// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2019 Intel Corporation. All rights rsvd. */ #include #include #include #include #include #include #include #include #include #include "../dmaengine.h" #include "idxd.h" #include "registers.h" static void idxd_cmd_exec(struct idxd_device *idxd, int cmd_code, u32 operand, u32 *status); static void idxd_device_wqs_clear_state(struct idxd_device *idxd); static void idxd_wq_disable_cleanup(struct idxd_wq *wq); /* Interrupt control bits */ void idxd_mask_msix_vector(struct idxd_device *idxd, int vec_id) { struct irq_data *data = irq_get_irq_data(idxd->irq_entries[vec_id].vector); pci_msi_mask_irq(data); } void idxd_mask_msix_vectors(struct idxd_device *idxd) { struct pci_dev *pdev = idxd->pdev; int msixcnt = pci_msix_vec_count(pdev); int i; for (i = 0; i < msixcnt; i++) idxd_mask_msix_vector(idxd, i); } void idxd_unmask_msix_vector(struct idxd_device *idxd, int vec_id) { struct irq_data *data = irq_get_irq_data(idxd->irq_entries[vec_id].vector); pci_msi_unmask_irq(data); } void idxd_unmask_error_interrupts(struct idxd_device *idxd) { union genctrl_reg genctrl; genctrl.bits = ioread32(idxd->reg_base + IDXD_GENCTRL_OFFSET); genctrl.softerr_int_en = 1; genctrl.halt_int_en = 1; iowrite32(genctrl.bits, idxd->reg_base + IDXD_GENCTRL_OFFSET); } void idxd_mask_error_interrupts(struct idxd_device *idxd) { union genctrl_reg genctrl; genctrl.bits = ioread32(idxd->reg_base + IDXD_GENCTRL_OFFSET); genctrl.softerr_int_en = 0; genctrl.halt_int_en = 0; iowrite32(genctrl.bits, idxd->reg_base + IDXD_GENCTRL_OFFSET); } static void free_hw_descs(struct idxd_wq *wq) { int i; for (i = 0; i < wq->num_descs; i++) kfree(wq->hw_descs[i]); kfree(wq->hw_descs); } static int alloc_hw_descs(struct idxd_wq *wq, int num) { struct device *dev = &wq->idxd->pdev->dev; int i; int node = dev_to_node(dev); wq->hw_descs = kcalloc_node(num, sizeof(struct dsa_hw_desc *), GFP_KERNEL, node); if (!wq->hw_descs) return -ENOMEM; for (i = 0; i < num; i++) { wq->hw_descs[i] = kzalloc_node(sizeof(*wq->hw_descs[i]), GFP_KERNEL, node); if (!wq->hw_descs[i]) { free_hw_descs(wq); return -ENOMEM; } } return 0; } static void free_descs(struct idxd_wq *wq) { int i; for (i = 0; i < wq->num_descs; i++) kfree(wq->descs[i]); kfree(wq->descs); } static int alloc_descs(struct idxd_wq *wq, int num) { struct device *dev = &wq->idxd->pdev->dev; int i; int node = dev_to_node(dev); wq->descs = kcalloc_node(num, sizeof(struct idxd_desc *), GFP_KERNEL, node); if (!wq->descs) return -ENOMEM; for (i = 0; i < num; i++) { wq->descs[i] = kzalloc_node(sizeof(*wq->descs[i]), GFP_KERNEL, node); if (!wq->descs[i]) { free_descs(wq); return -ENOMEM; } } return 0; } /* WQ control bits */ int idxd_wq_alloc_resources(struct idxd_wq *wq) { struct idxd_device *idxd = wq->idxd; struct device *dev = &idxd->pdev->dev; int rc, num_descs, i; int align; u64 tmp; if (wq->type != IDXD_WQT_KERNEL) return 0; num_descs = wq_dedicated(wq) ? wq->size : wq->threshold; wq->num_descs = num_descs; rc = alloc_hw_descs(wq, num_descs); if (rc < 0) return rc; align = idxd->data->align; wq->compls_size = num_descs * idxd->data->compl_size + align; wq->compls_raw = dma_alloc_coherent(dev, wq->compls_size, &wq->compls_addr_raw, GFP_KERNEL); if (!wq->compls_raw) { rc = -ENOMEM; goto fail_alloc_compls; } /* Adjust alignment */ wq->compls_addr = (wq->compls_addr_raw + (align - 1)) & ~(align - 1); tmp = (u64)wq->compls_raw; tmp = (tmp + (align - 1)) & ~(align - 1); wq->compls = (struct dsa_completion_record *)tmp; rc = alloc_descs(wq, num_descs); if (rc < 0) goto fail_alloc_descs; rc = sbitmap_queue_init_node(&wq->sbq, num_descs, -1, false, GFP_KERNEL, dev_to_node(dev)); if (rc < 0) goto fail_sbitmap_init; for (i = 0; i < num_descs; i++) { struct idxd_desc *desc = wq->descs[i]; desc->hw = wq->hw_descs[i]; if (idxd->data->type == IDXD_TYPE_DSA) desc->completion = &wq->compls[i]; else if (idxd->data->type == IDXD_TYPE_IAX) desc->iax_completion = &wq->iax_compls[i]; desc->compl_dma = wq->compls_addr + idxd->data->compl_size * i; desc->id = i; desc->wq = wq; desc->cpu = -1; } return 0; fail_sbitmap_init: free_descs(wq); fail_alloc_descs: dma_free_coherent(dev, wq->compls_size, wq->compls_raw, wq->compls_addr_raw); fail_alloc_compls: free_hw_descs(wq); return rc; } void idxd_wq_free_resources(struct idxd_wq *wq) { struct device *dev = &wq->idxd->pdev->dev; if (wq->type != IDXD_WQT_KERNEL) return; free_hw_descs(wq); free_descs(wq); dma_free_coherent(dev, wq->compls_size, wq->compls_raw, wq->compls_addr_raw); sbitmap_queue_free(&wq->sbq); } int idxd_wq_enable(struct idxd_wq *wq) { struct idxd_device *idxd = wq->idxd; struct device *dev = &idxd->pdev->dev; u32 status; if (wq->state == IDXD_WQ_ENABLED) { dev_dbg(dev, "WQ %d already enabled\n", wq->id); return -ENXIO; } idxd_cmd_exec(idxd, IDXD_CMD_ENABLE_WQ, wq->id, &status); if (status != IDXD_CMDSTS_SUCCESS && status != IDXD_CMDSTS_ERR_WQ_ENABLED) { dev_dbg(dev, "WQ enable failed: %#x\n", status); return -ENXIO; } wq->state = IDXD_WQ_ENABLED; dev_dbg(dev, "WQ %d enabled\n", wq->id); return 0; } int idxd_wq_disable(struct idxd_wq *wq, bool reset_config) { struct idxd_device *idxd = wq->idxd; struct device *dev = &idxd->pdev->dev; u32 status, operand; dev_dbg(dev, "Disabling WQ %d\n", wq->id); if (wq->state != IDXD_WQ_ENABLED) { dev_dbg(dev, "WQ %d in wrong state: %d\n", wq->id, wq->state); return 0; } operand = BIT(wq->id % 16) | ((wq->id / 16) << 16); idxd_cmd_exec(idxd, IDXD_CMD_DISABLE_WQ, operand, &status); if (status != IDXD_CMDSTS_SUCCESS) { dev_dbg(dev, "WQ disable failed: %#x\n", status); return -ENXIO; } if (reset_config) idxd_wq_disable_cleanup(wq); wq->state = IDXD_WQ_DISABLED; dev_dbg(dev, "WQ %d disabled\n", wq->id); return 0; } void idxd_wq_drain(struct idxd_wq *wq) { struct idxd_device *idxd = wq->idxd; struct device *dev = &idxd->pdev->dev; u32 operand; if (wq->state != IDXD_WQ_ENABLED) { dev_dbg(dev, "WQ %d in wrong state: %d\n", wq->id, wq->state); return; } dev_dbg(dev, "Draining WQ %d\n", wq->id); operand = BIT(wq->id % 16) | ((wq->id / 16) << 16); idxd_cmd_exec(idxd, IDXD_CMD_DRAIN_WQ, operand, NULL); } void idxd_wq_reset(struct idxd_wq *wq) { struct idxd_device *idxd = wq->idxd; struct device *dev = &idxd->pdev->dev; u32 operand; if (wq->state != IDXD_WQ_ENABLED) { dev_dbg(dev, "WQ %d in wrong state: %d\n", wq->id, wq->state); return; } operand = BIT(wq->id % 16) | ((wq->id / 16) << 16); idxd_cmd_exec(idxd, IDXD_CMD_RESET_WQ, operand, NULL); idxd_wq_disable_cleanup(wq); wq->state = IDXD_WQ_DISABLED; } int idxd_wq_map_portal(struct idxd_wq *wq) { struct idxd_device *idxd = wq->idxd; struct pci_dev *pdev = idxd->pdev; struct device *dev = &pdev->dev; resource_size_t start; start = pci_resource_start(pdev, IDXD_WQ_BAR); start += idxd_get_wq_portal_full_offset(wq->id, IDXD_PORTAL_LIMITED); wq->portal = devm_ioremap(dev, start, IDXD_PORTAL_SIZE); if (!wq->portal) return -ENOMEM; return 0; } void idxd_wq_unmap_portal(struct idxd_wq *wq) { struct device *dev = &wq->idxd->pdev->dev; devm_iounmap(dev, wq->portal); wq->portal = NULL; wq->portal_offset = 0; } void idxd_wqs_unmap_portal(struct idxd_device *idxd) { int i; for (i = 0; i < idxd->max_wqs; i++) { struct idxd_wq *wq = idxd->wqs[i]; if (wq->portal) idxd_wq_unmap_portal(wq); } } int idxd_wq_set_pasid(struct idxd_wq *wq, int pasid) { struct idxd_device *idxd = wq->idxd; int rc; union wqcfg wqcfg; unsigned int offset; rc = idxd_wq_disable(wq, false); if (rc < 0) return rc; offset = WQCFG_OFFSET(idxd, wq->id, WQCFG_PASID_IDX); spin_lock(&idxd->dev_lock); wqcfg.bits[WQCFG_PASID_IDX] = ioread32(idxd->reg_base + offset); wqcfg.pasid_en = 1; wqcfg.pasid = pasid; iowrite32(wqcfg.bits[WQCFG_PASID_IDX], idxd->reg_base + offset); spin_unlock(&idxd->dev_lock); rc = idxd_wq_enable(wq); if (rc < 0) return rc; return 0; } int idxd_wq_disable_pasid(struct idxd_wq *wq) { struct idxd_device *idxd = wq->idxd; int rc; union wqcfg wqcfg; unsigned int offset; rc = idxd_wq_disable(wq, false); if (rc < 0) return rc; offset = WQCFG_OFFSET(idxd, wq->id, WQCFG_PASID_IDX); spin_lock(&idxd->dev_lock); wqcfg.bits[WQCFG_PASID_IDX] = ioread32(idxd->reg_base + offset); wqcfg.pasid_en = 0; wqcfg.pasid = 0; iowrite32(wqcfg.bits[WQCFG_PASID_IDX], idxd->reg_base + offset); spin_unlock(&idxd->dev_lock); rc = idxd_wq_enable(wq); if (rc < 0) return rc; return 0; } static void idxd_wq_disable_cleanup(struct idxd_wq *wq) { struct idxd_device *idxd = wq->idxd; lockdep_assert_held(&wq->wq_lock); memset(wq->wqcfg, 0, idxd->wqcfg_size); wq->type = IDXD_WQT_NONE; wq->size = 0; wq->group = NULL; wq->threshold = 0; wq->priority = 0; wq->ats_dis = 0; clear_bit(WQ_FLAG_DEDICATED, &wq->flags); clear_bit(WQ_FLAG_BLOCK_ON_FAULT, &wq->flags); memset(wq->name, 0, WQ_NAME_SIZE); } static void idxd_wq_ref_release(struct percpu_ref *ref) { struct idxd_wq *wq = container_of(ref, struct idxd_wq, wq_active); complete(&wq->wq_dead); } int idxd_wq_init_percpu_ref(struct idxd_wq *wq) { int rc; memset(&wq->wq_active, 0, sizeof(wq->wq_active)); rc = percpu_ref_init(&wq->wq_active, idxd_wq_ref_release, 0, GFP_KERNEL); if (rc < 0) return rc; reinit_completion(&wq->wq_dead); return 0; } void idxd_wq_quiesce(struct idxd_wq *wq) { percpu_ref_kill(&wq->wq_active); wait_for_completion(&wq->wq_dead); } /* Device control bits */ static inline bool idxd_is_enabled(struct idxd_device *idxd) { union gensts_reg gensts; gensts.bits = ioread32(idxd->reg_base + IDXD_GENSTATS_OFFSET); if (gensts.state == IDXD_DEVICE_STATE_ENABLED) return true; return false; } static inline bool idxd_device_is_halted(struct idxd_device *idxd) { union gensts_reg gensts; gensts.bits = ioread32(idxd->reg_base + IDXD_GENSTATS_OFFSET); return (gensts.state == IDXD_DEVICE_STATE_HALT); } /* * This is function is only used for reset during probe and will * poll for completion. Once the device is setup with interrupts, * all commands will be done via interrupt completion. */ int idxd_device_init_reset(struct idxd_device *idxd) { struct device *dev = &idxd->pdev->dev; union idxd_command_reg cmd; if (idxd_device_is_halted(idxd)) { dev_warn(&idxd->pdev->dev, "Device is HALTED!\n"); return -ENXIO; } memset(&cmd, 0, sizeof(cmd)); cmd.cmd = IDXD_CMD_RESET_DEVICE; dev_dbg(dev, "%s: sending reset for init.\n", __func__); spin_lock(&idxd->cmd_lock); iowrite32(cmd.bits, idxd->reg_base + IDXD_CMD_OFFSET); while (ioread32(idxd->reg_base + IDXD_CMDSTS_OFFSET) & IDXD_CMDSTS_ACTIVE) cpu_relax(); spin_unlock(&idxd->cmd_lock); return 0; } static void idxd_cmd_exec(struct idxd_device *idxd, int cmd_code, u32 operand, u32 *status) { union idxd_command_reg cmd; DECLARE_COMPLETION_ONSTACK(done); u32 stat; if (idxd_device_is_halted(idxd)) { dev_warn(&idxd->pdev->dev, "Device is HALTED!\n"); if (status) *status = IDXD_CMDSTS_HW_ERR; return; } memset(&cmd, 0, sizeof(cmd)); cmd.cmd = cmd_code; cmd.operand = operand; cmd.int_req = 1; spin_lock(&idxd->cmd_lock); wait_event_lock_irq(idxd->cmd_waitq, !test_bit(IDXD_FLAG_CMD_RUNNING, &idxd->flags), idxd->cmd_lock); dev_dbg(&idxd->pdev->dev, "%s: sending cmd: %#x op: %#x\n", __func__, cmd_code, operand); idxd->cmd_status = 0; __set_bit(IDXD_FLAG_CMD_RUNNING, &idxd->flags); idxd->cmd_done = &done; iowrite32(cmd.bits, idxd->reg_base + IDXD_CMD_OFFSET); /* * After command submitted, release lock and go to sleep until * the command completes via interrupt. */ spin_unlock(&idxd->cmd_lock); wait_for_completion(&done); stat = ioread32(idxd->reg_base + IDXD_CMDSTS_OFFSET); spin_lock(&idxd->cmd_lock); if (status) *status = stat; idxd->cmd_status = stat & GENMASK(7, 0); __clear_bit(IDXD_FLAG_CMD_RUNNING, &idxd->flags); /* Wake up other pending commands */ wake_up(&idxd->cmd_waitq); spin_unlock(&idxd->cmd_lock); } int idxd_device_enable(struct idxd_device *idxd) { struct device *dev = &idxd->pdev->dev; u32 status; if (idxd_is_enabled(idxd)) { dev_dbg(dev, "Device already enabled\n"); return -ENXIO; } idxd_cmd_exec(idxd, IDXD_CMD_ENABLE_DEVICE, 0, &status); /* If the command is successful or if the device was enabled */ if (status != IDXD_CMDSTS_SUCCESS && status != IDXD_CMDSTS_ERR_DEV_ENABLED) { dev_dbg(dev, "%s: err_code: %#x\n", __func__, status); return -ENXIO; } idxd->state = IDXD_DEV_ENABLED; return 0; } int idxd_device_disable(struct idxd_device *idxd) { struct device *dev = &idxd->pdev->dev; u32 status; if (!idxd_is_enabled(idxd)) { dev_dbg(dev, "Device is not enabled\n"); return 0; } idxd_cmd_exec(idxd, IDXD_CMD_DISABLE_DEVICE, 0, &status); /* If the command is successful or if the device was disabled */ if (status != IDXD_CMDSTS_SUCCESS && !(status & IDXD_CMDSTS_ERR_DIS_DEV_EN)) { dev_dbg(dev, "%s: err_code: %#x\n", __func__, status); return -ENXIO; } spin_lock(&idxd->dev_lock); idxd_device_clear_state(idxd); idxd->state = IDXD_DEV_DISABLED; spin_unlock(&idxd->dev_lock); return 0; } void idxd_device_reset(struct idxd_device *idxd) { idxd_cmd_exec(idxd, IDXD_CMD_RESET_DEVICE, 0, NULL); spin_lock(&idxd->dev_lock); idxd_device_clear_state(idxd); idxd->state = IDXD_DEV_DISABLED; spin_unlock(&idxd->dev_lock); } void idxd_device_drain_pasid(struct idxd_device *idxd, int pasid) { struct device *dev = &idxd->pdev->dev; u32 operand; operand = pasid; dev_dbg(dev, "cmd: %u operand: %#x\n", IDXD_CMD_DRAIN_PASID, operand); idxd_cmd_exec(idxd, IDXD_CMD_DRAIN_PASID, operand, NULL); dev_dbg(dev, "pasid %d drained\n", pasid); } int idxd_device_request_int_handle(struct idxd_device *idxd, int idx, int *handle, enum idxd_interrupt_type irq_type) { struct device *dev = &idxd->pdev->dev; u32 operand, status; if (!(idxd->hw.cmd_cap & BIT(IDXD_CMD_REQUEST_INT_HANDLE))) return -EOPNOTSUPP; dev_dbg(dev, "get int handle, idx %d\n", idx); operand = idx & GENMASK(15, 0); if (irq_type == IDXD_IRQ_IMS) operand |= CMD_INT_HANDLE_IMS; dev_dbg(dev, "cmd: %u operand: %#x\n", IDXD_CMD_REQUEST_INT_HANDLE, operand); idxd_cmd_exec(idxd, IDXD_CMD_REQUEST_INT_HANDLE, operand, &status); if ((status & IDXD_CMDSTS_ERR_MASK) != IDXD_CMDSTS_SUCCESS) { dev_dbg(dev, "request int handle failed: %#x\n", status); return -ENXIO; } *handle = (status >> IDXD_CMDSTS_RES_SHIFT) & GENMASK(15, 0); dev_dbg(dev, "int handle acquired: %u\n", *handle); return 0; } int idxd_device_release_int_handle(struct idxd_device *idxd, int handle, enum idxd_interrupt_type irq_type) { struct device *dev = &idxd->pdev->dev; u32 operand, status; union idxd_command_reg cmd; if (!(idxd->hw.cmd_cap & BIT(IDXD_CMD_RELEASE_INT_HANDLE))) return -EOPNOTSUPP; dev_dbg(dev, "release int handle, handle %d\n", handle); memset(&cmd, 0, sizeof(cmd)); operand = handle & GENMASK(15, 0); if (irq_type == IDXD_IRQ_IMS) operand |= CMD_INT_HANDLE_IMS; cmd.cmd = IDXD_CMD_RELEASE_INT_HANDLE; cmd.operand = operand; dev_dbg(dev, "cmd: %u operand: %#x\n", IDXD_CMD_RELEASE_INT_HANDLE, operand); spin_lock(&idxd->cmd_lock); iowrite32(cmd.bits, idxd->reg_base + IDXD_CMD_OFFSET); while (ioread32(idxd->reg_base + IDXD_CMDSTS_OFFSET) & IDXD_CMDSTS_ACTIVE) cpu_relax(); status = ioread32(idxd->reg_base + IDXD_CMDSTS_OFFSET); spin_unlock(&idxd->cmd_lock); if ((status & IDXD_CMDSTS_ERR_MASK) != IDXD_CMDSTS_SUCCESS) { dev_dbg(dev, "release int handle failed: %#x\n", status); return -ENXIO; } dev_dbg(dev, "int handle released.