include #include #include #include MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Kvaser AB "); MODULE_DESCRIPTION("CAN driver for Kvaser CAN/PCIe devices"); #define KVASER_PCIEFD_DRV_NAME "kvaser_pciefd" #define KVASER_PCIEFD_WAIT_TIMEOUT msecs_to_jiffies(1000) #define KVASER_PCIEFD_BEC_POLL_FREQ (jiffies + msecs_to_jiffies(200)) #define KVASER_PCIEFD_MAX_ERR_REP 256 #define KVASER_PCIEFD_CAN_TX_MAX_COUNT 17 #define KVASER_PCIEFD_MAX_CAN_CHANNELS 4 #define KVASER_PCIEFD_DMA_COUNT 2 #define KVASER_PCIEFD_DMA_SIZE (4 * 1024) #define KVASER_PCIEFD_64BIT_DMA_BIT BIT(0) #define KVASER_PCIEFD_VENDOR 0x1a07 #define KVASER_PCIEFD_4HS_ID 0x0d #define KVASER_PCIEFD_2HS_ID 0x0e #define KVASER_PCIEFD_HS_ID 0x0f #define KVASER_PCIEFD_MINIPCIE_HS_ID 0x10 #define KVASER_PCIEFD_MINIPCIE_2HS_ID 0x11 /* PCIe IRQ registers */ #define KVASER_PCIEFD_IRQ_REG 0x40 #define KVASER_PCIEFD_IEN_REG 0x50 /* DMA map */ #define KVASER_PCIEFD_DMA_MAP_BASE 0x1000 /* Kvaser KCAN CAN controller registers */ #define KVASER_PCIEFD_KCAN0_BASE 0x10000 #define KVASER_PCIEFD_KCAN_BASE_OFFSET 0x1000 #define KVASER_PCIEFD_KCAN_FIFO_REG 0x100 #define KVASER_PCIEFD_KCAN_FIFO_LAST_REG 0x180 #define KVASER_PCIEFD_KCAN_CTRL_REG 0x2c0 #define KVASER_PCIEFD_KCAN_CMD_REG 0x400 #define KVASER_PCIEFD_KCAN_IEN_REG 0x408 #define KVASER_PCIEFD_KCAN_IRQ_REG 0x410 #define KVASER_PCIEFD_KCAN_TX_NPACKETS_REG 0x414 #define KVASER_PCIEFD_KCAN_STAT_REG 0x418 #define KVASER_PCIEFD_KCAN_MODE_REG 0x41c #define KVASER_PCIEFD_KCAN_BTRN_REG 0x420 #define KVASER_PCIEFD_KCAN_BUS_LOAD_REG 0x424 #define KVASER_PCIEFD_KCAN_BTRD_REG 0x428 #define KVASER_PCIEFD_KCAN_PWM_REG 0x430 /* Loopback control register */ #define KVASER_PCIEFD_LOOP_REG 0x1f000 /* System identification and information registers */ #define KVASER_PCIEFD_SYSID_BASE 0x1f020 #define KVASER_PCIEFD_SYSID_VERSION_REG (KVASER_PCIEFD_SYSID_BASE + 0x8) #define KVASER_PCIEFD_SYSID_CANFREQ_REG (KVASER_PCIEFD_SYSID_BASE + 0xc) #define KVASER_PCIEFD_SYSID_BUSFREQ_REG (KVASER_PCIEFD_SYSID_BASE + 0x10) #define KVASER_PCIEFD_SYSID_BUILD_REG (KVASER_PCIEFD_SYSID_BASE + 0x14) /* Shared receive buffer registers */ #define KVASER_PCIEFD_SRB_BASE 0x1f200 #define KVASER_PCIEFD_SRB_CMD_REG (KVASER_PCIEFD_SRB_BASE + 0x200) #define KVASER_PCIEFD_SRB_IEN_REG (KVASER_PCIEFD_SRB_BASE + 0x204) #define KVASER_PCIEFD_SRB_IRQ_REG (KVASER_PCIEFD_SRB_BASE + 0x20c) #define KVASER_PCIEFD_SRB_STAT_REG (KVASER_PCIEFD_SRB_BASE + 0x210) #define KVASER_PCIEFD_SRB_CTRL_REG (KVASER_PCIEFD_SRB_BASE + 0x218) /* EPCS flash controller registers */ #define KVASER_PCIEFD_SPI_BASE 0x1fc00 #define KVASER_PCIEFD_SPI_RX_REG KVASER_PCIEFD_SPI_BASE #define KVASER_PCIEFD_SPI_TX_REG (KVASER_PCIEFD_SPI_BASE + 0x4) #define KVASER_PCIEFD_SPI_STATUS_REG (KVASER_PCIEFD_SPI_BASE + 0x8) #define KVASER_PCIEFD_SPI_CTRL_REG (KVASER_PCIEFD_SPI_BASE + 0xc) #define KVASER_PCIEFD_SPI_SSEL_REG (KVASER_PCIEFD_SPI_BASE + 0x14) #define KVASER_PCIEFD_IRQ_ALL_MSK 0x1f #define KVASER_PCIEFD_IRQ_SRB BIT(4) #define KVASER_PCIEFD_SYSID_NRCHAN_SHIFT 24 #define KVASER_PCIEFD_SYSID_MAJOR_VER_SHIFT 16 #define KVASER_PCIEFD_SYSID_BUILD_VER_SHIFT 1 /* Reset DMA buffer 0, 1 and FIFO offset */ #define KVASER_PCIEFD_SRB_CMD_RDB0 BIT(4) #define KVASER_PCIEFD_SRB_CMD_RDB1 BIT(5) #define KVASER_PCIEFD_SRB_CMD_FOR BIT(0) /* DMA packet done, buffer 0 and 1 */ #define KVASER_PCIEFD_SRB_IRQ_DPD0 BIT(8) #define KVASER_PCIEFD_SRB_IRQ_DPD1 BIT(9) /* DMA overflow, buffer 0 and 1 */ #define KVASER_PCIEFD_SRB_IRQ_DOF0 BIT(10) #define KVASER_PCIEFD_SRB_IRQ_DOF1 BIT(11) /* DMA underflow, buffer 0 and 1 */ #define KVASER_PCIEFD_SRB_IRQ_DUF0 BIT(12) #define KVASER_PCIEFD_SRB_IRQ_DUF1 BIT(13) /* DMA idle */ #define KVASER_PCIEFD_SRB_STAT_DI BIT(15) /* DMA support */ #define KVASER_PCIEFD_SRB_STAT_DMA BIT(24) /* DMA Enable */ #define KVASER_PCIEFD_SRB_CTRL_DMA_ENABLE BIT(0) /* EPCS flash controller definitions */ #define KVASER_PCIEFD_CFG_IMG_SZ (64 * 1024) #define KVASER_PCIEFD_CFG_IMG_OFFSET (31 * 65536L) #define KVASER_PCIEFD_CFG_MAX_PARAMS 256 #define KVASER_PCIEFD_CFG_MAGIC 0xcafef00d #define KVASER_PCIEFD_CFG_PARAM_MAX_SZ 24 #define KVASER_PCIEFD_CFG_SYS_VER 1 #define KVASER_PCIEFD_CFG_PARAM_NR_CHAN 130 #define KVASER_PCIEFD_SPI_TMT BIT(5) #define KVASER_PCIEFD_SPI_TRDY BIT(6) #define KVASER_PCIEFD_SPI_RRDY BIT(7) #define KVASER_PCIEFD_FLASH_ID_EPCS16 0x14 /* Commands for controlling the onboard flash */ #define KVASER_PCIEFD_FLASH_RES_CMD 0xab #define KVASER_PCIEFD_FLASH_READ_CMD 0x3 #define KVASER_PCIEFD_FLASH_STATUS_CMD 0x5 /* Kvaser KCAN definitions */ #define KVASER_PCIEFD_KCAN_CTRL_EFLUSH (4 << 29) #define KVASER_PCIEFD_KCAN_CTRL_EFRAME (5 << 29) #define KVASER_PCIEFD_KCAN_CMD_SEQ_SHIFT 16 /* Request status packet */ #define KVASER_PCIEFD_KCAN_CMD_SRQ BIT(0) /* Abort, flush and reset */ #define KVASER_PCIEFD_KCAN_CMD_AT BIT(1) /* Tx FIFO unaligned read */ #define KVASER_PCIEFD_KCAN_IRQ_TAR BIT(0) /* Tx FIFO unaligned end */ #define KVASER_PCIEFD_KCAN_IRQ_TAE BIT(1) /* Bus parameter protection error */ #define KVASER_PCIEFD_KCAN_IRQ_BPP BIT(2) /* FDF bit when controller is in classic mode */ #define KVASER_PCIEFD_KCAN_IRQ_FDIC BIT(3) /* Rx FIFO overflow */ #define KVASER_PCIEFD_KCAN_IRQ_ROF BIT(5) /* Abort done */ #define KVASER_PCIEFD_KCAN_IRQ_ABD BIT(13) /* Tx buffer flush done */ #define KVASER_PCIEFD_KCAN_IRQ_TFD BIT(14) /* Tx FIFO overflow */ #define KVASER_PCIEFD_KCAN_IRQ_TOF BIT(15) /* Tx FIFO empty */ #define KVASER_PCIEFD_KCAN_IRQ_TE BIT(16) /* Transmitter unaligned */ #define KVASER_PCIEFD_KCAN_IRQ_TAL BIT(17) #define KVASER_PCIEFD_KCAN_TX_NPACKETS_MAX_SHIFT 16 #define KVASER_PCIEFD_KCAN_STAT_SEQNO_SHIFT 24 /* Abort request */ #define KVASER_PCIEFD_KCAN_STAT_AR BIT(7) /* Idle state. Controller in reset mode and no abort or flush pending */ #define KVASER_PCIEFD_KCAN_STAT_IDLE BIT(10) /* Bus off */ #define KVASER_PCIEFD_KCAN_STAT_BOFF BIT(11) /* Reset mode request */ #define KVASER_PCIEFD_KCAN_STAT_RMR BIT(14) /* Controller in reset mode */ #define KVASER_PCIEFD_KCAN_STAT_IRM BIT(15) /* Controller got one-shot capability */ #define KVASER_PCIEFD_KCAN_STAT_CAP BIT(16) /* Controller got CAN FD capability */ #define KVASER_PCIEFD_KCAN_STAT_FD BIT(19) #define KVASER_PCIEFD_KCAN_STAT_BUS_OFF_MSK (KVASER_PCIEFD_KCAN_STAT_AR | \ KVASER_PCIEFD_KCAN_STAT_BOFF | KVASER_PCIEFD_KCAN_STAT_RMR | \ KVASER_PCIEFD_KCAN_STAT_IRM) /* Reset mode */ #define KVASER_PCIEFD_KCAN_MODE_RM BIT(8) /* Listen only mode */ #define KVASER_PCIEFD_KCAN_MODE_LOM BIT(9) /* Error packet enable */ #define KVASER_PCIEFD_KCAN_MODE_EPEN BIT(12) /* CAN FD non-ISO */ #define KVASER_PCIEFD_KCAN_MODE_NIFDEN BIT(15) /* Acknowledgment packet type */ #define KVASER_PCIEFD_KCAN_MODE_APT BIT(20) /* Active error flag enable. Clear to force error passive */ #define KVASER_PCIEFD_KCAN_MODE_EEN BIT(23) /* Classic CAN mode */ #define KVASER_PCIEFD_KCAN_MODE_CCM BIT(31) #define KVASER_PCIEFD_KCAN_BTRN_SJW_SHIFT 13 #define KVASER_PCIEFD_KCAN_BTRN_TSEG1_SHIFT 17 #define KVASER_PCIEFD_KCAN_BTRN_TSEG2_SHIFT 26 #define KVASER_PCIEFD_KCAN_PWM_TOP_SHIFT 16 /* Kvaser KCAN packet types */ #define KVASER_PCIEFD_PACK_TYPE_DATA 0 #define KVASER_PCIEFD_PACK_TYPE_ACK 1 #define KVASER_PCIEFD_PACK_TYPE_TXRQ 2 #define KVASER_PCIEFD_PACK_TYPE_ERROR 3 #define KVASER_PCIEFD_PACK_TYPE_EFLUSH_ACK 4 #define KVASER_PCIEFD_PACK_TYPE_EFRAME_ACK 5 #define KVASER_PCIEFD_PACK_TYPE_ACK_DATA 6 #define KVASER_PCIEFD_PACK_TYPE_STATUS 8 #define KVASER_PCIEFD_PACK_TYPE_BUS_LOAD 9 /* Kvaser KCAN packet common definitions */ #define KVASER_PCIEFD_PACKET_SEQ_MSK 0xff #define KVASER_PCIEFD_PACKET_CHID_SHIFT 25 #define KVASER_PCIEFD_PACKET_TYPE_SHIFT 28 /* Kvaser KCAN TDATA and RDATA first word */ #define KVASER_PCIEFD_RPACKET_IDE BIT(30) #define KVASER_PCIEFD_RPACKET_RTR BIT(29) /* Kvaser KCAN TDATA and RDATA second word */ #define KVASER_PCIEFD_RPACKET_ESI BIT(13) #define KVASER_PCIEFD_RPACKET_BRS BIT(14) #define KVASER_PCIEFD_RPACKET_FDF BIT(15) #define KVASER_PCIEFD_RPACKET_DLC_SHIFT 8 /* Kvaser KCAN TDATA second word */ #define KVASER_PCIEFD_TPACKET_SMS BIT(16) #define KVASER_PCIEFD_TPACKET_AREQ BIT(31) /* Kvaser KCAN APACKET */ #define KVASER_PCIEFD_APACKET_FLU BIT(8) #define KVASER_PCIEFD_APACKET_CT BIT(9) #define KVASER_PCIEFD_APACKET_ABL BIT(10) #define KVASER_PCIEFD_APACKET_NACK BIT(11) /* Kvaser KCAN SPACK first word */ #define KVASER_PCIEFD_SPACK_RXERR_SHIFT 8 #define KVASER_PCIEFD_SPACK_BOFF BIT(16) #define KVASER_PCIEFD_SPACK_IDET BIT(20) #define KVASER_PCIEFD_SPACK_IRM BIT(21) #define KVASER_PCIEFD_SPACK_RMCD BIT(22) /* Kvaser KCAN SPACK second word */ #define KVASER_PCIEFD_SPACK_AUTO BIT(21) #define KVASER_PCIEFD_SPACK_EWLR BIT(23) #define KVASER_PCIEFD_SPACK_EPLR BIT(24) /* Kvaser KCAN_EPACK second word */ #define KVASER_PCIEFD_EPACK_DIR_TX BIT(0) struct kvaser_pciefd; struct kvaser_pciefd_can { struct can_priv can; struct kvaser_pciefd *kv_pcie; void __iomem *reg_base; struct can_berr_counter bec; u8 cmd_seq; int err_rep_cnt; int echo_idx; spinlock_t lock; /* Locks sensitive registers (e.g. MODE) */ spinlock_t echo_lock; /* Locks the message echo buffer */ struct timer_list bec_poll_timer; struct completion start_comp, flush_comp; }; struct kvaser_pciefd { struct pci_dev *pci; void __iomem *reg_base; struct kvaser_pciefd_can *can[KVASER_PCIEFD_MAX_CAN_CHANNELS]; void *dma_data[KVASER_PCIEFD_DMA_COUNT]; u8 nr_channels; u32 bus_freq; u32 freq; u32 freq_to_ticks_div; }; struct kvaser_pciefd_rx_packet { u32 header[2]; u64 timestamp; }; struct kvaser_pciefd_tx_packet { u32 header[2]; u8 data[64]; }; static const struct can_bittiming_const kvaser_pciefd_bittiming_const = { .name = KVASER_PCIEFD_DRV_NAME, .tseg1_min = 1, .tseg1_max = 512, .tseg2_min = 1, .tseg2_max = 32, .sjw_max = 16, .brp_min = 1, .brp_max = 8192, .brp_inc = 1, }; struct kvaser_pciefd_cfg_param { __le32 magic; __le32 nr; __le32 len; u8 data[KVASER_PCIEFD_CFG_PARAM_MAX_SZ]; }; struct kvaser_pciefd_cfg_img { __le32 version; __le32 magic; __le32 crc; struct kvaser_pciefd_cfg_param params[KVASER_PCIEFD_CFG_MAX_PARAMS]; }; static struct pci_device_id kvaser_pciefd_id_table[] = { { PCI_DEVICE(KVASER_PCIEFD_VENDOR, KVASER_PCIEFD_4HS_ID), }, { PCI_DEVICE(KVASER_PCIEFD_VENDOR, KVASER_PCIEFD_2HS_ID), }, { PCI_DEVICE(KVASER_PCIEFD_VENDOR, KVASER_PCIEFD_HS_ID), }, { PCI_DEVICE(KVASER_PCIEFD_VENDOR, KVASER_PCIEFD_MINIPCIE_HS_ID), }, { PCI_DEVICE(KVASER_PCIEFD_VENDOR, KVASER_PCIEFD_MINIPCIE_2HS_ID), }, { 0,}, }; MODULE_DEVICE_TABLE(pci, kvaser_pciefd_id_table); /* Onboard flash memory functions */ static int kvaser_pciefd_spi_wait_loop(struct kvaser_pciefd *pcie, int msk) { u32 res; return readl_poll_timeout(pcie->reg_base + KVASER_PCIEFD_SPI_STATUS_REG, res, res & msk, 0, 10); } static int kvaser_pciefd_spi_cmd(struct kvaser_pciefd *pcie, const u8 *tx, u32 tx_len, u8 *rx, u32 rx_len) { int c; iowrite32(BIT(0), pcie->reg_base + KVASER_PCIEFD_SPI_SSEL_REG); iowrite32(BIT(10), pcie->reg_base + KVASER_PCIEFD_SPI_CTRL_REG); ioread32(pcie->reg_base + KVASER_PCIEFD_SPI_RX_REG); c = tx_len; while (c--) { if (kvaser_pciefd_spi_wait_loop(pcie, KVASER_PCIEFD_SPI_TRDY)) return -EIO; iowrite32(*tx++, pcie->reg_base + KVASER_PCIEFD_SPI_TX_REG); if (kvaser_pciefd_spi_wait_loop(pcie, KVASER_PCIEFD_SPI_RRDY)) return -EIO; ioread32(pcie->reg_base + KVASER_PCIEFD_SPI_RX_REG); } c = rx_len; while (c-- > 0) { if (kvaser_pciefd_spi_wait_loop(pcie, KVASER_PCIEFD_SPI_TRDY)) return -EIO; iowrite32(0, pcie->reg_base + KVASER_PCIEFD_SPI_TX_REG); if (kvaser_pciefd_spi_wait_loop(pcie, KVASER_PCIEFD_SPI_RRDY)) return -EIO; *rx++ = ioread32(pcie->reg_base + KVASER_PCIEFD_SPI_RX_REG); } if (kvaser_pciefd_spi_wait_loop(pcie, KVASER_PCIEFD_SPI_TMT)) return -EIO; iowrite32(0, pcie->reg_base + KVASER_PCIEFD_SPI_CTRL_REG); if (c != -1) { dev_err(&pcie->pci->dev, "Flash SPI transfer failed\n"); return -EIO; } return 0; } static int kvaser_pciefd_cfg_read_and_verify(struct kvaser_pciefd *pcie, struct kvaser_pciefd_cfg_img *img) { int offset = KVASER_PCIEFD_CFG_IMG_OFFSET; int res, crc; u8 *crc_buff; u8 cmd[] = { KVASER_PCIEFD_FLASH_READ_CMD, (u8)((offset >> 16) & 0xff), (u8)((offset >> 8) & 0xff), (u8)(offset & 0xff) }; res = kvaser_pciefd_spi_cmd(pcie, cmd, ARRAY_SIZE(cmd), (u8 *)img, KVASER_PCIEFD_CFG_IMG_SZ); if (res) return res; crc_buff = (u8 *)img->params; if (le32_to_cpu(img->version) != KVASER_PCIEFD_CFG_SYS_VER) { dev_err(&pcie->pci->dev, "Config flash corrupted, version number is wrong\n"); return -ENODEV; } if (le32_to_cpu(img->magic) != KVASER_PCIEFD_CFG_MAGIC) { dev_err(&pcie->pci->dev, "Config flash corrupted, magic number is wrong\n"); return -ENODEV; } crc = ~crc32_be(0xffffffff, crc_buff, sizeof(img->params)); if (le32_to_cpu(img->crc) != crc) { dev_err(&pcie->pci->dev, "Stored CRC does not match flash image contents\n"); return -EIO; } return 0; } static void kvaser_pciefd_cfg_read_params(struct kvaser_pciefd *pcie, struct kvaser_pciefd_cfg_img *img) { struct kvaser_pciefd_cfg_param *param; param = &img->params[KVASER_PCIEFD_CFG_PARAM_NR_CHAN]; memcpy(&pcie->nr_channels, param->data, le32_to_cpu(param->len)); } static int kvaser_pciefd_read_cfg(struct kvaser_pciefd *pcie) { int res; struct kvaser_pciefd_cfg_img *img; /* Read electronic signature */ u8 cmd[] = {KVASER_PCIEFD_FLASH_RES_CMD, 0, 0, 0}; res = kvaser_pciefd_spi_cmd(pcie, cmd, ARRAY_SIZE(cmd), cmd, 1); if (res) return -EIO; img = kmalloc(KVASER_PCIEFD_CFG_IMG_SZ, GFP_KERNEL); if (!img) return -ENOMEM; if (cmd[0] != KVASER_PCIEFD_FLASH_ID_EPCS16) { dev_err(&pcie->pci->dev, "Flash id is 0x%x instead of expected EPCS16 (0x%x)\n", cmd[0], KVASER_PCIEFD_FLASH_ID_EPCS16); res = -ENODEV; goto image_free; } cmd[0] = KVASER_PCIEFD_FLASH_STATUS_CMD; res = kvaser_pciefd_spi_cmd(pcie, cmd, 1, cmd, 1); if (res) { goto image_free; } else if (cmd[0] & 1) { res = -EIO; /* No write is ever done, the WIP should never be set */ dev_err(&pcie->pci->dev, "Unexpected WIP bit set in flash\n"); goto image_free; } res = kvaser_pciefd_cfg_read_and_verify(pcie, img); if (res) { res = -EIO; goto image_free; } kvaser_pciefd_cfg_read_params(pcie, img); image_free: kfree(img); return res; } static void kvaser_pciefd_request_status(struct kvaser_pciefd_can *can) { u32 cmd; cmd = KVASER_PCIEFD_KCAN_CMD_SRQ; cmd |= ++can->cmd_seq << KVASER_PCIEFD_KCAN_CMD_SEQ_SHIFT; iowrite32(cmd, can->reg_base + KVASER_PCIEFD_KCAN_CMD_REG); } static void kvaser_pciefd_enable_err_gen(struct kvaser_pciefd_can *can) { u32 mode; unsigned long irq; spin_lock_irqsave(&can->lock, irq); mode = ioread32(can->reg_base + KVASER_PCIEFD_KCAN_MODE_REG); if (!(mode & KVASER_PCIEFD_KCAN_MODE_EPEN)) { mode |= KVASER_PCIEFD_KCAN_MODE_EPEN; iowrite32(mode, can->reg_base + KVASER_PCIEFD_KCAN_MODE_REG); } spin_unlock_irqrestore(&can->lock, irq); } static void kvaser_pciefd_disable_err_gen(struct kvaser_pciefd_can *can) { u32 mode; unsigned long irq; spin_lock_irqsave(&can->lock, irq); mode = ioread32(can->reg_base + KVASER_PCIEFD_KCAN_MODE_REG); mode &= ~KVASER_PCIEFD_KCAN_MODE_EPEN; iowrite32(mode, can->reg_base + KVASER_PCIEFD_KCAN_MODE_REG); spin_unlock_irqrestore(&can->lock, irq); } static int kvaser_pciefd_set_tx_irq(struct kvaser_pciefd_can *can) { u32 msk; msk = KVASER_PCIEFD_KCAN_IRQ_TE | KVASER_PCIEFD_KCAN_IRQ_ROF | KVASER_PCIEFD_KCAN_IRQ_TOF | KVASER_PCIEFD_KCAN_IRQ_ABD | KVASER_PCIEFD_KCAN_IRQ_TAE | KVASER_PCIEFD_KCAN_IRQ_TAL | KVASER_PCIEFD_KCAN_IRQ_FDIC | KVASER_PCIEFD_KCAN_IRQ_BPP | KVASER_PCIEFD_KCAN_IRQ_TAR | KVASER_PCIEFD_KCAN_IRQ_TFD; iowrite32(msk, can->reg_base + KVASER_PCIEFD_KCAN_IEN_REG); return 0; } static void kvaser_pciefd_setup_controller(struct kvaser_pciefd_can *can) { u32 mode; unsigned long irq; spin_lock_irqsave(&can->lock, irq); mode = ioread32(can->reg_base + KVASER_PCIEFD_KCAN_MODE_REG); if (can->can.ctrlmode & CAN_CTRLMODE_FD) { mode &= ~KVASER_PCIEFD_KCAN_MODE_CCM; if (can->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO) mode |= KVASER_PCIEFD_KCAN_MODE_NIFDEN; else mode &= ~KVASER_PCIEFD_KCAN_MODE_NIFDEN; } else { mode |= KVASER_PCIEFD_KCAN_MODE_CCM; mode &= ~KVASER_PCIEFD_KCAN_MODE_NIFDEN; } if (can->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) mode |= KVASER_PCIEFD_KCAN_MODE_LOM; else mode &= ~KVASER_PCIEFD_KCAN_MODE_LOM; mode |= KVASER_PCIEFD_KCAN_MODE_EEN; mode |= KVASER_PCIEFD_KCAN_MODE_EPEN; /* Use ACK packet type */ mode &= ~KVASER_PCIEFD_KCAN_MODE_APT; mode &= ~KVASER_PCIEFD_KCAN_MODE_RM; iowrite32(mode, can->reg_base + KVASER_PCIEFD_KCAN_MODE_REG); spin_unlock_irqrestore(&can->lock, irq); } static void kvaser_pciefd_start_controller_flush(struct kvaser_pciefd_can *can) { u32 status; unsigned long irq; spin_lock_irqsave(&can->lock, irq); iowrite32(-1, can->reg_base + KVASER_PCIEFD_KCAN_IRQ_REG); iowrite32(KVASER_PCIEFD_KCAN_IRQ_ABD | KVASER_PCIEFD_KCAN_IRQ_TFD, can->reg_base + KVASER_PCIEFD_KCAN_IEN_REG); status = ioread32(can->reg_base + KVASER_PCIEFD_KCAN_STAT_REG); if (status & KVASER_PCIEFD_KCAN_STAT_IDLE) { u32 cmd; /* If controller is already idle, run abort, flush and reset */ cmd = KVASER_PCIEFD_KCAN_CMD_AT; cmd |= ++can->cmd_seq << KVASER_PCIEFD_KCAN_CMD_SEQ_SHIFT; iowrite32(cmd, can->reg_base + KVASER_PCIEFD_KCAN_CMD_REG); } else if (!(status & KVASER_PCIEFD_KCAN_STAT_RMR)) { u32 mode; /* Put controller in reset mode */ mode = ioread32(can->reg_base + KVASER_PCIEFD_KCAN_MODE_REG); mode |= KVASER_PCIEFD_KCAN_MODE_RM; iowrite32(mode, can->reg_base + KVASER_PCIEFD_KCAN_MODE_REG); } spin_unlock_irqrestore(&can->lock, irq); } static int kvaser_pciefd_bus_on(struct kvaser_pciefd_can *can) { u32 mode; unsigned long irq; del_timer(&can->bec_poll_timer); if (!completion_done(&can->flush_comp)) kvaser_pciefd_start_controller_flush(can); if (!wait_for_completion_timeout(&can->flush_comp, KVASER_PCIEFD_WAIT_TIMEOUT)) { netdev_err(can->can.dev, "Timeout during bus on flush\n"); return -ETIMEDOUT; } spin_lock_irqsave(&can->lock, irq); iowrite32(0, can->reg_base + KVASER_PCIEFD_KCAN_IEN_REG); iowrite32(-1, can->reg_base + KVASER_PCIEFD_KCAN_IRQ_REG); iowrite32(KVASER_PCIEFD_KCAN_IRQ_ABD | KVASER_PCIEFD_KCAN_IRQ_TFD, can->reg_base + KVASER_PCIEFD_KCAN_IEN_REG); mode = ioread32(can->reg_base + KVASER_PCIEFD_KCAN_MODE_REG); mode &= ~KVASER_PCIEFD_KCAN_MODE_RM; iowrite32(mode, can->reg_base + KVASER_PCIEFD_KCAN_MODE_REG); spin_unlock_irqrestore(&can->lock, irq); if (!wait_for_completion_timeout(&can->start_comp, KVASER_PCIEFD_WAIT_TIMEOUT)) { netdev_err(can->can.dev, "Timeout during bus on reset\n"); return -ETIMEDOUT; } /* Reset interrupt handling */ iowrite32(0, can->reg_base + KVASER_PCIEFD_KCAN_IEN_REG); iowrite32(-1, can->reg_base + KVASER_PCIEFD_KCAN_IRQ_REG); kvaser_pciefd_set_tx_irq(can); kvaser_pciefd_setup_controller(can); can->can.state = CAN_STATE_ERROR_ACTIVE; netif_wake_queue(can->can.dev); can->bec.txerr = 0; can->bec.rxerr = 0; can->err_rep_cnt = 0; return 0; } static void kvaser_pciefd_pwm_stop(struct kvaser_pciefd_can *can) { u8 top; u32 pwm_ctrl; unsigned long irq; spin_lock_irqsave(&can->lock, irq); pwm_ctrl = ioread32(can->reg_base + KVASER_PCIEFD_KCAN_PWM_REG); top = (pwm_ctrl >> KVASER_PCIEFD_KCAN_PWM_TOP_SHIFT) & 0xff; /* Set duty cycle to zero */ pwm_ctrl |= top; iowrite32(pwm_ctrl, can->reg_base + KVASER_PCIEFD_KCAN_PWM_REG); spin_unlock_irqrestore(&can->lock, irq); } static void kvaser_pciefd_pwm_start(struct kvaser_pciefd_can *can) { int top, trigger; u32 pwm_ctrl; unsigned long irq; kvaser_pciefd_pwm_stop(can); spin_lock_irqsave(&can->lock, irq); /* Set frequency to 500 KHz*/ top = can->kv_pcie->bus_freq / (2 * 500000) - 1; pwm_ctrl = top & 0xff; pwm_ctrl |= (top & 0xff) << KVASER_PCIEFD_KCAN_PWM_TOP_SHIFT; iowrite32(pwm_ctrl, can->reg_base + KVASER_PCIEFD_KCAN_PWM_REG); /* Set duty cycle to 95 */ trigger = (100 * top - 95 * (top + 1) + 50) / 100; pwm_ctrl = trigger & 0xff; pwm_ctrl |= (top & 0xff) << KVASER_PCIEFD_KCAN_PWM_TOP_SHIFT; iowrite32(pwm_ctrl, can->reg_base + KVASER_PCIEFD_KCAN_PWM_REG); spin_unlock_irqrestore(&can->lock, irq); } static int kvaser_pciefd_open(struct net_device *netdev) { int err; struct kvaser_pciefd_can *can = netdev_priv(netdev); err = open_candev(netdev); if (err) return err; err = kvaser_pciefd_bus_on(can); if (err) { close_candev(netdev); return err; } return 0; } static int kvaser_pciefd_stop(struct net_device *netdev) { struct kvaser_pciefd_can *can = netdev_priv(netdev); int ret = 0; /* Don't interrupt ongoing flush */ if (!completion_done(&can->flush_comp)) kvaser_pciefd_start_controller_flush(can); if (!wait_for_completion_timeout(&can->flush_comp, KVASER_PCIEFD_WAIT_TIMEOUT)) { netdev_err(can->can.dev, "Timeout during stop\n"); ret = -ETIMEDOUT; } else { iowrite32(0, can->reg_base + KVASER_PCIEFD_KCAN_IEN_REG); del_timer(&can->bec_poll_timer); } can->can.state = CAN_STATE_STOPPED; close_candev(netdev); return ret; } static int kvaser_pciefd_prepare_tx_packet(struct kvaser_pciefd_tx_packet *p, struct kvaser_pciefd_can *can, struct sk_buff *skb) { struct canfd_frame *cf = (struct canfd_frame *)skb->data; int packet_size; int seq = can->echo_idx; memset(p, 0, sizeof(*p)); if (can->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT) p->header[1] |= KVASER_PCIEFD_TPACKET_SMS; if (cf->can_id & CAN_RTR_FLAG) p->header[0] |= KVASER_PCIEFD_RPACKET_RTR; if (cf->can_id & CAN_EFF_FLAG) p->header[0] |= KVASER_PCIEFD_RPACKET_IDE; p->header[0] |= cf->can_id & CAN_EFF_MASK; p->header[1] |= can_fd_len2dlc(cf->len) << KVASER_PCIEFD_RPACKET_DLC_SHIFT; p->header[1] |= KVASER_PCIEFD_TPACKET_AREQ; if (can_is_canfd_skb(skb)) { p->header[1] |= KVASER_PCIEFD_RPACKET_FDF; if (cf->flags & CANFD_BRS) p->header[1] |= KVASER_PCIEFD_RPACKET_BRS; if (cf->flags & CANFD_ESI) p->header[1] |= KVASER_PCIEFD_RPACKET_ESI; } p->header[1] |= seq & KVASER_PCIEFD_PACKET_SEQ_MSK; packet_size = cf->len; memcpy(p->data, cf->data, packet_size); return DIV_ROUND_UP(packet_size, 4); } static netdev_tx_t kvaser_pciefd_start_xmit(struct sk_buff *skb, struct net_device *netdev) { struct kvaser_pciefd_can *can = netdev_priv(netdev); unsigned long irq_flags; struct kvaser_pciefd_tx_packet packet; int nwords; u8 count; if (can_dev_dropped_skb(netdev, skb)) return NETDEV_TX_OK; nwords = kvaser_pciefd_prepare_tx_packet(&packet, can, skb); spin_lock_irqsave(&can->echo_lock, irq_flags); /* Prepare and save echo skb in internal slot */ can_put_echo_skb(skb, netdev, can->echo_idx, 0); /* Move echo index to the next slot */ can->echo_idx = (can->echo_idx + 1) % can->can.echo_skb_max; /* Write header to fifo */ iowrite32(packet.header[0], can->reg_base + KVASER_PCIEFD_KCAN_FIFO_REG); iowrite32(packet.header[1], can->reg_base + KVASER_PCIEFD_KCAN_FIFO_REG); if (nwords) { u32 data_last = ((u32 *)packet.data)[nwords - 1]; /* Write data to fifo, except last word */ iowrite32_rep(can->reg_base + KVASER_PCIEFD_KCAN_FIFO_REG, packet.data, nwords - 1); /* Write last word to end of fifo */ __raw_writel(data_last, can->reg_base + KVASER_PCIEFD_KCAN_FIFO_LAST_REG); } else { /* Complete write to fifo */ __raw_writel(0, can->reg_base + KVASER_PCIEFD_KCAN_FIFO_LAST_REG); } count = ioread32(can->reg_base + KVASER_PCIEFD_KCAN_TX_NPACKETS_REG); /* No room for a new message, stop the queue until at least one * successful transmit */ if (count >= KVASER_PCIEFD_CAN_TX_MAX_COUNT || can->can.echo_skb[can->echo_idx]) netif_stop_queue(netdev); spin_unlock_irqrestore(&can->echo_lock, irq_flags); return NETDEV_TX_OK; } static int kvaser_pciefd_set_bittiming(struct kvaser_pciefd_can *can, bool data) { u32 mode, test, btrn; unsigned long irq_flags; int ret; struct can_bittiming *bt; if (data) bt = &can->can.data_bittiming; else bt = &can->can.bittiming; btrn = ((bt->phase_seg2 - 1) & 0x1f) << KVASER_PCIEFD_KCAN_BTRN_TSEG2_SHIFT | (((bt->prop_seg + bt->phase_seg1) - 1) & 0x1ff) << KVASER_PCIEFD_KCAN_BTRN_TSEG1_SHIFT | ((bt->sjw - 1) & 0xf) << KVASER_PCIEFD_KCAN_BTRN_SJW_SHIFT | ((bt->brp - 1) & 0x1fff); spin_lock_irqsave(&can->lock, irq_flags); mode = ioread32(can->reg_base + KVASER_PCIEFD_KCAN_MODE_REG); /* Put the circuit in reset mode */ iowrite32(mode | KVASER_PCIEFD_KCAN_MODE_RM, can->reg_base + KVASER_PCIEFD_KCAN_MODE_REG); /* Can only set bittiming if in reset mode */ ret = readl_poll_timeout(can->reg_base + KVASER_PCIEFD_KCAN_MODE_REG, test, test & KVASER_PCIEFD_KCAN_MODE_RM, 0, 10); if (ret) { spin_unlock_irqrestore(&can->lock, irq_flags); return -EBUSY; } if (data) iowrite32(btrn, can->reg_base + KVASER_PCIEFD_KCAN_BTRD_REG); else iowrite32(btrn, can->reg_base + KVASER_PCIEFD_KCAN_BTRN_REG); /* Restore previous reset mode status */ iowrite32(mode, can->reg_base + KVASER_PCIEFD_KCAN_MODE_REG); spin_unlock_irqrestore(&can->lock, irq_flags); return 0; } static int kvaser_pciefd_set_nominal_bittiming(struct net_device *ndev) { return kvaser_pciefd_set_bittiming(netdev_priv(ndev), false); } static int kvaser_pciefd_set_data_bittiming(struct net_device *ndev) { return kvaser_pciefd_set_bittiming(netdev_priv(ndev), true); } static int kvaser_pciefd_set_mode(struct net_device *ndev, enum can_mode mode) { struct kvaser_pciefd_can *can = netdev_priv(ndev); int ret = 0; switch (mode) { case CAN_MODE_START: if (!can->can.restart_ms) ret = kvaser_pciefd_bus_on(can); break; default: return -EOPNOTSUPP; } return ret; } static int kvaser_pciefd_get_berr_counter(const struct net_device *ndev, struct can_berr_counter *bec) { struct kvaser_pciefd_can *can = netdev_priv(ndev); bec->rxerr = can->bec.rxerr; bec->txerr = can->bec.txerr; return 0; } static void kvaser_pciefd_bec_poll_timer(struct timer_list *data) { struct kvaser_pciefd_can *can = from_timer(can, data, bec_poll_timer); kvaser_pciefd_enable_err_gen(can); kvaser_pciefd_request_status(can); can->err_rep_cnt = 0; } static const struct net_device_ops kvaser_pciefd_netdev_ops = { .ndo_open = kvaser_pciefd_open, .ndo_stop = kvaser_pciefd_stop, .ndo_eth_ioctl = can_eth_ioctl_hwts, .ndo_start_xmit = kvaser_pciefd_start_xmit, .ndo_change_mtu = can_change_mtu, }; static const struct ethtool_ops kvaser_pciefd_ethtool_ops = { .get_ts_info = can_ethtool_op_get_ts_info_hwts, }; static int kvaser_pciefd_setup_can_ctrls(struct kvaser_pciefd *pcie) { int i; for (i = 0; i < pcie->nr_channels; i++) { struct net_device *netdev; struct kvaser_pciefd_can *can; u32 status, tx_npackets; netdev = alloc_candev(sizeof(struct kvaser_pciefd_can), KVASER_PCIEFD_CAN_TX_MAX_COUNT); if (!netdev) return -ENOMEM; can = netdev_priv(netdev); netdev->netdev_ops = &kvaser_pciefd_netdev_ops; netdev->ethtool_ops = &kvaser_pciefd_ethtool_ops; can->reg_base = pcie->reg_base + KVASER_PCIEFD_KCAN0_BASE + i * KVASER_PCIEFD_KCAN_BASE_OFFSET; can->kv_pcie = pcie; can->cmd_seq = 0; can->err_rep_cnt = 0; can->bec.txerr = 0; can->bec.rxerr = 0; init_completion(&can->start_comp); init_completion(&can->flush_comp); timer_setup(&can->bec_poll_timer, kvaser_pciefd_bec_poll_timer, 0); /* Disable Bus load reporting */ iowrite32(0, can->reg_base + KVASER_PCIEFD_KCAN_BUS_LOAD_REG); tx_npackets = ioread32(can->reg_base + KVASER_PCIEFD_KCAN_TX_NPACKETS_REG); if (((tx_npackets >> KVASER_PCIEFD_KCAN_TX_NPACKETS_MAX_SHIFT) & 0xff) < KVASER_PCIEFD_CAN_TX_MAX_COUNT) { dev_err(&pcie->pci->dev, "Max Tx count is smaller than expected\n"); free_candev(netdev); return -ENODEV; } can->can.clock.freq = pcie->freq; can->can.echo_skb_max = KVASER_PCIEFD_CAN_TX_MAX_COUNT; can->echo_idx = 0; spin_lock_init(&can->echo_lock); spin_lock_init(&can->lock); can->can.bittiming_const = &kvaser_pciefd_bittiming_const; can->can.data_bittiming_const = &kvaser_pciefd_bittiming_const; can->can.do_set_bittiming = kvaser_pciefd_set_nominal_bittiming; can->can.do_set_data_bittiming = kvaser_pciefd_set_data_bittiming; can->can.do_set_mode = kvaser_pciefd_set_mode; can->can.do_get_berr_counter = kvaser_pciefd_get_berr_counter; can->can.ctrlmode_supported = CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_FD | CAN_CTRLMODE_FD_NON_ISO; status = ioread32(can->reg_base + KVASER_PCIEFD_KCAN_STAT_REG); if (!(status & KVASER_PCIEFD_KCAN_STAT_FD)) { dev_err(&pcie->pci->dev, "CAN FD not supported as expected %d\n", i); free_candev(netdev); return -ENODEV; } if (status & KVASER_PCIEFD_KCAN_STAT_CAP) can->can.ctrlmode_supported |= CAN_CTRLMODE_ONE_SHOT; netdev->flags |= IFF_ECHO; SET_NETDEV_DEV(netdev, &pcie->pci->dev); iowrite32(-1, can->reg_base + KVASER_PCIEFD_KCAN_IRQ_REG); iowrite32(KVASER_PCIEFD_KCAN_IRQ_ABD | KVASER_PCIEFD_KCAN_IRQ_TFD, can->reg_base + KVASER_PCIEFD_KCAN_IEN_REG); pcie->can[i] = can; kvaser_pciefd_pwm_start(can); } return 0; } static int kvaser_pciefd_reg_candev(struct kvaser_pciefd *pcie) { int i; for (i = 0; i < pcie->nr_channels; i++) { int err = register_candev(pcie->can[i]->can.dev); if (err) { int j; /* Unregister all successfully registered devices. */ for (j = 0; j < i; j++) unregister_candev(pcie->can[j]->can.dev); return err; } } return 0; } static void kvaser_pciefd_write_dma_map(struct kvaser_pciefd *pcie, dma_addr_t addr, int offset) { u32 word1, word2; #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT word1 = addr | KVASER_PCIEFD_64BIT_DMA_BIT; word2 = addr >> 32; #else word1 = addr; word2 = 0; #endif iowrite32(word1, pcie->reg_base + offset); iowrite32(word2, pcie->reg_base + offset + 4); } static int kvaser_pciefd_setup_dma(struct kvaser_pciefd *pcie) { int i; u32 srb_status; dma_addr_t dma_addr[KVASER_PCIEFD_DMA_COUNT]; /* Disable the DMA */ iowrite32(0, pcie->reg_base + KVASER_PCIEFD_SRB_CTRL_REG); for (i = 0; i < KVASER_PCIEFD_DMA_COUNT; i++) { unsigned int offset = KVASER_PCIEFD_DMA_MAP_BASE + 8 * i; pcie->dma_data[i] = dmam_alloc_coherent(&pcie->pci->dev, KVASER_PCIEFD_DMA_SIZE, &dma_addr[i], GFP_KERNEL); if (!pcie->dma_data[i] || !dma_addr[i]) { dev_err(&pcie->pci->dev, "Rx dma_alloc(%u) failure\n", KVASER_PCIEFD_DMA_SIZE); return -ENOMEM; } kvaser_pciefd_write_dma_map(pcie, dma_addr[i], offset); } /* Reset Rx FIFO, and both DMA buffers */ iowrite32(KVASER_PCIEFD_SRB_CMD_FOR | KVASER_PCIEFD_SRB_CMD_RDB0 | KVASER_PCIEFD_SRB_CMD_RDB1, pcie->reg_base + KVASER_PCIEFD_SRB_CMD_REG); srb_status = ioread32(pcie->reg_base + KVASER_PCIEFD_SRB_STAT_REG); if (!(srb_status & KVASER_PCIEFD_SRB_STAT_DI)) { dev_err(&pcie->pci->dev, "DMA not idle before enabling\n"); return -EIO; } /* Enable the DMA */ iowrite32(KVASER_PCIEFD_SRB_CTRL_DMA_ENABLE, pcie->reg_base + KVASER_PCIEFD_SRB_CTRL_REG); return 0; } static int kvaser_pciefd_setup_board(struct kvaser_pciefd *pcie) { u32 sysid, srb_status, build; u8 sysid_nr_chan; int ret; ret = kvaser_pciefd_read_cfg(pcie); if (ret) return ret; sysid = ioread32(pcie->reg_base + KVASER_PCIEFD_SYSID_VERSION_REG); sysid_nr_chan = (sysid >> KVASER_PCIEFD_SYSID_NRCHAN_SHIFT) & 0xff; if (pcie->nr_channels != sysid_nr_chan) { dev_err(&pcie->pci->dev, "Number of channels does not match: %u vs %u\n", pcie->nr_channels, sysid_nr_chan); return -ENODEV; } if (pcie->nr_channels > KVASER_PCIEFD_MAX_CAN_CHANNELS) pcie->nr_channels = KVASER_PCIEFD_MAX_CAN_CHANNELS; build = ioread32(pcie->reg_base + KVASER_PCIEFD_SYSID_BUILD_REG); dev_dbg(&pcie->pci->dev, "Version %u.%u.%u\n", (sysid >> KVASER_PCIEFD_SYSID_MAJOR_VER_SHIFT) & 0xff, sysid & 0xff, (build >> KVASER_PCIEFD_SYSID_BUILD_VER_SHIFT) & 0x7fff); srb_status = ioread32(pcie->reg_base + KVASER_PCIEFD_SRB_STAT_REG); if (!