/* * Copyright (c) 2005-2011 Atheros Communications Inc. * Copyright (c) 2011-2013 Qualcomm Atheros, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include "core.h" #include "htc.h" #include "debug.h" #include "wmi.h" #include "mac.h" void ath10k_wmi_flush_tx(struct ath10k *ar) { int ret; lockdep_assert_held(&ar->conf_mutex); if (ar->state == ATH10K_STATE_WEDGED) { ath10k_warn("wmi flush skipped - device is wedged anyway\n"); return; } ret = wait_event_timeout(ar->wmi.wq, atomic_read(&ar->wmi.pending_tx_count) == 0, 5*HZ); if (atomic_read(&ar->wmi.pending_tx_count) == 0) return; if (ret == 0) ret = -ETIMEDOUT; if (ret < 0) ath10k_warn("wmi flush failed (%d)\n", ret); } int ath10k_wmi_wait_for_service_ready(struct ath10k *ar) { int ret; ret = wait_for_completion_timeout(&ar->wmi.service_ready, WMI_SERVICE_READY_TIMEOUT_HZ); return ret; } int ath10k_wmi_wait_for_unified_ready(struct ath10k *ar) { int ret; ret = wait_for_completion_timeout(&ar->wmi.unified_ready, WMI_UNIFIED_READY_TIMEOUT_HZ); return ret; } static struct sk_buff *ath10k_wmi_alloc_skb(u32 len) { struct sk_buff *skb; u32 round_len = roundup(len, 4); skb = ath10k_htc_alloc_skb(WMI_SKB_HEADROOM + round_len); if (!skb) return NULL; skb_reserve(skb, WMI_SKB_HEADROOM); if (!IS_ALIGNED((unsigned long)skb->data, 4)) ath10k_warn("Unaligned WMI skb\n"); skb_put(skb, round_len); memset(skb->data, 0, round_len); return skb; } static void ath10k_wmi_htc_tx_complete(struct ath10k *ar, struct sk_buff *skb) { dev_kfree_skb(skb); if (atomic_sub_return(1, &ar->wmi.pending_tx_count) == 0) wake_up(&ar->wmi.wq); } /* WMI command API */ static int ath10k_wmi_cmd_send(struct ath10k *ar, struct sk_buff *skb, enum wmi_cmd_id cmd_id) { struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(skb); struct wmi_cmd_hdr *cmd_hdr; int status; u32 cmd = 0; if (skb_push(skb, sizeof(struct wmi_cmd_hdr)) == NULL) return -ENOMEM; cmd |= SM(cmd_id, WMI_CMD_HDR_CMD_ID); cmd_hdr = (struct wmi_cmd_hdr *)skb->data; cmd_hdr->cmd_id = __cpu_to_le32(cmd); if (atomic_add_return(1, &ar->wmi.pending_tx_count) > WMI_MAX_PENDING_TX_COUNT) { /* avoid using up memory when FW hangs */ atomic_dec(&ar->wmi.pending_tx_count); return -EBUSY; } memset(skb_cb, 0, sizeof(*skb_cb)); trace_ath10k_wmi_cmd(cmd_id, skb->data, skb->len); status = ath10k_htc_send(&ar->htc, ar->wmi.eid, skb); if (status) { dev_kfree_skb_any(skb); atomic_dec(&ar->wmi.pending_tx_count); return status; } return 0; } static int ath10k_wmi_event_scan(struct ath10k *ar, struct sk_buff *skb) { struct wmi_scan_event *event = (struct wmi_scan_event *)skb->data; enum wmi_scan_event_type event_type; enum wmi_scan_completion_reason reason; u32 freq; u32 req_id; u32 scan_id; u32 vdev_id; event_type = __le32_to_cpu(event->event_type); reason = __le32_to_cpu(event->reason); freq = __le32_to_cpu(event->channel_freq); req_id = __le32_to_cpu(event->scan_req_id); scan_id = __le32_to_cpu(event->scan_id); vdev_id = __le32_to_cpu(event->vdev_id); ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENTID\n"); ath10k_dbg(ATH10K_DBG_WMI, "scan event type %d reason %d freq %d req_id %d " "scan_id %d vdev_id %d\n", event_type, reason, freq, req_id, scan_id, vdev_id); spin_lock_bh(&ar->data_lock); switch (event_type) { case WMI_SCAN_EVENT_STARTED: ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_STARTED\n"); if (ar->scan.in_progress && ar->scan.is_roc) ieee80211_ready_on_channel(ar->hw); complete(&ar->scan.started); break; case WMI_SCAN_EVENT_COMPLETED: ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_COMPLETED\n"); switch (reason) { case WMI_SCAN_REASON_COMPLETED: ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_COMPLETED\n"); break; case WMI_SCAN_REASON_CANCELLED: ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_CANCELED\n"); break; case WMI_SCAN_REASON_PREEMPTED: ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_PREEMPTED\n"); break; case WMI_SCAN_REASON_TIMEDOUT: ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_TIMEDOUT\n"); break; default: break; } ar->scan_channel = NULL; if (!ar->scan.in_progress) { ath10k_warn("no scan requested, ignoring\n"); break; } if (ar->scan.is_roc) { ath10k_offchan_tx_purge(ar); if (!ar->scan.aborting) ieee80211_remain_on_channel_expired(ar->hw); } else { ieee80211_scan_completed(ar->hw, ar->scan.aborting); } del_timer(&ar->scan.timeout); complete_all(&ar->scan.completed); ar->scan.in_progress = false; break; case WMI_SCAN_EVENT_BSS_CHANNEL: ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_BSS_CHANNEL\n"); ar->scan_channel = NULL; break; case WMI_SCAN_EVENT_FOREIGN_CHANNEL: ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_FOREIGN_CHANNEL\n"); ar->scan_channel = ieee80211_get_channel(ar->hw->wiphy, freq); if (ar->scan.in_progress && ar->scan.is_roc && ar->scan.roc_freq == freq) { complete(&ar->scan.on_channel); } break; case WMI_SCAN_EVENT_DEQUEUED: ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_DEQUEUED\n"); break; case WMI_SCAN_EVENT_PREEMPTED: ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENT_PREEMPTED\n"); break; case WMI_SCAN_EVENT_START_FAILED: ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENT_START_FAILED\n"); break; default: break; } spin_unlock_bh(&ar->data_lock); return 0; } static inline enum ieee80211_band phy_mode_to_band(u32 phy_mode) { enum ieee80211_band band; switch (phy_mode) { case MODE_11A: case MODE_11NA_HT20: case MODE_11NA_HT40: case MODE_11AC_VHT20: case MODE_11AC_VHT40: case MODE_11AC_VHT80: band = IEEE80211_BAND_5GHZ; break; case MODE_11G: case MODE_11B: case MODE_11GONLY: case MODE_11NG_HT20: case MODE_11NG_HT40: case MODE_11AC_VHT20_2G: case MODE_11AC_VHT40_2G: case MODE_11AC_VHT80_2G: default: band = IEEE80211_BAND_2GHZ; } return band; } static inline u8 get_rate_idx(u32 rate, enum ieee80211_band band) { u8 rate_idx = 0; /* rate in Kbps */ switch (rate) { case 1000: rate_idx = 0; break; case 2000: rate_idx = 1; break; case 5500: rate_idx = 2; break; case 11000: rate_idx = 3; break; case 6000: rate_idx = 4; break; case 9000: rate_idx = 5; break; case 12000: rate_idx = 6; break; case 18000: rate_idx = 7; break; case 24000: rate_idx = 8; break; case 36000: rate_idx = 9; break; case 48000: rate_idx = 10; break; case 54000: rate_idx = 11; break; default: break; } if (band == IEEE80211_BAND_5GHZ) { if (rate_idx > 3) /* Omit CCK rates */ rate_idx -= 4; else rate_idx = 0; } return rate_idx; } static int ath10k_wmi_event_mgmt_rx(struct ath10k *ar, struct sk_buff *skb) { struct wmi_mgmt_rx_event *event = (struct wmi_mgmt_rx_event *)skb->data; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); struct ieee80211_hdr *hdr; u32 rx_status; u32 channel; u32 phy_mode; u32 snr; u32 rate; u32 buf_len; u16 fc; channel = __le32_to_cpu(event->hdr.channel); buf_len = __le32_to_cpu(event->hdr.buf_len); rx_status = __le32_to_cpu(event->hdr.status); snr = __le32_to_cpu(event->hdr.snr); phy_mode = __le32_to_cpu(event->hdr.phy_mode); rate = __le32_to_cpu(event->hdr.rate); memset(status, 0, sizeof(*status)); ath10k_dbg(ATH10K_DBG_MGMT, "event