// SPDX-License-Identifier: GPL-2.0-only /* * linux/mm/mmu_notifier.c * * Copyright (C) 2008 Qumranet, Inc. * Copyright (C) 2008 SGI * Christoph Lameter */ #include #include #include #include #include #include #include #include #include #include /* global SRCU for all MMs */ DEFINE_STATIC_SRCU(srcu); /* * This function allows mmu_notifier::release callback to delay a call to * a function that will free appropriate resources. The function must be * quick and must not block. */ void mmu_notifier_call_srcu(struct rcu_head *rcu, void (*func)(struct rcu_head *rcu)) { call_srcu(&srcu, rcu, func); } EXPORT_SYMBOL_GPL(mmu_notifier_call_srcu); /* * This function can't run concurrently against mmu_notifier_register * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap * runs with mm_users == 0. Other tasks may still invoke mmu notifiers * in parallel despite there being no task using this mm any more, * through the vmas outside of the exit_mmap context, such as with * vmtruncate. This serializes against mmu_notifier_unregister with * the mmu_notifier_mm->lock in addition to SRCU and it serializes * against the other mmu notifiers with SRCU. struct mmu_notifier_mm * can't go away from under us as exit_mmap holds an mm_count pin * itself. */ void __mmu_notifier_release(struct mm_struct *mm) { struct mmu_notifier *mn; int id; /* * SRCU here will block mmu_notifier_unregister until * ->release returns. */ id = srcu_read_lock(&srcu); hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) /* * If ->release runs before mmu_notifier_unregister it must be * handled, as it's the only way for the driver to flush all * existing sptes and stop the driver from establishing any more * sptes before all the pages in the mm are freed. */ if (mn->ops->release) mn->ops->release(mn, mm); spin_lock(&mm->mmu_notifier_mm->lock); while (unlikely(!hlist_empty(&mm->mmu_notifier_mm->list))) { mn = hlist_entry(mm->mmu_notifier_mm->list.first, struct mmu_notifier, hlist); /* * We arrived before mmu_notifier_unregister so * mmu_notifier_unregister will do nothing other than to wait * for ->release to finish and for mmu_notifier_unregister to * return. */ hlist_del_init_rcu(&mn->hlist); } spin_unlock(&mm->mmu_notifier_mm->lock); srcu_read_unlock(&srcu, id); /* * synchronize_srcu here prevents mmu_notifier_release from returning to * exit_mmap (which would proceed with freeing all pages in the mm) * until the ->release method returns, if it was invoked by * mmu_notifier_unregister. * * The mmu_notifier_mm can't go away from under us because one mm_count * is held by exit_mmap. */ synchronize_srcu(&srcu); } /* * If no young bitflag is supported by the hardware, ->clear_flush_young can * unmap the address and return 1 or 0 depending if the mapping previously * existed or not. */ int __mmu_notifier_clear_flush_young(struct mm_struct *mm, unsigned long start, unsigned long end) { struct mmu_notifier *mn; int young = 0, id; id = srcu_read_lock(&srcu); hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) { if (mn->ops->clear_flush_young) young |= mn->ops->clear_flush_young(mn, mm, start, end); } srcu_read_unlock(&srcu, id); return young; } int __mmu_notifier_clear_young(struct mm_struct *mm, unsigned long start, unsigned long end) { struct mmu_notifier *mn; int young = 0, id; id = srcu_read_lock(&srcu); hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) { if (mn->ops->clear_young) young |= mn->ops->clear_young(mn, mm, start, end); } srcu_read_unlock(&srcu, id); return young; } int __mmu_notifier_test_young(struct mm_struct *mm, unsigned long address) { struct mmu_notifier *mn; int young = 0, id; id = srcu_read_lock(&srcu); hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) { if (mn->ops->test_young) { young = mn->ops->test_young(mn, mm, address); if (young) break; } } srcu_read_unlock(&srcu, id); return