// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) /* Copyright 2017-2019 NXP */ #include "enetc.h" #include #include #include #include #include #include static int enetc_num_stack_tx_queues(struct enetc_ndev_priv *priv) { int num_tx_rings = priv->num_tx_rings; int i; for (i = 0; i < priv->num_rx_rings; i++) if (priv->rx_ring[i]->xdp.prog) return num_tx_rings - num_possible_cpus(); return num_tx_rings; } static struct enetc_bdr *enetc_rx_ring_from_xdp_tx_ring(struct enetc_ndev_priv *priv, struct enetc_bdr *tx_ring) { int index = &priv->tx_ring[tx_ring->index] - priv->xdp_tx_ring; return priv->rx_ring[index]; } static struct sk_buff *enetc_tx_swbd_get_skb(struct enetc_tx_swbd *tx_swbd) { if (tx_swbd->is_xdp_tx || tx_swbd->is_xdp_redirect) return NULL; return tx_swbd->skb; } static struct xdp_frame * enetc_tx_swbd_get_xdp_frame(struct enetc_tx_swbd *tx_swbd) { if (tx_swbd->is_xdp_redirect) return tx_swbd->xdp_frame; return NULL; } static void enetc_unmap_tx_buff(struct enetc_bdr *tx_ring, struct enetc_tx_swbd *tx_swbd) { /* For XDP_TX, pages come from RX, whereas for the other contexts where * we have is_dma_page_set, those come from skb_frag_dma_map. We need * to match the DMA mapping length, so we need to differentiate those. */ if (tx_swbd->is_dma_page) dma_unmap_page(tx_ring->dev, tx_swbd->dma, tx_swbd->is_xdp_tx ? PAGE_SIZE : tx_swbd->len, tx_swbd->dir); else dma_unmap_single(tx_ring->dev, tx_swbd->dma, tx_swbd->len, tx_swbd->dir); tx_swbd->dma = 0; } static void enetc_free_tx_frame(struct enetc_bdr *tx_ring, struct enetc_tx_swbd *tx_swbd) { struct xdp_frame *xdp_frame = enetc_tx_swbd_get_xdp_frame(tx_swbd); struct sk_buff *skb = enetc_tx_swbd_get_skb(tx_swbd); if (tx_swbd->dma) enetc_unmap_tx_buff(tx_ring, tx_swbd); if (xdp_frame) { xdp_return_frame(tx_swbd->xdp_frame); tx_swbd->xdp_frame = NULL; } else if (skb) { dev_kfree_skb_any(skb); tx_swbd->skb = NULL; } } /* Let H/W know BD ring has been updated */ static void enetc_update_tx_ring_tail(struct enetc_bdr *tx_ring) { /* includes wmb() */ enetc_wr_reg_hot(tx_ring->tpir, tx_ring->next_to_use); } static int enetc_ptp_parse(struct sk_buff *skb, u8 *udp, u8 *msgtype, u8 *twostep, u16 *correction_offset, u16 *body_offset) { unsigned int ptp_class; struct ptp_header *hdr; unsigned int type; u8 *base; ptp_class = ptp_classify_raw(skb); if (ptp_class == PTP_CLASS_NONE) return -EINVAL; hdr = ptp_parse_header(skb, ptp_class); if (!hdr) return -EINVAL; type = ptp_class & PTP_CLASS_PMASK; if (type == PTP_CLASS_IPV4 || type == PTP_CLASS_IPV6) *udp = 1; else *udp = 0; *msgtype = ptp_get_msgtype(hdr, ptp_class); *twostep = hdr->flag_field[0] & 0x2; base = skb_mac_header(skb); *correction_offset = (u8 *)&hdr->correction - base; *body_offset = (u8 *)hdr + sizeof(struct ptp_header) - base; return 0; } static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb) { bool do_vlan, do_onestep_tstamp = false, do_twostep_tstamp = false; struct enetc_ndev_priv *priv = netdev_priv(tx_ring->ndev); struct enetc_hw *hw = &priv->si->hw; struct enetc_tx_swbd *tx_swbd; int len = skb_headlen(skb); union enetc_tx_bd temp_bd; u8 msgtype, twostep, udp; union enetc_tx_bd *txbd; u16 offset1, offset2; int i, count = 0; skb_frag_t *frag; unsigned int f; dma_addr_t dma; u8 flags = 0; i = tx_ring->next_to_use; txbd = ENETC_TXBD(*tx_ring, i); prefetchw(txbd); dma = dma_map_single(tx_ring->dev, skb->data, len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(tx_ring->dev, dma))) goto dma_err; temp_bd.addr = cpu_to_le64(dma); temp_bd.buf_len = cpu_to_le16(len); temp_bd.lstatus = 0; tx_swbd = &tx_ring->tx_swbd[i]; tx_swbd->dma = dma; tx_swbd->len = len; tx_swbd->is_dma_page = 0; tx_swbd->dir = DMA_TO_DEVICE; count++; do_vlan = skb_vlan_tag_present(skb); if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) { if (enetc_ptp_parse(skb, &udp, &msgtype, &twostep, &offset1, &offset2) || msgtype != PTP_MSGTYPE_SYNC || twostep) WARN_ONCE(1, "Bad packet for one-step timestamping\n"); else do_onestep_tstamp = true; } else if (skb->cb[0] & ENETC_F_TX_TSTAMP) { do_twostep_tstamp = true; } tx_swbd->do_twostep_tstamp = do_twostep_tstamp; tx_swbd->check_wb = tx_swbd->do_twostep_tstamp; if (do_vlan || do_onestep_tstamp || do_twostep_tstamp) flags |= ENETC_TXBD_FLAGS_EX; if (tx_ring->tsd_enable) flags |= ENETC_TXBD_FLAGS_TSE | ENETC_TXBD_FLAGS_TXSTART; /* first BD needs frm_len and offload flags set */ temp_bd.frm_len = cpu_to_le16(skb->len); temp_bd.flags = flags; if (flags & ENETC_TXBD_FLAGS_TSE) temp_bd.txstart = enetc_txbd_set_tx_start(skb->skb_mstamp_ns, flags); if (flags & ENETC_TXBD_FLAGS_EX) { u8 e_flags = 0; *txbd = temp_bd; enetc_clear_tx_bd(&temp_bd); /* add extension BD for VLAN and/or timestamping */ flags = 0; tx_swbd++; txbd++; i++; if (unlikely(i == tx_ring->bd_count)) { i = 0; tx_swbd = tx_ring->tx_swbd; txbd = ENETC_TXBD(*tx_ring, 0); } prefetchw(txbd); if (do_vlan) { temp_bd.ext.vid = cpu_to_le16(skb_vlan_tag_get(skb)); temp_bd.ext.tpid = 0; /* < C-TAG */ e_flags |= ENETC_TXBD_E_FLAGS_VLAN_INS; } if (do_onestep_tstamp) { u32 lo, hi, val; u64 sec, nsec; u8 *data; lo = enetc_rd_hot(hw, ENETC_SICTR0); hi = enetc_rd_hot(hw, ENETC_SICTR1); sec = (u64)hi << 32 | lo; nsec = do_div(sec, 1000000000); /* Configure extension BD */ temp_bd.ext.tstamp = cpu_to_le32(lo & 0x3fffffff); e_flags |= ENETC_TXBD_E_FLAGS_ONE_STEP_PTP; /* Update originTimestamp field of Sync packet * - 48 bits seconds field * - 32 bits nanseconds field */ data = skb_mac_header(skb); *(__be16 *)(data + offset2) = htons((sec >> 32) & 0xffff); *(__be32 *)(data + offset2 + 2) = htonl(sec & 0xffffffff); *(__be32 *)(data + offset2 + 6) = htonl(nsec); /* Configure single-step register */ val = ENETC_PM0_SINGLE_STEP_EN; val |= ENETC_SET_SINGLE_STEP_OFFSET(offset1); if (udp) val |= ENETC_PM0_SINGLE_STEP_CH; enetc_port_wr(hw, ENETC_PM0_SINGLE_STEP, val); enetc_port_wr(hw, ENETC_PM1_SINGLE_STEP, val); } else if (do_twostep_tstamp) { skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; e_flags |= ENETC_TXBD_E_FLAGS_TWO_STEP_PTP; } temp_bd.ext.e_flags = e_flags; count++; } frag = &skb_shinfo(skb)->frags[0]; for (f = 0; f < skb_shinfo(skb)->nr_frags; f++, frag++) { len = skb_frag_size(frag); dma = skb_frag_dma_map(tx_ring->dev, frag, 0, len, DMA_TO_DEVICE); if (dma_mapping_error(tx_ring->dev, dma)) goto dma_err; *txbd = temp_bd; enetc_clear_tx_bd(&temp_bd); flags = 0; tx_swbd++; txbd++; i++; if (unlikely(i == tx_ring->bd_count)) { i = 0; tx_swbd = tx_ring->tx_swbd; txbd = ENETC_TXBD(*tx_ring, 0); } prefetchw(txbd); temp_bd.addr = cpu_to_le64(dma); temp_bd.buf_len = cpu_to_le16(len); tx_swbd->dma = dma; tx_swbd->len = len; tx_swbd->is_dma_page = 1; tx_swbd->dir = DMA_TO_DEVICE; count++; } /* last BD needs 'F' bit set */ flags |= ENETC_TXBD_FLAGS_F; temp_bd.flags = flags; *txbd = temp_bd; tx_ring->tx_swbd[i].is_eof = true; tx_ring->tx_swbd[i].skb = skb; enetc_bdr_idx_inc(tx_ring, &i); tx_ring->next_to_use = i; skb_tx_timestamp(skb); enetc_update_tx_ring_tail(tx_ring); return count; dma_err: dev_err(tx_ring->dev, "DMA map error"); do { tx_swbd = &tx_ring->tx_swbd[i]; enetc_free_tx_frame(tx_ring, tx_swbd); if (i == 0) i = tx_ring->bd_count; i--; } while (count--); return 0; } static netdev_tx_t enetc_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct enetc_ndev_priv *priv = netdev_priv(ndev); struct enetc_bdr *tx_ring; int count; tx_ring = priv->tx_ring[skb->queue_mapping]; if (unlikely(skb_shinfo(skb)->nr_frags > ENETC_MAX_SKB_FRAGS)) if (unlikely(skb_linearize(skb))) goto drop_packet_err; count = skb_shinfo(skb)->nr_frags + 1; /* fragments + head */ if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(count)) { netif_stop_subqueue(ndev, tx_ring->index); return