mgmt rx status %08x\n", rx_status); if (rx_status & WMI_RX_STATUS_ERR_DECRYPT) { dev_kfree_skb(skb); return 0; } if (rx_status & WMI_RX_STATUS_ERR_KEY_CACHE_MISS) { dev_kfree_skb(skb); return 0; } if (rx_status & WMI_RX_STATUS_ERR_CRC) status->flag |= RX_FLAG_FAILED_FCS_CRC; if (rx_status & WMI_RX_STATUS_ERR_MIC) status->flag |= RX_FLAG_MMIC_ERROR; status->band = phy_mode_to_band(phy_mode); status->freq = ieee80211_channel_to_frequency(channel, status->band); status->signal = snr + ATH10K_DEFAULT_NOISE_FLOOR; status->rate_idx = get_rate_idx(rate, status->band); skb_pull(skb, sizeof(event->hdr)); hdr = (struct ieee80211_hdr *)skb->data; fc = le16_to_cpu(hdr->frame_control); if (fc & IEEE80211_FCTL_PROTECTED) { status->flag |= RX_FLAG_DECRYPTED | RX_FLAG_IV_STRIPPED | RX_FLAG_MMIC_STRIPPED; hdr->frame_control = __cpu_to_le16(fc & ~IEEE80211_FCTL_PROTECTED); } ath10k_dbg(ATH10K_DBG_MGMT, "event mgmt rx skb %p len %d ftype %02x stype %02x\n", skb, skb->len, fc & IEEE80211_FCTL_FTYPE, fc & IEEE80211_FCTL_STYPE); ath10k_dbg(ATH10K_DBG_MGMT, "event mgmt rx freq %d band %d snr %d, rate_idx %d\n", status->freq, status->band, status->signal, status->rate_idx); /* * packets from HTC come aligned to 4byte boundaries * because they can originally come in along with a trailer */ skb_trim(skb, buf_len); ieee80211_rx(ar->hw, skb); return 0; } static int freq_to_idx(struct ath10k *ar, int freq) { struct ieee80211_supported_band *sband; int band, ch, idx = 0; for (band = IEEE80211_BAND_2GHZ; band < IEEE80211_NUM_BANDS; band++) { sband = ar->hw->wiphy->bands[band]; if (!sband) continue; for (ch = 0; ch < sband->n_channels; ch++, idx++) if (sband->channels[ch].center_freq == freq) goto exit; } exit: return idx; } static void ath10k_wmi_event_chan_info(struct ath10k *ar, struct sk_buff *skb) { struct wmi_chan_info_event *ev; struct survey_info *survey; u32 err_code, freq, cmd_flags, noise_floor, rx_clear_count, cycle_count; int idx; ev = (struct wmi_chan_info_event *)skb->data; err_code = __le32_to_cpu(ev->err_code); freq = __le32_to_cpu(ev->freq); cmd_flags = __le32_to_cpu(ev->cmd_flags); noise_floor = __le32_to_cpu(ev->noise_floor); rx_clear_count = __le32_to_cpu(ev->rx_clear_count); cycle_count = __le32_to_cpu(ev->cycle_count); ath10k_dbg(ATH10K_DBG_WMI, "chan info err_code %d freq %d cmd_flags %d noise_floor %d rx_clear_count %d cycle_count %d\n", err_code, freq, cmd_flags, noise_floor, rx_clear_count, cycle_count); spin_lock_bh(&ar->data_lock); if (!ar->scan.in_progress) { ath10k_warn("chan info event without a scan request?\n"); goto exit; } idx = freq_to_idx(ar, freq); if (idx >= ARRAY_SIZE(ar->survey)) { ath10k_warn("chan info: invalid frequency %d (idx %d out of bounds)\n", freq, idx); goto exit; } if (cmd_flags & WMI_CHAN_INFO_FLAG_COMPLETE) { /* During scanning chan info is reported twice for each * visited channel. The reported cycle count is global * and per-channel cycle count must be calculated */ cycle_count -= ar->survey_last_cycle_count; rx_clear_count -= ar->survey_last_rx_clear_count; survey = &ar->survey[idx]; survey->channel_time = WMI_CHAN_INFO_MSEC(cycle_count); survey->channel_time_rx = WMI_CHAN_INFO_MSEC(rx_clear_count); survey->noise = noise_floor; survey->filled = SURVEY_INFO_CHANNEL_TIME | SURVEY_INFO_CHANNEL_TIME_RX | SURVEY_INFO_NOISE_DBM; } ar->survey_last_rx_clear_count = rx_clear_count; ar->survey_last_cycle_count = cycle_count; exit: spin_unlock_bh(&ar->data_lock); } static void ath10k_wmi_event_echo(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ATH10K_DBG_WMI, "WMI_ECHO_EVENTID\n"); } static void ath10k_wmi_event_debug_mesg(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ATH10K_DBG_WMI, "WMI_DEBUG_MESG_EVENTID\n"); } static void ath10k_wmi_event_update_stats(struct ath10k *ar, struct sk_buff *skb) { struct wmi_stats_event *ev = (struct wmi_stats_event *)skb->data; ath10k_dbg(ATH10K_DBG_WMI, "WMI_UPDATE_STATS_EVENTID\n"); ath10k_debug_read_target_stats(ar, ev); } static void ath10k_wmi_event_vdev_start_resp(struct ath10k *ar, struct sk_buff *skb) { struct wmi_vdev_start_response_event *ev; ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_START_RESP_EVENTID\n"); ev = (struct wmi_vdev_start_response_event *)skb->data; if (WARN_ON(__le32_to_cpu(ev->status))) return; complete(&ar->vdev_setup_done); } static void ath10k_wmi_event_vdev_stopped(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_STOPPED_EVENTID\n"); complete(&ar->vdev_setup_done); } static void ath10k_wmi_event_peer_sta_kickout(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ATH10K_DBG_WMI, "WMI_PEER_STA_KICKOUT_EVENTID\n"); } /* * FIXME * * We don't report to mac80211 sleep state of connected * stations. Due to this mac80211 can't fill in TIM IE * correctly. * * I know of no way of getting nullfunc frames that contain * sleep transition from connected stations - these do not * seem to be sent from the target to the host. There also * doesn't seem to be a dedicated event for that. So the * only way left to do this would be to read tim_bitmap * during SWBA. * * We could probably try using tim_bitmap from SWBA to tell * mac80211 which stations are asleep and which are not. The * problem here is calling mac80211 functions so many times * could take too long and make us miss the time to submit * the beacon to the target. * * So as a workaround we try to extend the TIM IE if there * is unicast buffered for stations with aid > 7 and fill it * in ourselves. */ static void ath10k_wmi_update_tim(struct ath10k *ar, struct ath10k_vif *arvif, struct sk_buff *bcn, struct wmi_bcn_info *bcn_info) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)bcn->data; struct ieee80211_tim_ie *tim; u8 *ies, *ie; u8 ie_len, pvm_len; /* if next SWBA has no tim_changed the tim_bitmap is garbage. * we must copy the bitmap upon change and reuse it later */ if (__le32_to_cpu(bcn_info->tim_info.tim_changed)) { int i; BUILD_BUG_ON(sizeof(arvif->u.ap.tim_bitmap) != sizeof(bcn_info->tim_info.tim_bitmap)); for (i = 0; i < sizeof(arvif->u.ap.tim_bitmap); i++) { __le32 t = bcn_info->tim_info.tim_bitmap[i / 4]; u32 v = __le32_to_cpu(t); arvif->u.ap.tim_bitmap[i] = (v >> ((i % 4) * 8)) & 0xFF; } /* FW reports either length 0 or 16 * so we calculate this on our own */ arvif->u.ap.tim_len = 0; for (i = 0; i < sizeof(arvif->u.ap.tim_bitmap); i++) if (arvif->u.ap.tim_bitmap[i]) arvif->u.ap.tim_len = i; arvif->u.ap.tim_len++; } ies = bcn->data; ies += ieee80211_hdrlen(hdr->frame_control); ies += 12; /* fixed parameters */ ie = (u8 *)cfg80211_find_ie(WLAN_EID_TIM, ies, (u8 *)skb_tail_pointer(bcn) - ies); if (!ie) { if (arvif->vdev_type != WMI_VDEV_TYPE_IBSS) ath10k_warn("no tim ie found;\n"); return; } tim = (void *)ie + 2; ie_len = ie[1]; pvm_len = ie_len - 3; /* exclude dtim count, dtim period, bmap ctl */ if (pvm_len < arvif->u.ap.tim_len) { int expand_size = sizeof(arvif->u.ap.tim_bitmap) - pvm_len; int move_size = skb_tail_pointer(bcn) - (ie + 2 + ie_len); void *next_ie = ie + 2 + ie_len; if (skb_put(bcn, expand_size)) { memmove(next_ie + expand_size, next_ie, move_size); ie[1] += expand_size; ie_len += expand_size; pvm_len += expand_size; } else { ath10k_warn("tim expansion failed\n"); } } if (pvm_len > sizeof(arvif->u.ap.tim_bitmap)) { ath10k_warn("tim pvm length is too great (%d)\n", pvm_len); return; } tim->bitmap_ctrl = !!