young; } void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address, pte_t pte) { struct mmu_notifier *mn; int id; id = srcu_read_lock(&srcu); hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) { if (mn->ops->change_pte) mn->ops->change_pte(mn, mm, address, pte); } srcu_read_unlock(&srcu, id); } int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range) { struct mmu_notifier *mn; int ret = 0; int id; id = srcu_read_lock(&srcu); hlist_for_each_entry_rcu(mn, &range->mm->mmu_notifier_mm->list, hlist) { if (mn->ops->invalidate_range_start) { int _ret = mn->ops->invalidate_range_start(mn, range); if (_ret) { pr_info("%pS callback failed with %d in %sblockable context.\n", mn->ops->invalidate_range_start, _ret, !mmu_notifier_range_blockable(range) ? "non-" : ""); WARN_ON(mmu_notifier_range_blockable(range) || ret != -EAGAIN); ret = _ret; } } } srcu_read_unlock(&srcu, id); return ret; } EXPORT_SYMBOL_GPL(__mmu_notifier_invalidate_range_start); void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range, bool only_end) { struct mmu_notifier *mn; int id; id = srcu_read_lock(&srcu); hlist_for_each_entry_rcu(mn, &range->mm->mmu_notifier_mm->list, hlist) { /* * Call invalidate_range here too to avoid the need for the * subsystem of having to register an invalidate_range_end * call-back when there is invalidate_range already. Usually a * subsystem registers either invalidate_range_start()/end() or * invalidate_range(), so this will be no additional overhead * (besides the pointer check). * * We skip call to invalidate_range() if we know it is safe ie * call site use mmu_notifier_invalidate_range_only_end() which * is safe to do when we know that a call to invalidate_range() * already happen under page table lock. */ if (!only_end && mn->ops->invalidate_range) mn->ops->invalidate_range(mn, range->mm, range->start, range->end); if (mn->ops->invalidate_range_end) mn->ops->invalidate_range_end(mn, range); } srcu_read_unlock(&srcu, id); } EXPORT_SYMBOL_GPL(__mmu_notifier_invalidate_range_end); void __mmu_notifier_invalidate_range(struct mm_struct *mm, unsigned long start, unsigned long end) { struct mmu_notifier *mn; int id; id = srcu_read_lock(&srcu); hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) { if (mn->ops->invalidate_range) mn->ops->invalidate_range(mn, mm, start, end); } srcu_read_unlock(&srcu, id); } EXPORT_SYMBOL_GPL(__mmu_notifier_invalidate_range); /* * Same as mmu_notifier_register but here the caller must hold the * mmap_sem in write mode. */ int __mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm) { struct mmu_notifier_mm *mmu_notifier_mm = NULL; int ret; lockdep_assert_held_write(&mm->mmap_sem); BUG_ON(atomic_read(&mm->mm_users) <= 0); mn->mm = mm; mn->users = 1; if (!mm->mmu_notifier_mm) { /* * kmalloc cannot be called under mm_take_all_locks(), but we * know that mm->mmu_notifier_mm can't change while we hold * the write side of the mmap_sem. */ mmu_notifier_mm = kmalloc(sizeof(struct mmu_notifier_mm), GFP_KERNEL); if (!mmu_notifier_mm) return -ENOMEM; INIT_HLIST_HEAD(&mmu_notifier_mm->list); spin_lock_init(&mmu_notifier_mm->lock); } ret = mm_take_all_locks(mm); if (unlikely(ret)) goto out_clean; /* Pairs with the mmdrop in mmu_notifier_unregister_* */ mmgrab(mm); /* * Serialize the update against mmu_notifier_unregister. A * side note: mmu_notifier_release can't run concurrently with * us because we hold the mm_users pin (either implicitly as * current->mm or explicitly with get_task_mm() or similar). * We can't race against any other mmu notifier method either * thanks to mm_take_all_locks(). */ if (mmu_notifier_mm) mm->mmu_notifier_mm = mmu_notifier_mm; spin_lock(&mm->mmu_notifier_mm->lock); hlist_add_head_rcu(&mn->hlist, &mm->mmu_notifier_mm->list); spin_unlock(&mm->mmu_notifier_mm->lock); mm_drop_all_locks(mm); BUG_ON(atomic_read(&mm->mm_users) <= 