NETDEV_TX_BUSY; } enetc_lock_mdio(); count = enetc_map_tx_buffs(tx_ring, skb); enetc_unlock_mdio(); if (unlikely(!count)) goto drop_packet_err; if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_MAX_NEEDED) netif_stop_subqueue(ndev, tx_ring->index); return NETDEV_TX_OK; drop_packet_err: dev_kfree_skb_any(skb); return NETDEV_TX_OK; } netdev_tx_t enetc_xmit(struct sk_buff *skb, struct net_device *ndev) { struct enetc_ndev_priv *priv = netdev_priv(ndev); u8 udp, msgtype, twostep; u16 offset1, offset2; /* Mark tx timestamp type on skb->cb[0] if requires */ if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && (priv->active_offloads & ENETC_F_TX_TSTAMP_MASK)) { skb->cb[0] = priv->active_offloads & ENETC_F_TX_TSTAMP_MASK; } else { skb->cb[0] = 0; } /* Fall back to two-step timestamp if not one-step Sync packet */ if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) { if (enetc_ptp_parse(skb, &udp, &msgtype, &twostep, &offset1, &offset2) || msgtype != PTP_MSGTYPE_SYNC || twostep != 0) skb->cb[0] = ENETC_F_TX_TSTAMP; } /* Queue one-step Sync packet if already locked */ if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) { if (test_and_set_bit_lock(ENETC_TX_ONESTEP_TSTAMP_IN_PROGRESS, &priv->flags)) { skb_queue_tail(&priv->tx_skbs, skb); return NETDEV_TX_OK; } } return enetc_start_xmit(skb, ndev); } static irqreturn_t enetc_msix(int irq, void *data) { struct enetc_int_vector *v = data; int i; enetc_lock_mdio(); /* disable interrupts */ enetc_wr_reg_hot(v->rbier, 0); enetc_wr_reg_hot(v->ricr1, v->rx_ictt); for_each_set_bit(i, &v->tx_rings_map, ENETC_MAX_NUM_TXQS) enetc_wr_reg_hot(v->tbier_base + ENETC_BDR_OFF(i), 0); enetc_unlock_mdio(); napi_schedule(&v->napi); return IRQ_HANDLED; } static void enetc_rx_dim_work(struct work_struct *w) { struct dim *dim = container_of(w, struct dim, work); struct dim_cq_moder moder = net_dim_get_rx_moderation(dim->mode, dim->profile_ix); struct enetc_int_vector *v = container_of(dim, struct enetc_int_vector, rx_dim); v->rx_ictt = enetc_usecs_to_cycles(moder.usec); dim->state = DIM_START_MEASURE; } static void enetc_rx_net_dim(struct enetc_int_vector *v) { struct dim_sample dim_sample; v->comp_cnt++; if (!v->rx_napi_work) return; dim_update_sample(v->comp_cnt, v->rx_ring.stats.packets, v->rx_ring.stats.bytes, &dim_sample); net_dim(&v->rx_dim, dim_sample); } static int enetc_bd_ready_count(struct enetc_bdr *tx_ring, int ci) { int pi = enetc_rd_reg_hot(tx_ring->tcir) & ENETC_TBCIR_IDX_MASK; return pi >= ci ? pi - ci : tx_ring->bd_count - ci + pi; } static bool enetc_page_reusable(struct page *page) { return (!page_is_pfmemalloc(page) && page_ref_count(page) == 1); } static void enetc_reuse_page(struct enetc_bdr *rx_ring, struct enetc_rx_swbd *old) { struct enetc_rx_swbd *new; new = &rx_ring->rx_swbd[rx_ring->next_to_alloc]; /* next buf that may reuse a page */ enetc_bdr_idx_inc(rx_ring, &rx_ring->next_to_alloc); /* copy page reference */ *new = *old; } static void enetc_get_tx_tstamp(struct enetc_hw *hw, union enetc_tx_bd *txbd, u64 *tstamp) { u32 lo, hi, tstamp_lo; lo = enetc_rd_hot(hw, ENETC_SICTR0); hi = enetc_rd_hot(hw, ENETC_SICTR1); tstamp_lo = le32_to_cpu(txbd->wb.tstamp); if (lo <= tstamp_lo) hi -= 1; *tstamp = (u64)hi << 32 | tstamp_lo; } static void enetc_tstamp_tx(struct sk_buff *skb, u64 tstamp) { struct skb_shared_hwtstamps shhwtstamps; if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) { memset(&shhwtstamps, 0, sizeof(shhwtstamps)); shhwtstamps.hwtstamp = ns_to_ktime(tstamp); skb_txtime_consumed(skb); skb_tstamp_tx(skb, &shhwtstamps); } } static void enetc_recycle_xdp_tx_buff(struct enetc_bdr *tx_ring, struct enetc_tx_swbd *tx_swbd) { struct enetc_ndev_priv *priv = netdev_priv(tx_ring->ndev); struct enetc_rx_swbd rx_swbd = { .dma = tx_swbd->dma, .page = tx_swbd->page, .page_offset = tx_swbd->page_offset, .dir = tx_swbd->dir, .len = tx_swbd->len, }; struct enetc_bdr *rx_ring; rx_ring = enetc_rx_ring_from_xdp_tx_ring(priv, tx_ring); if (likely(enetc_swbd_unused(rx_ring))) { enetc_reuse_page(rx_ring, &rx_swbd); /* sync for use by the device */ dma_sync_single_range_for_device(rx_ring->dev, rx_swbd.dma, rx_swbd.page_offset, ENETC_RXB_DMA_SIZE_XDP, rx_swbd.dir); rx_ring->stats.recycles++; } else { /* RX ring is already full, we need to unmap and free the * page, since there's nothing useful we can do with it. */ rx_ring->stats.recycle_failures++; dma_unmap_page(rx_ring->dev, rx_swbd.dma, PAGE_SIZE, rx_swbd.dir); __free_page(rx_swbd.page); } rx_ring->xdp.xdp_tx_in_flight--; } static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget) { struct net_device *ndev = tx_ring->ndev; struct enetc_ndev_priv *priv = netdev_priv(ndev); int tx_frm_cnt = 0, tx_byte_cnt = 0; struct enetc_tx_swbd *tx_swbd; int i, bds_to_clean; bool do_twostep_tstamp; u64 tstamp = 0; i = tx_ring->next_to_clean; tx_swbd = &tx_ring->tx_swbd[i]; bds_to_clean = enetc_bd_ready_count(tx_ring, i); do_twostep_tstamp = false; while (bds_to_clean && tx_frm_cnt < ENETC_DEFAULT_TX_WORK) { struct xdp_frame *xdp_frame = enetc_tx_swbd_get_xdp_frame(tx_swbd); struct sk_buff *skb = enetc_tx_swbd_get_skb(tx_swbd); bool is_eof = tx_swbd->is_eof; if (unlikely(tx_swbd->check_wb)) { struct enetc_ndev_priv *priv = netdev_priv(ndev); union enetc_tx_bd *txbd; txbd = ENETC_TXBD(*tx_ring, i); if (txbd->flags & ENETC_TXBD_FLAGS_W && tx_swbd->do_twostep_tstamp) { enetc_get_tx_tstamp(&priv->si->hw, txbd, &tstamp); do_twostep_tstamp = true; } } if (tx_swbd->is_xdp_tx) enetc_recycle_xdp_tx_buff(tx_ring, tx_swbd); else if (likely(tx_swbd->dma)) enetc_unmap_tx_buff(tx_ring, tx_swbd); if (xdp_frame) { xdp_return_frame(xdp_frame); } else if (skb) { if (unlikely(tx_swbd->skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP)) { /* Start work to release lock for next one-step * timestamping packet. And send one skb in * tx_skbs queue if has. */ schedule_work(&priv->tx_onestep_tstamp); } else if (unlikely(do_twostep_tstamp)) { enetc_tstamp_tx(skb, tstamp); do_twostep_tstamp = false; } napi_consume_skb(skb, napi_budget); } tx_byte_cnt += tx_swbd->len; /* Scrub the swbd here so we don't have to do that * when we reuse it during xmit */ memset(tx_swbd, 0, sizeof(*tx_swbd)); bds_to_clean--; tx_swbd++; i++; if (unlikely(i == tx_ring->bd_count)) { i = 0; tx_swbd = tx_ring->tx_swbd; } /* BD iteration loop end */ if (is_eof) { tx_frm_cnt++; /* re-arm interrupt source */ enetc_wr_reg_hot(tx_ring->idr, BIT(tx_ring->index) | BIT(16 + tx_ring->index)); } if (unlikely(!bds_to_clean)) bds_to_clean = enetc_bd_ready_count(tx_ring, i); } tx_ring->next_to_clean = i; tx_ring->stats.packets += tx_frm_cnt; tx_ring->stats.bytes += tx_byte_cnt; if (unlikely(tx_frm_cnt && netif_carrier_ok(ndev) && __netif_subqueue_stopped(ndev, tx_ring->index) && (enetc_bd_unused(tx_ring) >= ENETC_TXBDS_MAX_NEEDED))) { netif_wake_subqueue(ndev, tx_ring->index); } return tx_frm_cnt != ENETC_DEFAULT_TX_WORK; } static bool enetc_new_page(struct enetc_bdr *rx_ring, struct enetc_rx_swbd *rx_swbd) { bool xdp = !!