(srb_status & KVASER_PCIEFD_SRB_STAT_DMA)) { dev_err(&pcie->pci->dev, "Hardware without DMA is not supported\n"); return -ENODEV; } pcie->bus_freq = ioread32(pcie->reg_base + KVASER_PCIEFD_SYSID_BUSFREQ_REG); pcie->freq = ioread32(pcie->reg_base + KVASER_PCIEFD_SYSID_CANFREQ_REG); pcie->freq_to_ticks_div = pcie->freq / 1000000; if (pcie->freq_to_ticks_div == 0) pcie->freq_to_ticks_div = 1; /* Turn off all loopback functionality */ iowrite32(0, pcie->reg_base + KVASER_PCIEFD_LOOP_REG); return ret; } static int kvaser_pciefd_handle_data_packet(struct kvaser_pciefd *pcie, struct kvaser_pciefd_rx_packet *p, __le32 *data) { struct sk_buff *skb; struct canfd_frame *cf; struct can_priv *priv; struct net_device_stats *stats; struct skb_shared_hwtstamps *shhwtstamps; u8 ch_id = (p->header[1] >> KVASER_PCIEFD_PACKET_CHID_SHIFT) & 0x7; if (ch_id >= pcie->nr_channels) return -EIO; priv = &pcie->can[ch_id]->can; stats = &priv->dev->stats; if (p->header[1] & KVASER_PCIEFD_RPACKET_FDF) { skb = alloc_canfd_skb(priv->dev, &cf); if (!skb) { stats->rx_dropped++; return -ENOMEM; } if (p->header[1] & KVASER_PCIEFD_RPACKET_BRS) cf->flags |= CANFD_BRS; if (p->header[1] & KVASER_PCIEFD_RPACKET_ESI) cf->flags |= CANFD_ESI; } else { skb = alloc_can_skb(priv->dev, (struct can_frame **)&cf); if (!skb) { stats->rx_dropped++; return -ENOMEM; } } cf->can_id = p->header[0] & CAN_EFF_MASK; if (p->header[0] & KVASER_PCIEFD_RPACKET_IDE) cf->can_id |= CAN_EFF_FLAG; cf->len = can_fd_dlc2len(p->header[1] >> KVASER_PCIEFD_RPACKET_DLC_SHIFT); if (p->header[0] & KVASER_PCIEFD_RPACKET_RTR) { cf->can_id |= CAN_RTR_FLAG; } else { memcpy(cf->data, data, cf->len); stats->rx_bytes += cf->len; } stats->rx_packets++; shhwtstamps = skb_hwtstamps(skb); shhwtstamps->hwtstamp = ns_to_ktime(div_u64(p->timestamp * 1000, pcie->freq_to_ticks_div)); return netif_rx(skb); } static void kvaser_pciefd_change_state(struct kvaser_pciefd_can *can, struct can_frame *cf, enum can_state new_state, enum can_state tx_state, enum can_state rx_state) { can_change_state(can->can.dev, cf, tx_state, rx_state); if (new_state == CAN_STATE_BUS_OFF) { struct net_device *ndev = can->can.dev; unsigned long irq_flags; spin_lock_irqsave(&can->lock, irq_flags); netif_stop_queue(can->can.dev); spin_unlock_irqrestore(&can->lock, irq_flags); /* Prevent CAN controller from auto recover from bus off */ if (!can->can.restart_ms) { kvaser_pciefd_start_controller_flush(can); can_bus_off(ndev); } } } static void kvaser_pciefd_packet_to_state(struct kvaser_pciefd_rx_packet *p, struct can_berr_counter *bec, enum can_state *new_state, enum can_state *tx_state, enum can_state *rx_state) { if (p->header[0] & KVASER_PCIEFD_SPACK_BOFF || p->header[0] & KVASER_PCIEFD_SPACK_IRM) *new_state = CAN_STATE_BUS_OFF; else if (bec->txerr >= 255 || bec->rxerr >= 255) *new_state = CAN_STATE_BUS_OFF; else if (p->header[1] & KVASER_PCIEFD_SPACK_EPLR) *new_state = CAN_STATE_ERROR_PASSIVE; else if (bec->txerr >= 128 || bec->rxerr >= 128) *new_state = CAN_STATE_ERROR_PASSIVE; else if (p->header[1] & KVASER_PCIEFD_SPACK_EWLR) *new_state = CAN_STATE_ERROR_WARNING; else if (bec->txerr >= 96 || bec->rxerr >= 96) *new_state = CAN_STATE_ERROR_WARNING; else *new_state = CAN_STATE_ERROR_ACTIVE; *tx_state = bec->txerr >= bec->rxerr ? *new_state : 0; *rx_state = bec->txerr <= bec->rxerr ? *new_state : 0; } static int kvaser_pciefd_rx_error_frame(struct kvaser_pciefd_can *can, struct kvaser_pciefd_rx_packet *p) { struct can_berr_counter bec; enum can_state old_state, new_state, tx_state, rx_state; struct net_device *ndev = can->can.dev; struct sk_buff *skb; struct can_frame *cf = NULL; struct skb_shared_hwtstamps *shhwtstamps; struct net_device_stats *stats = &ndev->stats; old_state = can->can.state; bec.txerr = p->header[0] & 0xff; bec.rxerr = (p->header[0] >> KVASER_PCIEFD_SPACK_RXERR_SHIFT) & 0xff; kvaser_pciefd_packet_to_state(p, &bec, &new_state, &tx_state, &rx_state); skb = alloc_can_err_skb(ndev, &cf); if (new_state != old_state) { kvaser_pciefd_change_state(can, cf, new_state, tx_state, rx_state); if (old_state == CAN_STATE_BUS_OFF && new_state == CAN_STATE_ERROR_ACTIVE && can->can.restart_ms) { can->can.can_stats.restarts++; if (skb) cf->can_id |= CAN_ERR_RESTARTED; } } can->err_rep_cnt++; can->can.can_stats.bus_error++; if (p->header[1] & KVASER_PCIEFD_EPACK_DIR_TX) stats->tx_errors++; else stats->rx_errors++; can->bec.txerr = bec.txerr; can->bec.rxerr = bec.rxerr; if (!skb) { stats->rx_dropped++; return -ENOMEM; } shhwtstamps = skb_hwtstamps(skb); shhwtstamps->hwtstamp = ns_to_ktime(div_u64(p->timestamp * 1000, can->kv_pcie->freq_to_ticks_div)); cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_CNT; cf->data[6] = bec.txerr; cf->data[7] = bec.rxerr; netif_rx(skb); return 0; } static int kvaser_pciefd_handle_error_packet(struct kvaser_pciefd *pcie, struct kvaser_pciefd_rx_packet *p) { struct kvaser_pciefd_can *can; u8 ch_id = (p->header[1] >> KVASER_PCIEFD_PACKET_CHID_SHIFT) & 0x7; if (ch_id >= pcie->nr_channels) return -EIO; can = pcie->can[ch_id]; kvaser_pciefd_rx_error_frame(can, p); if (can->err_rep_cnt >= KVASER_PCIEFD_MAX_ERR_REP) /* Do not report more errors, until bec_poll_timer expires */ kvaser_pciefd_disable_err_gen(can); /* Start polling the error counters */ mod_timer(&can->bec_poll_timer, KVASER_PCIEFD_BEC_POLL_FREQ); return 0; } static int kvaser_pciefd_handle_status_resp(struct kvaser_pciefd_can *can, struct kvaser_pciefd_rx_packet *p) { struct can_berr_counter bec; enum can_state old_state, new_state, tx_state, rx_state; old_state = can->can.state; bec.txerr = p->header[0] & 0xff; bec.rxerr = (p->header[0] >> KVASER_PCIEFD_SPACK_RXERR_SHIFT) & 0xff; kvaser_pciefd_packet_to_state(p, &bec, &new_state, &tx_state, &rx_state); if (new_state != old_state) { struct net_device *ndev = can->can.dev; struct sk_buff *skb; struct can_frame *cf; struct skb_shared_hwtstamps *shhwtstamps; skb = alloc_can_err_skb(ndev, &cf); if (!skb) { struct net_device_stats *stats = &ndev->stats; stats->rx_dropped++; return -ENOMEM; } kvaser_pciefd_change_state(can, cf, new_state, tx_state, rx_state); if (old_state == CAN_STATE_BUS_OFF && new_state == CAN_STATE_ERROR_ACTIVE && can->can.restart_ms) { can->can.can_stats.restarts++; cf->can_id |= CAN_ERR_RESTARTED; } shhwtstamps = skb_hwtstamps(skb); shhwtstamps->hwtstamp = ns_to_ktime(div_u64(p->timestamp * 1000, can->kv_pcie->freq_to_ticks_div)); cf->data[6] = bec.txerr; cf->data[7] = bec.rxerr; netif_rx(skb); } can->bec.txerr = bec.txerr; can->bec.rxerr = bec.rxerr; /* Check if we need to poll the error counters */ if (bec.txerr || bec.rxerr) mod_timer(&can->bec_poll_timer, KVASER_PCIEFD_BEC_POLL_FREQ); return 0; } static int kvaser_pciefd_handle_status_packet(struct kvaser_pciefd *pcie, struct kvaser_pciefd_rx_packet *p) { struct kvaser_pciefd_can *can; u8 cmdseq; u32 status; u8 ch_id = (p->header[1] >> KVASER_PCIEFD_PACKET_CHID_SHIFT) & 0x7; if (ch_id >= pcie->nr_channels) return -EIO; can = pcie->can[ch_id]; status = ioread32(can->reg_base + KVASER_PCIEFD_KCAN_STAT_REG); cmdseq = (status >> KVASER_PCIEFD_KCAN_STAT_SEQNO_SHIFT) & 0xff; /* Reset done, start abort and flush */ if (p->header[0] & KVASER_PCIEFD_SPACK_IRM && p->header[0] & KVASER_PCIEFD_SPACK_RMCD && p->header[1] & KVASER_PCIEFD_SPACK_AUTO && cmdseq == (p->header[1] & KVASER_PCIEFD_PACKET_SEQ_MSK) && status & KVASER_PCIEFD_KCAN_STAT_IDLE) { u32 cmd; iowrite32(KVASER_PCIEFD_KCAN_IRQ_ABD, can->reg_base + KVASER_PCIEFD_KCAN_IRQ_REG); cmd = KVASER_PCIEFD_KCAN_CMD_AT; cmd |= ++can->cmd_seq << KVASER_PCIEFD_KCAN_CMD_SEQ_SHIFT; iowrite32(cmd, can->reg_base + KVASER_PCIEFD_KCAN_CMD_REG); iowrite32(KVASER_PCIEFD_KCAN_IRQ_TFD, can->reg_base + KVASER_PCIEFD_KCAN_IEN_REG); } else if (p->header[0] & KVASER_PCIEFD_SPACK_IDET && p->header[0] & KVASER_PCIEFD_SPACK_IRM && cmdseq == (p->header[1] & KVASER_PCIEFD_PACKET_SEQ_MSK) && status & KVASER_PCIEFD_KCAN_STAT_IDLE) { /* Reset detected, send end of flush if no packet are in FIFO */ u8 count = ioread32(can->reg_base + KVASER_PCIEFD_KCAN_TX_NPACKETS_REG) & 0xff; if (!count) iowrite32(KVASER_PCIEFD_KCAN_CTRL_EFLUSH, can->reg_base + KVASER_PCIEFD_KCAN_CTRL_REG); } else if (!(p->header[1] & KVASER_PCIEFD_SPACK_AUTO) && cmdseq == (p->header[1] & KVASER_PCIEFD_PACKET_SEQ_MSK)) { /* Response to status request received */ kvaser_pciefd_handle_status_resp(can, p); if (can->can.state != CAN_STATE_BUS_OFF && can->can.state != CAN_STATE_ERROR_ACTIVE) { mod_timer(&can->bec_poll_timer, KVASER_PCIEFD_BEC_POLL_FREQ); } } else if (p->header[0] & KVASER_PCIEFD_SPACK_RMCD && !(status & KVASER_PCIEFD_KCAN_STAT_BUS_OFF_MSK)) { /* Reset to bus on detected */ if (!completion_done(&can->start_comp)) complete(&can->start_comp); } return 0; } static int kvaser_pciefd_handle_eack_packet(struct kvaser_pciefd *pcie, struct kvaser_pciefd_rx_packet *p) { struct kvaser_pciefd_can *can; u8 ch_id = (p->header[1] >> KVASER_PCIEFD_PACKET_CHID_SHIFT) & 0x7; if (ch_id >= pcie->nr_channels) return -EIO; can = pcie->can[ch_id]; /* If this is the last flushed packet, send end of flush */ if (p->header[0] & KVASER_PCIEFD_APACKET_FLU) { u8 count = ioread32(can->reg_base + KVASER_PCIEFD_KCAN_TX_NPACKETS_REG) & 0xff; if (count == 0) iowrite32(KVASER_PCIEFD_KCAN_CTRL_EFLUSH, can->reg_base + KVASER_PCIEFD_KCAN_CTRL_REG); } else { int echo_idx = p->header[0] & KVASER_PCIEFD_PACKET_SEQ_MSK; int dlc = can_get_echo_skb(can->can.dev, echo_idx, NULL); struct net_device_stats *stats = &can->can.dev->stats; stats->tx_bytes += dlc; stats->tx_packets++; if (netif_queue_stopped(can->can.dev)) netif_wake_queue(can->can.dev); } return 0; } static void kvaser_pciefd_handle_nack_packet(struct kvaser_pciefd_can *can, struct kvaser_pciefd_rx_packet *p) { struct sk_buff *skb; struct net_device_stats *stats = &can->can.dev->stats; struct can_frame *cf; skb = alloc_can_err_skb(can->can.dev, &cf); stats->tx_errors++; if (p->header[0] & KVASER_PCIEFD_APACKET_ABL) { if (skb) cf->can_id |= CAN_ERR_LOSTARB; can->can.can_stats.arbitration_lost++; } else if (skb) { cf->can_id |= CAN_ERR_ACK; } if (skb) { cf->can_id |= CAN_ERR_BUSERROR; netif_rx(skb); } else { stats->rx_dropped++; netdev_warn(can->can.dev, "No memory left for err_skb\n"); } } static int kvaser_pciefd_handle_ack_packet(struct kvaser_pciefd *pcie, struct kvaser_pciefd_rx_packet *p) { struct kvaser_pciefd_can *can; bool one_shot_fail = false; u8 ch_id = (p->header[1] >> KVASER_PCIEFD_PACKET_CHID_SHIFT) & 0x7; if (ch_id >= pcie->nr_channels) return -EIO; can = pcie->can[ch_id]; /* Ignore control packet ACK */ if (p->header[0] & KVASER_PCIEFD_APACKET_CT) return 0; if (p->header[0] & KVASER_PCIEFD_APACKET_NACK) { kvaser_pciefd_handle_nack_packet(can, p); one_shot_fail = true; } if (p->header[0] & KVASER_PCIEFD_APACKET_FLU) { netdev_dbg(can->can.dev, "Packet was flushed\n"); } else { int echo_idx = p->header[0] & KVASER_PCIEFD_PACKET_SEQ_MSK; int dlc = can_get_echo_skb(can->can.dev, echo_idx, NULL); u8 count = ioread32(can->reg_base + KVASER_PCIEFD_KCAN_TX_NPACKETS_REG) & 0xff; if (count < KVASER_PCIEFD_CAN_TX_MAX_COUNT && netif_queue_stopped(can->can.dev)) netif_wake_queue(can->can.dev); if (!one_shot_fail) { struct net_device_stats *stats = &can->can.dev->stats; stats->tx_bytes += dlc; stats->tx_packets++; } } return 0; } static int kvaser_pciefd_handle_eflush_packet(struct kvaser_pciefd *pcie, struct kvaser_pciefd_rx_packet *p) { struct kvaser_pciefd_can *can; u8 ch_id = (p->header[1] >> KVASER_PCIEFD_PACKET_CHID_SHIFT) & 0x7; if (ch_id >= pcie->nr_channels) return -EIO; can = pcie->can[ch_id]; if (!completion_done(&can->flush_comp)) complete(&can->flush_comp); return 0; } static int kvaser_pciefd_read_packet(struct kvaser_pciefd *pcie, int *start_pos, int dma_buf) { __le32 *buffer = pcie->dma_data[dma_buf]; __le64 timestamp; struct kvaser_pciefd_rx_packet packet; struct kvaser_pciefd_rx_packet *p = &packet; u8 type; int pos = *start_pos; int size; int ret = 0; size = le32_to_cpu(buffer[pos++]); if (!size) { *start_pos = 0; return 0; } p->header[0] = le32_to_cpu(buffer[pos++]); p->header[1] = le32_to_cpu(buffer[pos++]); /* Read 64-bit timestamp */ memcpy(×tamp, &buffer[pos], sizeof(__le64)); pos += 2; p->timestamp = le64_to_cpu(timestamp); type = (p->header[1] >> KVASER_PCIEFD_PACKET_TYPE_SHIFT) & 0xf; switch (type) { case KVASER_PCIEFD_PACK_TYPE_DATA: ret = kvaser_pciefd_handle_data_packet(pcie, p, &buffer[pos]); if (!