/* * Copyright 2012-15 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include #include "dm_services.h" #include "link_encoder.h" #include "stream_encoder.h" #include "resource.h" #include "include/irq_service_interface.h" #include "dce110/dce110_resource.h" #include "dce110/dce110_timing_generator.h" #include "irq/dce110/irq_service_dce110.h" #include "dce/dce_mem_input.h" #include "dce/dce_transform.h" #include "dce/dce_link_encoder.h" #include "dce/dce_stream_encoder.h" #include "dce/dce_audio.h" #include "dce/dce_opp.h" #include "dce/dce_ipp.h" #include "dce/dce_clock_source.h" #include "dce/dce_hwseq.h" #include "dce112/dce112_hw_sequencer.h" #include "dce/dce_abm.h" #include "dce/dce_dmcu.h" #include "dce/dce_aux.h" #include "dce/dce_i2c.h" #include "reg_helper.h" #include "dce/dce_11_2_d.h" #include "dce/dce_11_2_sh_mask.h" #include "dce100/dce100_resource.h" #define DC_LOGGER \ dc->ctx->logger #ifndef mmDP_DPHY_INTERNAL_CTRL #define mmDP_DPHY_INTERNAL_CTRL 0x4aa7 #define mmDP0_DP_DPHY_INTERNAL_CTRL 0x4aa7 #define mmDP1_DP_DPHY_INTERNAL_CTRL 0x4ba7 #define mmDP2_DP_DPHY_INTERNAL_CTRL 0x4ca7 #define mmDP3_DP_DPHY_INTERNAL_CTRL 0x4da7 #define mmDP4_DP_DPHY_INTERNAL_CTRL 0x4ea7 #define mmDP5_DP_DPHY_INTERNAL_CTRL 0x4fa7 #define mmDP6_DP_DPHY_INTERNAL_CTRL 0x54a7 #define mmDP7_DP_DPHY_INTERNAL_CTRL 0x56a7 #define mmDP8_DP_DPHY_INTERNAL_CTRL 0x57a7 #endif #ifndef mmBIOS_SCRATCH_2 #define mmBIOS_SCRATCH_2 0x05CB #define mmBIOS_SCRATCH_3 0x05CC #define mmBIOS_SCRATCH_6 0x05CF #endif #ifndef mmDP_DPHY_BS_SR_SWAP_CNTL #define mmDP_DPHY_BS_SR_SWAP_CNTL 0x4ADC #define mmDP0_DP_DPHY_BS_SR_SWAP_CNTL 0x4ADC #define mmDP1_DP_DPHY_BS_SR_SWAP_CNTL 0x4BDC #define mmDP2_DP_DPHY_BS_SR_SWAP_CNTL 0x4CDC #define mmDP3_DP_DPHY_BS_SR_SWAP_CNTL 0x4DDC #define mmDP4_DP_DPHY_BS_SR_SWAP_CNTL 0x4EDC #define mmDP5_DP_DPHY_BS_SR_SWAP_CNTL 0x4FDC #define mmDP6_DP_DPHY_BS_SR_SWAP_CNTL 0x54DC #endif #ifndef mmDP_DPHY_FAST_TRAINING #define mmDP_DPHY_FAST_TRAINING 0x4ABC #define mmDP0_DP_DPHY_FAST_TRAINING 0x4ABC #define mmDP1_DP_DPHY_FAST_TRAINING 0x4BBC #define mmDP2_DP_DPHY_FAST_TRAINING 0x4CBC #define mmDP3_DP_DPHY_FAST_TRAINING 0x4DBC #define mmDP4_DP_DPHY_FAST_TRAINING 0x4EBC #define mmDP5_DP_DPHY_FAST_TRAINING 0x4FBC #define mmDP6_DP_DPHY_FAST_TRAINING 0x54BC #endif enum dce112_clk_src_array_id { DCE112_CLK_SRC_PLL0, DCE112_CLK_SRC_PLL1, DCE112_CLK_SRC_PLL2, DCE112_CLK_SRC_PLL3, DCE112_CLK_SRC_PLL4, DCE112_CLK_SRC_PLL5, DCE112_CLK_SRC_TOTAL }; static const struct dce110_timing_generator_offsets dce112_tg_offsets[] = { { .crtc = (mmCRTC0_CRTC_CONTROL - mmCRTC_CONTROL), .dcp = (mmDCP0_GRPH_CONTROL - mmGRPH_CONTROL), }, { .crtc = (mmCRTC1_CRTC_CONTROL - mmCRTC_CONTROL), .dcp = (mmDCP1_GRPH_CONTROL - mmGRPH_CONTROL), }, { .crtc = (mmCRTC2_CRTC_CONTROL - mmCRTC_CONTROL), .dcp = (mmDCP2_GRPH_CONTROL - mmGRPH_CONTROL), }, { .crtc = (mmCRTC3_CRTC_CONTROL - mmCRTC_CONTROL), .dcp = (mmDCP3_GRPH_CONTROL - mmGRPH_CONTROL), }, { .crtc = (mmCRTC4_CRTC_CONTROL - mmCRTC_CONTROL), .dcp = (mmDCP4_GRPH_CONTROL - mmGRPH_CONTROL), }, { .crtc = (mmCRTC5_CRTC_CONTROL - mmCRTC_CONTROL), .dcp = (mmDCP5_GRPH_CONTROL - mmGRPH_CONTROL), } }; /* set register offset */ #define SR(reg_name)\ .reg_name = mm ## reg_name /* set register offset with instance */ #define SRI(reg_name, block, id)\ .reg_name = mm ## block ## id ## _ ## reg_name static const struct dce_dmcu_registers dmcu_regs = { DMCU_DCE110_COMMON_REG_LIST() }; static const struct dce_dmcu_shift dmcu_shift = { DMCU_MASK_SH_LIST_DCE110(__SHIFT) }; static const struct dce_dmcu_mask dmcu_mask = { DMCU_MASK_SH_LIST_DCE110(_MASK) }; static const struct dce_abm_registers abm_regs = { ABM_DCE110_COMMON_REG_LIST() }; static const struct dce_abm_shift abm_shift = { ABM_MASK_SH_LIST_DCE110(__SHIFT) }; static const struct dce_abm_mask abm_mask = { ABM_MASK_SH_LIST_DCE110(_MASK) }; static const struct dce110_aux_registers_shift aux_shift = { DCE_AUX_MASK_SH_LIST(__SHIFT) }; static const struct dce110_aux_registers_mask aux_mask = { DCE_AUX_MASK_SH_LIST(_MASK) }; #define ipp_regs(id)\ [id] = {\ IPP_DCE110_REG_LIST_DCE_BASE(id)\ } static const struct dce_ipp_registers