__le32_to_cpu(bcn_info->tim_info.tim_mcast); memcpy(tim->virtual_map, arvif->u.ap.tim_bitmap, pvm_len); ath10k_dbg(ATH10K_DBG_MGMT, "dtim %d/%d mcast %d pvmlen %d\n", tim->dtim_count, tim->dtim_period, tim->bitmap_ctrl, pvm_len); } static void ath10k_p2p_fill_noa_ie(u8 *data, u32 len, struct wmi_p2p_noa_info *noa) { struct ieee80211_p2p_noa_attr *noa_attr; u8 ctwindow_oppps = noa->ctwindow_oppps; u8 ctwindow = ctwindow_oppps >> WMI_P2P_OPPPS_CTWINDOW_OFFSET; bool oppps = !!(ctwindow_oppps & WMI_P2P_OPPPS_ENABLE_BIT); __le16 *noa_attr_len; u16 attr_len; u8 noa_descriptors = noa->num_descriptors; int i; /* P2P IE */ data[0] = WLAN_EID_VENDOR_SPECIFIC; data[1] = len - 2; data[2] = (WLAN_OUI_WFA >> 16) & 0xff; data[3] = (WLAN_OUI_WFA >> 8) & 0xff; data[4] = (WLAN_OUI_WFA >> 0) & 0xff; data[5] = WLAN_OUI_TYPE_WFA_P2P; /* NOA ATTR */ data[6] = IEEE80211_P2P_ATTR_ABSENCE_NOTICE; noa_attr_len = (__le16 *)&data[7]; /* 2 bytes */ noa_attr = (struct ieee80211_p2p_noa_attr *)&data[9]; noa_attr->index = noa->index; noa_attr->oppps_ctwindow = ctwindow; if (oppps) noa_attr->oppps_ctwindow |= IEEE80211_P2P_OPPPS_ENABLE_BIT; for (i = 0; i < noa_descriptors; i++) { noa_attr->desc[i].count = __le32_to_cpu(noa->descriptors[i].type_count); noa_attr->desc[i].duration = noa->descriptors[i].duration; noa_attr->desc[i].interval = noa->descriptors[i].interval; noa_attr->desc[i].start_time = noa->descriptors[i].start_time; } attr_len = 2; /* index + oppps_ctwindow */ attr_len += noa_descriptors * sizeof(struct ieee80211_p2p_noa_desc); *noa_attr_len = __cpu_to_le16(attr_len); } static u32 ath10k_p2p_calc_noa_ie_len(struct wmi_p2p_noa_info *noa) { u32 len = 0; u8 noa_descriptors = noa->num_descriptors; u8 opp_ps_info = noa->ctwindow_oppps; bool opps_enabled = !!(opp_ps_info & WMI_P2P_OPPPS_ENABLE_BIT); if (!noa_descriptors && !opps_enabled) return len; len += 1 + 1 + 4; /* EID + len + OUI */ len += 1 + 2; /* noa attr + attr len */ len += 1 + 1; /* index + oppps_ctwindow */ len += noa_descriptors * sizeof(struct ieee80211_p2p_noa_desc); return len; } static void ath10k_wmi_update_noa(struct ath10k *ar, struct ath10k_vif *arvif, struct sk_buff *bcn, struct wmi_bcn_info *bcn_info) { struct wmi_p2p_noa_info *noa = &bcn_info->p2p_noa_info; u8 *new_data, *old_data = arvif->u.ap.noa_data; u32 new_len; if (arvif->vdev_subtype != WMI_VDEV_SUBTYPE_P2P_GO) return; ath10k_dbg(ATH10K_DBG_MGMT, "noa changed: %d\n", noa->changed); if (noa->changed & WMI_P2P_NOA_CHANGED_BIT) { new_len = ath10k_p2p_calc_noa_ie_len(noa); if (!new_len) goto cleanup; new_data = kmalloc(new_len, GFP_ATOMIC); if (!new_data) goto cleanup; ath10k_p2p_fill_noa_ie(new_data, new_len, noa); spin_lock_bh(&ar->data_lock); arvif->u.ap.noa_data = new_data; arvif->u.ap.noa_len = new_len; spin_unlock_bh(&ar->data_lock); kfree(old_data); } if (arvif->u.ap.noa_data) if (!pskb_expand_head(bcn, 0, arvif->u.ap.noa_len, GFP_ATOMIC)) memcpy(skb_put(bcn, arvif->u.ap.noa_len), arvif->u.ap.noa_data, arvif->u.ap.noa_len); return; cleanup: spin_lock_bh(&ar->data_lock); arvif->u.ap.noa_data = NULL; arvif->u.ap.noa_len = 0; spin_unlock_bh(&ar->data_lock); kfree(old_data); } static void ath10k_wmi_event_host_swba(struct ath10k *ar, struct sk_buff *skb) { struct wmi_host_swba_event *ev; u32 map; int i = -1; struct wmi_bcn_info *bcn_info; struct ath10k_vif *arvif; struct wmi_bcn_tx_arg arg; struct sk_buff *bcn; int vdev_id = 0; int ret; ath10k_dbg(ATH10K_DBG_MGMT, "WMI_HOST_SWBA_EVENTID\n"); ev = (struct wmi_host_swba_event *)skb->data; map = __le32_to_cpu(ev->vdev_map); ath10k_dbg(ATH10K_DBG_MGMT, "host swba:\n" "-vdev map 0x%x\n", ev->vdev_map); for (; map; map >>= 1, vdev_id++) { if (!(map & 0x1)) continue; i++; if (i >= WMI_MAX_AP_VDEV) { ath10k_warn("swba has corrupted vdev map\n"); break; } bcn_info = &ev->bcn_info[i]; ath10k_dbg(ATH10K_DBG_MGMT, "-bcn_info[%d]:\n" "--tim_len %d\n" "--tim_mcast %d\n" "--tim_changed %d\n" "--tim_num_ps_pending %d\n" "--tim_bitmap 0x%08x%08x%08x%08x\n", i, __le32_to_cpu(bcn_info->tim_info.tim_len), __le32_to_cpu(bcn_info->tim_info.tim_mcast), __le32_to_cpu(bcn_info->tim_info.tim_changed), __le32_to_cpu(bcn_info->tim_info.tim_num_ps_pending), __le32_to_cpu(bcn_info->tim_info.tim_bitmap[3]), __le32_to_cpu(bcn_info->tim_info.tim_bitmap[2]), __le32_to_cpu(bcn_info->tim_info.tim_bitmap[1]), __le32_to_cpu(bcn_info->tim_info.tim_bitmap[0])); arvif = ath10k_get_arvif(ar, vdev_id); if (arvif == NULL) { ath10k_warn("no vif for vdev_id %d found\n", vdev_id); continue; } bcn = ieee80211_beacon_get(ar->hw, arvif->vif); if (!bcn) { ath10k_warn("could not get mac80211 beacon\n"); continue; } ath10k_tx_h_seq_no(bcn); ath10k_wmi_update_tim(ar, arvif, bcn, bcn_info); ath10k_wmi_update_noa(ar, arvif, bcn, bcn_info); arg.vdev_id = arvif->vdev_id; arg.tx_rate = 0; arg.tx_power = 0; arg.bcn = bcn->data; arg.bcn_len = bcn->len; ret = ath10k_wmi_beacon_send(ar, &arg); if (ret) ath10k_warn("could not send beacon (%d)\n", ret); dev_kfree_skb_any(bcn); } } static void ath10k_wmi_event_tbttoffset_update(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ATH10K_DBG_WMI, "WMI_TBTTOFFSET_UPDATE_EVENTID\n"); } static void ath10k_wmi_event_phyerr(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ATH10K_DBG_WMI, "WMI_PHYERR_EVENTID\n"); } static void ath10k_wmi_event_roam(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ATH10K_DBG_WMI, "WMI_ROAM_EVENTID\n"); } static void ath10k_wmi_event_profile_match(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ATH10K_DBG_WMI, "WMI_PROFILE_MATCH\n"); } static void ath10k_wmi_event_debug_print(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ATH10K_DBG_WMI, "WMI_DEBUG_PRINT_EVENTID\n"); } static void ath10k_wmi_event_pdev_qvit(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_QVIT_EVENTID\n"); } static void ath10k_wmi_event_wlan_profile_data(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ATH10K_DBG_WMI, "WMI_WLAN_PROFILE_DATA_EVENTID\n"); } static void ath10k_wmi_event_rtt_measurement_report(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ATH10K_DBG_WMI, "WMI_RTT_MEASUREMENT_REPORT_EVENTID\n"); } static void ath10k_wmi_event_tsf_measurement_report(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ATH10K_DBG_WMI, "WMI_TSF_MEASUREMENT_REPORT_EVENTID\n"); } static void ath10k_wmi_event_rtt_error_report(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ATH10K_DBG_WMI, "WMI_RTT_ERROR_REPORT_EVENTID\n"); } static void ath10k_wmi_event_wow_wakeup_host(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ATH10K_DBG_WMI, "WMI_WOW_WAKEUP_HOST_EVENTID\n"); } static void ath10k_wmi_event_dcs_interference(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ATH10K_DBG_WMI, "WMI_DCS_INTERFERENCE_EVENTID\n"); } static void