\n"); return 0; } /* Device configuration bits */ static void idxd_engines_clear_state(struct idxd_device *idxd) { struct idxd_engine *engine; int i; lockdep_assert_held(&idxd->dev_lock); for (i = 0; i < idxd->max_engines; i++) { engine = idxd->engines[i]; engine->group = NULL; } } static void idxd_groups_clear_state(struct idxd_device *idxd) { struct idxd_group *group; int i; lockdep_assert_held(&idxd->dev_lock); for (i = 0; i < idxd->max_groups; i++) { group = idxd->groups[i]; memset(&group->grpcfg, 0, sizeof(group->grpcfg)); group->num_engines = 0; group->num_wqs = 0; group->use_token_limit = false; group->tokens_allowed = 0; group->tokens_reserved = 0; group->tc_a = -1; group->tc_b = -1; } } static void idxd_device_wqs_clear_state(struct idxd_device *idxd) { int i; lockdep_assert_held(&idxd->dev_lock); for (i = 0; i < idxd->max_wqs; i++) { struct idxd_wq *wq = idxd->wqs[i]; if (wq->state == IDXD_WQ_ENABLED) { idxd_wq_disable_cleanup(wq); wq->state = IDXD_WQ_DISABLED; } } } void idxd_device_clear_state(struct idxd_device *idxd) { idxd_groups_clear_state(idxd); idxd_engines_clear_state(idxd); idxd_device_wqs_clear_state(idxd); } void idxd_msix_perm_setup(struct idxd_device *idxd) { union msix_perm mperm; int i, msixcnt; msixcnt = pci_msix_vec_count(idxd->pdev); if (msixcnt < 0) return; mperm.bits = 0; mperm.pasid = idxd->pasid; mperm.pasid_en = device_pasid_enabled(idxd); for (i = 1; i < msixcnt; i++) iowrite32(mperm.bits, idxd->reg_base + idxd->msix_perm_offset + i * 8); } void idxd_msix_perm_clear(struct idxd_device *idxd) { union msix_perm mperm; int i, msixcnt; msixcnt = pci_msix_vec_count(idxd->pdev); if (msixcnt < 0) return; mperm.bits = 0; for (i = 1; i < msixcnt; i++) iowrite32(mperm.bits, idxd->reg_base + idxd->msix_perm_offset + i * 8); } static void idxd_group_config_write(struct idxd_group *group) { struct idxd_device *idxd = group->idxd; struct device *dev = &idxd->pdev->dev; int i; u32 grpcfg_offset; dev_dbg(dev, "Writing group %d cfg registers\n", group->id); /* setup GRPWQCFG */ for (i = 0; i < GRPWQCFG_STRIDES; i++) { grpcfg_offset = GRPWQCFG_OFFSET(idxd, group->id, i); iowrite64(group->grpcfg.wqs[i], idxd->reg_base + grpcfg_offset); dev_dbg(dev, "GRPCFG wq[%d:%d: %#x]: %#llx\n", group->id, i, grpcfg_offset, ioread64(idxd->reg_base + grpcfg_offset)); } /* setup GRPENGCFG */ grpcfg_offset = GRPENGCFG_OFFSET(idxd, group->id); iowrite64(group->grpcfg.engines, idxd->reg_base + grpcfg_offset); dev_dbg(dev, "GRPCFG engs[%d: %#x]: %#llx\n", group->id, grpcfg_offset, ioread64(idxd->reg_base + grpcfg_offset)); /* setup GRPFLAGS */ grpcfg_offset = GRPFLGCFG_OFFSET(idxd, group->id); iowrite32(group->grpcfg.flags.bits, idxd->reg_base + grpcfg_offset); dev_dbg(dev, "GRPFLAGS flags[%d: %#x]: %#x\n", group->id, grpcfg_offset, ioread32(idxd->reg_base + grpcfg_offset)); } static int idxd_groups_config_write(struct idxd_device *idxd) { union gencfg_reg reg; int i; struct device *dev = &idxd->pdev->dev; /* Setup bandwidth token limit */ if (idxd->token_limit) { reg.bits = ioread32(idxd->reg_base + IDXD_GENCFG_OFFSET); reg.token_limit = idxd->token_limit; iowrite32(reg.bits, idxd->reg_base + IDXD_GENCFG_OFFSET); } dev_dbg(dev, "GENCFG(%#x): %#x\n", IDXD_GENCFG_OFFSET, ioread32(idxd->reg_base + IDXD_GENCFG_OFFSET)); for (i = 0; i < idxd->max_groups; i++) { struct idxd_group *group = idxd->groups[i]; idxd_group_config_write(group); } return 0; } static bool idxd_device_pasid_priv_enabled(struct idxd_device *idxd) { struct pci_dev *pdev = idxd->pdev; if (pdev->pasid_enabled && (pdev->pasid_features & PCI_PASID_CAP_PRIV)) return true; return false; } static int idxd_wq_config_write(struct idxd_wq *wq) { struct idxd_device *idxd = wq->idxd; struct device *dev = &idxd->pdev->dev; u32 wq_offset; int i; if (!wq->group) return 0; /* * Instead of memset the entire shadow copy of WQCFG, copy from the hardware after * wq reset. This will copy back the sticky values that are present on some devices. */ for (i = 0; i < WQCFG_STRIDES(idxd); i++) { wq_offset = WQCFG_OFFSET(idxd, wq->id, i); wq->wqcfg->bits[i] = ioread32(idxd->reg_base + wq_offset); } /* byte 0-3 */ wq->wqcfg->wq_size = wq->size; if (wq->size == 0) { idxd->cmd_status = IDXD_SCMD_WQ_NO_SIZE; dev_warn(dev, "Incorrect work queue size: 0\n"); return -EINVAL; } /* bytes 4-7 */ wq->wqcfg->wq_thresh = wq->threshold; /* byte 8-11 */ if (wq_dedicated(wq)) wq->wqcfg->mode = 1; if (device_pasid_enabled(idxd)) { wq->wqcfg->pasid_en = 1; if (wq->type == IDXD_WQT_KERNEL && wq_dedicated(wq)) wq->wqcfg->pasid = idxd->pasid; } /* * Here the priv bit is set depending on the WQ type. priv = 1 if the * WQ type is kernel to indicate privileged access. This setting only * matters for dedicated WQ. According to the DSA spec: * If the WQ is in dedicated mode, WQ PASID Enable is 1, and the * Privileged Mode Enable field of the PCI Express PASID capability * is 0, this field must be 0. * * In the case of a dedicated kernel WQ that is not able to support * the PASID cap, then the configuration will be rejected. */ wq->wqcfg->priv = !!(wq->type == IDXD_WQT_KERNEL); if (wq_dedicated(wq) && wq->wqcfg->pasid_en && !idxd_device_pasid_priv_enabled(idxd) && wq->type == IDXD_WQT_KERNEL) { idxd->cmd_status = IDXD_SCMD_WQ_NO_PRIV; return -EOPNOTSUPP; } wq->wqcfg->priority = wq->priority; if (idxd->hw.gen_cap.block_on_fault && test_bit(WQ_FLAG_BLOCK_ON_FAULT, &wq->flags)) wq->wqcfg->bof = 1; if (idxd->hw.wq_cap.wq_ats_support) wq->wqcfg->wq_ats_disable = wq->ats_dis; /* bytes 12-15 */ wq->wqcfg->max_xfer_shift = ilog2(wq->max_xfer_bytes); wq->wqcfg->max_batch_shift = ilog2(wq->max_batch_size); dev_dbg(dev, "WQ %d CFGs\n", wq->id); for (i = 0; i < WQCFG_STRIDES(idxd); i++) { wq_offset = WQCFG_OFFSET(idxd, wq->id, i); iowrite32(wq->wqcfg->bits[i], idxd->reg_base + wq_offset); dev_dbg(dev, "WQ[%d][%d][%#x]: %#x\n", wq->id, i, wq_offset, ioread32(idxd->reg_base + wq_offset)); } return 0; } static int idxd_wqs_config_write(struct idxd_device *idxd) { int i, rc; for (i = 0; i < idxd->max_wqs; i++) { struct idxd_wq *wq = idxd->wqs[i]; rc = idxd_wq_config_write(wq); if (rc < 0) return rc; } return 0; } static void idxd_group_flags_setup(struct idxd_device *idxd) { int i; /* TC-A 0 and TC-B 1 should be defaults */ for (i = 0; i < idxd->max_groups; i++) { struct idxd_group *group = idxd->groups[i]; if (group->tc_a == -1) group->tc_a = group->grpcfg.flags.tc_a = 0; else group->grpcfg.flags.tc_a = group->tc_a; if (group->tc_b == -1) group->tc_b = group->grpcfg.flags.tc_b = 1; else group->grpcfg.flags.tc_b = group->tc_b; group->grpcfg.flags.use_token_limit = group->use_token_limit; group->grpcfg.flags.tokens_reserved = group->tokens_reserved; if (group->tokens_allowed) group->grpcfg.flags.tokens_allowed = group->tokens_allowed; else group->grpcfg.flags.tokens_allowed = idxd->max_tokens; } } static int idxd_engines_setup(struct idxd_device *idxd) { int i, engines = 0; struct idxd_engine *eng; struct idxd_group *group; for (i = 0; i < idxd->max_groups; i++) { group = idxd->groups[i]; group->grpcfg.engines = 0; } for (i = 0; i < idxd->max_engines; i++) { eng = idxd->engines[i]; group = eng->group; if (!group) continue; group->grpcfg.engines |= BIT(eng->id); engines++; } if (!engines) return -EINVAL; return 0; } static int idxd_wqs_setup(struct idxd_device *idxd) { struct idxd_wq *wq; struct idxd_group *group; int i, j, configured = 0; struct device *dev = &idxd->pdev->dev; for (i = 0; i < idxd->max_groups; i++) { group = idxd->groups[i]; for (j = 0; j < 4; j++) group->grpcfg.wqs[j] = 0; } for (i = 0; i < idxd->max_wqs; i++) { wq = idxd->wqs[i]; group = wq->group; if (!wq->group) continue; if (!wq->size) continue; if (wq_shared(wq) && !device_swq_supported(idxd)) { idxd->cmd_status = IDXD_SCMD_WQ_NO_SWQ_SUPPORT; dev_warn(dev, "No shared wq support but configured.