ipp_regs[] = { ipp_regs(0), ipp_regs(1), ipp_regs(2), ipp_regs(3), ipp_regs(4), ipp_regs(5) }; static const struct dce_ipp_shift ipp_shift = { IPP_DCE100_MASK_SH_LIST_DCE_COMMON_BASE(__SHIFT) }; static const struct dce_ipp_mask ipp_mask = { IPP_DCE100_MASK_SH_LIST_DCE_COMMON_BASE(_MASK) }; #define transform_regs(id)\ [id] = {\ XFM_COMMON_REG_LIST_DCE110(id)\ } static const struct dce_transform_registers xfm_regs[] = { transform_regs(0), transform_regs(1), transform_regs(2), transform_regs(3), transform_regs(4), transform_regs(5) }; static const struct dce_transform_shift xfm_shift = { XFM_COMMON_MASK_SH_LIST_DCE110(__SHIFT) }; static const struct dce_transform_mask xfm_mask = { XFM_COMMON_MASK_SH_LIST_DCE110(_MASK) }; #define aux_regs(id)\ [id] = {\ AUX_REG_LIST(id)\ } static const struct dce110_link_enc_aux_registers link_enc_aux_regs[] = { aux_regs(0), aux_regs(1), aux_regs(2), aux_regs(3), aux_regs(4), aux_regs(5) }; #define hpd_regs(id)\ [id] = {\ HPD_REG_LIST(id)\ } static const struct dce110_link_enc_hpd_registers link_enc_hpd_regs[] = { hpd_regs(0), hpd_regs(1), hpd_regs(2), hpd_regs(3), hpd_regs(4), hpd_regs(5) }; #define link_regs(id)\ [id] = {\ LE_DCE110_REG_LIST(id)\ } static const struct dce110_link_enc_registers link_enc_regs[] = { link_regs(0), link_regs(1), link_regs(2), link_regs(3), link_regs(4), link_regs(5), link_regs(6), }; #define stream_enc_regs(id)\ [id] = {\ SE_COMMON_REG_LIST(id),\ .TMDS_CNTL = 0,\ } static const struct dce110_stream_enc_registers stream_enc_regs[] = { stream_enc_regs(0), stream_enc_regs(1), stream_enc_regs(2), stream_enc_regs(3), stream_enc_regs(4), stream_enc_regs(5) }; static const struct dce_stream_encoder_shift se_shift = { SE_COMMON_MASK_SH_LIST_DCE112(__SHIFT) }; static const struct dce_stream_encoder_mask se_mask = { SE_COMMON_MASK_SH_LIST_DCE112(_MASK) }; #define opp_regs(id)\ [id] = {\ OPP_DCE_112_REG_LIST(id),\ } static const struct dce_opp_registers opp_regs[] = { opp_regs(0), opp_regs(1), opp_regs(2), opp_regs(3), opp_regs(4), opp_regs(5) }; static const struct dce_opp_shift opp_shift = { OPP_COMMON_MASK_SH_LIST_DCE_112(__SHIFT) }; static const struct dce_opp_mask opp_mask = { OPP_COMMON_MASK_SH_LIST_DCE_112(_MASK) }; #define aux_engine_regs(id)\ [id] = {\ AUX_COMMON_REG_LIST(id), \ .AUX_RESET_MASK = 0 \ } static const struct dce110_aux_registers aux_engine_regs[] = { aux_engine_regs(0), aux_engine_regs(1), aux_engine_regs(2), aux_engine_regs(3), aux_engine_regs(4), aux_engine_regs(5) }; #define audio_regs(id)\ [id] = {\ AUD_COMMON_REG_LIST(id)\ } static const struct dce_audio_registers audio_regs[] = { audio_regs(0), audio_regs(1), audio_regs(2), audio_regs(3), audio_regs(4), audio_regs(5) }; static const struct dce_audio_shift audio_shift = { AUD_COMMON_MASK_SH_LIST(__SHIFT) }; static const struct dce_audio_mask audio_mask = { AUD_COMMON_MASK_SH_LIST(_MASK) }; #define clk_src_regs(index, id)\ [index] = {\ CS_COMMON_REG_LIST_DCE_112(id),\ } static const struct dce110_clk_src_regs clk_src_regs[] = { clk_src_regs(0, A), clk_src_regs(1, B), clk_src_regs(2, C), clk_src_regs(3, D), clk_src_regs(4, E), clk_src_regs(5, F) }; static const struct dce110_clk_src_shift cs_shift = { CS_COMMON_MASK_SH_LIST_DCE_112(__SHIFT) }; static const struct dce110_clk_src_mask cs_mask = { CS_COMMON_MASK_SH_LIST_DCE_112(_MASK) }; static const struct bios_registers bios_regs = { .BIOS_SCRATCH_3 = mmBIOS_SCRATCH_3, .BIOS_SCRATCH_6 = mmBIOS_SCRATCH_6 }; static const struct resource_caps polaris_10_resource_cap = { .num_timing_generator = 6, .num_audio = 6, .num_stream_encoder = 6, .num_pll = 8, /* why 8? 6 combo PHY PLL + 2 regular PLLs? */ .num_ddc = 6, }; static const struct resource_caps polaris_11_resource_cap = { .num_timing_generator = 5, .num_audio = 5, .num_stream_encoder = 5, .num_pll = 8, /* why 8? 