/* * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix * Copyright (C) 2006 Andrey Volkov, Varma Electronics * Copyright (C) 2008-2009 Wolfgang Grandegger * * This program is free software; you can redistribute it and/or modify * it under the terms of the version 2 of the GNU General Public License * as published by the Free Software Foundation * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #define MOD_DESC "CAN device driver interface" MODULE_DESCRIPTION(MOD_DESC); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Wolfgang Grandegger "); #ifdef CONFIG_CAN_CALC_BITTIMING #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */ /* * Bit-timing calculation derived from: * * Code based on LinCAN sources and H8S2638 project * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz * Copyright 2005 Stanislav Marek * email: pisa@cmp.felk.cvut.cz * * Calculates proper bit-timing parameters for a specified bit-rate * and sample-point, which can then be used to set the bit-timing * registers of the CAN controller. You can find more information * in the header file linux/can/netlink.h. */ static int can_update_spt(const struct can_bittiming_const *btc, int sampl_pt, int tseg, int *tseg1, int *tseg2) { *tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000; if (*tseg2 < btc->tseg2_min) *tseg2 = btc->tseg2_min; if (*tseg2 > btc->tseg2_max) *tseg2 = btc->tseg2_max; *tseg1 = tseg - *tseg2; if (*tseg1 > btc->tseg1_max) { *tseg1 = btc->tseg1_max; *tseg2 = tseg - *tseg1; } return 1000 * (tseg + 1 - *tseg2) / (tseg + 1); } static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt) { struct can_priv *priv = netdev_priv(dev); const struct can_bittiming_const *btc = priv->bittiming_const; long rate, best_rate = 0; long best_error = 1000000000, error = 0; int best_tseg = 0, best_brp = 0, brp = 0; int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0; int spt_error = 1000, spt = 0, sampl_pt; u64 v64; if (!priv->bittiming_const) return -ENOTSUPP; /* Use CIA recommended sample points */ if (bt->sample_point) { sampl_pt = bt->sample_point; } else { if (bt->bitrate > 800000) sampl_pt = 750; else if (bt->bitrate > 500000) sampl_pt = 800; else sampl_pt = 875; } /* tseg even = round down, odd = round up */ for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1; tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) { tsegall = 1 + tseg / 2; /* Compute all possible tseg choices (tseg=tseg1+tseg2) */ brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2; /* chose brp step which is possible in system */ brp = (brp / btc->brp_inc) * btc->brp_inc; if ((brp < btc->brp_min) || (brp > btc->brp_max)) continue; rate = priv->clock.freq / (brp * tsegall); error = bt->bitrate - rate; /* tseg brp biterror */ if (error < 0) error = -error; if (error > best_error) continue; best_error = error; if (error == 0) { spt = can_update_spt(btc, sampl_pt, tseg / 2, &tseg1, &tseg2); error = sampl_pt - spt; if (error < 0) error = -error; if (error > spt_error) continue; spt_error = error; } best_tseg = tseg / 2; best_brp = brp; best_rate = rate; if (error == 0) break; } if (best_error) { /* Error in one-tenth of a percent */ error = (best_error * 1000) / bt->bitrate; if (error > CAN_CALC_MAX_ERROR) { dev_err(dev->dev.parent, "bitrate error %ld.%ld%% too high\n", error / 10, error % 10); return -EDOM; } else { dev_warn(dev->dev.parent, "bitrate error %ld.%ld%%\n", error / 10, error % 10); } } /* real sample point */ bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg, &tseg1, &tseg2); v64 = (u64)best_brp * 1000000000UL; do_div(v64, priv->clock.freq); bt->tq = (u32)v64; bt->prop_seg = tseg1 / 2; bt->phase_seg1 = tseg1 - bt->prop_seg; bt->phase_seg2 = tseg2; bt->sjw = 1; bt->brp = best_brp; /* real bit-rate */ bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1)); return 0; } #else /* !CONFIG_CAN_CALC_BITTIMING */ static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt) { dev_err(dev->dev.parent, "bit-timing calculation not available\n"); return -EINVAL; } #endif /* CONFIG_CAN_CALC_BITTIMING */ /* * Checks the validity of the specified bit-timing parameters prop_seg, * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate * prescaler value brp. You can find more information in