/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include #include "kfd_priv.h" #include "kfd_mqd_manager.h" #include "cik_regs.h" #include "cik_structs.h" #include "oss/oss_2_4_sh_mask.h" static inline struct cik_mqd *get_mqd(void *mqd) { return (struct cik_mqd *)mqd; } static int init_mqd(struct mqd_manager *mm, void **mqd, struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr, struct queue_properties *q) { uint64_t addr; struct cik_mqd *m; int retval; retval = kfd_gtt_sa_allocate(mm->dev, sizeof(struct cik_mqd), mqd_mem_obj); if (retval != 0) return -ENOMEM; m = (struct cik_mqd *) (*mqd_mem_obj)->cpu_ptr; addr = (*mqd_mem_obj)->gpu_addr; memset(m, 0, ALIGN(sizeof(struct cik_mqd), 256)); m->header = 0xC0310800; m->compute_pipelinestat_enable = 1; m->compute_static_thread_mgmt_se0 = 0xFFFFFFFF; m->compute_static_thread_mgmt_se1 = 0xFFFFFFFF; m->compute_static_thread_mgmt_se2 = 0xFFFFFFFF; m->compute_static_thread_mgmt_se3 = 0xFFFFFFFF; /* * Make sure to use the last queue state saved on mqd when the cp * reassigns the queue, so when queue is switched on/off (e.g over * subscription or quantum timeout) the context will be consistent */ m->cp_hqd_persistent_state = DEFAULT_CP_HQD_PERSISTENT_STATE | PRELOAD_REQ; m->cp_mqd_control = MQD_CONTROL_PRIV_STATE_EN; m->cp_mqd_base_addr_lo = lower_32_bits(addr); m->cp_mqd_base_addr_hi = upper_32_bits(addr); m->cp_hqd_ib_control = DEFAULT_MIN_IB_AVAIL_SIZE | IB_ATC_EN; /* Although WinKFD writes this, I suspect it should not be necessary */ m->cp_hqd_ib_control = IB_ATC_EN | DEFAULT_MIN_IB_AVAIL_SIZE; m->cp_hqd_quantum = QUANTUM_EN | QUANTUM_SCALE_1MS | QUANTUM_DURATION(10); /* * Pipe Priority * Identifies the pipe relative priority when this queue is connected * to the pipeline. The pipe priority is against the GFX pipe and HP3D. * In KFD we are using a fixed pipe priority set to CS_MEDIUM. * 0 = CS_LOW (typically below GFX) * 1 = CS_MEDIUM (typically between HP3D and GFX * 2 = CS_HIGH (typically above HP3D) */ m->cp_hqd_pipe_priority = 1; m->cp_hqd_queue_priority = 15; if (q->format == KFD_QUEUE_FORMAT_AQL) m->cp_hqd_iq_rptr = AQL_ENABLE; *mqd = m; if (gart_addr) *gart_addr = addr; retval = mm->update_mqd(mm, m, q); return retval; } static int init_mqd_sdma(struct mqd_manager *mm, void **mqd, struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr, struct queue_properties *q) { int retval; struct cik_sdma_rlc_registers *m; retval = kfd_gtt_sa_allocate(mm->dev, sizeof(struct cik_sdma_rlc_registers), mqd_mem_obj); if (retval != 0) return -ENOMEM; m = (struct cik_sdma_rlc_registers *) (*mqd_mem_obj)->cpu_ptr; memset(m, 0, sizeof(struct cik_sdma_rlc_registers)); *mqd = m; if (gart_addr) *gart_addr = (*mqd_mem_obj)->gpu_addr; retval = mm->update_mqd(mm, m, q); return retval; } static void uninit_mqd(struct mqd_manager *mm, void *mqd, struct kfd_mem_obj *mqd_mem_obj) { kfd_gtt_sa_free(mm->dev, mqd_mem_obj); } static void uninit_mqd_sdma(struct mqd_manager *mm, void *mqd, struct kfd_mem_obj *mqd_mem_obj) { kfd_gtt_sa_free(mm->dev, mqd_mem_obj); } static int load_mqd(struct mqd_manager *mm, void *mqd, uint32_t pipe_id, uint32_t queue_id, struct queue_properties *p, struct mm_struct *mms) { /* AQL write pointer counts in 64B packets, PM4/CP counts in dwords. */ uint32_t wptr_shift = (p->format == KFD_QUEUE_FORMAT_AQL ? 