6 combo PHY PLL + 2 regular PLLs? */ .num_ddc = 5, }; static const struct dc_plane_cap plane_cap = { .type = DC_PLANE_TYPE_DCE_RGB, .pixel_format_support = { .argb8888 = true, .nv12 = false, .fp16 = false }, .max_upscale_factor = { .argb8888 = 16000, .nv12 = 1, .fp16 = 1 }, .max_downscale_factor = { .argb8888 = 250, .nv12 = 1, .fp16 = 1 } }; #define CTX ctx #define REG(reg) mm ## reg #ifndef mmCC_DC_HDMI_STRAPS #define mmCC_DC_HDMI_STRAPS 0x4819 #define CC_DC_HDMI_STRAPS__HDMI_DISABLE_MASK 0x40 #define CC_DC_HDMI_STRAPS__HDMI_DISABLE__SHIFT 0x6 #define CC_DC_HDMI_STRAPS__AUDIO_STREAM_NUMBER_MASK 0x700 #define CC_DC_HDMI_STRAPS__AUDIO_STREAM_NUMBER__SHIFT 0x8 #endif static void read_dce_straps( struct dc_context *ctx, struct resource_straps *straps) { REG_GET_2(CC_DC_HDMI_STRAPS, HDMI_DISABLE, &straps->hdmi_disable, AUDIO_STREAM_NUMBER, &straps->audio_stream_number); REG_GET(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO, &straps->dc_pinstraps_audio); } static struct audio *create_audio( struct dc_context *ctx, unsigned int inst) { return dce_audio_create(ctx, inst, &audio_regs[inst], &audio_shift, &audio_mask); } static struct timing_generator *dce112_timing_generator_create( struct dc_context *ctx, uint32_t instance, const struct dce110_timing_generator_offsets *offsets) { struct dce110_timing_generator *tg110 = kzalloc(sizeof(struct dce110_timing_generator), GFP_KERNEL); if (!tg110) return NULL; dce110_timing_generator_construct(tg110, ctx, instance, offsets); return &tg110->base; } static struct stream_encoder *dce112_stream_encoder_create( enum engine_id eng_id, struct dc_context *ctx) { struct dce110_stream_encoder *enc110 = kzalloc(sizeof(struct dce110_stream_encoder), GFP_KERNEL); if (!enc110) return NULL; dce110_stream_encoder_construct(enc110, ctx, ctx->dc_bios, eng_id, &stream_enc_regs[eng_id], &se_shift, &se_mask); return &enc110->base; } #define SRII(reg_name, block, id)\ .reg_name[id] = mm ## block ## id ## _ ## reg_name static const struct dce_hwseq_registers hwseq_reg = { HWSEQ_DCE112_REG_LIST() }; static const struct dce_hwseq_shift hwseq_shift = { HWSEQ_DCE112_MASK_SH_LIST(__SHIFT) }; static const struct dce_hwseq_mask hwseq_mask = { HWSEQ_DCE112_MASK_SH_LIST(_MASK) }; static struct dce_hwseq *dce112_hwseq_create( struct dc_context *ctx) { struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL); if (hws) { hws->ctx = ctx; hws->regs = &hwseq_reg; hws->shifts = &hwseq_shift; hws->masks = &hwseq_mask; } return hws; } static const struct resource_create_funcs res_create_funcs = { .read_dce_straps = read_dce_straps, .create_audio = create_audio, .create_stream_encoder = dce112_stream_encoder_create, .create_hwseq = dce112_hwseq_create, }; #define mi_inst_regs(id) { MI_DCE11_2_REG_LIST(id) } static const struct dce_mem_input_registers mi_regs[] = { mi_inst_regs(0), mi_inst_regs(1), mi_inst_regs(2), mi_inst_regs(3), mi_inst_regs(4), mi_inst_regs(5), }; static const struct dce_mem_input_shift mi_shifts = { MI_DCE11_2_MASK_SH_LIST(__SHIFT) }; static const struct dce_mem_input_mask mi_masks = { MI_DCE11_2_MASK_SH_LIST(_MASK) }; static struct mem_input *dce112_mem_input_create( struct dc_context *ctx, uint32_t inst) { struct dce_mem_input *dce_mi = kzalloc(sizeof(struct dce_mem_input), GFP_KERNEL); if (!dce_mi) { BREAK_TO_DEBUGGER(); return NULL; } dce112_mem_input_construct(dce_mi, ctx, inst, &mi_regs[inst], &mi_shifts, &mi_masks); return &dce_mi->base; } static void dce112_transform_destroy(struct transform **xfm) { kfree(TO_DCE_TRANSFORM(*xfm)); *xfm = NULL; } static struct transform *dce112_transform_create( struct dc_context *ctx, uint32_t inst) { struct dce_transform *transform = kzalloc(sizeof(struct dce_transform), GFP_KERNEL); if (!transform) return NULL; dce_transform_construct(transform, ctx, inst, &xfm_regs[inst], &xfm_shift, &xfm_mask); transform->lb_memory_size = 0x1404; /*5124*/ return &transform->base; } static const struct encoder_feature_support link_enc_feature = { .max_hdmi_deep_color = COLOR_DEPTH_121212, .max_hdmi_pixel_clock = 600000, .hdmi_ycbcr420_supported = true, .dp_ycbcr420_supported = false, .flags.bits.IS_HBR2_CAPABLE = true, .flags.bits.IS_HBR3_CAPABLE = true, .flags.bits.IS_TPS3_CAPABLE = true, .flags.bits.IS_TPS4_CAPABLE = true }; struct link_encoder *dce112_link_encoder_create( const struct encoder_init_data *enc_init_data) { struct dce110_link_encoder *enc110 = kzalloc(sizeof(struct dce110_link_encoder), GFP_KERNEL); if (!enc110) return NULL; dce110_link_encoder_construct(enc110, enc_init_data, &link_enc_feature, &link_enc_regs[enc_init_data->transmitter], &link_enc_aux_regs[enc_init_data->channel - 1], &link_enc_hpd_regs[enc_init_data->hpd_source]); return &enc110->base; } static struct input_pixel_processor *dce112_ipp_create( struct dc_context *ctx, uint32_t inst) { struct dce_ipp *ipp = kzalloc(sizeof(struct dce_ipp), GFP_KERNEL); if (!ipp) { BREAK_TO_DEBUGGER(); return NULL; } dce_ipp_construct(ipp, ctx, inst, &ipp_regs[inst], &ipp_shift, &ipp_mask); return &ipp->base; } struct output_pixel_processor *dce112_opp_create( struct dc_context *ctx, uint32_t inst) { struct dce110_opp *opp = kzalloc(sizeof(struct dce110_opp), GFP_KERNEL); if (!opp) return NULL; dce110_opp_construct(opp, ctx, inst, &opp_regs[inst], &opp_shift, &opp_mask); return &opp->base; } struct dce_aux *dce112_aux_engine_create( struct dc_context *ctx, uint32_t inst) { struct aux_engine_dce110 *aux_engine = kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL); if (!aux_engine) return NULL; dce110_aux_engine_construct(aux_engine, ctx, inst, SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD, &aux_engine_regs[inst], &aux_mask, &aux_shift); return &aux_engine->base; } #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) } static const struct dce_i2c_registers i2c_hw_regs[] = { i2c_inst_regs(1), i2c_inst_regs(2), i2c_inst_regs(3), i2c_inst_regs(4), i2c_inst_regs(5), i2c_inst_regs(6), }; static const struct dce_i2c_shift i2c_shifts = { I2C_COMMON_MASK_SH_LIST_DCE110(__SHIFT) }; static const struct dce_i2c_mask i2c_masks = { I2C_COMMON_MASK_SH_LIST_DCE110(_MASK) }; struct dce_i2c_hw *dce112_i2c_hw_create( struct dc_context *ctx, uint32_t inst) { struct dce_i2c_hw *dce_i2c_hw = kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL); if (!dce_i2c_hw) return NULL; dce112_i2c_hw_construct(dce_i2c_hw, ctx, inst, &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks); return dce_i2c_hw; } struct clock_source *dce112_clock_source_create( struct dc_context *ctx, struct dc_bios *bios, enum clock_source_id id, const struct dce110_clk_src_regs *regs, bool dp_clk_src) { struct dce110_clk_src *clk_src = kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL); if (!clk_src) return NULL; if (dce112_clk_src_construct(clk_src, ctx, bios, id, regs, &cs_shift, &cs_mask)) { clk_src->base.dp_clk_src = dp_clk_src; return &clk_src->base; } kfree(clk_src); BREAK_TO_DEBUGGER(); return NULL; } void dce112_clock_source_destroy(struct clock_source **clk_src) { kfree(TO_DCE110_CLK_SRC(*clk_src)); *clk_src = NULL; } static void destruct(struct dce110_resource_pool *pool) { unsigned int i; for (i = 0; i < pool->base.pipe_count; i++) { if (pool->base.opps[i] != NULL) dce110_opp_destroy(&pool->base.opps[i]); if (pool->base.transforms[i] != NULL) dce112_transform_destroy(&pool->base.transforms[i]); if (pool->base.ipps[i] != NULL) dce_ipp_destroy(&pool->base.ipps[i]); if (pool->base.mis[i] != NULL) { kfree(TO_DCE_MEM_INPUT(pool->base.mis[i])); pool->base.mis[i] = NULL; } if (pool->base.timing_generators[i] != NULL) { kfree(DCE110TG_FROM_TG(pool->base.timing_generators[i])); pool->base.timing_generators[i] = NULL; } } for (i = 0; i < pool->base.res_cap->num_ddc; i++) { if (pool->base.engines[i] != NULL) dce110_engine_destroy(&pool->base.engines[i]); if (pool->base.hw_i2cs[i] != NULL) { kfree(pool->base.hw_i2cs[i]); pool->base.hw_i2cs[i] = NULL; } if (pool->base.sw_i2cs[i] != NULL) { kfree(pool->base.sw_i2cs[i]); pool->base.sw_i2cs[i] = NULL; } } for (i = 0; i < pool->base.stream_enc_count; i++) { if (pool->base.stream_enc[i] != NULL) kfree(DCE110STRENC_FROM_STRENC(pool->base.stream_enc[i])); } for (i = 0; i < pool->base.clk_src_count; i++) { if (pool->base.clock_sources[i] != NULL) { dce112_clock_source_destroy(&pool->base.clock_sources[i]); } } if (pool->base.dp_clock_source != NULL) dce112_clock_source_destroy(&pool->base.dp_clock_source); for (i = 0; i < pool->base.audio_count; i++) { if (pool->base.audios[i] != NULL) { dce_aud_destroy(&pool->base.audios[i]); } } if (pool->base.abm != NULL) dce_abm_destroy(&pool->base.abm); if (pool->base.dmcu != NULL) dce_dmcu_destroy(&pool->base.dmcu); if (pool->base.irqs != NULL) { dal_irq_service_destroy(&pool->base.irqs); } } static struct clock_source *find_matching_pll( struct