\n"); return -EINVAL; } group->grpcfg.wqs[wq->id / 64] |= BIT(wq->id % 64); configured++; } if (configured == 0) { idxd->cmd_status = IDXD_SCMD_WQ_NONE_CONFIGURED; return -EINVAL; } return 0; } int idxd_device_config(struct idxd_device *idxd) { int rc; lockdep_assert_held(&idxd->dev_lock); rc = idxd_wqs_setup(idxd); if (rc < 0) return rc; rc = idxd_engines_setup(idxd); if (rc < 0) return rc; idxd_group_flags_setup(idxd); rc = idxd_wqs_config_write(idxd); if (rc < 0) return rc; rc = idxd_groups_config_write(idxd); if (rc < 0) return rc; return 0; } static int idxd_wq_load_config(struct idxd_wq *wq) { struct idxd_device *idxd = wq->idxd; struct device *dev = &idxd->pdev->dev; int wqcfg_offset; int i; wqcfg_offset = WQCFG_OFFSET(idxd, wq->id, 0); memcpy_fromio(wq->wqcfg, idxd->reg_base + wqcfg_offset, idxd->wqcfg_size); wq->size = wq->wqcfg->wq_size; wq->threshold = wq->wqcfg->wq_thresh; if (wq->wqcfg->priv) wq->type = IDXD_WQT_KERNEL; /* The driver does not support shared WQ mode in read-only config yet */ if (wq->wqcfg->mode == 0 || wq->wqcfg->pasid_en) return -EOPNOTSUPP; set_bit(WQ_FLAG_DEDICATED, &wq->flags); wq->priority = wq->wqcfg->priority; for (i = 0; i < WQCFG_STRIDES(idxd); i++) { wqcfg_offset = WQCFG_OFFSET(idxd, wq->id, i); dev_dbg(dev, "WQ[%d][%d][%#x]: %#x\n", wq->id, i, wqcfg_offset, wq->wqcfg->bits[i]); } return 0; } static void idxd_group_load_config(struct idxd_group *group) { struct idxd_device *idxd = group->idxd; struct device *dev = &idxd->pdev->dev; int i, j, grpcfg_offset; /* * Load WQS bit fields * Iterate through all 256 bits 64 bits at a time */ for (i = 0; i < GRPWQCFG_STRIDES; i++) { struct idxd_wq *wq; grpcfg_offset = GRPWQCFG_OFFSET(idxd, group->id, i); group->grpcfg.wqs[i] = ioread64(idxd->reg_base + grpcfg_offset); dev_dbg(dev, "GRPCFG wq[%d:%d: %#x]: %#llx\n", group->id, i, grpcfg_offset, group->grpcfg.wqs[i]); if (i * 64 >= idxd->max_wqs) break; /* Iterate through all 64 bits and check for wq set */ for (j = 0; j < 64; j++) { int id = i * 64 + j; /* No need to check beyond max wqs */ if (id >= idxd->max_wqs) break; /* Set group assignment for wq if wq bit is set */ if (group->grpcfg.wqs[i] & BIT(j)) { wq = idxd->wqs[id]; wq->group = group; } } } grpcfg_offset = GRPENGCFG_OFFSET(idxd, group->id); group->grpcfg.engines = ioread64(idxd->reg_base + grpcfg_offset); dev_dbg(dev, "GRPCFG engs[%d: %#x]: %#llx\n", group->id, grpcfg_offset, group->grpcfg.engines); /* Iterate through all 64 bits to check engines set */ for (i = 0; i < 64; i++) { if (i >= idxd->max_engines) break; if (group->grpcfg.engines & BIT(i)) { struct idxd_engine *engine = idxd->engines[i]; engine->group = group; } } grpcfg_offset = GRPFLGCFG_OFFSET(idxd, group->id); group->grpcfg.flags.bits = ioread32(idxd->reg_base + grpcfg_offset); dev_dbg(dev, "GRPFLAGS flags[%d: %#x]: %#x\n", group->id, grpcfg_offset, group->grpcfg.flags.bits); } int idxd_device_load_config(struct idxd_device *idxd) { union gencfg_reg reg; int i, rc; reg.bits = ioread32(idxd->reg_base + IDXD_GENCFG_OFFSET); idxd->token_limit = reg.token_limit; for (i = 0; i < idxd->max_groups; i++) { struct idxd_group *group = idxd->groups[i]; idxd_group_load_config(group); } for (i = 0; i < idxd->max_wqs; i++) { struct idxd_wq *wq = idxd->wqs[i]; rc = idxd_wq_load_config(wq); if (rc < 0) return rc; } return 0; } int __drv_enable_wq(struct idxd_wq *wq) { struct idxd_device *idxd = wq->idxd; struct device *dev = &idxd->pdev->dev; int rc = -ENXIO; lockdep_assert_held(&wq->wq_lock); if (idxd->state != IDXD_DEV_ENABLED) { idxd->cmd_status = IDXD_SCMD_DEV_NOT_ENABLED; goto err; } if (wq->state != IDXD_WQ_DISABLED) { dev_dbg(dev, "wq %d already enabled.\n", wq->id); idxd->cmd_status = IDXD_SCMD_WQ_ENABLED; rc = -EBUSY; goto err; } if (!wq->group) { dev_dbg(dev, "wq %d not attached to group.