(rx_ring->xdp.prog); struct page *page; dma_addr_t addr; page = dev_alloc_page(); if (unlikely(!page)) return false; /* For XDP_TX, we forgo dma_unmap -> dma_map */ rx_swbd->dir = xdp ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; addr = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, rx_swbd->dir); if (unlikely(dma_mapping_error(rx_ring->dev, addr))) { __free_page(page); return false; } rx_swbd->dma = addr; rx_swbd->page = page; rx_swbd->page_offset = rx_ring->buffer_offset; return true; } static int enetc_refill_rx_ring(struct enetc_bdr *rx_ring, const int buff_cnt) { struct enetc_rx_swbd *rx_swbd; union enetc_rx_bd *rxbd; int i, j; i = rx_ring->next_to_use; rx_swbd = &rx_ring->rx_swbd[i]; rxbd = enetc_rxbd(rx_ring, i); for (j = 0; j < buff_cnt; j++) { /* try reuse page */ if (unlikely(!rx_swbd->page)) { if (unlikely(!enetc_new_page(rx_ring, rx_swbd))) { rx_ring->stats.rx_alloc_errs++; break; } } /* update RxBD */ rxbd->w.addr = cpu_to_le64(rx_swbd->dma + rx_swbd->page_offset); /* clear 'R" as well */ rxbd->r.lstatus = 0; enetc_rxbd_next(rx_ring, &rxbd, &i); rx_swbd = &rx_ring->rx_swbd[i]; } if (likely(j)) { rx_ring->next_to_alloc = i; /* keep track from page reuse */ rx_ring->next_to_use = i; /* update ENETC's consumer index */ enetc_wr_reg_hot(rx_ring->rcir, rx_ring->next_to_use); } return j; } #ifdef CONFIG_FSL_ENETC_PTP_CLOCK static void enetc_get_rx_tstamp(struct net_device *ndev, union enetc_rx_bd *rxbd, struct sk_buff *skb) { struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); struct enetc_ndev_priv *priv = netdev_priv(ndev); struct enetc_hw *hw = &priv->si->hw; u32 lo, hi, tstamp_lo; u64 tstamp; if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TSTMP) { lo = enetc_rd_reg_hot(hw->reg + ENETC_SICTR0); hi = enetc_rd_reg_hot(hw->reg + ENETC_SICTR1); rxbd = enetc_rxbd_ext(rxbd); tstamp_lo = le32_to_cpu(rxbd->ext.tstamp); if (lo <= tstamp_lo) hi -= 1; tstamp = (u64)hi << 32 | tstamp_lo; memset(shhwtstamps, 0, sizeof(*shhwtstamps)); shhwtstamps->hwtstamp = ns_to_ktime(tstamp); } } #endif static void enetc_get_offloads(struct enetc_bdr *rx_ring, union enetc_rx_bd *rxbd, struct sk_buff *skb) { struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev); /* TODO: hashing */ if (rx_ring->ndev->features & NETIF_F_RXCSUM) { u16 inet_csum = le16_to_cpu(rxbd->r.inet_csum); skb->csum = csum_unfold((__force __sum16)~htons(inet_csum)); skb->ip_summed = CHECKSUM_COMPLETE; } if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_VLAN) { __be16 tpid = 0; switch (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TPID) { case 0: tpid = htons(ETH_P_8021Q); break; case 1: tpid = htons(ETH_P_8021AD); break; case 2: tpid = htons(enetc_port_rd(&priv->si->hw, ENETC_PCVLANR1)); break; case 3: tpid = htons(enetc_port_rd(&priv->si->hw, ENETC_PCVLANR2)); break; default: break; } __vlan_hwaccel_put_tag(skb, tpid, le16_to_cpu(rxbd->r.vlan_opt)); } #ifdef CONFIG_FSL_ENETC_PTP_CLOCK if (priv->active_offloads & ENETC_F_RX_TSTAMP) enetc_get_rx_tstamp(rx_ring->ndev, rxbd, skb); #endif } /* This gets called during the non-XDP NAPI poll cycle as well as on XDP_PASS, * so it needs to work with both DMA_FROM_DEVICE as well as DMA_BIDIRECTIONAL * mapped buffers. */ static struct enetc_rx_swbd *enetc_get_rx_buff(struct enetc_bdr *rx_ring, int i, u16 size) { struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i]; dma_sync_single_range_for_cpu(rx_ring->dev, rx_swbd->dma, rx_swbd->page_offset, size, rx_swbd->dir); return rx_swbd; } /* Reuse the current page without performing half-page buffer flipping */ static void enetc_put_rx_buff(struct enetc_bdr *rx_ring, struct enetc_rx_swbd *rx_swbd) { size_t buffer_size = ENETC_RXB_TRUESIZE - rx_ring->buffer_offset; enetc_reuse_page(rx_ring, rx_swbd); dma_sync_single_range_for_device(rx_ring->dev, rx_swbd->dma, rx_swbd->page_offset, buffer_size, rx_swbd->dir); rx_swbd->page = NULL; } /* Reuse the current page by performing half-page buffer flipping */ static void enetc_flip_rx_buff(struct enetc_bdr *rx_ring, struct enetc_rx_swbd *rx_swbd) { if (likely(enetc_page_reusable(rx_swbd->page))) { rx_swbd->page_offset ^= ENETC_RXB_TRUESIZE; page_ref_inc(rx_swbd->page); enetc_put_rx_buff(rx_ring, rx_swbd); } else { dma_unmap_page(rx_ring->dev, rx_swbd->dma, PAGE_SIZE, rx_swbd->dir); rx_swbd->page = NULL; } } static struct sk_buff *enetc_map_rx_buff_to_skb(struct enetc_bdr *rx_ring, int i, u16 size) { struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size); struct sk_buff *skb; void *ba; ba = page_address(rx_swbd->page) + rx_swbd->page_offset; skb = build_skb(ba - rx_ring->buffer_offset, ENETC_RXB_TRUESIZE); if (unlikely(!skb)) { rx_ring->stats.rx_alloc_errs++; return NULL; } skb_reserve(skb, rx_ring->buffer_offset); __skb_put(skb, size); enetc_flip_rx_buff(rx_ring, rx_swbd); return skb; } static void enetc_add_rx_buff_to_skb(struct enetc_bdr *rx_ring, int i, u16 size, struct sk_buff *skb) { struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size); skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_swbd->page, rx_swbd->page_offset, size, ENETC_RXB_TRUESIZE); enetc_flip_rx_buff(rx_ring, rx_swbd); } static bool enetc_check_bd_errors_and_consume(struct enetc_bdr *rx_ring, u32 bd_status, union enetc_rx_bd **rxbd, int *i) { if (likely(!(bd_status & ENETC_RXBD_LSTATUS(ENETC_RXBD_ERR_MASK)))) return false; enetc_put_rx_buff(rx_ring, &rx_ring->rx_swbd[*i]); enetc_rxbd_next(rx_ring, rxbd, i); while (!(bd_status & ENETC_RXBD_LSTATUS_F)) { dma_rmb(); bd_status = le32_to_cpu((*rxbd)->r.lstatus); enetc_put_rx_buff(rx_ring, &rx_ring->rx_swbd[*i]); enetc_rxbd_next(rx_ring, rxbd, i); } rx_ring->ndev->stats.rx_dropped++; rx_ring->ndev->stats.rx_errors++; return true; } static struct sk_buff *enetc_build_skb(struct enetc_bdr *rx_ring, u32 bd_status, union enetc_rx_bd **rxbd, int *i, int *cleaned_cnt, int buffer_size) { struct sk_buff *skb; u16 size; size = le16_to_cpu((*rxbd)->r.buf_len); skb = enetc_map_rx_buff_to_skb(rx_ring, *i, size); if (!skb) return NULL; enetc_get_offloads(rx_ring, *rxbd, skb); (*cleaned_cnt)++; enetc_rxbd_next(rx_ring, rxbd, i); /* not last BD in frame? */ while (!(bd_status & ENETC_RXBD_LSTATUS_F)) { bd_status = le32_to_cpu((*rxbd)->r.lstatus); size = buffer_size; if (bd_status & ENETC_RXBD_LSTATUS_F) { dma_rmb(); size = le16_to_cpu((*rxbd)->r.buf_len); } enetc_add_rx_buff_to_skb(rx_ring, *i, size, skb); (*cleaned_cnt)++; enetc_rxbd_next(rx_ring, rxbd, i); } skb_record_rx_queue(skb, rx_ring->index); skb->protocol = eth_type_trans(skb, rx_ring->ndev); return skb; } #define ENETC_RXBD_BUNDLE 16 /* # of BDs to update at once */ static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring, struct napi_struct *napi, int work_limit) { int rx_frm_cnt = 0, rx_byte_cnt = 0; int cleaned_cnt, i; cleaned_cnt = enetc_bd_unused(rx_ring); /* next descriptor to process */ i = rx_ring->next_to_clean; while (likely(rx_frm_cnt < work_limit)) { union enetc_rx_bd *rxbd; struct sk_buff *skb; u32 bd_status; if (cleaned_cnt >= ENETC_RXBD_BUNDLE) cleaned_cnt -= enetc_refill_rx_ring(rx_ring, cleaned_cnt); rxbd = enetc_rxbd(rx_ring, i); bd_status = le32_to_cpu(rxbd->r.lstatus); if (!bd_status) break; enetc_wr_reg_hot(rx_ring->idr, BIT(rx_ring->index)); dma_rmb(); /* for reading other rxbd fields */ if (enetc_check_bd_errors_and_consume(rx_ring, bd_status, &rxbd, &i)) break; skb = enetc_build_skb(rx_ring, bd_status, &rxbd, &i, &cleaned_cnt, ENETC_RXB_DMA_SIZE); if (!skb) break; rx_byte_cnt += skb->len; rx_frm_cnt++; napi_gro_receive(napi, skb); } rx_ring->next_to_clean = i; rx_ring->stats.packets += rx_frm_cnt; rx_ring->stats.bytes += rx_byte_cnt; return rx_frm_cnt; } static void enetc_xdp_map_tx_buff(struct enetc_bdr *tx_ring, int i, struct enetc_tx_swbd *tx_swbd, int frm_len) { union enetc_tx_bd *txbd = ENETC_TXBD(*tx_ring, i); prefetchw(txbd); enetc_clear_tx_bd(txbd); txbd->addr = cpu_to_le64(tx_swbd->dma + tx_swbd->page_offset); txbd->buf_len = cpu_to_le16(tx_swbd->len); txbd->frm_len = cpu_to_le16(frm_len); memcpy(&tx_ring->tx_swbd[i], tx_swbd, sizeof(*tx_swbd)); } /* Puts in the TX ring one XDP frame, mapped as an array of TX software buffer * descriptors. */ static bool enetc_xdp_tx(struct enetc_bdr *tx_ring, struct enetc_tx_swbd *xdp_tx_arr, int