ath10k_wmi_event_pdev_tpc_config(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_TPC_CONFIG_EVENTID\n"); } static void ath10k_wmi_event_pdev_ftm_intg(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_FTM_INTG_EVENTID\n"); } static void ath10k_wmi_event_gtk_offload_status(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ATH10K_DBG_WMI, "WMI_GTK_OFFLOAD_STATUS_EVENTID\n"); } static void ath10k_wmi_event_gtk_rekey_fail(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ATH10K_DBG_WMI, "WMI_GTK_REKEY_FAIL_EVENTID\n"); } static void ath10k_wmi_event_delba_complete(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ATH10K_DBG_WMI, "WMI_TX_DELBA_COMPLETE_EVENTID\n"); } static void ath10k_wmi_event_addba_complete(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ATH10K_DBG_WMI, "WMI_TX_ADDBA_COMPLETE_EVENTID\n"); } static void ath10k_wmi_event_vdev_install_key_complete(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_INSTALL_KEY_COMPLETE_EVENTID\n"); } static void ath10k_wmi_service_ready_event_rx(struct ath10k *ar, struct sk_buff *skb) { struct wmi_service_ready_event *ev = (void *)skb->data; if (skb->len < sizeof(*ev)) { ath10k_warn("Service ready event was %d B but expected %zu B. Wrong firmware version?\n", skb->len, sizeof(*ev)); return; } ar->hw_min_tx_power = __le32_to_cpu(ev->hw_min_tx_power); ar->hw_max_tx_power = __le32_to_cpu(ev->hw_max_tx_power); ar->ht_cap_info = __le32_to_cpu(ev->ht_cap_info); ar->vht_cap_info = __le32_to_cpu(ev->vht_cap_info); ar->fw_version_major = (__le32_to_cpu(ev->sw_version) & 0xff000000) >> 24; ar->fw_version_minor = (__le32_to_cpu(ev->sw_version) & 0x00ffffff); ar->fw_version_release = (__le32_to_cpu(ev->sw_version_1) & 0xffff0000) >> 16; ar->fw_version_build = (__le32_to_cpu(ev->sw_version_1) & 0x0000ffff); ar->phy_capability = __le32_to_cpu(ev->phy_capability); ar->num_rf_chains = __le32_to_cpu(ev->num_rf_chains); if (ar->num_rf_chains > WMI_MAX_SPATIAL_STREAM) { ath10k_warn("hardware advertises support for more spatial streams than it should (%d > %d)\n", ar->num_rf_chains, WMI_MAX_SPATIAL_STREAM); ar->num_rf_chains = WMI_MAX_SPATIAL_STREAM; } ar->ath_common.regulatory.current_rd = __le32_to_cpu(ev->hal_reg_capabilities.eeprom_rd); ath10k_debug_read_service_map(ar, ev->wmi_service_bitmap, sizeof(ev->wmi_service_bitmap)); if (strlen(ar->hw->wiphy->fw_version) == 0) { snprintf(ar->hw->wiphy->fw_version, sizeof(ar->hw->wiphy->fw_version), "%u.%u.%u.%u", ar->fw_version_major, ar->fw_version_minor, ar->fw_version_release, ar->fw_version_build); } /* FIXME: it probably should be better to support this */ if (__le32_to_cpu(ev->num_mem_reqs) > 0) { ath10k_warn("target requested %d memory chunks; ignoring\n", __le32_to_cpu(ev->num_mem_reqs)); } ath10k_dbg(ATH10K_DBG_WMI, "wmi event service ready sw_ver 0x%08x sw_ver1 0x%08x abi_ver %u phy_cap 0x%08x ht_cap 0x%08x vht_cap 0x%08x vht_supp_msc 0x%08x sys_cap_info 0x%08x mem_reqs %u num_rf_chains %u\n", __le32_to_cpu(ev->sw_version), __le32_to_cpu(ev->sw_version_1), __le32_to_cpu(ev->abi_version), __le32_to_cpu(ev->phy_capability), __le32_to_cpu(ev->ht_cap_info), __le32_to_cpu(ev->vht_cap_info), __le32_to_cpu(ev->vht_supp_mcs), __le32_to_cpu(ev->sys_cap_info), __le32_to_cpu(ev->num_mem_reqs), __le32_to_cpu(ev->num_rf_chains)); complete(&ar->wmi.service_ready); } static int ath10k_wmi_ready_event_rx(struct ath10k *ar, struct sk_buff *skb) { struct wmi_ready_event *ev = (struct wmi_ready_event *)skb->data; if (WARN_ON(skb->len < sizeof(*ev))) return -EINVAL; memcpy(ar->mac_addr, ev->mac_addr.addr, ETH_ALEN); ath10k_dbg(ATH10K_DBG_WMI, "wmi event ready sw_version %u abi_version %u mac_addr %pM status %d\n", __le32_to_cpu(ev->sw_version), __le32_to_cpu(ev->abi_version), ev->mac_addr.addr, __le32_to_cpu(ev->status)); complete(&ar->wmi.unified_ready); return 0; } static void ath10k_wmi_event_process(struct ath10k *ar, struct sk_buff *skb) { struct wmi_cmd_hdr *cmd_hdr; enum wmi_event_id id; u16 len; cmd_hdr = (struct wmi_cmd_hdr *)skb->data; id = MS(__le32_to_cpu(cmd_hdr->cmd_id), WMI_CMD_HDR_CMD_ID); if (skb_pull(skb, sizeof(struct wmi_cmd_hdr)) == NULL) return; len = skb->len; trace_ath10k_wmi_event(id, skb->data, skb->len); switch (id) { case WMI_MGMT_RX_EVENTID: ath10k_wmi_event_mgmt_rx(ar, skb); /* mgmt_rx() owns the skb now! */ return; case WMI_SCAN_EVENTID: ath10k_wmi_event_scan(ar, skb); break; case WMI_CHAN_INFO_EVENTID: ath10k_wmi_event_chan_info(ar, skb); break; case WMI_ECHO_EVENTID: ath10k_wmi_event_echo(ar, skb); break; case WMI_DEBUG_MESG_EVENTID: ath10k_wmi_event_debug_mesg(ar, skb); break; case WMI_UPDATE_STATS_EVENTID: ath10k_wmi_event_update_stats(ar, skb); break; case WMI_VDEV_START_RESP_EVENTID: ath10k_wmi_event_vdev_start_resp(ar, skb); break; case WMI_VDEV_STOPPED_EVENTID: ath10k_wmi_event_vdev_stopped(ar, skb); break; case WMI_PEER_STA_KICKOUT_EVENTID: ath10k_wmi_event_peer_sta_kickout(ar, skb); break; case WMI_HOST_SWBA_EVENTID: ath10k_wmi_event_host_swba(ar, skb); break; case WMI_TBTTOFFSET_UPDATE_EVENTID: ath10k_wmi_event_tbttoffset_update(ar, skb); break; case WMI_PHYERR_EVENTID: ath10k_wmi_event_phyerr(ar, skb); break; case WMI_ROAM_EVENTID: ath10k_wmi_event_roam(ar, skb); break; case WMI_PROFILE_MATCH: ath10k_wmi_event_profile_match(ar, skb); break; case WMI_DEBUG_PRINT_EVENTID: ath10k_wmi_event_debug_print(ar, skb); break; case WMI_PDEV_QVIT_EVENTID: ath10k_wmi_event_pdev_qvit(ar, skb); break; case WMI_WLAN_PROFILE_DATA_EVENTID: ath10k_wmi_event_wlan_profile_data(ar, skb); break; case WMI_RTT_MEASUREMENT_REPORT_EVENTID: ath10k_wmi_event_rtt_measurement_report(ar, skb); break; case WMI_TSF_MEASUREMENT_REPORT_EVENTID: ath10k_wmi_event_tsf_measurement_report(ar, skb); break; case WMI_RTT_ERROR_REPORT_EVENTID: ath10k_wmi_event_rtt_error_report(ar, skb); break; case WMI_WOW_WAKEUP_HOST_EVENTID: ath10k_wmi_event_wow_wakeup_host(ar, skb); break; case WMI_DCS_INTERFERENCE_EVENTID: ath10k_wmi_event_dcs_interference(ar, skb); break; case WMI_PDEV_TPC_CONFIG_EVENTID: ath10k_wmi_event_pdev_tpc_config(ar, skb); break; case WMI_PDEV_FTM_INTG_EVENTID: ath10k_wmi_event_pdev_ftm_intg(ar, skb); break; case WMI_GTK_OFFLOAD_STATUS_EVENTID: ath10k_wmi_event_gtk_offload_status(ar, skb); break; case WMI_GTK_REKEY_FAIL_EVENTID: ath10k_wmi_event_gtk_rekey_fail(ar, skb); break; case WMI_TX_DELBA_COMPLETE_EVENTID: ath10k_wmi_event_delba_complete(ar, skb); break; case WMI_TX_ADDBA_COMPLETE_EVENTID: ath10k_wmi_event_addba_complete(ar, skb); break; case WMI_VDEV_INSTALL_KEY_COMPLETE_EVENTID: ath10k_wmi_event_vdev_install_key_complete(ar, skb); break; case WMI_SERVICE_READY_EVENTID: ath10k_wmi_service_ready_event_rx(ar, skb); break; case WMI_READY_EVENTID: ath10k_wmi_ready_event_rx(ar, skb); break; default: ath10k_warn("Unknown eventid: %d\n", id); break; } dev_kfree_skb(skb); } static void ath10k_wmi_event_work(struct work_struct *work) { struct ath10k *ar = container_of(work, struct ath10k, wmi.wmi_event_work); struct sk_buff *skb; for (;;) { skb = skb_dequeue(&ar->wmi.wmi_event_list); if (!skb) break; ath10k_wmi_event_process(ar, skb); } } static