/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #ifndef KFD_PRIV_H_INCLUDED #define KFD_PRIV_H_INCLUDED #include #include #include #include #include #include #include #include #include #include "amd_shared.h" #define KFD_SYSFS_FILE_MODE 0444 #define KFD_MMAP_DOORBELL_MASK 0x8000000000000 #define KFD_MMAP_EVENTS_MASK 0x4000000000000 /* * When working with cp scheduler we should assign the HIQ manually or via * the radeon driver to a fixed hqd slot, here are the fixed HIQ hqd slot * definitions for Kaveri. In Kaveri only the first ME queues participates * in the cp scheduling taking that in mind we set the HIQ slot in the * second ME. */ #define KFD_CIK_HIQ_PIPE 4 #define KFD_CIK_HIQ_QUEUE 0 /* GPU ID hash width in bits */ #define KFD_GPU_ID_HASH_WIDTH 16 /* Macro for allocating structures */ #define kfd_alloc_struct(ptr_to_struct) \ ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL)) #define KFD_MAX_NUM_OF_PROCESSES 512 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024 /* * Kernel module parameter to specify maximum number of supported queues per * device */ extern int max_num_of_queues_per_device; #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE_DEFAULT 4096 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE \ (KFD_MAX_NUM_OF_PROCESSES * \ KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) #define KFD_KERNEL_QUEUE_SIZE 2048 /* Kernel module parameter to specify the scheduling policy */ extern int sched_policy; /* * Kernel module parameter to specify whether to send sigterm to HSA process on * unhandled exception */ extern int send_sigterm; /** * enum kfd_sched_policy * * @KFD_SCHED_POLICY_HWS: H/W scheduling policy known as command processor (cp) * scheduling. In this scheduling mode we're using the firmware code to * schedule the user mode queues and kernel queues such as HIQ and DIQ. * the HIQ queue is used as a special queue that dispatches the configuration * to the cp and the user mode queues list that are currently running. * the DIQ queue is a debugging queue that dispatches debugging commands to the * firmware. * in this scheduling mode user mode queues over subscription feature is * enabled. * * @KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: The same as above but the over * subscription feature disabled. * * @KFD_SCHED_POLICY_NO_HWS: no H/W scheduling policy is a mode which directly * set the command processor registers and sets the queues "manually". This * mode is used *ONLY* for debugging proposes. * */ enum kfd_sched_policy { KFD_SCHED_POLICY_HWS = 0, KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION, KFD_SCHED_POLICY_NO_HWS }; enum cache_policy { cache_policy_coherent, cache_policy_noncoherent }; struct kfd_event_interrupt_class { bool (*interrupt_isr)(struct kfd_dev *dev, const uint32_t *ih_ring_entry); void (*interrupt_wq)(struct kfd_dev *dev, const uint32_t *ih_ring_entry); }; struct kfd_device_info { enum amd_asic_type asic_family; const struct kfd_event_interrupt_class *event_interrupt_class; unsigned int max_pasid_bits; unsigned int max_no_of_hqd; size_t ih_ring_entry_size; uint8_t num_of_watch_points; uint16_t mqd_size_aligned; }; struct kfd_mem_obj { uint32_t range_start; uint32_t range_end; uint64_t gpu_addr; uint32_t *cpu_ptr; }; struct kfd_vmid_info { uint32_t first_vmid_kfd; uint32_t last_vmid_kfd; uint32_t vmid_num_kfd; }; struct kfd_dev { struct kgd_dev *kgd; const struct kfd_device_info *device_info; struct pci_dev *pdev; unsigned int id; /* topology stub index */ phys_addr_t doorbell_base; /* Start of actual doorbells used by * KFD. It is aligned for mapping * into user mode */ size_t doorbell_id_offset; /* Doorbell offset (from KFD doorbell * to HW doorbell, GFX reserved some * at the start) */ u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells * page used by kernel queue */ struct kgd2kfd_shared_resources shared_resources; struct kfd_vmid_info vm_info; const struct kfd2kgd_calls *kfd2kgd; struct mutex