resource_context *res_ctx, const struct resource_pool *pool, const struct dc_stream_state *const stream) { switch (stream->link->link_enc->transmitter) { case TRANSMITTER_UNIPHY_A: return pool->clock_sources[DCE112_CLK_SRC_PLL0]; case TRANSMITTER_UNIPHY_B: return pool->clock_sources[DCE112_CLK_SRC_PLL1]; case TRANSMITTER_UNIPHY_C: return pool->clock_sources[DCE112_CLK_SRC_PLL2]; case TRANSMITTER_UNIPHY_D: return pool->clock_sources[DCE112_CLK_SRC_PLL3]; case TRANSMITTER_UNIPHY_E: return pool->clock_sources[DCE112_CLK_SRC_PLL4]; case TRANSMITTER_UNIPHY_F: return pool->clock_sources[DCE112_CLK_SRC_PLL5]; default: return NULL; }; return 0; } static enum dc_status build_mapped_resource( const struct dc *dc, struct dc_state *context, struct dc_stream_state *stream) { struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(&context->res_ctx, stream); if (!pipe_ctx) return DC_ERROR_UNEXPECTED; dce110_resource_build_pipe_hw_param(pipe_ctx); resource_build_info_frame(pipe_ctx); return DC_OK; } bool dce112_validate_bandwidth( struct dc *dc, struct dc_state *context, bool fast_validate) { bool result = false; DC_LOG_BANDWIDTH_CALCS( "%s: start", __func__); if (bw_calcs( dc->ctx, dc->bw_dceip, dc->bw_vbios, context->res_ctx.pipe_ctx, dc->res_pool->pipe_count, &context->bw_ctx.bw.dce)) result = true; if (!result) DC_LOG_BANDWIDTH_VALIDATION( "%s: Bandwidth validation failed!", __func__); if (memcmp(&dc->current_state->bw_ctx.bw.dce, &context->bw_ctx.bw.dce, sizeof(context->bw_ctx.bw.dce))) { DC_LOG_BANDWIDTH_CALCS( "%s: finish,\n" "nbpMark_b: %d nbpMark_a: %d urgentMark_b: %d urgentMark_a: %d\n" "stutMark_b: %d stutMark_a: %d\n" "nbpMark_b: %d nbpMark_a: %d urgentMark_b: %d urgentMark_a: %d\n" "stutMark_b: %d stutMark_a: %d\n" "nbpMark_b: %d nbpMark_a: %d urgentMark_b: %d urgentMark_a: %d\n" "stutMark_b: %d stutMark_a: %d stutter_mode_enable: %d\n" "cstate: %d pstate: %d nbpstate: %d sync: %d dispclk: %d\n" "sclk: %d sclk_sleep: %d yclk: %d blackout_recovery_time_us: %d\n" , __func__, context->bw_ctx.bw.dce.nbp_state_change_wm_ns[0].b_mark, context->bw_ctx.bw.dce.nbp_state_change_wm_ns[0].a_mark, context->bw_ctx.bw.dce.urgent_wm_ns[0].b_mark, context->bw_ctx.bw.dce.urgent_wm_ns[0].a_mark, context->bw_ctx.bw.dce.stutter_exit_wm_ns[0].b_mark, context->bw_ctx.bw.dce.stutter_exit_wm_ns[0].a_mark, context->bw_ctx.bw.dce.nbp_state_change_wm_ns[1].b_mark, context->bw_ctx.bw.dce.nbp_state_change_wm_ns[1].a_mark, context->bw_ctx.bw.dce.urgent_wm_ns[1].b_mark, context->bw_ctx.bw.dce.urgent_wm_ns[1].a_mark, context->bw_ctx.bw.dce.stutter_exit_wm_ns[1].b_mark, context->bw_ctx.bw.dce.stutter_exit_wm_ns[1].a_mark, context->bw_ctx.bw.dce.nbp_state_change_wm_ns[2].b_mark, context->bw_ctx.bw.dce.nbp_state_change_wm_ns[2].a_mark, context->bw_ctx.bw.dce.urgent_wm_ns[2].b_mark, context->bw_ctx.bw.dce.urgent_wm_ns[2].a_mark, context->bw_ctx.bw.dce.stutter_exit_wm_ns[2].b_mark, context->bw_ctx.bw.dce.stutter_exit_wm_ns[2].a_mark, context->bw_ctx.bw.dce.stutter_mode_enable, context->bw_ctx.bw.dce.cpuc_state_change_enable, context->bw_ctx.bw.dce.cpup_state_change_enable, context->bw_ctx.bw.dce.nbp_state_change_enable, context->bw_ctx.bw.dce.all_displays_in_sync, context->bw_ctx.bw.dce.dispclk_khz, context->bw_ctx.bw.dce.sclk_khz, context->bw_ctx.bw.dce.sclk_deep_sleep_khz, context->bw_ctx.bw.dce.yclk_khz, context->bw_ctx.bw.dce.blackout_recovery_time_us); } return result; } enum dc_status resource_map_phy_clock_resources( const struct dc *dc, struct dc_state *context, struct dc_stream_state *stream) { /* acquire new resources */ struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream( &context->res_ctx, stream); if (!pipe_ctx) return DC_ERROR_UNEXPECTED; if (dc_is_dp_signal(pipe_ctx->stream->signal) || dc_is_virtual_signal(pipe_ctx->stream->signal)) pipe_ctx->clock_source = dc->res_pool->dp_clock_source; else pipe_ctx->clock_source = find_matching_pll( &context->res_ctx, dc->res_pool, stream); if (pipe_ctx->clock_source == NULL) return DC_NO_CLOCK_SOURCE_RESOURCE; resource_reference_clock_source( &context->res_ctx, dc->res_pool, pipe_ctx->clock_source); return DC_OK; } static bool dce112_validate_surface_sets( struct