void ath10k_wmi_process_rx(struct ath10k *ar, struct sk_buff *skb) { struct wmi_cmd_hdr *cmd_hdr = (struct wmi_cmd_hdr *)skb->data; enum wmi_event_id event_id; event_id = MS(__le32_to_cpu(cmd_hdr->cmd_id), WMI_CMD_HDR_CMD_ID); /* some events require to be handled ASAP * thus can't be defered to a worker thread */ switch (event_id) { case WMI_HOST_SWBA_EVENTID: case WMI_MGMT_RX_EVENTID: ath10k_wmi_event_process(ar, skb); return; default: break; } skb_queue_tail(&ar->wmi.wmi_event_list, skb); queue_work(ar->workqueue, &ar->wmi.wmi_event_work); } /* WMI Initialization functions */ int ath10k_wmi_attach(struct ath10k *ar) { init_completion(&ar->wmi.service_ready); init_completion(&ar->wmi.unified_ready); init_waitqueue_head(&ar->wmi.wq); skb_queue_head_init(&ar->wmi.wmi_event_list); INIT_WORK(&ar->wmi.wmi_event_work, ath10k_wmi_event_work); return 0; } void ath10k_wmi_detach(struct ath10k *ar) { /* HTC should've drained the packets already */ if (WARN_ON(atomic_read(&ar->wmi.pending_tx_count) > 0)) ath10k_warn("there are still pending packets\n"); cancel_work_sync(&ar->wmi.wmi_event_work); skb_queue_purge(&ar->wmi.wmi_event_list); } int ath10k_wmi_connect_htc_service(struct ath10k *ar) { int status; struct ath10k_htc_svc_conn_req conn_req; struct ath10k_htc_svc_conn_resp conn_resp; memset(&conn_req, 0, sizeof(conn_req)); memset(&conn_resp, 0, sizeof(conn_resp)); /* these fields are the same for all service endpoints */ conn_req.ep_ops.ep_tx_complete = ath10k_wmi_htc_tx_complete; conn_req.ep_ops.ep_rx_complete = ath10k_wmi_process_rx; /* connect to control service */ conn_req.service_id = ATH10K_HTC_SVC_ID_WMI_CONTROL; status = ath10k_htc_connect_service(&ar->htc, &conn_req, &conn_resp); if (status) { ath10k_warn("failed to connect to WMI CONTROL service status: %d\n", status); return status; } ar->wmi.eid = conn_resp.eid; return 0; } int ath10k_wmi_pdev_set_regdomain(struct ath10k *ar, u16 rd, u16 rd2g, u16 rd5g, u16 ctl2g, u16 ctl5g) { struct wmi_pdev_set_regdomain_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_pdev_set_regdomain_cmd *)skb->data; cmd->reg_domain = __cpu_to_le32(rd); cmd->reg_domain_2G = __cpu_to_le32(rd2g); cmd->reg_domain_5G = __cpu_to_le32(rd5g); cmd->conformance_test_limit_2G = __cpu_to_le32(ctl2g); cmd->conformance_test_limit_5G = __cpu_to_le32(ctl5g); ath10k_dbg(ATH10K_DBG_WMI, "wmi pdev regdomain rd %x rd2g %x rd5g %x ctl2g %x ctl5g %x\n", rd, rd2g, rd5g, ctl2g, ctl5g); return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_REGDOMAIN_CMDID); } int ath10k_wmi_pdev_set_channel(struct ath10k *ar, const struct wmi_channel_arg *arg) { struct wmi_set_channel_cmd *cmd; struct sk_buff *skb; if (arg->passive) return -EINVAL; skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_set_channel_cmd *)skb->data; cmd->chan.mhz = __cpu_to_le32(arg->freq); cmd->chan.band_center_freq1 = __cpu_to_le32(arg->freq); cmd->chan.mode = arg->mode; cmd->chan.min_power = arg->min_power; cmd->chan.max_power = arg->max_power; cmd->chan.reg_power = arg->max_reg_power; cmd->chan.reg_classid = arg->reg_class_id; cmd->chan.antenna_max = arg->max_antenna_gain; ath10k_dbg(ATH10K_DBG_WMI, "wmi set channel mode %d freq %d\n", arg->mode, arg->freq); return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_CHANNEL_CMDID); } int ath10k_wmi_pdev_suspend_target(struct ath10k *ar) { struct wmi_pdev_suspend_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_pdev_suspend_cmd *)skb->data; cmd->suspend_opt = WMI_PDEV_SUSPEND; return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SUSPEND_CMDID); } int ath10k_wmi_pdev_resume_target(struct ath10k *ar) { struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(0); if (skb == NULL) return -ENOMEM; return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_RESUME_CMDID); } int ath10k_wmi_pdev_set_param(struct ath10k *ar, enum wmi_pdev_param id, u32 value) { struct wmi_pdev_set_param_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_pdev_set_param_cmd *)skb->data; cmd->param_id = __cpu_to_le32(id); cmd->param_value = __cpu_to_le32(value); ath10k_dbg(ATH10K_DBG_WMI, "wmi pdev set param %d value %d\n", id, value); return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_PARAM_CMDID); } int ath10k_wmi_cmd_init(struct ath10k *ar) { struct wmi_init_cmd *cmd; struct sk_buff *buf; struct wmi_resource_config config = {}; u32 val; config.num_vdevs = __cpu_to_le32(TARGET_NUM_VDEVS); config.num_peers = __cpu_to_le32(TARGET_NUM_PEERS + TARGET_NUM_VDEVS); config.num_offload_peers = __cpu_to_le32(TARGET_NUM_OFFLOAD_PEERS); config.num_offload_reorder_bufs = __cpu_to_le32(TARGET_NUM_OFFLOAD_REORDER_BUFS); config.num_peer_keys = __cpu_to_le32(TARGET_NUM_PEER_KEYS); config.num_tids = __cpu_to_le32(TARGET_NUM_TIDS); config.ast_skid_limit = __cpu_to_le32(TARGET_AST_SKID_LIMIT); config.tx_chain_mask = __cpu_to_le32(TARGET_TX_CHAIN_MASK); config.rx_chain_mask = __cpu_to_le32(TARGET_RX_CHAIN_MASK); config.rx_timeout_pri_vo = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI); config.rx_timeout_pri_vi = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI); config.rx_timeout_pri_be = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI); config.rx_timeout_pri_bk = __cpu_to_le32(TARGET_RX_TIMEOUT_HI_PRI); config.rx_decap_mode = __cpu_to_le32(TARGET_RX_DECAP_MODE); config.scan_max_pending_reqs = __cpu_to_le32(TARGET_SCAN_MAX_PENDING_REQS); config.bmiss_offload_max_vdev = __cpu_to_le32(TARGET_BMISS_OFFLOAD_MAX_VDEV); config.roam_offload_max_vdev = __cpu_to_le32(TARGET_ROAM_OFFLOAD_MAX_VDEV); config.roam_offload_max_ap_profiles = __cpu_to_le32(TARGET_ROAM_OFFLOAD_MAX_AP_PROFILES); config.num_mcast_groups = __cpu_to_le32(TARGET_NUM_MCAST_GROUPS); config.num_mcast_table_elems = __cpu_to_le32(TARGET_NUM_MCAST_TABLE_ELEMS); config.mcast2ucast_mode = __cpu_to_le32(TARGET_MCAST2UCAST_MODE); config.tx_dbg_log_size = __cpu_to_le32(TARGET_TX_DBG_LOG_SIZE); config.num_wds_entries = __cpu_to_le32(TARGET_NUM_WDS_ENTRIES); config.dma_burst_size = __cpu_to_le32(TARGET_DMA_BURST_SIZE); config.mac_aggr_delim = __cpu_to_le32(TARGET_MAC_AGGR_DELIM); val = TARGET_RX_SKIP_DEFRAG_TIMEOUT_DUP_DETECTION_CHECK; config.rx_skip_defrag_timeout_dup_detection_check = __cpu_to_le32(val); config.vow_config = __cpu_to_le32(TARGET_VOW_CONFIG); config.gtk_offload_max_vdev = __cpu_to_le32(TARGET_GTK_OFFLOAD_MAX_VDEV); config.num_msdu_desc = __cpu_to_le32(TARGET_NUM_MSDU_DESC); config.max_frag_entries = __cpu_to_le32(TARGET_MAX_FRAG_ENTRIES); buf = ath10k_wmi_alloc_skb(sizeof(*cmd)); if (!buf) return -ENOMEM; cmd = (struct wmi_init_cmd *)buf->data; cmd->num_host_mem_chunks = 0; memcpy(&cmd->resource_config, &config, sizeof(config)); ath10k_dbg(ATH10K_DBG_WMI, "wmi init\n"); return ath10k_wmi_cmd_send(ar, buf, WMI_INIT_CMDID); } static int ath10k_wmi_start_scan_calc_len(const struct wmi_start_scan_arg *arg) { int len; len = sizeof(struct wmi_start_scan_cmd); if (arg->ie_len) { if (!arg->ie) return -EINVAL; if (arg->ie_len > WLAN_SCAN_PARAMS_MAX_IE_LEN) return -EINVAL; len += sizeof(struct