doorbell_mutex; DECLARE_BITMAP(doorbell_available_index, KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); void *gtt_mem; uint64_t gtt_start_gpu_addr; void *gtt_start_cpu_ptr; void *gtt_sa_bitmap; struct mutex gtt_sa_lock; unsigned int gtt_sa_chunk_size; unsigned int gtt_sa_num_of_chunks; /* Interrupts */ void *interrupt_ring; size_t interrupt_ring_size; atomic_t interrupt_ring_rptr; atomic_t interrupt_ring_wptr; struct work_struct interrupt_work; spinlock_t interrupt_lock; /* QCM Device instance */ struct device_queue_manager *dqm; bool init_complete; /* * Interrupts of interest to KFD are copied * from the HW ring into a SW ring. */ bool interrupts_active; /* Debug manager */ struct kfd_dbgmgr *dbgmgr; }; /* KGD2KFD callbacks */ void kgd2kfd_exit(void); struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd, struct pci_dev *pdev, const struct kfd2kgd_calls *f2g); bool kgd2kfd_device_init(struct kfd_dev *kfd, const struct kgd2kfd_shared_resources *gpu_resources); void kgd2kfd_device_exit(struct kfd_dev *kfd); enum kfd_mempool { KFD_MEMPOOL_SYSTEM_CACHEABLE = 1, KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2, KFD_MEMPOOL_FRAMEBUFFER = 3, }; /* Character device interface */ int kfd_chardev_init(void); void kfd_chardev_exit(void); struct device *kfd_chardev(void); /** * enum kfd_unmap_queues_filter * * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue. * * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the * running queues list. * * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to * specific process. * */ enum kfd_unmap_queues_filter { KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, KFD_UNMAP_QUEUES_FILTER_BY_PASID }; /** * enum kfd_queue_type * * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type. * * @KFD_QUEUE_TYPE_SDMA: Sdma user mode queue type. * * @KFD_QUEUE_TYPE_HIQ: HIQ queue type. * * @KFD_QUEUE_TYPE_DIQ: DIQ queue type. */ enum kfd_queue_type { KFD_QUEUE_TYPE_COMPUTE, KFD_QUEUE_TYPE_SDMA, KFD_QUEUE_TYPE_HIQ, KFD_QUEUE_TYPE_DIQ }; enum kfd_queue_format { KFD_QUEUE_FORMAT_PM4, KFD_QUEUE_FORMAT_AQL }; /** * struct queue_properties * * @type: The queue type. * * @queue_id: Queue identifier. * * @queue_address: Queue ring buffer address. * * @queue_size: Queue ring buffer size. * * @priority: Defines the queue priority relative to other queues in the * process. * This is just an indication and HW scheduling may override the priority as * necessary while keeping the relative prioritization. * the priority granularity is from 0 to f which f is the highest priority. * currently all queues are initialized with the highest priority. * * @queue_percent: This field is partially implemented and currently a zero in * this field defines that the queue is non active. * * @read_ptr: User space address which points to the number of dwords the * cp read from the ring buffer. This field updates automatically by the H/W. * * @write_ptr: Defines the number of dwords written to the ring buffer. * * @doorbell_ptr: This field aim is to notify the H/W of new packet written to * the queue ring buffer. This field should be similar to write_ptr and the * user should update this field after he updated the write_ptr. * * @doorbell_off: The doorbell offset in the doorbell pci-bar. * * @is_interop: Defines if this is a interop queue. Interop queue means that * the queue can access both graphics and compute resources. * * @is_active: Defines if the queue is active or not. * * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid * of the queue. * * This structure represents the queue properties for each queue no matter if * it's user mode or kernel mode queue. * */ struct queue_properties { enum kfd_queue_type type; enum kfd_queue_format format; unsigned int queue_id; uint64_t queue_address; uint64_t queue_size; uint32_t priority; uint32_t queue_percent; uint32_t *read_ptr; uint32_t *write_ptr; uint32_t __iomem *doorbell_ptr; uint32_t doorbell_off; bool is_interop; bool