dc_state *context) { int i; for (i = 0; i < context->stream_count; i++) { if (context->stream_status[i].plane_count == 0) continue; if (context->stream_status[i].plane_count > 1) return false; if (context->stream_status[i].plane_states[0]->format >= SURFACE_PIXEL_FORMAT_VIDEO_BEGIN) return false; } return true; } enum dc_status dce112_add_stream_to_ctx( struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream) { enum dc_status result = DC_ERROR_UNEXPECTED; result = resource_map_pool_resources(dc, new_ctx, dc_stream); if (result == DC_OK) result = resource_map_phy_clock_resources(dc, new_ctx, dc_stream); if (result == DC_OK) result = build_mapped_resource(dc, new_ctx, dc_stream); return result; } enum dc_status dce112_validate_global( struct dc *dc, struct dc_state *context) { if (!dce112_validate_surface_sets(context)) return DC_FAIL_SURFACE_VALIDATE; return DC_OK; } static void dce112_destroy_resource_pool(struct resource_pool **pool) { struct dce110_resource_pool *dce110_pool = TO_DCE110_RES_POOL(*pool); destruct(dce110_pool); kfree(dce110_pool); *pool = NULL; } static const struct resource_funcs dce112_res_pool_funcs = { .destroy = dce112_destroy_resource_pool, .link_enc_create = dce112_link_encoder_create, .validate_bandwidth = dce112_validate_bandwidth, .validate_plane = dce100_validate_plane, .add_stream_to_ctx = dce112_add_stream_to_ctx, .validate_global = dce112_validate_global, .find_first_free_match_stream_enc_for_link = dce110_find_first_free_match_stream_enc_for_link }; static void bw_calcs_data_update_from_pplib(struct dc *dc) { struct dm_pp_clock_levels_with_latency eng_clks = {0}; struct dm_pp_clock_levels_with_latency mem_clks = {0}; struct dm_pp_wm_sets_with_clock_ranges clk_ranges = {0}; struct dm_pp_clock_levels clks = {0}; int memory_type_multiplier = MEMORY_TYPE_MULTIPLIER_CZ; if (dc->bw_vbios && dc->bw_vbios->memory_type == bw_def_hbm) memory_type_multiplier = MEMORY_TYPE_HBM; /*do system clock TODO PPLIB: after PPLIB implement, * then remove old way */ if (!dm_pp_get_clock_levels_by_type_with_latency( dc->ctx, DM_PP_CLOCK_TYPE_ENGINE_CLK, &eng_clks)) { /* This is only for temporary */ dm_pp_get_clock_levels_by_type( dc->ctx, DM_PP_CLOCK_TYPE_ENGINE_CLK, &clks); /* convert all the clock fro kHz to fix point mHz */ dc->bw_vbios->high_sclk = bw_frc_to_fixed( clks.clocks_in_khz[clks.num_levels-1], 1000); dc->bw_vbios->mid1_sclk = bw_frc_to_fixed( clks.clocks_in_khz[clks.num_levels/8], 1000); dc->bw_vbios->mid2_sclk = bw_frc_to_fixed( clks.clocks_in_khz[clks.num_levels*2/8], 1000); dc->bw_vbios->mid3_sclk = bw_frc_to_fixed( clks.clocks_in_khz[clks.num_levels*3/8], 1000); dc->bw_vbios->mid4_sclk = bw_frc_to_fixed( clks.clocks_in_khz[clks.num_levels*4/8], 1000); dc->bw_vbios->mid5_sclk = bw_frc_to_fixed( clks.clocks_in_khz[clks.num_levels*5/8], 1000); dc->bw_vbios->mid6_sclk = bw_frc_to_fixed( clks.clocks_in_khz[clks.num_levels*6/8], 1000); dc->bw_vbios->low_sclk = bw_frc_to_fixed( clks.clocks_in_khz[0], 1000); /*do memory clock*/ dm_pp_get_clock_levels_by_type( dc->ctx, DM_PP_CLOCK_TYPE_MEMORY_CLK, &clks); dc->bw_vbios->low_yclk = bw_frc_to_fixed( clks.clocks_in_khz[0] * memory_type_multiplier, 1000); dc->bw_vbios->mid_yclk = bw_frc_to_fixed( clks.clocks_in_khz[clks.num_levels>>1] * memory_type_multiplier, 1000); dc->bw_vbios->high_yclk = bw_frc_to_fixed( clks.clocks_in_khz[clks.num_levels-1] * memory_type_multiplier, 1000); return; } /* convert all the clock fro kHz to fix point mHz TODO: wloop data */ dc->bw_vbios->high_sclk = bw_frc_to_fixed( eng_clks.data[eng_clks.num_levels-1].clocks_in_khz, 1000); dc->bw_vbios->mid1_sclk = bw_frc_to_fixed( eng_clks.data[eng_clks.num_levels/8].clocks_in_khz, 1000); dc->bw_vbios->mid2_sclk = bw_frc_to_fixed( eng_clks.data[eng_clks.num_levels*2/8].clocks_in_khz, 1000); dc->bw_vbios->mid3_sclk = bw_frc_to_fixed( eng_clks.data[eng_clks.num_levels*3/8].clocks_in_khz, 1000); dc->bw_vbios->mid4_sclk = bw_frc_to_fixed( eng_clks.data[eng_clks.num_levels*4/8].clocks_in_khz, 1000); dc->bw_vbios->mid5_sclk = bw_frc_to_fixed( eng_clks.data[eng_clks.num_levels*5/8].clocks_in_khz, 1000); dc->bw_vbios->mid6_sclk = bw_frc_to_fixed( eng_clks.data[eng_clks.num_levels*6/8].clocks_in_khz, 