4 : 0); uint32_t wptr_mask = (uint32_t)((p->queue_size / sizeof(uint32_t)) - 1); return mm->dev->kfd2kgd->hqd_load(mm->dev->kgd, mqd, pipe_id, queue_id, (uint32_t __user *)p->write_ptr, wptr_shift, wptr_mask, mms); } static int load_mqd_sdma(struct mqd_manager *mm, void *mqd, uint32_t pipe_id, uint32_t queue_id, struct queue_properties *p, struct mm_struct *mms) { return mm->dev->kfd2kgd->hqd_sdma_load(mm->dev->kgd, mqd, (uint32_t __user *)p->write_ptr, mms); } static int update_mqd(struct mqd_manager *mm, void *mqd, struct queue_properties *q) { struct cik_mqd *m; m = get_mqd(mqd); m->cp_hqd_pq_control = DEFAULT_RPTR_BLOCK_SIZE | DEFAULT_MIN_AVAIL_SIZE | PQ_ATC_EN; /* * Calculating queue size which is log base 2 of actual queue size -1 * dwords and another -1 for ffs */ m->cp_hqd_pq_control |= ffs(q->queue_size / sizeof(unsigned int)) - 1 - 1; m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8); m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8); m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr); m->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits((uint64_t)q->read_ptr); m->cp_hqd_pq_doorbell_control = DOORBELL_OFFSET(q->doorbell_off); m->cp_hqd_vmid = q->vmid; if (q->format == KFD_QUEUE_FORMAT_AQL) m->cp_hqd_pq_control |= NO_UPDATE_RPTR; q->is_active = (q->queue_size > 0 && q->queue_address != 0 && q->queue_percent > 0); return 0; } static int update_mqd_sdma(struct mqd_manager *mm, void *mqd, struct queue_properties *q) { struct cik_sdma_rlc_registers *m; m = get_sdma_mqd(mqd); m->sdma_rlc_rb_cntl = (ffs(q->queue_size / sizeof(unsigned int)) - 1) << SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT | q->vmid << SDMA0_RLC0_RB_CNTL__RB_VMID__SHIFT | 1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT | 6 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT; m->sdma_rlc_rb_base = lower_32_bits(q->queue_address >> 8); m->sdma_rlc_rb_base_hi = upper_32_bits(q->queue_address >> 8); m->sdma_rlc_rb_rptr_addr_lo = lower_32_bits((uint64_t)q->read_ptr); m->sdma_rlc_rb_rptr_addr_hi = upper_32_bits((uint64_t)q->read_ptr); m->sdma_rlc_doorbell = q->doorbell_off << SDMA0_RLC0_DOORBELL__OFFSET__SHIFT; m->sdma_rlc_virtual_addr = q->sdma_vm_addr; m->sdma_engine_id = q->sdma_engine_id; m->sdma_queue_id = q->sdma_queue_id; q->is_active = (q->queue_size > 0 && q->queue_address != 0 && q->queue_percent > 0); return 0; } static int destroy_mqd(struct mqd_manager *mm, void *mqd, enum kfd_preempt_type type, unsigned int timeout, uint32_t pipe_id, uint32_t queue_id) { return mm->dev->kfd2kgd->hqd_destroy(mm->dev->kgd, mqd, type, timeout, pipe_id, queue_id); } /* * preempt type here is ignored because there is only one way * to preempt sdma queue */ static int destroy_mqd_sdma(struct mqd_manager *mm, void *mqd, enum kfd_preempt_type type, unsigned int timeout, uint32_t pipe_id, uint32_t queue_id) { return mm->dev->kfd2kgd->hqd_sdma_destroy(mm->dev->kgd, mqd, timeout); } static bool is_occupied(struct mqd_manager *mm, void *mqd, uint64_t queue_address, uint32_t pipe_id, uint32_t queue_id) { return mm->dev->kfd2kgd->hqd_is_occupied(mm->dev->kgd, queue_address, pipe_id, queue_id); } static bool is_occupied_sdma(struct mqd_manager *mm, void *mqd, uint64_t queue_address, uint32_t pipe_id, uint32_t queue_id) { return mm->dev->kfd2kgd->hqd_sdma_is_occupied(mm->dev->kgd, mqd); } /* * HIQ MQD Implementation, concrete implementation for HIQ MQD implementation. * The HIQ queue in Kaveri is using the same MQD structure as all the user mode * queues but with different initial values. */ static int init_mqd_hiq(struct mqd_manager *mm, void **mqd, struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr, struct queue_properties *q) { uint64_t addr; struct cik_mqd *m; int retval; retval = kfd_gtt_sa_allocate(mm->dev, sizeof(struct cik_mqd), mqd_mem_obj); if (retval != 0) return -ENOMEM; m = (struct cik_mqd *) (*mqd_mem_obj)->cpu_ptr; addr = (*mqd_mem_obj)->gpu_addr; memset(m, 0, ALIGN(sizeof(struct cik_mqd), 256)); m->header = 0xC0310800; m->compute_pipelinestat_enable = 1; m->compute_static_thread_mgmt_se0 = 0xFFFFFFFF; m->compute_static_thread_mgmt_se1 = 0xFFFFFFFF; m->compute_static_thread_mgmt_se2 = 0xFFFFFFFF; m->compute_static_thread_mgmt_se3 = 0xFFFFFFFF; m->cp_hqd_persistent_state = DEFAULT_CP_HQD_PERSISTENT_STATE | PRELOAD_REQ; m->cp_hqd_quantum = QUANTUM_EN | QUANTUM_SCALE_1MS | QUANTUM_DURATION(10); m->cp_mqd_control = MQD_CONTROL_PRIV_STATE_EN; m->cp_mqd_base_addr_lo = lower_32_bits(addr); m->cp_mqd_base_addr_hi = upper_32_bits(addr); m->cp_hqd_ib_control = DEFAULT_MIN_IB_AVAIL_SIZE; /* * Pipe Priority * Identifies the pipe relative priority when this queue is connected * to the pipeline. The pipe priority is against the GFX pipe and HP3D. * In KFD we are using a fixed pipe priority set to CS_MEDIUM. * 0 = CS_LOW (typically below GFX) * 1 = CS_MEDIUM (typically between HP3D and GFX * 2 = CS_HIGH (typically above HP3D) */ m->cp_hqd_pipe_priority = 1; m->cp_hqd_queue_priority = 15; *mqd = m; if (gart_addr) *gart_addr = addr; retval = mm->update_mqd(mm, m, q); return retval; } static int update_mqd_hiq(struct mqd_manager *mm, void *mqd, struct queue_properties *q) { struct cik_mqd *m; m = get_mqd(mqd); m->cp_hqd_pq_control = DEFAULT_RPTR_BLOCK_SIZE | DEFAULT_MIN_AVAIL_SIZE | PRIV_STATE | KMD_QUEUE; /* * Calculating queue size which is log base 2 of actual queue * size -1 dwords */ m->cp_hqd_pq_control |= ffs(q->queue_size / sizeof(unsigned int)) - 1 - 1; m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8); m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8); m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr); m->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits((uint64_t)q->read_ptr); m->cp_hqd_pq_doorbell_control = DOORBELL_OFFSET(q->doorbell_off); m->cp_hqd_vmid = q->vmid; q->is_active = (q->queue_size > 0 && q->queue_address != 0 && q->queue_percent > 0); return 0; } struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd) { struct cik_sdma_rlc_registers *m; m = (struct cik_sdma_rlc_registers *)mqd; return m; } struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type, struct kfd_dev *dev) { struct mqd_manager *mqd; if (WARN_ON(type >= KFD_MQD_TYPE_MAX)) return NULL; mqd = kzalloc(sizeof(*mqd), GFP_KERNEL); if (!mqd) return NULL; mqd->dev = dev; switch (type) { case KFD_MQD_TYPE_CP: case KFD_MQD_TYPE_COMPUTE: mqd->init_mqd = init_mqd; mqd->uninit_mqd = uninit_mqd; mqd->load_mqd = load_mqd; mqd->update_mqd = update_mqd; mqd->destroy_mqd = destroy_mqd; mqd->is_occupied = is_occupied; break; case KFD_MQD_TYPE_HIQ: mqd->init_mqd = init_mqd_hiq; mqd->uninit_mqd = uninit_mqd; mqd->load_mqd = load_mqd; mqd->update_mqd = update_mqd_hiq; mqd->destroy_mqd = destroy_mqd; mqd->is_occupied = is_occupied; break; case KFD_MQD_TYPE_SDMA: mqd->init_mqd = init_mqd_sdma; mqd->uninit_mqd = uninit_mqd_sdma; mqd->load_mqd = load_mqd_sdma; mqd->update_mqd = update_mqd_sdma; mqd->destroy_mqd = destroy_mqd_sdma; mqd->is_occupied = is_occupied_sdma; break; default: kfree(mqd); return NULL; } return mqd; }