(p->header[0] & KVASER_PCIEFD_RPACKET_RTR)) { u8 data_len; data_len = can_fd_dlc2len(p->header[1] >> KVASER_PCIEFD_RPACKET_DLC_SHIFT); pos += DIV_ROUND_UP(data_len, 4); } break; case KVASER_PCIEFD_PACK_TYPE_ACK: ret = kvaser_pciefd_handle_ack_packet(pcie, p); break; case KVASER_PCIEFD_PACK_TYPE_STATUS: ret = kvaser_pciefd_handle_status_packet(pcie, p); break; case KVASER_PCIEFD_PACK_TYPE_ERROR: ret = kvaser_pciefd_handle_error_packet(pcie, p); break; case KVASER_PCIEFD_PACK_TYPE_EFRAME_ACK: ret = kvaser_pciefd_handle_eack_packet(pcie, p); break; case KVASER_PCIEFD_PACK_TYPE_EFLUSH_ACK: ret = kvaser_pciefd_handle_eflush_packet(pcie, p); break; case KVASER_PCIEFD_PACK_TYPE_ACK_DATA: case KVASER_PCIEFD_PACK_TYPE_BUS_LOAD: case KVASER_PCIEFD_PACK_TYPE_TXRQ: dev_info(&pcie->pci->dev, "Received unexpected packet type 0x%08X\n", type); break; default: dev_err(&pcie->pci->dev, "Unknown packet type 0x%08X\n", type); ret = -EIO; break; } if (ret) return ret; /* Position does not point to the end of the package, * corrupted packet size? */ if ((*start_pos + size) != pos) return -EIO; /* Point to the next packet header, if any */ *start_pos = pos; return ret; } static int kvaser_pciefd_read_buffer(struct kvaser_pciefd *pcie, int dma_buf) { int pos = 0; int res = 0; do { res = kvaser_pciefd_read_packet(pcie, &pos, dma_buf); } while (!res && pos > 0 && pos < KVASER_PCIEFD_DMA_SIZE); return res; } static int kvaser_pciefd_receive_irq(struct kvaser_pciefd *pcie) { u32 irq; irq = ioread32(pcie->reg_base + KVASER_PCIEFD_SRB_IRQ_REG); if (irq & KVASER_PCIEFD_SRB_IRQ_DPD0) { kvaser_pciefd_read_buffer(pcie, 0); /* Reset DMA buffer 0 */ iowrite32(KVASER_PCIEFD_SRB_CMD_RDB0, pcie->reg_base + KVASER_PCIEFD_SRB_CMD_REG); } if (irq & KVASER_PCIEFD_SRB_IRQ_DPD1) { kvaser_pciefd_read_buffer(pcie, 1); /* Reset DMA buffer 1 */ iowrite32(KVASER_PCIEFD_SRB_CMD_RDB1, pcie->reg_base + KVASER_PCIEFD_SRB_CMD_REG); } if (irq & KVASER_PCIEFD_SRB_IRQ_DOF0 || irq & KVASER_PCIEFD_SRB_IRQ_DOF1 || irq & KVASER_PCIEFD_SRB_IRQ_DUF0 || irq & KVASER_PCIEFD_SRB_IRQ_DUF1) dev_err(&pcie->pci->dev, "DMA IRQ error 0x%08X\n", irq); iowrite32(irq, pcie->reg_base + KVASER_PCIEFD_SRB_IRQ_REG); return 0; } static int kvaser_pciefd_transmit_irq(struct kvaser_pciefd_can *can) { u32 irq = ioread32(can->reg_base + KVASER_PCIEFD_KCAN_IRQ_REG); if (irq & KVASER_PCIEFD_KCAN_IRQ_TOF) netdev_err(can->can.dev, "Tx FIFO overflow\n"); if (irq & KVASER_PCIEFD_KCAN_IRQ_TFD) { u8 count = ioread32(can->reg_base + KVASER_PCIEFD_KCAN_TX_NPACKETS_REG) & 0xff; if (count == 0) iowrite32(KVASER_PCIEFD_KCAN_CTRL_EFLUSH, can->reg_base + KVASER_PCIEFD_KCAN_CTRL_REG); } if (irq & KVASER_PCIEFD_KCAN_IRQ_BPP) netdev_err(can->can.dev, "Fail to change bittiming, when not in reset mode\n"); if (irq & KVASER_PCIEFD_KCAN_IRQ_FDIC) netdev_err(can->can.dev, "CAN FD frame in CAN mode\n"); if (irq & KVASER_PCIEFD_KCAN_IRQ_ROF) netdev_err(can->can.dev, "Rx FIFO overflow\n"); iowrite32(irq, can->reg_base + KVASER_PCIEFD_KCAN_IRQ_REG); return 0; } static irqreturn_t kvaser_pciefd_irq_handler(int irq, void *dev) { struct kvaser_pciefd *pcie = (struct kvaser_pciefd *)dev; u32 board_irq; int i; board_irq = ioread32(pcie->reg_base + KVASER_PCIEFD_IRQ_REG); if (!(board_irq & KVASER_PCIEFD_IRQ_ALL_MSK)) return IRQ_NONE; if (board_irq & KVASER_PCIEFD_IRQ_SRB) kvaser_pciefd_receive_irq(pcie); for (i = 0; i < pcie->nr_channels; i++) { if (!pcie->can[i]) { dev_err(&pcie->pci->dev, "IRQ mask points to unallocated controller\n"); break; } /* Check that mask matches channel (i) IRQ mask */ if (board_irq & (1 << i)) kvaser_pciefd_transmit_irq(pcie->can[i]); } iowrite32(board_irq, pcie->reg_base + KVASER_PCIEFD_IRQ_REG); return IRQ_HANDLED; } static void kvaser_pciefd_teardown_can_ctrls(struct kvaser_pciefd *pcie) { int i; struct kvaser_pciefd_can *can; for (i = 0; i < pcie->nr_channels; i++) { can = pcie->can[i]; if (can) { iowrite32(0, can->reg_base + KVASER_PCIEFD_KCAN_IEN_REG); kvaser_pciefd_pwm_stop(can); free_candev(can->can.dev); } } } static int kvaser_pciefd_probe(struct pci_dev *pdev, const struct pci_device_id *id) { int err; struct kvaser_pciefd *pcie; pcie = devm_kzalloc(&pdev->dev, sizeof(*pcie), GFP_KERNEL); if (!pcie) return -ENOMEM; pci_set_drvdata(pdev, pcie); pcie->pci = pdev; err = pci_enable_device(pdev); if (err) return err; err = pci_request_regions(pdev, KVASER_PCIEFD_DRV_NAME); if (err) goto err_disable_pci; pcie->reg_base = pci_iomap(pdev, 0, 0); if (!pcie->reg_base) { err = -ENOMEM; goto err_release_regions; } err = kvaser_pciefd_setup_board(pcie); if (err) goto err_pci_iounmap; err = kvaser_pciefd_setup_dma(pcie); if (err) goto err_pci_iounmap; pci_set_master(pdev); err = kvaser_pciefd_setup_can_ctrls(pcie); if (err) goto err_teardown_can_ctrls; err = request_irq(pcie->pci->irq, kvaser_pciefd_irq_handler, IRQF_SHARED, KVASER_PCIEFD_DRV_NAME, pcie); if (err) goto err_teardown_can_ctrls; iowrite32(KVASER_PCIEFD_SRB_IRQ_DPD0 | KVASER_PCIEFD_SRB_IRQ_DPD1, pcie->reg_base + KVASER_PCIEFD_SRB_IRQ_REG); iowrite32(KVASER_PCIEFD_SRB_IRQ_DPD0 | KVASER_PCIEFD_SRB_IRQ_DPD1 | KVASER_PCIEFD_SRB_IRQ_DOF0 | KVASER_PCIEFD_SRB_IRQ_DOF1 | KVASER_PCIEFD_SRB_IRQ_DUF0 | KVASER_PCIEFD_SRB_IRQ_DUF1, pcie->reg_base + KVASER_PCIEFD_SRB_IEN_REG); /* Reset IRQ handling, expected to be off before */ iowrite32(KVASER_PCIEFD_IRQ_ALL_MSK, pcie->reg_base + KVASER_PCIEFD_IRQ_REG); iowrite32(KVASER_PCIEFD_IRQ_ALL_MSK, pcie->reg_base + KVASER_PCIEFD_IEN_REG); /* Ready the DMA buffers */ iowrite32(KVASER_PCIEFD_SRB_CMD_RDB0, pcie->reg_base + KVASER_PCIEFD_SRB_CMD_REG); iowrite32(KVASER_PCIEFD_SRB_CMD_RDB1, pcie->reg_base + KVASER_PCIEFD_SRB_CMD_REG); err = kvaser_pciefd_reg_candev(pcie); if (err) goto err_free_irq; return 0; err_free_irq: free_irq(pcie->pci->irq, pcie); err_teardown_can_ctrls: kvaser_pciefd_teardown_can_ctrls(pcie); iowrite32(0, pcie->reg_base + KVASER_PCIEFD_SRB_CTRL_REG); pci_clear_master(pdev); err_pci_iounmap: pci_iounmap(pdev, pcie->reg_base); err_release_regions: pci_release_regions(pdev); err_disable_pci: pci_disable_device(pdev); return err; } static void kvaser_pciefd_remove_all_ctrls(struct kvaser_pciefd *pcie) { struct kvaser_pciefd_can *can; int i; for (i = 0; i < pcie->nr_channels; i++) { can = pcie->can[i]; if (can) { iowrite32(0, can->reg_base + KVASER_PCIEFD_KCAN_IEN_REG); unregister_candev(can->can.dev); del_timer(&can->bec_poll_timer); kvaser_pciefd_pwm_stop(can); free_candev(can->can.dev); } } } static void kvaser_pciefd_remove(struct pci_dev *pdev) { struct kvaser_pciefd *pcie = pci_get_drvdata(pdev); kvaser_pciefd_remove_all_ctrls(pcie); /* Turn off IRQ generation */ iowrite32(0, pcie->reg_base + KVASER_PCIEFD_SRB_CTRL_REG); iowrite32(KVASER_PCIEFD_IRQ_ALL_MSK, pcie->reg_base + KVASER_PCIEFD_IRQ_REG); iowrite32(0, pcie->reg_base + KVASER_PCIEFD_IEN_REG); free_irq(pcie->pci->irq, pcie); pci_iounmap(pdev, pcie->reg_base); pci_release_regions(pdev); pci_disable_device(pdev); } static struct pci_driver kvaser_pciefd = { .name = KVASER_PCIEFD_DRV_NAME, .id_table = kvaser_pciefd_id_table, .probe = kvaser_pciefd_probe, .remove = kvaser_pciefd_remove, }; module_pci_driver(kvaser_pciefd)