1000); dc->bw_vbios->low_sclk = bw_frc_to_fixed( eng_clks.data[0].clocks_in_khz, 1000); /*do memory clock*/ dm_pp_get_clock_levels_by_type_with_latency( dc->ctx, DM_PP_CLOCK_TYPE_MEMORY_CLK, &mem_clks); /* we don't need to call PPLIB for validation clock since they * also give us the highest sclk and highest mclk (UMA clock). * ALSO always convert UMA clock (from PPLIB) to YCLK (HW formula): * YCLK = UMACLK*m_memoryTypeMultiplier */ dc->bw_vbios->low_yclk = bw_frc_to_fixed( mem_clks.data[0].clocks_in_khz * memory_type_multiplier, 1000); dc->bw_vbios->mid_yclk = bw_frc_to_fixed( mem_clks.data[mem_clks.num_levels>>1].clocks_in_khz * memory_type_multiplier, 1000); dc->bw_vbios->high_yclk = bw_frc_to_fixed( mem_clks.data[mem_clks.num_levels-1].clocks_in_khz * memory_type_multiplier, 1000); /* Now notify PPLib/SMU about which Watermarks sets they should select * depending on DPM state they are in. And update BW MGR GFX Engine and * Memory clock member variables for Watermarks calculations for each * Watermark Set */ clk_ranges.num_wm_sets = 4; clk_ranges.wm_clk_ranges[0].wm_set_id = WM_SET_A; clk_ranges.wm_clk_ranges[0].wm_min_eng_clk_in_khz = eng_clks.data[0].clocks_in_khz; clk_ranges.wm_clk_ranges[0].wm_max_eng_clk_in_khz = eng_clks.data[eng_clks.num_levels*3/8].clocks_in_khz - 1; clk_ranges.wm_clk_ranges[0].wm_min_mem_clk_in_khz = mem_clks.data[0].clocks_in_khz; clk_ranges.wm_clk_ranges[0].wm_max_mem_clk_in_khz = mem_clks.data[mem_clks.num_levels>>1].clocks_in_khz - 1; clk_ranges.wm_clk_ranges[1].wm_set_id = WM_SET_B; clk_ranges.wm_clk_ranges[1].wm_min_eng_clk_in_khz = eng_clks.data[eng_clks.num_levels*3/8].clocks_in_khz; /* 5 GHz instead of data[7].clockInKHz to cover Overdrive */ clk_ranges.wm_clk_ranges[1].wm_max_eng_clk_in_khz = 5000000; clk_ranges.wm_clk_ranges[1].wm_min_mem_clk_in_khz = mem_clks.data[0].clocks_in_khz; clk_ranges.wm_clk_ranges[1].wm_max_mem_clk_in_khz = mem_clks.data[mem_clks.num_levels>>1].clocks_in_khz - 1; clk_ranges.wm_clk_ranges[2].wm_set_id = WM_SET_C; clk_ranges.wm_clk_ranges[2].wm_min_eng_clk_in_khz = eng_clks.data[0].clocks_in_khz; clk_ranges.wm_clk_ranges[2].wm_max_eng_clk_in_khz = eng_clks.data[eng_clks.num_levels*3/8].clocks_in_khz - 1; clk_ranges.wm_clk_ranges[2].wm_min_mem_clk_in_khz = mem_clks.data[mem_clks.num_levels>>1].clocks_in_khz; /* 5 GHz instead of data[2].clockInKHz to cover Overdrive */ clk_ranges.wm_clk_ranges[2].wm_max_mem_clk_in_khz = 5000000; clk_ranges.wm_clk_ranges[3].wm_set_id = WM_SET_D; clk_ranges.wm_clk_ranges[3].wm_min_eng_clk_in_khz = eng_clks.data[eng_clks.num_levels*3/8].clocks_in_khz; /* 5 GHz instead of data[7].clockInKHz to cover Overdrive */ clk_ranges.wm_clk_ranges[3].wm_max_eng_clk_in_khz = 5000000; clk_ranges.wm_clk_ranges[3].wm_min_mem_clk_in_khz = mem_clks.data[mem_clks.num_levels>>1].clocks_in_khz; /* 5 GHz instead of data[2].clockInKHz to cover Overdrive */ clk_ranges.wm_clk_ranges[3].wm_max_mem_clk_in_khz = 5000000; /* Notify PP Lib/SMU which Watermarks to use for which clock ranges */ dm_pp_notify_wm_clock_changes(dc->ctx, &clk_ranges); } const struct resource_caps *dce112_resource_cap( struct hw_asic_id *asic_id) { if (ASIC_REV_IS_POLARIS11_M(asic_id->hw_internal_rev) || ASIC_REV_IS_POLARIS12_V(asic_id->hw_internal_rev)) return &polaris_11_resource_cap; else return &polaris_10_resource_cap; } static bool construct( uint8_t num_virtual_links, struct dc *dc, struct dce110_resource_pool *pool) { unsigned int i; struct dc_context *ctx = dc->ctx; ctx->dc_bios->regs = &bios_regs; pool->base.res_cap = dce112_resource_cap(&ctx->asic_id); pool->base.funcs = &dce112_res_pool_funcs; /************************************************* * Resource + asic cap harcoding * *************************************************/ pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE; pool->base.pipe_count = pool->base.res_cap->num_timing_generator; pool->base.timing_generator_count = pool->base.res_cap->num_timing_generator; dc->caps.max_downscale_ratio = 200; dc->caps.i2c_speed_in_khz = 100; dc->caps.max_cursor_size = 128; dc->caps.dual_link_dvi = true; /************************************************* * Create resources * *************************************************/ pool->base.clock_sources[DCE112_CLK_SRC_PLL0] = dce112_clock_source_create( ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL0, &clk_src_regs[0], false); pool->base.clock_sources[DCE112_CLK_SRC_PLL1] = dce112_clock_source_create( ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL1, &clk_src_regs[1], false); pool->base.clock_sources[DCE112_CLK_SRC_PLL2] = dce112_clock_source_create( ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL2, &clk_src_regs[2], false); pool->base.clock_sources[DCE112_CLK_SRC_PLL3] = dce112_clock_source_create( ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL3, &clk_src_regs[3], false); pool->base.clock_sources[DCE112_CLK_SRC_PLL4] = dce112_clock_source_create( ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL4, &clk_src_regs[4], false); pool->base.clock_sources[DCE112_CLK_SRC_PLL5] = dce112_clock_source_create( ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL5, &clk_src_regs[5], false); pool->base.clk_src_count = DCE112_CLK_SRC_TOTAL; pool->base.dp_clock_source = dce112_clock_source_create( ctx, ctx->dc_bios, CLOCK_SOURCE_ID_DP_DTO, &clk_src_regs[0], true); for (i = 0; i < pool->base.clk_src_count; i++) { if (pool->base.clock_sources[i] == NULL) { dm_error("DC: failed to create clock sources!\n"); BREAK_TO_DEBUGGER(); goto res_create_fail; } } pool->base.dmcu = dce_dmcu_create(ctx, &dmcu_regs, &dmcu_shift, &dmcu_mask); if (pool->base.dmcu == NULL) { dm_error("DC: failed to create dmcu!\n"); BREAK_TO_DEBUGGER(); goto res_create_fail; } pool->base.abm = dce_abm_create(ctx, &abm_regs, &abm_shift, &abm_mask); if (pool->base.abm == NULL) { dm_error("DC: failed to create abm!\n"); BREAK_TO_DEBUGGER(); goto res_create_fail; } { struct irq_service_init_data init_data; init_data.ctx = dc->ctx; pool->base.irqs = dal_irq_service_dce110_create(&init_data); if (!pool->base.irqs) goto res_create_fail; } for (i = 0; i < pool->base.pipe_count; i++) { pool->base.timing_generators[i] = dce112_timing_generator_create( ctx, i, &dce112_tg_offsets[i]); if (pool->base.timing_generators[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create tg!\n"); goto res_create_fail; } pool->base.mis[i] = dce112_mem_input_create(ctx, i); if (pool->base.mis[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create memory input!\n"); goto res_create_fail; } pool->base.ipps[i] = dce112_ipp_create(ctx, i); if (pool->base.ipps[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC:failed to create input pixel processor!\n"); goto res_create_fail; } pool->base.transforms[i] = dce112_transform_create(ctx, i); if (pool->base.transforms[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create transform!\n"); goto res_create_fail; } pool->base.opps[i] = dce112_opp_create( ctx, i); if (pool->base.opps[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC:failed to create output pixel processor!\n"); goto res_create_fail; } } for (i = 0; i < pool->base.res_cap->num_ddc; i++) { pool->base.engines[i] = dce112_aux_engine_create(ctx, i); if (pool->base.engines[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC:failed to create aux engine!!\n"); goto res_create_fail; } pool->base.hw_i2cs[i] = dce112_i2c_hw_create(ctx, i); if (pool->base.hw_i2cs[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC:failed to create i2c engine!!\n"); goto res_create_fail; } pool->base.sw_i2cs[i] = NULL; } if (!resource_construct(num_virtual_links, dc, &pool->base, &res_create_funcs)) goto res_create_fail; dc->caps.max_planes = pool->base.pipe_count; for (i = 0; i < dc->caps.max_planes; ++i) dc->caps.planes[i] = plane_cap; /* Create hardware sequencer */ dce112_hw_sequencer_construct(dc); bw_calcs_init(dc->bw_dceip, dc->bw_vbios, dc->ctx->asic_id); bw_calcs_data_update_from_pplib(dc); return true; res_create_fail: destruct(pool); return false; } struct resource_pool *dce112_create_resource_pool( uint8_t num_virtual_links, struct dc *dc) { struct dce110_resource_pool *pool = kzalloc(sizeof(struct dce110_resource_pool), GFP_KERNEL); if (!pool) return NULL; if (construct(num_virtual_links, dc, pool)) return &pool->base; kfree(pool); BREAK_TO_DEBUGGER(); return NULL; }