is_active; /* Not relevant for user mode queues in cp scheduling */ unsigned int vmid; /* Relevant only for sdma queues*/ uint32_t sdma_engine_id; uint32_t sdma_queue_id; uint32_t sdma_vm_addr; /* Relevant only for VI */ uint64_t eop_ring_buffer_address; uint32_t eop_ring_buffer_size; uint64_t ctx_save_restore_area_address; uint32_t ctx_save_restore_area_size; }; /** * struct queue * * @list: Queue linked list. * * @mqd: The queue MQD. * * @mqd_mem_obj: The MQD local gpu memory object. * * @gart_mqd_addr: The MQD gart mc address. * * @properties: The queue properties. * * @mec: Used only in no cp scheduling mode and identifies to micro engine id * that the queue should be execute on. * * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe * id. * * @queue: Used only in no cp scheduliong mode and identifies the queue's slot. * * @process: The kfd process that created this queue. * * @device: The kfd device that created this queue. * * This structure represents user mode compute queues. * It contains all the necessary data to handle such queues. * */ struct queue { struct list_head list; void *mqd; struct kfd_mem_obj *mqd_mem_obj; uint64_t gart_mqd_addr; struct queue_properties properties; uint32_t mec; uint32_t pipe; uint32_t queue; unsigned int sdma_id; struct kfd_process *process; struct kfd_dev *device; }; /* * Please read the kfd_mqd_manager.h description. */ enum KFD_MQD_TYPE { KFD_MQD_TYPE_COMPUTE = 0, /* for no cp scheduling */ KFD_MQD_TYPE_HIQ, /* for hiq */ KFD_MQD_TYPE_CP, /* for cp queues and diq */ KFD_MQD_TYPE_SDMA, /* for sdma queues */ KFD_MQD_TYPE_MAX }; struct scheduling_resources { unsigned int vmid_mask; enum kfd_queue_type type; uint64_t queue_mask; uint64_t gws_mask; uint32_t oac_mask; uint32_t gds_heap_base; uint32_t gds_heap_size; }; struct process_queue_manager { /* data */ struct kfd_process *process; unsigned int num_concurrent_processes; struct list_head queues; unsigned long *queue_slot_bitmap; }; struct qcm_process_device { /* The Device Queue Manager that owns this data */ struct device_queue_manager *dqm; struct process_queue_manager *pqm; /* Queues list */ struct list_head queues_list; struct list_head priv_queue_list; unsigned int queue_count; unsigned int vmid; bool is_debug; /* * All the memory management data should be here too */ uint64_t gds_context_area; uint32_t sh_mem_config; uint32_t sh_mem_bases; uint32_t sh_mem_ape1_base; uint32_t sh_mem_ape1_limit; uint32_t page_table_base; uint32_t gds_size; uint32_t num_gws; uint32_t num_oac; uint32_t sh_hidden_private_base; }; enum kfd_pdd_bound { PDD_UNBOUND = 0, PDD_BOUND, PDD_BOUND_SUSPENDED, }; /* Data that is per-process-per device. */ struct kfd_process_device { /* * List of all per-device data for a process. * Starts from kfd_process.per_device_data. */ struct list_head per_device_list; /* The device that owns this data. */ struct kfd_dev *dev; /* per-process-per device QCM data structure */ struct qcm_process_device qpd; /*Apertures*/ uint64_t lds_base; uint64_t lds_limit; uint64_t gpuvm_base; uint64_t gpuvm_limit; uint64_t scratch_base; uint64_t scratch_limit; /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */ enum kfd_pdd_bound bound; /* This flag tells if we should reset all * wavefronts on process termination */ bool reset_wavefronts; }; #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd) /* Process data */ struct kfd_process { /* * kfd_process are stored in an mm_struct*->kfd_process* * hash table (kfd_processes in kfd_process.c) */ struct hlist_node kfd_processes; struct mm_struct *mm; struct mutex mutex; /* * In any process, the thread that started main() is the lead * thread and outlives the rest. * It is here because amd_iommu_bind_pasid wants a task_struct. */ struct task_struct *lead_thread; /* We want to receive a notification when the mm_struct is destroyed */ struct mmu_notifier mmu_notifier; /* Use for delayed freeing of kfd_process structure */ struct rcu_head rcu; unsigned int pasid; unsigned int doorbell_index; /* * List of kfd_process_device structures, * one for each device the process is using. */ struct list_head per_device_data; struct process_queue_manager pqm; /* The process's queues. */ size_t queue_array_size; /* Size is queue_array_size, up to MAX_PROCESS_QUEUES. */ struct kfd_queue **queues; /*Is the user space process 32 bit?