wmi_ie_data); len += roundup(arg->ie_len, 4); } if (arg->n_channels) { if (!arg->channels) return -EINVAL; if (arg->n_channels > ARRAY_SIZE(arg->channels)) return -EINVAL; len += sizeof(struct wmi_chan_list); len += sizeof(__le32) * arg->n_channels; } if (arg->n_ssids) { if (!arg->ssids) return -EINVAL; if (arg->n_ssids > WLAN_SCAN_PARAMS_MAX_SSID) return -EINVAL; len += sizeof(struct wmi_ssid_list); len += sizeof(struct wmi_ssid) * arg->n_ssids; } if (arg->n_bssids) { if (!arg->bssids) return -EINVAL; if (arg->n_bssids > WLAN_SCAN_PARAMS_MAX_BSSID) return -EINVAL; len += sizeof(struct wmi_bssid_list); len += sizeof(struct wmi_mac_addr) * arg->n_bssids; } return len; } int ath10k_wmi_start_scan(struct ath10k *ar, const struct wmi_start_scan_arg *arg) { struct wmi_start_scan_cmd *cmd; struct sk_buff *skb; struct wmi_ie_data *ie; struct wmi_chan_list *channels; struct wmi_ssid_list *ssids; struct wmi_bssid_list *bssids; u32 scan_id; u32 scan_req_id; int off; int len = 0; int i; len = ath10k_wmi_start_scan_calc_len(arg); if (len < 0) return len; /* len contains error code here */ skb = ath10k_wmi_alloc_skb(len); if (!skb) return -ENOMEM; scan_id = WMI_HOST_SCAN_REQ_ID_PREFIX; scan_id |= arg->scan_id; scan_req_id = WMI_HOST_SCAN_REQUESTOR_ID_PREFIX; scan_req_id |= arg->scan_req_id; cmd = (struct wmi_start_scan_cmd *)skb->data; cmd->scan_id = __cpu_to_le32(scan_id); cmd->scan_req_id = __cpu_to_le32(scan_req_id); cmd->vdev_id = __cpu_to_le32(arg->vdev_id); cmd->scan_priority = __cpu_to_le32(arg->scan_priority); cmd->notify_scan_events = __cpu_to_le32(arg->notify_scan_events); cmd->dwell_time_active = __cpu_to_le32(arg->dwell_time_active); cmd->dwell_time_passive = __cpu_to_le32(arg->dwell_time_passive); cmd->min_rest_time = __cpu_to_le32(arg->min_rest_time); cmd->max_rest_time = __cpu_to_le32(arg->max_rest_time); cmd->repeat_probe_time = __cpu_to_le32(arg->repeat_probe_time); cmd->probe_spacing_time = __cpu_to_le32(arg->probe_spacing_time); cmd->idle_time = __cpu_to_le32(arg->idle_time); cmd->max_scan_time = __cpu_to_le32(arg->max_scan_time); cmd->probe_delay = __cpu_to_le32(arg->probe_delay); cmd->scan_ctrl_flags = __cpu_to_le32(arg->scan_ctrl_flags); /* TLV list starts after fields included in the struct */ off = sizeof(*cmd); if (arg->n_channels) { channels = (void *)skb->data + off; channels->tag = __cpu_to_le32(WMI_CHAN_LIST_TAG); channels->num_chan = __cpu_to_le32(arg->n_channels); for (i = 0; i < arg->n_channels; i++) channels->channel_list[i] = __cpu_to_le32(arg->channels[i]); off += sizeof(*channels); off += sizeof(__le32) * arg->n_channels; } if (arg->n_ssids) { ssids = (void *)skb->data + off; ssids->tag = __cpu_to_le32(WMI_SSID_LIST_TAG); ssids->num_ssids = __cpu_to_le32(arg->n_ssids); for (i = 0; i < arg->n_ssids; i++) { ssids->ssids[i].ssid_len = __cpu_to_le32(arg->ssids[i].len); memcpy(&ssids->ssids[i].ssid, arg->ssids[i].ssid, arg->ssids[i].len); } off += sizeof(*ssids); off += sizeof(struct wmi_ssid) * arg->n_ssids; } if (arg->n_bssids) { bssids = (void *)skb->data + off; bssids->tag = __cpu_to_le32(WMI_BSSID_LIST_TAG); bssids->num_bssid = __cpu_to_le32(arg->n_bssids); for (i = 0; i < arg->n_bssids; i++) memcpy(&bssids->bssid_list[i], arg->bssids[i].bssid, ETH_ALEN); off += sizeof(*bssids); off += sizeof(struct wmi_mac_addr) * arg->n_bssids; } if (arg->ie_len) { ie = (void *)skb->data + off; ie->tag = __cpu_to_le32(WMI_IE_TAG); ie->ie_len = __cpu_to_le32(arg->ie_len); memcpy(ie->ie_data, arg->ie, arg->ie_len); off += sizeof(*ie); off += roundup(arg->ie_len, 4); } if (off != skb->len) { dev_kfree_skb(skb); return -EINVAL; } ath10k_dbg(ATH10K_DBG_WMI, "wmi start scan\n"); return ath10k_wmi_cmd_send(ar, skb, WMI_START_SCAN_CMDID); } void ath10k_wmi_start_scan_init(struct ath10k *ar, struct wmi_start_scan_arg *arg) { /* setup commonly used values */ arg->scan_req_id = 1; arg->scan_priority = WMI_SCAN_PRIORITY_LOW; arg->dwell_time_active = 50; arg->dwell_time_passive = 150; arg->min_rest_time = 50; arg->max_rest_time = 500; arg->repeat_probe_time = 0; arg->probe_spacing_time = 0; arg->idle_time = 0; arg->max_scan_time = 5000; arg->probe_delay = 5; arg->notify_scan_events = WMI_SCAN_EVENT_STARTED | WMI_SCAN_EVENT_COMPLETED | WMI_SCAN_EVENT_BSS_CHANNEL | WMI_SCAN_EVENT_FOREIGN_CHANNEL | WMI_SCAN_EVENT_DEQUEUED; arg->scan_ctrl_flags |= WMI_SCAN_ADD_OFDM_RATES; arg->scan_ctrl_flags |= WMI_SCAN_CHAN_STAT_EVENT; arg->n_bssids = 1; arg->bssids[0].bssid = "\xFF\xFF\xFF\xFF\xFF\xFF"; } int ath10k_wmi_stop_scan(struct ath10k *ar, const struct wmi_stop_scan_arg *arg) { struct wmi_stop_scan_cmd *cmd; struct sk_buff *skb; u32 scan_id; u32 req_id; if (arg->req_id > 0xFFF) return -EINVAL; if (arg->req_type == WMI_SCAN_STOP_ONE && arg->u.scan_id > 0xFFF) return -EINVAL; skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); if (!skb) return -ENOMEM; scan_id = arg->u.scan_id; scan_id |= WMI_HOST_SCAN_REQ_ID_PREFIX; req_id = arg->req_id; req_id |= WMI_HOST_SCAN_REQUESTOR_ID_PREFIX; cmd = (struct wmi_stop_scan_cmd *)skb->data; cmd->req_type = __cpu_to_le32(arg->req_type); cmd->vdev_id = __cpu_to_le32(arg->u.vdev_id); cmd->scan_id = __cpu_to_le32(scan_id); cmd->scan_req_id = __cpu_to_le32(req_id); ath10k_dbg(ATH10K_DBG_WMI, "wmi stop scan reqid %d req_type %d vdev/scan_id %d\n", arg->req_id, arg->req_type, arg->u.scan_id); return ath10k_wmi_cmd_send(ar, skb, WMI_STOP_SCAN_CMDID); } int ath10k_wmi_vdev_create(struct ath10k *ar, u32 vdev_id, enum wmi_vdev_type type, enum wmi_vdev_subtype subtype, const u8 macaddr[ETH_ALEN]) { struct wmi_vdev_create_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_create_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(vdev_id); cmd->vdev_type = __cpu_to_le32(type); cmd->vdev_subtype = __cpu_to_le32(subtype); memcpy(cmd->vdev_macaddr.addr, macaddr, ETH_ALEN); ath10k_dbg(ATH10K_DBG_WMI, "WMI vdev create: id %d type %d subtype %d macaddr %pM\n", vdev_id, type, subtype, macaddr); return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_CREATE_CMDID); } int ath10k_wmi_vdev_delete(struct ath10k *ar, u32 vdev_id) { struct wmi_vdev_delete_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_delete_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(vdev_id); ath10k_dbg(ATH10K_DBG_WMI, "WMI vdev delete id %d\n", vdev_id); return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_DELETE_CMDID); } static int ath10k_wmi_vdev_start_restart(struct ath10k *ar, const struct wmi_vdev_start_request_arg *arg, enum wmi_cmd_id cmd_id) { struct wmi_vdev_start_request_cmd *cmd; struct sk_buff *skb; const char *cmdname; u32 flags = 0; if (cmd_id != WMI_VDEV_START_REQUEST_CMDID && cmd_id != WMI_VDEV_RESTART_REQUEST_CMDID) return -EINVAL; if (WARN_ON(arg->ssid && arg->ssid_len == 0)) return -EINVAL; if (WARN_ON(arg->hidden_ssid && !arg->ssid)) return -EINVAL; if (WARN_ON(arg->ssid_len > sizeof(cmd->ssid.ssid))) return -EINVAL; if (cmd_id == WMI_VDEV_START_REQUEST_CMDID) cmdname = "start"; else if (cmd_id == WMI_VDEV_RESTART_REQUEST_CMDID) cmdname = "restart"; else return -EINVAL; /* should not happen, we already check cmd_id */ skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); if (!skb) return -ENOMEM; if (arg->hidden_ssid) flags |= WMI_VDEV_START_HIDDEN_SSID; if (arg->pmf_enabled) flags |= WMI_VDEV_START_PMF_ENABLED; cmd = (struct wmi_vdev_start_request_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(arg->vdev_id); cmd->disable_hw_ack = __cpu_to_le32(arg->disable_hw_ack); cmd->beacon_interval = __cpu_to_le32(arg->bcn_intval); cmd->dtim_period = __cpu_to_le32(arg->dtim_period); cmd->flags = __cpu_to_le32(flags); cmd->bcn_tx_rate = __cpu_to_le32(arg->bcn_tx_rate); cmd->bcn_tx_power = __cpu_to_le32(arg->bcn_tx_power); if (arg->ssid) { cmd->ssid.ssid_len = __cpu_to_le32(arg->ssid_len); memcpy(cmd->ssid.ssid, arg->ssid, arg->ssid_len); } cmd->chan.mhz = __cpu_to_le32(arg->channel.freq); cmd->chan.band_center_freq1 = __cpu_to_le32(arg->channel.band_center_freq1); cmd->chan.mode = arg->channel.mode; cmd->chan.min_power = arg->channel.min_power; cmd->chan.max_power = arg->channel.max_power; cmd->chan.reg_power = arg->channel.max_reg_power; cmd->chan.reg_classid = arg->channel.reg_class_id; cmd->chan.antenna_max = arg->channel.max_antenna_gain; ath10k_dbg(ATH10K_DBG_WMI, "wmi vdev %s id 0x%x freq %d, mode %d, ch_flags: 0x%0X," "max_power: %d\n", cmdname, arg->vdev_id, arg->channel.freq, arg->channel.mode, flags, arg->channel.max_power); return ath10k_wmi_cmd_send(ar, skb, cmd_id); } int ath10k_wmi_vdev_start(struct ath10k *ar, const struct wmi_vdev_start_request_arg *arg) { return ath10k_wmi_vdev_start_restart(ar, arg, WMI_VDEV_START_REQUEST_CMDID); } int ath10k_wmi_vdev_restart(struct ath10k *ar, const struct wmi_vdev_start_request_arg *arg) { return ath10k_wmi_vdev_start_restart(ar, arg, WMI_VDEV_RESTART_REQUEST_CMDID); } int ath10k_wmi_vdev_stop(struct ath10k *ar, u32 vdev_id) { struct wmi_vdev_stop_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_stop_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(vdev_id); ath10k_dbg(ATH10K_DBG_WMI, "wmi vdev stop id 0x%x\n", vdev_id); return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_STOP_CMDID); } int ath10k_wmi_vdev_up(struct ath10k *ar, u32 vdev_id, u32 aid, const u8 *bssid) { struct wmi_vdev_up_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_up_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(vdev_id); cmd->vdev_assoc_id = __cpu_to_le32(aid); memcpy(&cmd->vdev_bssid.addr, bssid, ETH_ALEN); ath10k_dbg(ATH10K_DBG_WMI, "wmi mgmt vdev up id 0x%x assoc id %d bssid %pM\n", vdev_id, aid, bssid); return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_UP_CMDID); } int ath10k_wmi_vdev_down(struct ath10k *ar, u32 vdev_id) { struct wmi_vdev_down_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_down_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(vdev_id); ath10k_dbg(ATH10K_DBG_WMI, "wmi mgmt vdev down id 0x%x\n", vdev_id); return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_DOWN_CMDID); } int ath10k_wmi_vdev_set_param(struct ath10k *ar, u32 vdev_id, enum wmi_vdev_param param_id, u32 param_value) { struct wmi_vdev_set_param_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_set_param_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(vdev_id); cmd->param_id = __cpu_to_le32(param_id); cmd->param_value = __cpu_to_le32(param_value); ath10k_dbg(ATH10K_DBG_WMI, "wmi vdev id 0x%x set param %d value %d\n", vdev_id, param_id, param_value); return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_SET_PARAM_CMDID); } int ath10k_wmi_vdev_install_key(struct ath10k *ar, const struct wmi_vdev_install_key_arg *arg) { struct wmi_vdev_install_key_cmd *cmd; struct sk_buff *skb; if (arg->key_cipher == WMI_CIPHER_NONE && arg->key_data != NULL) return -EINVAL; if (arg->key_cipher != WMI_CIPHER_NONE && arg->key_data == NULL) return -EINVAL; skb = ath10k_wmi_alloc_skb(sizeof(*cmd) + arg->key_len); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_install_key_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(arg->vdev_id); cmd->key_idx = __cpu_to_le32(arg->key_idx); cmd->key_flags = __cpu_to_le32(arg->key_flags); cmd->key_cipher = __cpu_to_le32(arg->key_cipher); cmd->key_len = __cpu_to_le32(arg->key_len); cmd->key_txmic_len = __cpu_to_le32(arg->key_txmic_len); cmd->key_rxmic_len = __cpu_to_le32(arg->key_rxmic_len); if (arg->macaddr) memcpy(cmd->peer_macaddr.addr, arg->macaddr, ETH_ALEN); if (arg->key_data) memcpy(cmd->key_data, arg->key_data, arg->key_len); ath10k_dbg(ATH10K_DBG_WMI, "wmi vdev install key idx %d cipher %d len %d\n", arg->key_idx, arg->key_cipher, arg->key_len); return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_INSTALL_KEY_CMDID); } int ath10k_wmi_peer_create(struct ath10k *ar, u32 vdev_id, const u8 peer_addr[ETH_ALEN]) { struct wmi_peer_create_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_peer_create_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(vdev_id); memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN); ath10k_dbg(ATH10K_DBG_WMI, "wmi peer create vdev_id %d peer_addr %pM\n", vdev_id, peer_addr); return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_CREATE_CMDID); } int ath10k_wmi_peer_delete(struct ath10k *ar, u32 vdev_id, const u8 peer_addr[ETH_ALEN]) { struct wmi_peer_delete_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_peer_delete_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(vdev_id); memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN); ath10k_dbg(ATH10K_DBG_WMI, "wmi peer delete vdev_id %d peer_addr %pM\n", vdev_id, peer_addr); return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_DELETE_CMDID); } int ath10k_wmi_peer_flush(struct ath10k *ar, u32 vdev_id, const u8 peer_addr[ETH_ALEN], u32 tid_bitmap) { struct wmi_peer_flush_tids_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_peer_flush_tids_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(vdev_id); cmd->peer_tid_bitmap = __cpu_to_le32(tid_bitmap); memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN); ath10k_dbg(ATH10K_DBG_WMI, "wmi peer flush vdev_id %d peer_addr %pM tids %08x\n", vdev_id, peer_addr, tid_bitmap); return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_FLUSH_TIDS_CMDID); } int ath10k_wmi_peer_set_param(struct ath10k *ar, u32 vdev_id, const u8 *peer_addr, enum wmi_peer_param param_id, u32 param_value) { struct wmi_peer_set_param_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_peer_set_param_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(vdev_id); cmd->param_id = __cpu_to_le32(param_id); cmd->param_value = __cpu_to_le32(param_value); memcpy(&cmd->peer_macaddr.addr, peer_addr, ETH_ALEN); ath10k_dbg(ATH10K_DBG_WMI, "wmi vdev %d peer 0x%pM set param %d value %d\n", vdev_id, peer_addr, param_id, param_value); return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_SET_PARAM_CMDID); } int ath10k_wmi_set_psmode(struct ath10k *ar, u32 vdev_id, enum wmi_sta_ps_mode psmode) { struct wmi_sta_powersave_mode_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_sta_powersave_mode_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(vdev_id); cmd->sta_ps_mode = __cpu_to_le32(psmode); ath10k_dbg(ATH10K_DBG_WMI, "wmi set powersave id 0x%x mode %d\n", vdev_id, psmode); return ath10k_wmi_cmd_send(ar, skb, WMI_STA_POWERSAVE_MODE_CMDID); } int ath10k_wmi_set_sta_ps_param(struct ath10k *ar, u32 vdev_id, enum wmi_sta_powersave_param param_id, u32 value) { struct wmi_sta_powersave_param_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_sta_powersave_param_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(vdev_id); cmd->param_id = __cpu_to_le32(param_id); cmd->param_value = __cpu_to_le32(value); ath10k_dbg(ATH10K_DBG_WMI, "wmi sta ps param vdev_id 0x%x param %d value %d\n", vdev_id, param_id, value); return ath10k_wmi_cmd_send(ar, skb, WMI_STA_POWERSAVE_PARAM_CMDID); } int ath10k_wmi_set_ap_ps_param(struct ath10k *ar, u32 vdev_id, const u8 *mac, enum wmi_ap_ps_peer_param param_id, u32 value) { struct wmi_ap_ps_peer_cmd *cmd; struct sk_buff *skb; if (!mac) return -EINVAL; skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_ap_ps_peer_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(vdev_id); cmd->param_id = __cpu_to_le32(param_id); cmd->param_value = __cpu_to_le32(value); memcpy(&cmd->peer_macaddr, mac, ETH_ALEN); ath10k_dbg(ATH10K_DBG_WMI, "wmi ap ps param vdev_id 0x%X param %d value %d mac_addr %pM\n", vdev_id, param_id, value, mac); return ath10k_wmi_cmd_send(ar, skb, WMI_AP_PS_PEER_PARAM_CMDID); } int ath10k_wmi_scan_chan_list(struct ath10k *ar, const struct wmi_scan_chan_list_arg *arg) { struct wmi_scan_chan_list_cmd *cmd; struct sk_buff *skb; struct wmi_channel_arg *ch; struct wmi_channel *ci; int len; int i; len = sizeof(*cmd) + arg->n_channels * sizeof(struct wmi_channel); skb = ath10k_wmi_alloc_skb(len); if (!skb) return -EINVAL; cmd = (struct wmi_scan_chan_list_cmd *)skb->data; cmd->num_scan_chans = __cpu_to_le32(arg->n_channels); for (i = 0; i < arg->n_channels; i++) { u32 flags = 0; ch = &arg->channels[i]; ci = &cmd->chan_info[i]; if (ch->passive) flags |= WMI_CHAN_FLAG_PASSIVE; if (ch->allow_ibss) flags |= WMI_CHAN_FLAG_ADHOC_ALLOWED; if (ch->allow_ht) flags |= WMI_CHAN_FLAG_ALLOW_HT; if (ch->allow_vht) flags |= WMI_CHAN_FLAG_ALLOW_VHT; if (ch->ht40plus) flags |= WMI_CHAN_FLAG_HT40_PLUS; ci->mhz = __cpu_to_le32(ch->freq); ci->band_center_freq1 = __cpu_to_le32(ch->freq); ci->band_center_freq2 = 0; ci->min_power = ch->min_power; ci->max_power = ch->max_power; ci->reg_power = ch->max_reg_power; ci->antenna_max = ch->max_antenna_gain; ci->antenna_max = 0; /* mode & flags share storage */ ci->mode = ch->mode; ci->flags |= __cpu_to_le32(flags); } return ath10k_wmi_cmd_send(ar, skb, WMI_SCAN_CHAN_LIST_CMDID); } int ath10k_wmi_peer_assoc(struct ath10k *ar, const struct wmi_peer_assoc_complete_arg *arg) { struct wmi_peer_assoc_complete_cmd *cmd; struct sk_buff *skb; if (arg->peer_mpdu_density > 16) return -EINVAL; if (arg->peer_legacy_rates.num_rates > MAX_SUPPORTED_RATES) return -EINVAL; if (arg->peer_ht_rates.num_rates > MAX_SUPPORTED_RATES) return -EINVAL; skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_peer_assoc_complete_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(arg->vdev_id); cmd->peer_new_assoc = __cpu_to_le32(arg->peer_reassoc ? 0 : 1); cmd->peer_associd = __cpu_to_le32(arg->peer_aid); cmd->peer_flags = __cpu_to_le32(arg->peer_flags); cmd->peer_caps = __cpu_to_le32(arg->peer_caps); cmd->peer_listen_intval = __cpu_to_le32(arg->peer_listen_intval); cmd->peer_ht_caps = __cpu_to_le32(arg->peer_ht_caps); cmd->peer_max_mpdu = __cpu_to_le32(arg->peer_max_mpdu); cmd->peer_mpdu_density = __cpu_to_le32(arg->peer_mpdu_density); cmd->peer_rate_caps = __cpu_to_le32(arg->peer_rate_caps); cmd->peer_nss = __cpu_to_le32(arg->peer_num_spatial_streams); cmd->peer_vht_caps = __cpu_to_le32(arg->peer_vht_caps); cmd->peer_phymode = __cpu_to_le32(arg->peer_phymode); memcpy(cmd->peer_macaddr.addr, arg->addr, ETH_ALEN); cmd->peer_legacy_rates.num_rates = __cpu_to_le32(arg->peer_legacy_rates.num_rates); memcpy(cmd->peer_legacy_rates.rates, arg->peer_legacy_rates.rates, arg->peer_legacy_rates.num_rates); cmd->peer_ht_rates.num_rates = __cpu_to_le32(arg->peer_ht_rates.num_rates); memcpy(cmd->peer_ht_rates.rates, arg->peer_ht_rates.rates, arg->peer_ht_rates.num_rates); cmd->peer_vht_rates.rx_max_rate = __cpu_to_le32(arg->peer_vht_rates.rx_max_rate); cmd->peer_vht_rates.rx_mcs_set = __cpu_to_le32(arg->peer_vht_rates.rx_mcs_set); cmd->peer_vht_rates.tx_max_rate = __cpu_to_le32(arg->peer_vht_rates.tx_max_rate); cmd->peer_vht_rates.tx_mcs_set = __cpu_to_le32(arg->peer_vht_rates.tx_mcs_set); ath10k_dbg(ATH10K_DBG_WMI, "wmi peer assoc vdev %d addr %pM\n", arg->vdev_id, arg->addr); return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_ASSOC_CMDID); } int ath10k_wmi_beacon_send(struct ath10k *ar, const struct wmi_bcn_tx_arg *arg) { struct wmi_bcn_tx_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(sizeof(*cmd) + arg->bcn_len); if (!skb) return -ENOMEM; cmd = (struct wmi_bcn_tx_cmd *)skb->data; cmd->hdr.vdev_id = __cpu_to_le32(arg->vdev_id); cmd->hdr.tx_rate = __cpu_to_le32(arg->tx_rate); cmd->hdr.tx_power = __cpu_to_le32(arg->tx_power); cmd->hdr.bcn_len = __cpu_to_le32(arg->bcn_len); memcpy(cmd->bcn, arg->bcn, arg->bcn_len); return ath10k_wmi_cmd_send(ar, skb, WMI_BCN_TX_CMDID); } static void ath10k_wmi_pdev_set_wmm_param(struct wmi_wmm_params *params, const struct wmi_wmm_params_arg *arg) { params->cwmin = __cpu_to_le32(arg->cwmin); params->cwmax = __cpu_to_le32(arg->cwmax); params->aifs = __cpu_to_le32(arg->aifs); params->txop = __cpu_to_le32(arg->txop); params->acm = __cpu_to_le32(arg->acm); params->no_ack = __cpu_to_le32(arg->no_ack); } int ath10k_wmi_pdev_set_wmm_params(struct ath10k *ar, const struct wmi_pdev_set_wmm_params_arg *arg) { struct wmi_pdev_set_wmm_params *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_pdev_set_wmm_params *)skb->data; ath10k_wmi_pdev_set_wmm_param(&cmd->ac_be, &arg->ac_be); ath10k_wmi_pdev_set_wmm_param(&cmd->ac_bk, &arg->ac_bk); ath10k_wmi_pdev_set_wmm_param(&cmd->ac_vi, &arg->ac_vi); ath10k_wmi_pdev_set_wmm_param(&cmd->ac_vo, &arg->ac_vo); ath10k_dbg(ATH10K_DBG_WMI, "wmi pdev set wmm params\n"); return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_WMM_PARAMS_CMDID); } int ath10k_wmi_request_stats(struct ath10k *ar, enum wmi_stats_id stats_id) { struct wmi_request_stats_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_request_stats_cmd *)skb->data; cmd->stats_id = __cpu_to_le32(stats_id); ath10k_dbg(ATH10K_DBG_WMI, "wmi request stats %d\n", (int)stats_id); return ath10k_wmi_cmd_send(ar, skb, WMI_REQUEST_STATS_CMDID); } int ath10k_wmi_force_fw_hang(struct ath10k *ar, enum wmi_force_fw_hang_type type, u32 delay_ms) { struct wmi_force_fw_hang_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_force_fw_hang_cmd *)skb->data; cmd->type = __cpu_to_le32(type); cmd->delay_ms = __cpu_to_le32(delay_ms); ath10k_dbg(ATH10K_DBG_WMI, "wmi force fw hang %d delay %d\n", type, delay_ms); return ath10k_wmi_cmd_send(ar, skb, WMI_FORCE_FW_HANG_CMDID); }