the header * file linux/can/netlink.h. */ static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt) { struct can_priv *priv = netdev_priv(dev); const struct can_bittiming_const *btc = priv->bittiming_const; int tseg1, alltseg; u64 brp64; if (!priv->bittiming_const) return -ENOTSUPP; tseg1 = bt->prop_seg + bt->phase_seg1; if (!bt->sjw) bt->sjw = 1; if (bt->sjw > btc->sjw_max || tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max || bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max) return -ERANGE; brp64 = (u64)priv->clock.freq * (u64)bt->tq; if (btc->brp_inc > 1) do_div(brp64, btc->brp_inc); brp64 += 500000000UL - 1; do_div(brp64, 1000000000UL); /* the practicable BRP */ if (btc->brp_inc > 1) brp64 *= btc->brp_inc; bt->brp = (u32)brp64; if (bt->brp < btc->brp_min || bt->brp > btc->brp_max) return -EINVAL; alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1; bt->bitrate = priv->clock.freq / (bt->brp * alltseg); bt->sample_point = ((tseg1 + 1) * 1000) / alltseg; return 0; } int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt) { struct can_priv *priv = netdev_priv(dev); int err; /* Check if the CAN device has bit-timing parameters */ if (priv->bittiming_const) { /* Non-expert mode? Check if the bitrate has been pre-defined */ if (!bt->tq) /* Determine bit-timing parameters */ err = can_calc_bittiming(dev, bt); else /* Check bit-timing params and calculate proper brp */ err = can_fixup_bittiming(dev, bt); if (err) return err; } return 0; } /* * Local echo of CAN messages * * CAN network devices *should* support a local echo functionality * (see Documentation/networking/can.txt). To test the handling of CAN * interfaces that do not support the local echo both driver types are * implemented. In the case that the driver does not support the echo * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core * to perform the echo as a fallback solution. */ static void can_flush_echo_skb(struct net_device *dev) { struct can_priv *priv = netdev_priv(dev); struct net_device_stats *stats = &dev->stats; int i; for (i = 0; i < priv->echo_skb_max; i++) { if (priv->echo_skb[i]) { kfree_skb(priv->echo_skb[i]); priv->echo_skb[i] = NULL; stats->tx_dropped++; stats->tx_aborted_errors++; } } } /* * Put the skb on the stack to be looped backed locally lateron * * The function is typically called in the start_xmit function * of the device driver. The driver must protect access to * priv->echo_skb, if necessary. */ void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev, unsigned int idx) { struct can_priv *priv = netdev_priv(dev); BUG_ON(idx >= priv->echo_skb_max); /* check flag whether this packet has to be looped back */ if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK) { kfree_skb(skb); return; } if (!priv->echo_skb[idx]) { struct sock *srcsk = skb->sk; if (atomic_read(&skb->users) != 1) { struct sk_buff *old_skb = skb; skb = skb_clone(old_skb, GFP_ATOMIC); kfree_skb(old_skb); if (!skb) return; } else skb_orphan(skb); skb->sk = srcsk; /* make settings for echo to reduce code in irq context */ skb->protocol = htons(ETH_P_CAN); skb->pkt_type = PACKET_BROADCAST; skb->ip_summed = CHECKSUM_UNNECESSARY; skb->dev = dev; /* save this skb for tx interrupt echo handling */ priv->echo_skb[idx] = skb; } else { /* locking problem with netif_stop_queue() ?? */ dev_err(dev->dev.parent, "%s: BUG! echo_skb is occupied!\n", __func__); kfree_skb(skb); } } EXPORT_SYMBOL_GPL(can_put_echo_skb); /* * Get the skb from the stack and loop it back locally * * The function is typically called when the TX done interrupt * is handled in the device driver. The driver must protect * access to priv->echo_skb, if necessary. */ void can_get_echo_skb(struct net_device *dev, unsigned int idx) { struct can_priv *priv = netdev_priv(dev); BUG_ON(idx >= priv->echo_skb_max); if (priv->echo_skb[idx]) { netif_rx(priv->echo_skb[idx]); priv->echo_skb[idx] = NULL; } } EXPORT_SYMBOL_GPL(can_get_echo_skb); /* * Remove the skb from the stack and free it. * * The function is typically called when TX failed. */ void can_free_echo_skb(struct net_device *dev, unsigned int idx) { struct can_priv *priv = netdev_priv(dev); BUG_ON(idx >= priv->echo_skb_max); if (priv->echo_skb[idx]) { kfree_skb(priv->echo_skb[idx]); priv->echo_skb[idx] = NULL; } } EXPORT_SYMBOL_GPL(can_free_echo_skb); /* * CAN device restart for bus-off recovery */ void can_restart(unsigned long data) { struct net_device *dev = (struct net_device *)data; struct can_priv *priv = netdev_priv(dev); struct net_device_stats *stats = &dev->stats; struct sk_buff *skb; struct can_frame *cf; int err; BUG_ON(netif_carrier_ok(dev)); /* * No synchronization needed because the device is bus-off and * no messages can come in or go out. */ can_flush_echo_skb(dev); /* send restart message upstream */ skb = alloc_can_err_skb(dev, &cf); if (skb == NULL) { err = -ENOMEM; goto restart; } cf->can_id |= CAN_ERR_RESTARTED; netif_rx(skb); stats->rx_packets++; stats->rx_bytes += cf->can_dlc; restart: dev_dbg(dev->dev.parent, "restarted\n"); priv->can_stats.restarts++; /* Now restart the device */ err = priv->do_set_mode(dev, CAN_MODE_START); netif_carrier_on(dev); if (err) dev_err(dev->dev.parent, "Error %d during restart", err); } int can_restart_now(struct net_device *dev) { struct can_priv *priv = netdev_priv(dev); /* * A manual restart is only permitted if automatic restart is * disabled and the device is in the bus-off state */ if (priv->restart_ms) return -EINVAL; if (priv->state != CAN_STATE_BUS_OFF) return -EBUSY; /* Runs as soon as possible in the timer context */ mod_timer(&priv->restart_timer, jiffies); return 0; } /* * CAN bus-off * * This functions should be called when the device goes bus-off to * tell the netif layer that no more packets can be sent or received. * If enabled, a timer is started to trigger bus-off recovery. */ void can_bus_off(struct net_device *dev) { struct can_priv *priv = netdev_priv(dev); dev_dbg(dev->dev.parent, "bus-off\n"); netif_carrier_off(dev); priv->can_stats.bus_off++; if (priv->restart_ms) mod_timer(&priv->restart_timer, jiffies + (priv->restart_ms * HZ) / 1000); } EXPORT_SYMBOL_GPL(can_bus_off); static void can_setup(struct net_device *dev) { dev->type = ARPHRD_CAN; dev->mtu = sizeof(struct can_frame); dev->hard_header_len = 0; dev->addr_len = 0; dev->tx_queue_len = 10; /* New-style flags. */ dev->flags = IFF_NOARP; dev->features = NETIF_F_NO_CSUM; } struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf) { struct sk_buff *skb; skb = netdev_alloc_skb(dev, sizeof(struct can_frame)); if (unlikely(!skb)) return NULL; skb->protocol = htons(ETH_P_CAN); skb->pkt_type = PACKET_BROADCAST; skb->ip_summed = CHECKSUM_UNNECESSARY; *cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame)); memset(*cf, 0, sizeof(struct can_frame)); return skb; } EXPORT_SYMBOL_GPL(alloc_can_skb); struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf) { struct sk_buff *skb; skb = alloc_can_skb(dev, cf); if (unlikely(!skb)) return NULL; (*cf)->can_id = CAN_ERR_FLAG; (*cf)->can_dlc = CAN_ERR_DLC; return skb; } EXPORT_SYMBOL_GPL(alloc_can_err_skb); /* * Allocate and setup space for the CAN network device */ struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max) { struct net_device *dev; struct can_priv *priv; int size; if (echo_skb_max) size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) + echo_skb_max * sizeof(struct sk_buff *); else size = sizeof_priv; dev = alloc_netdev(size, "can%d", can_setup); if (!dev) return NULL; priv = netdev_priv(dev); if (echo_skb_max) { priv->echo_skb_max = echo_skb_max; priv->echo_skb = (void *)priv + ALIGN(sizeof_priv, sizeof(struct sk_buff *)); } priv->state = CAN_STATE_STOPPED; init_timer(&priv->restart_timer); return dev; } EXPORT_SYMBOL_GPL(alloc_candev); /* * Free space of the CAN network device */ void free_candev(struct net_device *dev) { free_netdev(dev); } EXPORT_SYMBOL_GPL(free_candev); /* * Common open function when the device gets opened. * * This function should be called in the open function of the device * driver. */ int open_candev(struct net_device *dev) { struct can_priv *priv = netdev_priv(dev); if (!priv->bittiming.tq && !priv->bittiming.bitrate) { dev_err(dev->dev.parent, "bit-timing not yet defined\n"); return -EINVAL; } /* Switch carrier on if device was stopped while in bus-off state */ if (!netif_carrier_ok(dev)) netif_carrier_on(dev); setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev); return 