num_tx_swbd) { struct enetc_tx_swbd *tmp_tx_swbd = xdp_tx_arr; int i, k, frm_len = tmp_tx_swbd->len; if (unlikely(enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(num_tx_swbd))) return false; while (unlikely(!tmp_tx_swbd->is_eof)) { tmp_tx_swbd++; frm_len += tmp_tx_swbd->len; } i = tx_ring->next_to_use; for (k = 0; k < num_tx_swbd; k++) { struct enetc_tx_swbd *xdp_tx_swbd = &xdp_tx_arr[k]; enetc_xdp_map_tx_buff(tx_ring, i, xdp_tx_swbd, frm_len); /* last BD needs 'F' bit set */ if (xdp_tx_swbd->is_eof) { union enetc_tx_bd *txbd = ENETC_TXBD(*tx_ring, i); txbd->flags = ENETC_TXBD_FLAGS_F; } enetc_bdr_idx_inc(tx_ring, &i); } tx_ring->next_to_use = i; return true; } static int enetc_xdp_frame_to_xdp_tx_swbd(struct enetc_bdr *tx_ring, struct enetc_tx_swbd *xdp_tx_arr, struct xdp_frame *xdp_frame) { struct enetc_tx_swbd *xdp_tx_swbd = &xdp_tx_arr[0]; struct skb_shared_info *shinfo; void *data = xdp_frame->data; int len = xdp_frame->len; skb_frag_t *frag; dma_addr_t dma; unsigned int f; int n = 0; dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(tx_ring->dev, dma))) { netdev_err(tx_ring->ndev, "DMA map error\n"); return -1; } xdp_tx_swbd->dma = dma; xdp_tx_swbd->dir = DMA_TO_DEVICE; xdp_tx_swbd->len = len; xdp_tx_swbd->is_xdp_redirect = true; xdp_tx_swbd->is_eof = false; xdp_tx_swbd->xdp_frame = NULL; n++; xdp_tx_swbd = &xdp_tx_arr[n]; shinfo = xdp_get_shared_info_from_frame(xdp_frame); for (f = 0, frag = &shinfo->frags[0]; f < shinfo->nr_frags; f++, frag++) { data = skb_frag_address(frag); len = skb_frag_size(frag); dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(tx_ring->dev, dma))) { /* Undo the DMA mapping for all fragments */ while (--n >= 0) enetc_unmap_tx_buff(tx_ring, &xdp_tx_arr[n]); netdev_err(tx_ring->ndev, "DMA map error\n"); return -1; } xdp_tx_swbd->dma = dma; xdp_tx_swbd->dir = DMA_TO_DEVICE; xdp_tx_swbd->len = len; xdp_tx_swbd->is_xdp_redirect = true; xdp_tx_swbd->is_eof = false; xdp_tx_swbd->xdp_frame = NULL; n++; xdp_tx_swbd = &xdp_tx_arr[n]; } xdp_tx_arr[n - 1].is_eof = true; xdp_tx_arr[n - 1].xdp_frame = xdp_frame; return n; } int enetc_xdp_xmit(struct net_device *ndev, int num_frames, struct xdp_frame **frames, u32 flags) { struct enetc_tx_swbd xdp_redirect_arr[ENETC_MAX_SKB_FRAGS] = {0}; struct enetc_ndev_priv *priv = netdev_priv(ndev); struct enetc_bdr *tx_ring; int xdp_tx_bd_cnt, i, k; int xdp_tx_frm_cnt = 0; tx_ring = priv->xdp_tx_ring[smp_processor_id()]; prefetchw(ENETC_TXBD(*tx_ring, tx_ring->next_to_use)); for (k = 0; k < num_frames; k++) { xdp_tx_bd_cnt = enetc_xdp_frame_to_xdp_tx_swbd(tx_ring, xdp_redirect_arr, frames[k]); if (unlikely(xdp_tx_bd_cnt < 0)) break; if (unlikely(!enetc_xdp_tx(tx_ring, xdp_redirect_arr, xdp_tx_bd_cnt))) { for (i = 0; i < xdp_tx_bd_cnt; i++) enetc_unmap_tx_buff(tx_ring, &xdp_redirect_arr[i]); tx_ring->stats.xdp_tx_drops++; break; } xdp_tx_frm_cnt++; } if (unlikely((flags & XDP_XMIT_FLUSH) || k != xdp_tx_frm_cnt)) enetc_update_tx_ring_tail(tx_ring); tx_ring->stats.xdp_tx += xdp_tx_frm_cnt; return xdp_tx_frm_cnt; } static void enetc_map_rx_buff_to_xdp(struct enetc_bdr *rx_ring, int i, struct xdp_buff *xdp_buff, u16 size) { struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size); void *hard_start = page_address(rx_swbd->page) + rx_swbd->page_offset; struct skb_shared_info *shinfo; /* To be used for XDP_TX */ rx_swbd->len = size; xdp_prepare_buff(xdp_buff, hard_start - rx_ring->buffer_offset, rx_ring->buffer_offset, size, false); shinfo = xdp_get_shared_info_from_buff(xdp_buff); shinfo->nr_frags = 0; } static void enetc_add_rx_buff_to_xdp(struct enetc_bdr *rx_ring, int i, u16 size, struct xdp_buff *xdp_buff) { struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp_buff); struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size); skb_frag_t *frag = &shinfo->frags[shinfo->nr_frags]; /* To be used for XDP_TX */ rx_swbd->len = size; skb_frag_off_set(frag, rx_swbd->page_offset); skb_frag_size_set(frag, size); __skb_frag_set_page(frag, rx_swbd->page); shinfo->nr_frags++; } static void enetc_build_xdp_buff(struct enetc_bdr *rx_ring, u32 bd_status, union enetc_rx_bd **rxbd, int *i, int *cleaned_cnt, struct xdp_buff *xdp_buff) { u16 size = le16_to_cpu((*rxbd)->r.buf_len); xdp_init_buff(xdp_buff, ENETC_RXB_TRUESIZE, &rx_ring->xdp.rxq); enetc_map_rx_buff_to_xdp(rx_ring, *i, xdp_buff, size); (*cleaned_cnt)++; enetc_rxbd_next(rx_ring, rxbd, i); /* not last BD in frame? */ while (!(bd_status & ENETC_RXBD_LSTATUS_F)) { bd_status = le32_to_cpu((*rxbd)->r.lstatus); size = ENETC_RXB_DMA_SIZE_XDP; if (bd_status & ENETC_RXBD_LSTATUS_F) { dma_rmb(); size = le16_to_cpu((*rxbd)->r.buf_len); } enetc_add_rx_buff_to_xdp(rx_ring, *i, size, xdp_buff); (*cleaned_cnt)++; enetc_rxbd_next(rx_ring, rxbd, i); } } /* Convert RX buffer descriptors to TX buffer descriptors. These will be * recycled back into the RX ring in enetc_clean_tx_ring. We need to scrub the * RX software BDs because the ownership of the buffer no longer belongs to the * RX ring, so enetc_refill_rx_ring may not reuse rx_swbd->page. */ static int enetc_rx_swbd_to_xdp_tx_swbd(struct enetc_tx_swbd *xdp_tx_arr, struct enetc_bdr *rx_ring, int rx_ring_first, int rx_ring_last) { int n = 0; for (; rx_ring_first != rx_ring_last; n++, enetc_bdr_idx_inc(rx_ring, &rx_ring_first)) { struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[rx_ring_first]; struct enetc_tx_swbd *tx_swbd = &xdp_tx_arr[n]; /* No need to dma_map, we already have DMA_BIDIRECTIONAL */ tx_swbd->dma = rx_swbd->dma; tx_swbd->dir = rx_swbd->dir; tx_swbd->page = rx_swbd->page; tx_swbd->page_offset = rx_swbd->page_offset; tx_swbd->len = rx_swbd->len; tx_swbd->is_dma_page = true; tx_swbd->is_xdp_tx = true; tx_swbd->is_eof = false; memset(rx_swbd, 0, sizeof(*rx_swbd)); } /* We rely on caller providing an rx_ring_last > rx_ring_first */ xdp_tx_arr[n - 1].is_eof = true; return n; } static void enetc_xdp_drop(struct enetc_bdr *rx_ring, int rx_ring_first, int rx_ring_last) { while (rx_ring_first != rx_ring_last) { enetc_put_rx_buff(rx_ring, &rx_ring->rx_swbd[rx_ring_first]); enetc_bdr_idx_inc(rx_ring, &rx_ring_first); } rx_ring->stats.xdp_drops++; } static void enetc_xdp_free(struct enetc_bdr *rx_ring, int rx_ring_first, int rx_ring_last) { while (rx_ring_first != rx_ring_last) { struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[rx_ring_first]; if (rx_swbd->page) { dma_unmap_page(rx_ring->dev, rx_swbd->dma, PAGE_SIZE, rx_swbd->dir); __free_page(rx_swbd->page); rx_swbd->page = NULL; } enetc_bdr_idx_inc(rx_ring, &rx_ring_first); } rx_ring->stats.xdp_redirect_failures++; } static int enetc_clean_rx_ring_xdp(struct enetc_bdr *rx_ring, struct napi_struct *napi, int work_limit, struct bpf_prog *prog) { int xdp_tx_bd_cnt, xdp_tx_frm_cnt = 0, xdp_redirect_frm_cnt = 0; struct enetc_tx_swbd xdp_tx_arr[ENETC_MAX_SKB_FRAGS] = {0}; struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev); int rx_frm_cnt = 0, rx_byte_cnt = 0; struct enetc_bdr *tx_ring; int cleaned_cnt, i; u32 xdp_act; cleaned_cnt = enetc_bd_unused(rx_ring); /* next descriptor to process */ i = rx_ring->next_to_clean; while (likely(rx_frm_cnt < work_limit)) { union enetc_rx_bd *rxbd, *orig_rxbd; int orig_i, orig_cleaned_cnt; struct xdp_buff xdp_buff; struct sk_buff *skb; int tmp_orig_i, err; u32 bd_status; rxbd = enetc_rxbd(rx_ring, i); bd_status = le32_to_cpu(rxbd->r.lstatus); if (!bd_status) break; enetc_wr_reg_hot(rx_ring->idr, BIT(rx_ring->index)); dma_rmb(); /* for reading other rxbd fields */ if (enetc_check_bd_errors_and_consume(rx_ring, bd_status, &rxbd, &i)) break; orig_rxbd = rxbd; orig_cleaned_cnt = cleaned_cnt; orig_i = i; enetc_build_xdp_buff(rx_ring, bd_status, &rxbd, &i, &cleaned_cnt, &xdp_buff); xdp_act = bpf_prog_run_xdp(prog, &xdp_buff); switch (xdp_act) { case XDP_ABORTED: trace_xdp_exception(rx_ring->ndev, prog, xdp_act); fallthrough; case XDP_DROP: enetc_xdp_drop(rx_ring, orig_i, i); break; case XDP_PASS: rxbd = orig_rxbd; cleaned_cnt = orig_cleaned_cnt; i = orig_i; skb = enetc_build_skb(rx_ring, bd_status, &rxbd, &i, &cleaned_cnt, ENETC_RXB_DMA_SIZE_XDP); if (unlikely(!skb)) goto out; napi_gro_receive(napi, skb); break; case XDP_TX: tx_ring = priv->xdp_tx_ring[rx_ring->index]; xdp_tx_bd_cnt = enetc_rx_swbd_to_xdp_tx_swbd(xdp_tx_arr, rx_ring, orig_i, i); if (!enetc_xdp_tx(tx_ring, xdp_tx_arr, xdp_tx_bd_cnt)) { enetc_xdp_drop(rx_ring, orig_i, i); tx_ring->stats.xdp_tx_drops++; } else { tx_ring->stats.xdp_tx += xdp_tx_bd_cnt; rx_ring->xdp.xdp_tx_in_flight += xdp_tx_bd_cnt; xdp_tx_frm_cnt++; } break; case XDP_REDIRECT: /* xdp_return_frame does not support S/G in the sense * that it leaks the fragments (__xdp_return should not * call page_frag_free only for the initial buffer). * Until XDP_REDIRECT gains support for S/G let's keep * the code structure in place, but dead. We drop the * S/G frames ourselves to avoid memory leaks which * would otherwise leave the kernel OOM. */ if (unlikely(cleaned_cnt - orig_cleaned_cnt != 1)) { enetc_xdp_drop(rx_ring, orig_i, i); rx_ring->stats.xdp_redirect_sg++; break; } tmp_orig_i = orig_i; while (orig_i != i) { enetc_flip_rx_buff(rx_ring, &rx_ring->rx_swbd[orig_i]); enetc_bdr_idx_inc(rx_ring, &orig_i); } err = xdp_do_redirect(rx_ring->ndev, &xdp_buff, prog); if (unlikely(err)) { enetc_xdp_free(rx_ring, tmp_orig_i, i); } else { xdp_redirect_frm_cnt++; rx_ring->stats.xdp_redirect++; } break; default: bpf_warn_invalid_xdp_action(xdp_act); } rx_frm_cnt++; } out: rx_ring->next_to_clean = i; rx_ring->stats.packets += rx_frm_cnt; rx_ring->stats.bytes += rx_byte_cnt; if (xdp_redirect_frm_cnt) xdp_do_flush_map(); if (xdp_tx_frm_cnt) enetc_update_tx_ring_tail(tx_ring); if (cleaned_cnt > rx_ring->xdp.xdp_tx_in_flight) enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring) - rx_ring->xdp.xdp_tx_in_flight); return rx_frm_cnt; } static int enetc_poll(struct napi_struct *napi, int budget) { struct enetc_int_vector *v = container_of(napi, struct enetc_int_vector, napi); struct enetc_bdr *rx_ring = &v->rx_ring; struct bpf_prog *prog; bool complete = true; int work_done; int i; enetc_lock_mdio(); for (i = 0; i < v->count_tx_rings; i++) if (!enetc_clean_tx_ring(&v->tx_ring[i], budget)) complete = false; prog = rx_ring->xdp.prog; if (prog) work_done = enetc_clean_rx_ring_xdp(rx_ring, napi, budget, prog); else work_done = enetc_clean_rx_ring(rx_ring, napi, budget); if (work_done == budget) complete = false; if (work_done) v->rx_napi_work = true; if (!complete) { enetc_unlock_mdio(); return budget; } napi_complete_done(napi, work_done); if (likely(v->rx_dim_en)) enetc_rx_net_dim(v); v->rx_napi_work = false; /* enable interrupts */ enetc_wr_reg_hot(v->rbier, ENETC_RBIER_RXTIE); for_each_set_bit(i, &v->tx_rings_map, ENETC_MAX_NUM_TXQS) enetc_wr_reg_hot(v->tbier_base + ENETC_BDR_OFF(i), ENETC_TBIER_TXTIE); enetc_unlock_mdio(); return work_done; } /* Probing and Init */ #define ENETC_MAX_RFS_SIZE 64 void enetc_get_si_caps(struct enetc_si *si) { struct enetc_hw *hw = &si->hw; u32 val; /* find out how many of various resources we have to work with */ val = enetc_rd(hw, ENETC_SICAPR0); si->num_rx_rings = (val >> 16) & 0xff; si->num_tx_rings = val & 0xff; val = enetc_rd(hw, ENETC_SIRFSCAPR); si->num_fs_entries = ENETC_SIRFSCAPR_GET_NUM_RFS(val); si->num_fs_entries = min(si->num_fs_entries, ENETC_MAX_RFS_SIZE); si->num_rss = 0; val = enetc_rd(hw, ENETC_SIPCAPR0); if (val & ENETC_SIPCAPR0_RSS) { u32 rss; rss = enetc_rd(hw, ENETC_SIRSSCAPR); si->num_rss = ENETC_SIRSSCAPR_GET_NUM_RSS(rss); } if (val & ENETC_SIPCAPR0_QBV) si->hw_features |= ENETC_SI_F_QBV; if (val & ENETC_SIPCAPR0_PSFP) si->hw_features |= ENETC_SI_F_PSFP; } static int enetc_dma_alloc_bdr(struct enetc_bdr *r, size_t bd_size) { r->bd_base = dma_alloc_coherent(r->dev, r->bd_count * bd_size, &r->bd_dma_base, GFP_KERNEL); if (!r->bd_base) return -ENOMEM; /* h/w requires 128B alignment */ if (!IS_ALIGNED(r->bd_dma_base, 128)) { dma_free_coherent(r->dev, r->bd_count * bd_size, r->bd_base, r->bd_dma_base); return -EINVAL; } return 0; } static int enetc_alloc_txbdr(struct enetc_bdr *txr) { int err; txr->tx_swbd = vzalloc(txr->bd_count * sizeof(struct enetc_tx_swbd)); if (!txr->tx_swbd) return -ENOMEM; err = enetc_dma_alloc_bdr(txr, sizeof(union enetc_tx_bd)); if (err) { vfree(txr->tx_swbd); return err; } txr->next_to_clean = 0; txr->next_to_use = 0; return 0; } static void enetc_free_txbdr(struct enetc_bdr *txr) { int size, i; for (i = 0; i < txr->bd_count; i++) enetc_free_tx_frame(txr, &txr->tx_swbd[i]); size = txr->bd_count * sizeof(union enetc_tx_bd); dma_free_coherent(txr->dev, size, txr->bd_base, txr->bd_dma_base); txr->bd_base = NULL; vfree(txr->tx_swbd); txr->tx_swbd = NULL; } static int enetc_alloc_tx_resources(struct enetc_ndev_priv *priv) { int i, err; for (i = 0; i < priv->num_tx_rings; i++) { err = enetc_alloc_txbdr(priv->tx_ring[i]); if (err) goto fail; } return 0; fail: while (i-- > 0) enetc_free_txbdr(priv->tx_ring[i]); return err; } static void enetc_free_tx_resources(struct enetc_ndev_priv *priv) { int i; for (i = 0; i < priv->num_tx_rings; i++) enetc_free_txbdr(priv->tx_ring[i]); } static int enetc_alloc_rxbdr(struct enetc_bdr *rxr, bool extended) { size_t size = sizeof(union enetc_rx_bd); int err; rxr->rx_swbd = vzalloc(rxr->bd_count * sizeof(struct enetc_rx_swbd)); if (!rxr->rx_swbd) return -ENOMEM; if (extended) size *= 2; err = enetc_dma_alloc_bdr(rxr, size); if (err) { vfree(rxr->rx_swbd); return err; } rxr->next_to_clean = 0; rxr->next_to_use = 0; rxr->next_to_alloc = 0; rxr->ext_en = extended; return 0; } static void enetc_free_rxbdr(struct enetc_bdr *rxr) { int size; size = rxr->bd_count * sizeof(union enetc_rx_bd); dma_free_coherent(rxr->dev, size, rxr->bd_base, rxr->bd_dma_base); rxr->bd_base = NULL; vfree(rxr->rx_swbd); rxr->rx_swbd = NULL; } static int enetc_alloc_rx_resources(struct enetc_ndev_priv *priv) { bool extended = !!(priv->active_offloads & ENETC_F_RX_TSTAMP); int i, err; for (i = 0; i < priv->num_rx_rings; i++) { err = enetc_alloc_rxbdr(priv->rx_ring[i], extended); if (err) goto fail; } return 0; fail: while (i-- > 0) enetc_free_rxbdr(priv->rx_ring[i]); return err; } static void enetc_free_rx_resources(struct enetc_ndev_priv *priv) { int i; for (i = 0; i < priv->num_rx_rings; i++) enetc_free_rxbdr(priv->rx_ring[i]); } static void enetc_free_tx_ring(struct enetc_bdr *tx_ring) { int i; if (!tx_ring->tx_swbd) return; for (i = 0; i < tx_ring->bd_count; i++) { struct enetc_tx_swbd *tx_swbd = &tx_ring->tx_swbd[i]; enetc_free_tx_frame(tx_ring, tx_swbd); } tx_ring->next_to_clean = 0; tx_ring->next_to_use = 0; } static void enetc_free_rx_ring(struct enetc_bdr *rx_ring) { int i; if (!rx_ring->rx_swbd) return; for (i = 0; i < rx_ring->bd_count; i++) { struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i]; if (!rx_swbd->page) continue; dma_unmap_page(rx_ring->dev, rx_swbd->dma, PAGE_SIZE, rx_swbd->dir); __free_page(rx_swbd->page); rx_swbd->page = NULL; } rx_ring->next_to_clean = 0; rx_ring->next_to_use = 0; rx_ring->next_to_alloc = 0; } static void enetc_free_rxtx_rings(struct enetc_ndev_priv *priv) { int i; for (i = 0; i < priv->num_rx_rings; i++) enetc_free_rx_ring(priv->rx_ring[i]); for (i = 0; i < priv->num_tx_rings; i++) enetc_free_tx_ring(priv->tx_ring[i]); } static int enetc_setup_default_rss_table(struct enetc_si *si, int num_groups) { int *rss_table; int i; rss_table = kmalloc_array(si->num_rss, sizeof(*rss_table), GFP_KERNEL); if (!rss_table) return -ENOMEM; /* Set up RSS table defaults */ for (i = 0; i < si->num_rss; i++) rss_table[i] = i % num_groups; enetc_set_rss_table(si, rss_table, si->num_rss); kfree(rss_table); return 0; } int enetc_configure_si(struct enetc_ndev_priv *priv) { struct enetc_si *si = priv->si; struct enetc_hw *hw = &si->hw; int err; /* set SI cache attributes */ enetc_wr(hw, ENETC_SICAR0, ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT); enetc_wr(hw, ENETC_SICAR1, ENETC_SICAR_MSI); /* enable SI */ enetc_wr(hw, ENETC_SIMR, ENETC_SIMR_EN); if (si->num_rss) { err = enetc_setup_default_rss_table(si, priv->num_rx_rings); if (err) return err; } return 0; } void enetc_init_si_rings_params(struct enetc_ndev_priv *priv) { struct enetc_si *si = priv->si; int cpus = num_online_cpus(); priv->tx_bd_count = ENETC_TX_RING_DEFAULT_SIZE; priv->rx_bd_count = ENETC_RX_RING_DEFAULT_SIZE; /* Enable all available TX rings in order to configure as many * priorities as possible, when needed. * TODO: Make # of TX rings run-time configurable */ priv->num_rx_rings = min_t(int, cpus, si->num_rx_rings); priv->num_tx_rings = si->num_tx_rings; priv->bdr_int_num = cpus; priv->ic_mode = ENETC_IC_RX_ADAPTIVE | ENETC_IC_TX_MANUAL; priv->tx_ictt = ENETC_TXIC_TIMETHR; } int enetc_alloc_si_resources(struct enetc_ndev_priv *priv) { struct enetc_si *si = priv->si; priv->cls_rules = kcalloc(si->num_fs_entries, sizeof(*priv->cls_rules), GFP_KERNEL); if (!priv->cls_rules) return -ENOMEM; return 0; } void enetc_free_si_resources(struct enetc_ndev_priv *priv) { kfree(priv->cls_rules); } static void enetc_setup_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring) { int idx = tx_ring->index; u32 tbmr; enetc_txbdr_wr(hw, idx, ENETC_TBBAR0, lower_32_bits(tx_ring->bd_dma_base)); enetc_txbdr_wr(hw, idx, ENETC_TBBAR1, upper_32_bits(tx_ring->bd_dma_base)); WARN_ON(!IS_ALIGNED(tx_ring->bd_count, 64)); /* multiple of 64 */ enetc_txbdr_wr(hw, idx, ENETC_TBLENR, ENETC_RTBLENR_LEN(tx_ring->bd_count)); /* clearing PI/CI registers for Tx not supported, adjust sw indexes */ tx_ring->next_to_use = enetc_txbdr_rd(hw, idx, ENETC_TBPIR); tx_ring->next_to_clean = enetc_txbdr_rd(hw, idx, ENETC_TBCIR); /* enable Tx ints by setting pkt thr to 1 */ enetc_txbdr_wr(hw, idx, ENETC_TBICR0, ENETC_TBICR0_ICEN | 0x1); tbmr = ENETC_TBMR_EN; if (tx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_TX) tbmr |= ENETC_TBMR_VIH; /* enable ring */ enetc_txbdr_wr(hw, idx, ENETC_TBMR, tbmr); tx_ring->tpir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBPIR); tx_ring->tcir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBCIR); tx_ring->idr = hw->reg + ENETC_SITXIDR; } static void enetc_setup_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring) { int idx = rx_ring->index; u32 rbmr; enetc_rxbdr_wr(hw, idx, ENETC_RBBAR0, lower_32_bits(rx_ring->bd_dma_base)); enetc_rxbdr_wr(hw, idx, ENETC_RBBAR1, upper_32_bits(rx_ring->bd_dma_base)); WARN_ON(!IS_ALIGNED(rx_ring->bd_count, 64)); /* multiple of 64 */ enetc_rxbdr_wr(hw, idx, ENETC_RBLENR, ENETC_RTBLENR_LEN(rx_ring->bd_count)); if (rx_ring->xdp.prog) enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE_XDP); else enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE); enetc_rxbdr_wr(hw, idx, ENETC_RBPIR, 0); /* enable Rx ints by setting pkt thr to 1 */ enetc_rxbdr_wr(hw, idx, ENETC_RBICR0, ENETC_RBICR0_ICEN | 0x1); rbmr = ENETC_RBMR_EN; if (rx_ring->ext_en) rbmr |= ENETC_RBMR_BDS; if (rx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) rbmr |= ENETC_RBMR_VTE; rx_ring->rcir = hw->reg + ENETC_BDR(RX, idx, ENETC_RBCIR); rx_ring->idr = hw->reg + ENETC_SIRXIDR; enetc_lock_mdio(); enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring)); enetc_unlock_mdio(); /* enable ring */ enetc_rxbdr_wr(hw, idx, ENETC_RBMR, rbmr); } static void enetc_setup_bdrs(struct enetc_ndev_priv *priv) { int i; for (i = 0; i < priv->num_tx_rings; i++) enetc_setup_txbdr(&priv->si->hw, priv->tx_ring[i]); for (i = 0; i < priv->num_rx_rings; i++) enetc_setup_rxbdr(&priv->si->hw, priv->rx_ring[i]); } static void enetc_clear_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring) { int idx = rx_ring->index; /* disable EN bit on ring */ enetc_rxbdr_wr(hw, idx, ENETC_RBMR, 0); } static void enetc_clear_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring) { int delay = 8, timeout = 100; int idx = tx_ring->index; /* disable EN bit on ring */ enetc_txbdr_wr(hw, idx, ENETC_TBMR, 0); /* wait for busy to clear */ while (delay < timeout && enetc_txbdr_rd(hw, idx, ENETC_TBSR) & ENETC_TBSR_BUSY) { msleep(delay); delay *= 2; } if (delay >= timeout) netdev_warn(tx_ring->ndev, "timeout for tx ring #%d clear\n", idx); } static void enetc_clear_bdrs(struct enetc_ndev_priv *priv) { int i; for (i = 0; i < priv->num_tx_rings; i++) enetc_clear_txbdr(&priv->si->hw, priv->tx_ring[i]); for (i = 0; i < priv->num_rx_rings; i++) enetc_clear_rxbdr(&priv->si->hw, priv->rx_ring[i]); udelay(1); } static int enetc_setup_irqs(struct enetc_ndev_priv *priv) { struct pci_dev *pdev = priv->si->pdev; cpumask_t cpu_mask; int i, j, err; for (i = 0; i < priv->bdr_int_num; i++) { int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i); struct enetc_int_vector *v = priv->int_vector[i]; int entry = ENETC_BDR_INT_BASE_IDX + i; struct enetc_hw *hw = &priv->si->hw; snprintf(v->name, sizeof(v->name), "%s-rxtx%d", priv->ndev->name, i); err = request_irq(irq, enetc_msix, 0, v->name, v); if (err) { dev_err(priv->dev, "request_irq() failed!\n"); goto irq_err; } disable_irq(irq); v->tbier_base = hw->reg + ENETC_BDR(TX, 0, ENETC_TBIER); v->rbier = hw->reg + ENETC_BDR(RX, i, ENETC_RBIER); v->ricr1 = hw->reg + ENETC_BDR(RX, i, ENETC_RBICR1); enetc_wr(hw, ENETC_SIMSIRRV(i), entry); for (j = 0; j < v->count_tx_rings; j++) { int idx = v->tx_ring[j].index; enetc_wr(hw, ENETC_SIMSITRV(idx), entry); } cpumask_clear(&cpu_mask); cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); irq_set_affinity_hint(irq, &cpu_mask); } return 0; irq_err: while (i--) { int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i); irq_set_affinity_hint(irq, NULL); free_irq(irq, priv->int_vector[i]); } return err; } static void enetc_free_irqs(struct enetc_ndev_priv *priv) { struct pci_dev *pdev = priv->si->pdev; int i; for (i = 0; i < priv->bdr_int_num; i++) { int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i); irq_set_affinity_hint(irq, NULL); free_irq(irq, priv->int_vector[i]); } } static void enetc_setup_interrupts(struct enetc_ndev_priv *priv) { struct enetc_hw *hw = &priv->si->hw; u32 icpt, ictt; int i; /* enable Tx & Rx event indication */ if (priv->ic_mode & (ENETC_IC_RX_MANUAL | ENETC_IC_RX_ADAPTIVE)) { icpt = ENETC_RBICR0_SET_ICPT(ENETC_RXIC_PKTTHR); /* init to non-0 minimum, will be adjusted later */ ictt = 0x1; } else { icpt = 0x1; /* enable Rx ints by setting pkt thr to 1 */ ictt = 0; } for (i = 0; i < priv->num_rx_rings; i++) { enetc_rxbdr_wr(hw, i, ENETC_RBICR1, ictt); enetc_rxbdr_wr(hw, i, ENETC_RBICR0, ENETC_RBICR0_ICEN | icpt); enetc_rxbdr_wr(hw, i, ENETC_RBIER, ENETC_RBIER_RXTIE); } if (priv->ic_mode & ENETC_IC_TX_MANUAL) icpt = ENETC_TBICR0_SET_ICPT(ENETC_TXIC_PKTTHR); else icpt = 0x1; /* enable Tx ints by setting pkt thr to 1 */ for (i = 0; i < priv->num_tx_rings; i++) { enetc_txbdr_wr(hw, i, ENETC_TBICR1, priv->tx_ictt); enetc_txbdr_wr(hw, i, ENETC_TBICR0, ENETC_TBICR0_ICEN | icpt); enetc_txbdr_wr(hw, i, ENETC_TBIER, ENETC_TBIER_TXTIE); } } static void enetc_clear_interrupts(struct enetc_ndev_priv *priv) { int i; for (i = 0; i < priv->num_tx_rings; i++) enetc_txbdr_wr(&priv->si->hw, i, ENETC_TBIER, 