0); return 0; out_clean: kfree(mmu_notifier_mm); return ret; } EXPORT_SYMBOL_GPL(__mmu_notifier_register); /** * mmu_notifier_register - Register a notifier on a mm * @mn: The notifier to attach * @mm: The mm to attach the notifier to * * Must not hold mmap_sem nor any other VM related lock when calling * this registration function. Must also ensure mm_users can't go down * to zero while this runs to avoid races with mmu_notifier_release, * so mm has to be current->mm or the mm should be pinned safely such * as with get_task_mm(). If the mm is not current->mm, the mm_users * pin should be released by calling mmput after mmu_notifier_register * returns. * * mmu_notifier_unregister() or mmu_notifier_put() must be always called to * unregister the notifier. * * While the caller has a mmu_notifier get the mn->mm pointer will remain * valid, and can be converted to an active mm pointer via mmget_not_zero(). */ int mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm) { int ret; down_write(&mm->mmap_sem); ret = __mmu_notifier_register(mn, mm); up_write(&mm->mmap_sem); return ret; } EXPORT_SYMBOL_GPL(mmu_notifier_register); static struct mmu_notifier * find_get_mmu_notifier(struct mm_struct *mm, const struct mmu_notifier_ops *ops) { struct mmu_notifier *mn; spin_lock(&mm->mmu_notifier_mm->lock); hlist_for_each_entry_rcu (mn, &mm->mmu_notifier_mm->list, hlist) { if (mn->ops != ops) continue; if (likely(mn->users != UINT_MAX)) mn->users++; else mn = ERR_PTR(-EOVERFLOW); spin_unlock(&mm->mmu_notifier_mm->lock); return mn; } spin_unlock(&mm->mmu_notifier_mm->lock); return NULL; } /** * mmu_notifier_get_locked - Return the single struct mmu_notifier for * the mm & ops * @ops: The operations struct being subscribe with * @mm : The mm to attach notifiers too * * This function either allocates a new mmu_notifier via * ops->alloc_notifier(), or returns an already existing notifier on the * list. The value of the ops pointer is used to determine when two notifiers * are the same. * * Each call to mmu_notifier_get() must be paired with a call to * mmu_notifier_put(). The caller must hold the write side of mm->mmap_sem. * * While the caller has a mmu_notifier get the mm pointer will remain valid, * and can be converted to an active mm pointer via mmget_not_zero(). */ struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops, struct mm_struct *mm) { struct mmu_notifier *mn; int ret; lockdep_assert_held_write(&mm->mmap_sem); if (mm->mmu_notifier_mm) { mn = find_get_mmu_notifier(mm, ops); if (mn) return mn; } mn = ops->alloc_notifier(mm); if (IS_ERR(mn)) return mn; mn->ops = ops; ret = __mmu_notifier_register(mn, mm); if (ret) goto out_free; return mn; out_free: mn->ops->free_notifier(mn); return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(mmu_notifier_get_locked); /* this is called after the last mmu_notifier_unregister() returned */ void __mmu_notifier_mm_destroy(struct mm_struct *mm) { BUG_ON(!hlist_empty(&mm->mmu_notifier_mm->list)); kfree(mm->mmu_notifier_mm); mm->mmu_notifier_mm = LIST_POISON1; /* debug */ } /* * This releases the mm_count pin automatically and frees the mm * structure if it was the last user of it. It serializes against * running mmu notifiers with SRCU and against mmu_notifier_unregister * with the unregister lock + SRCU. All sptes must be dropped before * calling mmu_notifier_unregister. ->release or any other notifier * method may be invoked concurrently with mmu_notifier_unregister, * and only after mmu_notifier_unregister returned we're guaranteed * that ->release or any other method can't run anymore. */ void mmu_notifier_unregister(struct mmu_notifier *mn, struct mm_struct *mm) { BUG_ON(atomic_read(&mm->mm_count) <= 0); if (!hlist_unhashed(&mn->hlist)) { /* * SRCU here will force exit_mmap