*/ bool is_32bit_user_mode; /* Event-related data */ struct mutex event_mutex; /* All events in process hashed by ID, linked on kfd_event.events. */ DECLARE_HASHTABLE(events, 4); /* struct slot_page_header.event_pages */ struct list_head signal_event_pages; u32 next_nonsignal_event_id; size_t signal_event_count; bool signal_event_limit_reached; }; /** * Ioctl function type. * * \param filep pointer to file structure. * \param p amdkfd process pointer. * \param data pointer to arg that was copied from user. */ typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p, void *data); struct amdkfd_ioctl_desc { unsigned int cmd; int flags; amdkfd_ioctl_t *func; unsigned int cmd_drv; const char *name; }; void kfd_process_create_wq(void); void kfd_process_destroy_wq(void); struct kfd_process *kfd_create_process(const struct task_struct *); struct kfd_process *kfd_get_process(const struct task_struct *); struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid); struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, struct kfd_process *p); int kfd_bind_processes_to_device(struct kfd_dev *dev); void kfd_unbind_processes_from_device(struct kfd_dev *dev); void kfd_process_iommu_unbind_callback(struct kfd_dev *dev, unsigned int pasid); struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, struct kfd_process *p); struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, struct kfd_process *p); /* Process device data iterator */ struct kfd_process_device *kfd_get_first_process_device_data( struct kfd_process *p); struct kfd_process_device *kfd_get_next_process_device_data( struct kfd_process *p, struct kfd_process_device *pdd); bool kfd_has_process_device_data(struct kfd_process *p); /* PASIDs */ int kfd_pasid_init(void); void kfd_pasid_exit(void); bool kfd_set_pasid_limit(unsigned int new_limit); unsigned int kfd_get_pasid_limit(void); unsigned int kfd_pasid_alloc(void); void kfd_pasid_free(unsigned int pasid); /* Doorbells */ int kfd_doorbell_init(struct kfd_dev *kfd); void kfd_doorbell_fini(struct kfd_dev *kfd); int kfd_doorbell_mmap(struct kfd_process *process, struct vm_area_struct *vma); u32 __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd, unsigned int *doorbell_off); void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr); u32 read_kernel_doorbell(u32 __iomem *db); void write_kernel_doorbell(u32 __iomem *db, u32 value); unsigned int kfd_queue_id_to_doorbell(struct kfd_dev *kfd, struct kfd_process *process, unsigned int queue_id); phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev, struct kfd_process *process); int kfd_alloc_process_doorbells(struct kfd_process *process); void kfd_free_process_doorbells(struct kfd_process *process); /* GTT Sub-Allocator */ int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size, struct kfd_mem_obj **mem_obj); int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj); extern struct device *kfd_device; /* Topology */ int kfd_topology_init(void); void kfd_topology_shutdown(void); int kfd_topology_add_device(struct kfd_dev *gpu); int kfd_topology_remove_device(struct kfd_dev *gpu); struct kfd_dev *kfd_device_by_id(uint32_t gpu_id); struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev); struct kfd_dev *kfd_topology_enum_kfd_devices(uint8_t idx); /* Interrupts */ int kfd_interrupt_init(struct kfd_dev *dev); void kfd_interrupt_exit(struct kfd_dev *dev); void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry); bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry); bool interrupt_is_wanted(struct kfd_dev *dev, const uint32_t *ih_ring_entry); /* Power