0); for (i = 0; i < priv->num_rx_rings; i++) enetc_rxbdr_wr(&priv->si->hw, i, ENETC_RBIER, 0); } static int enetc_phylink_connect(struct net_device *ndev) { struct enetc_ndev_priv *priv = netdev_priv(ndev); struct ethtool_eee edata; int err; if (!priv->phylink) return 0; /* phy-less mode */ err = phylink_of_phy_connect(priv->phylink, priv->dev->of_node, 0); if (err) { dev_err(&ndev->dev, "could not attach to PHY\n"); return err; } /* disable EEE autoneg, until ENETC driver supports it */ memset(&edata, 0, sizeof(struct ethtool_eee)); phylink_ethtool_set_eee(priv->phylink, &edata); return 0; } static void enetc_tx_onestep_tstamp(struct work_struct *work) { struct enetc_ndev_priv *priv; struct sk_buff *skb; priv = container_of(work, struct enetc_ndev_priv, tx_onestep_tstamp); netif_tx_lock(priv->ndev); clear_bit_unlock(ENETC_TX_ONESTEP_TSTAMP_IN_PROGRESS, &priv->flags); skb = skb_dequeue(&priv->tx_skbs); if (skb) enetc_start_xmit(skb, priv->ndev); netif_tx_unlock(priv->ndev); } static void enetc_tx_onestep_tstamp_init(struct enetc_ndev_priv *priv) { INIT_WORK(&priv->tx_onestep_tstamp, enetc_tx_onestep_tstamp); skb_queue_head_init(&priv->tx_skbs); } void enetc_start(struct net_device *ndev) { struct enetc_ndev_priv *priv = netdev_priv(ndev); int i; enetc_setup_interrupts(priv); for (i = 0; i < priv->bdr_int_num; i++) { int irq = pci_irq_vector(priv->si->pdev, ENETC_BDR_INT_BASE_IDX + i); napi_enable(&priv->int_vector[i]->napi); enable_irq(irq); } if (priv->phylink) phylink_start(priv->phylink); else netif_carrier_on(ndev); netif_tx_start_all_queues(ndev); } int enetc_open(struct net_device *ndev) { struct enetc_ndev_priv *priv = netdev_priv(ndev); int num_stack_tx_queues; int err; err = enetc_setup_irqs(priv); if (err) return err; err = enetc_phylink_connect(ndev); if (err) goto err_phy_connect; err = enetc_alloc_tx_resources(priv); if (err) goto err_alloc_tx; err = enetc_alloc_rx_resources(priv); if (err) goto err_alloc_rx; num_stack_tx_queues = enetc_num_stack_tx_queues(priv); err = netif_set_real_num_tx_queues(ndev, num_stack_tx_queues); if (err) goto err_set_queues; err = netif_set_real_num_rx_queues(ndev, priv->num_rx_rings); if (err) goto err_set_queues; enetc_tx_onestep_tstamp_init(priv); enetc_setup_bdrs(priv); enetc_start(ndev); return 0; err_set_queues: enetc_free_rx_resources(priv); err_alloc_rx: enetc_free_tx_resources(priv); err_alloc_tx: if (priv->phylink) phylink_disconnect_phy(priv->phylink); err_phy_connect: enetc_free_irqs(priv); return err; } void enetc_stop(struct net_device *ndev) { struct enetc_ndev_priv *priv = netdev_priv(ndev); int i; netif_tx_stop_all_queues(ndev); for (i = 0; i < priv->bdr_int_num; i++) { int irq = pci_irq_vector(priv->si->pdev, ENETC_BDR_INT_BASE_IDX + i); disable_irq(irq); napi_synchronize(&priv->int_vector[i]->napi); napi_disable(&priv->int_vector[i]->napi); } if (priv->phylink) phylink_stop(priv->phylink); else netif_carrier_off(ndev); enetc_clear_interrupts(priv); } int enetc_close(struct net_device *ndev) { struct enetc_ndev_priv *priv = netdev_priv(ndev); enetc_stop(ndev); enetc_clear_bdrs(priv); if (priv->phylink) phylink_disconnect_phy(priv->phylink); enetc_free_rxtx_rings(priv); enetc_free_rx_resources(priv); enetc_free_tx_resources(priv); enetc_free_irqs(priv); return 0; } static int enetc_setup_tc_mqprio(struct net_device *ndev, void *type_data) { struct enetc_ndev_priv *priv = netdev_priv(ndev); struct tc_mqprio_qopt *mqprio = type_data; struct enetc_bdr *tx_ring; int num_stack_tx_queues; u8 num_tc; int i; num_stack_tx_queues = enetc_num_stack_tx_queues(priv); mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; num_tc = mqprio->num_tc; if (!num_tc) { netdev_reset_tc(ndev); netif_set_real_num_tx_queues(ndev, num_stack_tx_queues); /* Reset all ring priorities to 0 */ for (i = 0; i < priv->num_tx_rings; i++) { tx_ring = priv->tx_ring[i]; enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, 0); } return 0; } /* Check if we have enough BD rings available to accommodate all TCs */ if (num_tc > num_stack_tx_queues) { netdev_err(ndev, "Max %d traffic classes supported\n", priv->num_tx_rings); return -EINVAL; } /* For the moment, we use only one BD ring per TC. * * Configure num_tc BD rings with increasing priorities. */ for (i = 0; i < num_tc; i++) { tx_ring = priv->tx_ring[i]; enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, i); } /* Reset the number of netdev queues based on the TC count */ netif_set_real_num_tx_queues(ndev, num_tc); netdev_set_num_tc(ndev, num_tc); /* Each TC is associated with one netdev queue */ for (i = 0; i < num_tc; i++) netdev_set_tc_queue(ndev, i, 1, i); return 0; } int enetc_setup_tc(struct net_device *ndev, enum tc_setup_type type, void *type_data) { switch (type) { case TC_SETUP_QDISC_MQPRIO: return enetc_setup_tc_mqprio(ndev, type_data); case TC_SETUP_QDISC_TAPRIO: return enetc_setup_tc_taprio(ndev, type_data); case TC_SETUP_QDISC_CBS: return enetc_setup_tc_cbs(ndev, type_data); case TC_SETUP_QDISC_ETF: return enetc_setup_tc_txtime(ndev, type_data); case TC_SETUP_BLOCK: return enetc_setup_tc_psfp(ndev, type_data); default: return -EOPNOTSUPP; } } static int enetc_setup_xdp_prog(struct net_device *dev, struct bpf_prog *prog, struct netlink_ext_ack *extack) { struct enetc_ndev_priv *priv = netdev_priv(dev); struct bpf_prog *old_prog; bool is_up; int i; /* The buffer layout is changing, so we need to drain the old * RX buffers and seed new ones. */ is_up = netif_running(dev); if (is_up) dev_close(dev); old_prog = xchg(&priv->xdp_prog, prog); if (old_prog) bpf_prog_put(old_prog); for (i = 0; i < priv->num_rx_rings; i++) { struct enetc_bdr *rx_ring = priv->rx_ring[i]; rx_ring->xdp.prog = prog; if (prog) rx_ring->buffer_offset = XDP_PACKET_HEADROOM; else rx_ring->buffer_offset = ENETC_RXB_PAD; } if (is_up) return dev_open(dev, extack); return 0; } int enetc_setup_bpf(struct net_device *dev, struct netdev_bpf *xdp) { switch (xdp->command) { case XDP_SETUP_PROG: return enetc_setup_xdp_prog(dev, xdp->prog, xdp->extack); default: return -EINVAL; } return 0; } struct net_device_stats *enetc_get_stats(struct net_device *ndev) { struct enetc_ndev_priv *priv = netdev_priv(ndev); struct net_device_stats *stats = &ndev->stats; unsigned long packets = 0, bytes = 0; int i; for (i = 0; i < priv->num_rx_rings; i++) { packets += priv->rx_ring[i]->stats.packets; bytes += priv->rx_ring[i]->stats.bytes; } stats->rx_packets = packets; stats->rx_bytes = bytes; bytes = 0; packets = 0; for (i = 0; i < priv->num_tx_rings; i++) { packets += priv->tx_ring[i]->stats.packets; bytes += priv->tx_ring[i]->stats.bytes; } stats->tx_packets = packets; stats->tx_bytes = bytes; return stats; } static int enetc_set_rss(struct net_device *ndev, int en) { struct enetc_ndev_priv *priv = netdev_priv(ndev); struct enetc_hw *hw = &priv->si->hw; u32 reg; enetc_wr(hw, ENETC_SIRBGCR, priv->num_rx_rings); reg = enetc_rd(hw, ENETC_SIMR); reg &= ~ENETC_SIMR_RSSE; reg |= (en) ? ENETC_SIMR_RSSE : 0; enetc_wr(hw, ENETC_SIMR, reg); return 0; } static int enetc_set_psfp(struct net_device *ndev, int en) { struct enetc_ndev_priv *priv = netdev_priv(ndev); int err; if (en) { err = enetc_psfp_enable(priv); if (err) return err; priv->active_offloads |= ENETC_F_QCI; return 0; } err = enetc_psfp_disable(priv); if (err) return err; priv->active_offloads &= ~ENETC_F_QCI; return 0; } static void enetc_enable_rxvlan(struct net_device *ndev, bool en) { struct enetc_ndev_priv *priv = netdev_priv(ndev); int i; for (i = 0; i < priv->num_rx_rings; i++) enetc_bdr_enable_rxvlan(&priv->si->hw, i, en); } static void enetc_enable_txvlan(struct net_device *ndev, bool en) { struct enetc_ndev_priv *priv = netdev_priv(ndev); int i; for (i = 0; i < priv->num_tx_rings; i++) enetc_bdr_enable_txvlan(&priv->si->hw, i, en); } int enetc_set_features(struct net_device *ndev, netdev_features_t features) { netdev_features_t changed = ndev->features ^ features; int err = 0; if (changed & NETIF_F_RXHASH) enetc_set_rss(ndev, !!