\n", wq->id); idxd->cmd_status = IDXD_SCMD_WQ_NO_GRP; goto err; } if (strlen(wq->name) == 0) { idxd->cmd_status = IDXD_SCMD_WQ_NO_NAME; dev_dbg(dev, "wq %d name not set.\n", wq->id); goto err; } /* Shared WQ checks */ if (wq_shared(wq)) { if (!device_swq_supported(idxd)) { idxd->cmd_status = IDXD_SCMD_WQ_NO_SVM; dev_dbg(dev, "PASID not enabled and shared wq.\n"); goto err; } /* * Shared wq with the threshold set to 0 means the user * did not set the threshold or transitioned from a * dedicated wq but did not set threshold. A value * of 0 would effectively disable the shared wq. The * driver does not allow a value of 0 to be set for * threshold via sysfs. */ if (wq->threshold == 0) { idxd->cmd_status = IDXD_SCMD_WQ_NO_THRESH; dev_dbg(dev, "Shared wq and threshold 0.\n"); goto err; } } rc = 0; spin_lock(&idxd->dev_lock); if (test_bit(IDXD_FLAG_CONFIGURABLE, &idxd->flags)) rc = idxd_device_config(idxd); spin_unlock(&idxd->dev_lock); if (rc < 0) { dev_dbg(dev, "Writing wq %d config failed: %d\n", wq->id, rc); goto err; } rc = idxd_wq_enable(wq); if (rc < 0) { dev_dbg(dev, "wq %d enabling failed: %d\n", wq->id, rc); goto err; } rc = idxd_wq_map_portal(wq); if (rc < 0) { idxd->cmd_status = IDXD_SCMD_WQ_PORTAL_ERR; dev_dbg(dev, "wq %d portal mapping failed: %d\n", wq->id, rc); goto err_map_portal; } wq->client_count = 0; return 0; err_map_portal: rc = idxd_wq_disable(wq, false); if (rc < 0) dev_dbg(dev, "wq %s disable failed\n", dev_name(wq_confdev(wq))); err: return rc; } int drv_enable_wq(struct idxd_wq *wq) { int rc; mutex_lock(&wq->wq_lock); rc = __drv_enable_wq(wq); mutex_unlock(&wq->wq_lock); return rc; } void __drv_disable_wq(struct idxd_wq *wq) { struct idxd_device *idxd = wq->idxd; struct device *dev = &idxd->pdev->dev; lockdep_assert_held(&wq->wq_lock); if (idxd_wq_refcount(wq)) dev_warn(dev, "Clients has claim on wq %d: %d\n", wq->id, idxd_wq_refcount(wq)); idxd_wq_unmap_portal(wq); idxd_wq_drain(wq); idxd_wq_reset(wq); wq->client_count = 0; } void drv_disable_wq(struct idxd_wq *wq) { mutex_lock(&wq->wq_lock); __drv_disable_wq(wq); mutex_unlock(&wq->wq_lock); } int idxd_device_drv_probe(struct idxd_dev *idxd_dev) { struct idxd_device *idxd = idxd_dev_to_idxd(idxd_dev); int rc = 0; /* * Device should be in disabled state for the idxd_drv to load. If it's in * enabled state, then the device was altered outside of driver's control. * If the state is in halted state, then we don't want to proceed. */ if (idxd->state != IDXD_DEV_DISABLED) { idxd->cmd_status = IDXD_SCMD_DEV_ENABLED; return -ENXIO; } /* Device configuration */ spin_lock(&idxd->dev_lock); if (test_bit(IDXD_FLAG_CONFIGURABLE, &idxd->flags)) rc = idxd_device_config(idxd); spin_unlock(&idxd->dev_lock); if (rc < 0) return -ENXIO; /* Start device */ rc = idxd_device_enable(idxd); if (rc < 0) return rc; /* Setup DMA device without channels */ rc = idxd_register_dma_device(idxd); if (rc < 0) { idxd_device_disable(idxd); idxd->cmd_status = IDXD_SCMD_DEV_DMA_ERR; return rc; } idxd->cmd_status = 0; return 0; } void idxd_device_drv_remove(struct idxd_dev *idxd_dev) { struct device *dev = &idxd_dev->conf_dev; struct idxd_device *idxd = idxd_dev_to_idxd(idxd_dev); int i; for (i = 0; i < idxd->max_wqs; i++) { struct idxd_wq *wq = idxd->wqs[i]; struct device *wq_dev = wq_confdev(wq); if (wq->state == IDXD_WQ_DISABLED) continue; dev_warn(dev, "Active wq %d on disable %s.\n", i, dev_name(wq_dev)); device_release_driver(wq_dev); } idxd_unregister_dma_device(idxd); idxd_device_disable(idxd); if (test_bit(IDXD_FLAG_CONFIGURABLE, &idxd->flags)) idxd_device_reset(idxd); } static enum idxd_dev_type dev_types[] = { IDXD_DEV_DSA, IDXD_DEV_IAX, IDXD_DEV_NONE, }; struct idxd_device_driver idxd_drv = { .type = dev_types, .probe = idxd_device_drv_probe, .remove = idxd_device_drv_remove, .name = "idxd", }; EXPORT_SYMBOL_GPL(idxd_drv);