0; } EXPORT_SYMBOL_GPL(open_candev); /* * Common close function for cleanup before the device gets closed. * * This function should be called in the close function of the device * driver. */ void close_candev(struct net_device *dev) { struct can_priv *priv = netdev_priv(dev); if (del_timer_sync(&priv->restart_timer)) dev_put(dev); can_flush_echo_skb(dev); } EXPORT_SYMBOL_GPL(close_candev); /* * CAN netlink interface */ static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = { [IFLA_CAN_STATE] = { .type = NLA_U32 }, [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) }, [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 }, [IFLA_CAN_RESTART] = { .type = NLA_U32 }, [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) }, [IFLA_CAN_BITTIMING_CONST] = { .len = sizeof(struct can_bittiming_const) }, [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) }, }; static int can_changelink(struct net_device *dev, struct nlattr *tb[], struct nlattr *data[]) { struct can_priv *priv = netdev_priv(dev); int err; /* We need synchronization with dev->stop() */ ASSERT_RTNL(); if (data[IFLA_CAN_CTRLMODE]) { struct can_ctrlmode *cm; /* Do not allow changing controller mode while running */ if (dev->flags & IFF_UP) return -EBUSY; cm = nla_data(data[IFLA_CAN_CTRLMODE]); priv->ctrlmode &= ~cm->mask; priv->ctrlmode |= cm->flags; } if (data[IFLA_CAN_BITTIMING]) { struct can_bittiming bt; /* Do not allow changing bittiming while running */ if (dev->flags & IFF_UP) return -EBUSY; memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt)); if ((!bt.bitrate && !bt.tq) || (bt.bitrate && bt.tq)) return -EINVAL; err = can_get_bittiming(dev, &bt); if (err) return err; memcpy(&priv->bittiming, &bt, sizeof(bt)); if (priv->do_set_bittiming) { /* Finally, set the bit-timing registers */ err = priv->do_set_bittiming(dev); if (err) return err; } } if (data[IFLA_CAN_RESTART_MS]) { /* Do not allow changing restart delay while running */ if (dev->flags & IFF_UP) return -EBUSY; priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]); } if (data[IFLA_CAN_RESTART]) { /* Do not allow a restart while not running */ if (!(dev->flags & IFF_UP)) return -EINVAL; err = can_restart_now(dev); if (err) return err; } return 0; } static int can_fill_info(struct sk_buff *skb, const struct net_device *dev) { struct can_priv *priv = netdev_priv(dev); struct can_ctrlmode cm = {.flags = priv->ctrlmode}; enum can_state state = priv->state; if (priv->do_get_state) priv->do_get_state(dev, &state); NLA_PUT_U32(skb, IFLA_CAN_STATE, state); NLA_PUT(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm); NLA_PUT_U32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms); NLA_PUT(skb, IFLA_CAN_BITTIMING, sizeof(priv->bittiming), &priv->bittiming); NLA_PUT(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock); if (priv->bittiming_const) NLA_PUT(skb, IFLA_CAN_BITTIMING_CONST, sizeof(*priv->bittiming_const), priv->bittiming_const); return 0; nla_put_failure: return -EMSGSIZE; } static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev) { struct can_priv *priv = netdev_priv(dev); NLA_PUT(skb, IFLA_INFO_XSTATS, sizeof(priv->can_stats), &priv->can_stats); return 0; nla_put_failure: return -EMSGSIZE; } static int can_newlink(struct net *src_net, struct net_device *dev, struct nlattr *tb[], struct nlattr *data[]) { return -EOPNOTSUPP; } static struct rtnl_link_ops can_link_ops __read_mostly = { .kind = "can", .maxtype = IFLA_CAN_MAX, .policy = can_policy, .setup = can_setup, .newlink = can_newlink, .changelink = can_changelink, .fill_info = can_fill_info, .fill_xstats = can_fill_xstats, }; /* * Register the CAN network device */ int register_candev(struct net_device *dev) { dev->rtnl_link_ops = &can_link_ops; return register_netdev(dev); } EXPORT_SYMBOL_GPL(register_candev); /* * Unregister the CAN network device */ void unregister_candev(struct net_device *dev) { unregister_netdev(dev); } EXPORT_SYMBOL_GPL(unregister_candev); static __init int can_dev_init(void) { int err; err = rtnl_link_register(&can_link_ops); if (!err) printk(KERN_INFO MOD_DESC "\n"); return err; } module_init(can_dev_init); static __exit void can_dev_exit(void) { rtnl_link_unregister(&can_link_ops); } module_exit(can_dev_exit); MODULE_ALIAS_RTNL_LINK("can");