Management */ void kgd2kfd_suspend(struct kfd_dev *kfd); int kgd2kfd_resume(struct kfd_dev *kfd); /* amdkfd Apertures */ int kfd_init_apertures(struct kfd_process *process); /* Queue Context Management */ struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd); int init_queue(struct queue **q, const struct queue_properties *properties); void uninit_queue(struct queue *q); void print_queue_properties(struct queue_properties *q); void print_queue(struct queue *q); struct mqd_manager *mqd_manager_init(enum KFD_MQD_TYPE type, struct kfd_dev *dev); struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type, struct kfd_dev *dev); struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type, struct kfd_dev *dev); struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev); void device_queue_manager_uninit(struct device_queue_manager *dqm); struct kernel_queue *kernel_queue_init(struct kfd_dev *dev, enum kfd_queue_type type); void kernel_queue_uninit(struct kernel_queue *kq); /* Process Queue Manager */ struct process_queue_node { struct queue *q; struct kernel_queue *kq; struct list_head process_queue_list; }; int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p); void pqm_uninit(struct process_queue_manager *pqm); int pqm_create_queue(struct process_queue_manager *pqm, struct kfd_dev *dev, struct file *f, struct queue_properties *properties, unsigned int flags, enum kfd_queue_type type, unsigned int *qid); int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid); int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid, struct queue_properties *p); struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm, unsigned int qid); int amdkfd_fence_wait_timeout(unsigned int *fence_addr, unsigned int fence_value, unsigned int timeout_ms); /* Packet Manager */ #define KFD_FENCE_COMPLETED (100) #define KFD_FENCE_INIT (10) struct packet_manager { struct device_queue_manager *dqm; struct kernel_queue *priv_queue; struct mutex lock; bool allocated; struct kfd_mem_obj *ib_buffer_obj; }; int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm); void pm_uninit(struct packet_manager *pm); int pm_send_set_resources(struct packet_manager *pm, struct scheduling_resources *res); int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues); int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address, uint32_t fence_value); int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type, enum kfd_unmap_queues_filter mode, uint32_t filter_param, bool reset, unsigned int sdma_engine); void pm_release_ib(struct packet_manager *pm); uint64_t kfd_get_number_elems(struct kfd_dev *kfd); /* Events */ extern const struct kfd_event_interrupt_class event_interrupt_class_cik; extern const struct kfd_device_global_init_class device_global_init_class_cik; enum kfd_event_wait_result { KFD_WAIT_COMPLETE, KFD_WAIT_TIMEOUT, KFD_WAIT_ERROR }; void kfd_event_init_process(struct kfd_process *p); void kfd_event_free_process(struct kfd_process *p); int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma); int kfd_wait_on_events(struct kfd_process *p, uint32_t num_events, void __user *data, bool all, uint32_t user_timeout_ms, enum kfd_event_wait_result *wait_result); void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id, uint32_t valid_id_bits); void kfd_signal_iommu_event(struct kfd_dev *dev, unsigned int pasid, unsigned long address, bool is_write_requested, bool is_execute_requested); void kfd_signal_hw_exception_event(unsigned int pasid); int kfd_set_event(struct kfd_process *p, uint32_t event_id); int kfd_reset_event(struct kfd_process *p, uint32_t event_id); int kfd_event_create(struct file *devkfd, struct kfd_process *p, uint32_t event_type, bool auto_reset, uint32_t node_id, uint32_t *event_id, uint32_t *event_trigger_data, uint64_t *event_page_offset, uint32_t *event_slot_index); int kfd_event_destroy(struct kfd_process *p, uint32_t event_id); int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p); #endif