to wait for ->release to * finish before freeing the pages. */ int id; id = srcu_read_lock(&srcu); /* * exit_mmap will block in mmu_notifier_release to guarantee * that ->release is called before freeing the pages. */ if (mn->ops->release) mn->ops->release(mn, mm); srcu_read_unlock(&srcu, id); spin_lock(&mm->mmu_notifier_mm->lock); /* * Can not use list_del_rcu() since __mmu_notifier_release * can delete it before we hold the lock. */ hlist_del_init_rcu(&mn->hlist); spin_unlock(&mm->mmu_notifier_mm->lock); } /* * Wait for any running method to finish, of course including * ->release if it was run by mmu_notifier_release instead of us. */ synchronize_srcu(&srcu); BUG_ON(atomic_read(&mm->mm_count) <= 0); mmdrop(mm); } EXPORT_SYMBOL_GPL(mmu_notifier_unregister); /* * Same as mmu_notifier_unregister but no callback and no srcu synchronization. */ void mmu_notifier_unregister_no_release(struct mmu_notifier *mn, struct mm_struct *mm) { spin_lock(&mm->mmu_notifier_mm->lock); /* * Can not use list_del_rcu() since __mmu_notifier_release * can delete it before we hold the lock. */ hlist_del_init_rcu(&mn->hlist); spin_unlock(&mm->mmu_notifier_mm->lock); BUG_ON(atomic_read(&mm->mm_count) <= 0); mmdrop(mm); } EXPORT_SYMBOL_GPL(mmu_notifier_unregister_no_release); static void mmu_notifier_free_rcu(struct rcu_head *rcu) { struct mmu_notifier *mn = container_of(rcu, struct mmu_notifier, rcu); struct mm_struct *mm = mn->mm; mn->ops->free_notifier(mn); /* Pairs with the get in __mmu_notifier_register() */ mmdrop(mm); } /** * mmu_notifier_put - Release the reference on the notifier * @mn: The notifier to act on * * This function must be paired with each mmu_notifier_get(), it releases the * reference obtained by the get. If this is the last reference then process * to free the notifier will be run asynchronously. * * Unlike mmu_notifier_unregister() the get/put flow only calls ops->release * when the mm_struct is destroyed. Instead free_notifier is always called to * release any resources held by the user. * * As ops->release is not guaranteed to be called, the user must ensure that * all sptes are dropped, and no new sptes can be established before * mmu_notifier_put() is called. * * This function can be called from the ops->release callback, however the * caller must still ensure it is called pairwise with mmu_notifier_get(). * * Modules calling this function must call mmu_notifier_synchronize() in * their __exit functions to ensure the async work is completed. */ void mmu_notifier_put(struct mmu_notifier *mn) { struct mm_struct *mm = mn->mm; spin_lock(&mm->mmu_notifier_mm->lock); if (WARN_ON(!mn->users) || --mn->users) goto out_unlock; hlist_del_init_rcu(&mn->hlist); spin_unlock(&mm->mmu_notifier_mm->lock); call_srcu(&srcu, &mn->rcu, mmu_notifier_free_rcu); return; out_unlock: spin_unlock(&mm->mmu_notifier_mm->lock); } EXPORT_SYMBOL_GPL(mmu_notifier_put); /** * mmu_notifier_synchronize - Ensure all mmu_notifiers are freed * * This function ensures that all outstanding async SRU work from * mmu_notifier_put() is completed. After it returns any mmu_notifier_ops * associated with an unused mmu_notifier will no longer be called. * * Before using the caller must ensure that all of its mmu_notifiers have been * fully released via mmu_notifier_put(). * * Modules using the mmu_notifier_put() API should call this in their __exit * function to avoid module unloading races. */ void mmu_notifier_synchronize(void) { synchronize_srcu(&srcu); } EXPORT_SYMBOL_GPL(mmu_notifier_synchronize); bool mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range) { if (!range->vma || range->event != MMU_NOTIFY_PROTECTION_VMA) return false; /* Return true if the vma still have the read flag set. */ return range->vma->vm_flags & VM_READ; } EXPORT_SYMBOL_GPL(mmu_notifier_range_update_to_read_only);