(features & NETIF_F_RXHASH)); if (changed & NETIF_F_HW_VLAN_CTAG_RX) enetc_enable_rxvlan(ndev, !!(features & NETIF_F_HW_VLAN_CTAG_RX)); if (changed & NETIF_F_HW_VLAN_CTAG_TX) enetc_enable_txvlan(ndev, !!(features & NETIF_F_HW_VLAN_CTAG_TX)); if (changed & NETIF_F_HW_TC) err = enetc_set_psfp(ndev, !!(features & NETIF_F_HW_TC)); return err; } #ifdef CONFIG_FSL_ENETC_PTP_CLOCK static int enetc_hwtstamp_set(struct net_device *ndev, struct ifreq *ifr) { struct enetc_ndev_priv *priv = netdev_priv(ndev); struct hwtstamp_config config; int ao; if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) return -EFAULT; switch (config.tx_type) { case HWTSTAMP_TX_OFF: priv->active_offloads &= ~ENETC_F_TX_TSTAMP_MASK; break; case HWTSTAMP_TX_ON: priv->active_offloads &= ~ENETC_F_TX_TSTAMP_MASK; priv->active_offloads |= ENETC_F_TX_TSTAMP; break; case HWTSTAMP_TX_ONESTEP_SYNC: priv->active_offloads &= ~ENETC_F_TX_TSTAMP_MASK; priv->active_offloads |= ENETC_F_TX_ONESTEP_SYNC_TSTAMP; break; default: return -ERANGE; } ao = priv->active_offloads; switch (config.rx_filter) { case HWTSTAMP_FILTER_NONE: priv->active_offloads &= ~ENETC_F_RX_TSTAMP; break; default: priv->active_offloads |= ENETC_F_RX_TSTAMP; config.rx_filter = HWTSTAMP_FILTER_ALL; } if (netif_running(ndev) && ao != priv->active_offloads) { enetc_close(ndev); enetc_open(ndev); } return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; } static int enetc_hwtstamp_get(struct net_device *ndev, struct ifreq *ifr) { struct enetc_ndev_priv *priv = netdev_priv(ndev); struct hwtstamp_config config; config.flags = 0; if (priv->active_offloads & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) config.tx_type = HWTSTAMP_TX_ONESTEP_SYNC; else if (priv->active_offloads & ENETC_F_TX_TSTAMP) config.tx_type = HWTSTAMP_TX_ON; else config.tx_type = HWTSTAMP_TX_OFF; config.rx_filter = (priv->active_offloads & ENETC_F_RX_TSTAMP) ? HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE; return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; } #endif int enetc_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) { struct enetc_ndev_priv *priv = netdev_priv(ndev); #ifdef CONFIG_FSL_ENETC_PTP_CLOCK if (cmd == SIOCSHWTSTAMP) return enetc_hwtstamp_set(ndev, rq); if (cmd == SIOCGHWTSTAMP) return enetc_hwtstamp_get(ndev, rq); #endif if (!priv->phylink) return -EOPNOTSUPP; return phylink_mii_ioctl(priv->phylink, rq, cmd); } int enetc_alloc_msix(struct enetc_ndev_priv *priv) { struct pci_dev *pdev = priv->si->pdev; int first_xdp_tx_ring; int i, n, err, nvec; int v_tx_rings; nvec = ENETC_BDR_INT_BASE_IDX + priv->bdr_int_num; /* allocate MSIX for both messaging and Rx/Tx interrupts */ n = pci_alloc_irq_vectors(pdev, nvec, nvec, PCI_IRQ_MSIX); if (n < 0) return n; if (n != nvec) return -EPERM; /* # of tx rings per int vector */ v_tx_rings = priv->num_tx_rings / priv->bdr_int_num; for (i = 0; i < priv->bdr_int_num; i++) { struct enetc_int_vector *v; struct enetc_bdr *bdr; int j; v = kzalloc(struct_size(v, tx_ring, v_tx_rings), GFP_KERNEL); if (!v) { err = -ENOMEM; goto fail; } priv->int_vector[i] = v; bdr = &v->rx_ring; bdr->index = i; bdr->ndev = priv->ndev; bdr->dev = priv->dev; bdr->bd_count = priv->rx_bd_count; bdr->buffer_offset = ENETC_RXB_PAD; priv->rx_ring[i] = bdr; err = xdp_rxq_info_reg(&bdr->xdp.rxq, priv->ndev, i, 0); if (err) { kfree(v); goto fail; } err = xdp_rxq_info_reg_mem_model(&bdr->xdp.rxq, MEM_TYPE_PAGE_SHARED, NULL); if (err) { xdp_rxq_info_unreg(&bdr->xdp.rxq); kfree(v); goto fail; } /* init defaults for adaptive IC */ if (priv->ic_mode & ENETC_IC_RX_ADAPTIVE) { v->rx_ictt = 0x1; v->rx_dim_en = true; } INIT_WORK(&v->rx_dim.work, enetc_rx_dim_work); netif_napi_add(priv->ndev, &v->napi, enetc_poll, NAPI_POLL_WEIGHT); v->count_tx_rings = v_tx_rings; for (j = 0; j < v_tx_rings; j++) { int idx; /* default tx ring mapping policy */ idx = priv->bdr_int_num * j + i; __set_bit(idx, &v->tx_rings_map); bdr = &v->tx_ring[j]; bdr->index = idx; bdr->ndev = priv->ndev; bdr->dev = priv->dev; bdr->bd_count = priv->tx_bd_count; priv->tx_ring[idx] = bdr; } } first_xdp_tx_ring = priv->num_tx_rings - num_possible_cpus(); priv->xdp_tx_ring = &priv->tx_ring[first_xdp_tx_ring]; return 0; fail: while (i--) { struct enetc_int_vector *v = priv->int_vector[i]; struct enetc_bdr *rx_ring = &v->rx_ring; xdp_rxq_info_unreg_mem_model(&rx_ring->xdp.rxq); xdp_rxq_info_unreg(&rx_ring->xdp.rxq); netif_napi_del(&v->napi); cancel_work_sync(&v->rx_dim.work); kfree(v); } pci_free_irq_vectors(pdev); return err; } void enetc_free_msix(struct enetc_ndev_priv *priv) { int i; for (i = 0; i < priv->bdr_int_num; i++) { struct enetc_int_vector *v = priv->int_vector[i]; struct enetc_bdr *rx_ring = &v->rx_ring; xdp_rxq_info_unreg_mem_model(&rx_ring->xdp.rxq); xdp_rxq_info_unreg(&rx_ring->xdp.rxq); netif_napi_del(&v->napi); cancel_work_sync(&v->rx_dim.work); } for (i = 0; i < priv->num_rx_rings; i++) priv->rx_ring[i] = NULL; for (i = 0; i < priv->num_tx_rings; i++) priv->tx_ring[i] = NULL; for (i = 0; i < priv->bdr_int_num; i++) { kfree(priv->int_vector[i]); priv->int_vector[i] = NULL; } /* disable all MSIX for this device */ pci_free_irq_vectors(priv->si->pdev); } static void enetc_kfree_si(struct enetc_si *si) { char *p = (char *)si - si->pad; kfree(p); } static void enetc_detect_errata(struct enetc_si *si) { if (si->pdev->revision == ENETC_REV1) si->errata = ENETC_ERR_VLAN_ISOL | ENETC_ERR_UCMCSWP; } int enetc_pci_probe(struct pci_dev *pdev, const char *name, int sizeof_priv) { struct enetc_si *si, *p; struct enetc_hw *hw; size_t alloc_size; int err, len; pcie_flr(pdev); err = pci_enable_device_mem(pdev); if (err) { dev_err(&pdev->dev, "device enable failed\n"); return err; } /* set up for high or low dma */ err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); if (err) { err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (err) { dev_err(&pdev->dev, "DMA configuration failed: 0x%x\n", err); goto err_dma; } } err = pci_request_mem_regions(pdev, name); if (err) { dev_err(&pdev->dev, "pci_request_regions failed err=%d\n", err); goto err_pci_mem_reg; } pci_set_master(pdev); alloc_size = sizeof(struct enetc_si); if (sizeof_priv) { /* align priv to 32B */ alloc_size = ALIGN(alloc_size, ENETC_SI_ALIGN); alloc_size += sizeof_priv; } /* force 32B alignment for enetc_si */ alloc_size += ENETC_SI_ALIGN - 1; p = kzalloc(alloc_size, GFP_KERNEL); if (!p) { err = -ENOMEM; goto err_alloc_si; } si = PTR_ALIGN(p, ENETC_SI_ALIGN); si->pad = (char *)si - (char *)p; pci_set_drvdata(pdev, si); si->pdev = pdev; hw = &si->hw; len = pci_resource_len(pdev, ENETC_BAR_REGS); hw->reg = ioremap(pci_resource_start(pdev, ENETC_BAR_REGS), len); if (!hw->reg) { err = -ENXIO; dev_err(&pdev->dev, "ioremap() failed\n"); goto err_ioremap; } if (len > ENETC_PORT_BASE) hw->port = hw->reg + ENETC_PORT_BASE; if (len > ENETC_GLOBAL_BASE) hw->global = hw->reg + ENETC_GLOBAL_BASE; enetc_detect_errata(si); return 0; err_ioremap: enetc_kfree_si(si); err_alloc_si: pci_release_mem_regions(pdev); err_pci_mem_reg: err_dma: pci_disable_device(pdev); return err; } void enetc_pci_remove(struct pci_dev *pdev) { struct enetc_si *si = pci_get_drvdata(pdev); struct enetc_hw *hw = &si->hw; iounmap(hw->reg); enetc_kfree_si(si); pci_release_mem_regions(pdev); pci_disable_device(pdev); }