/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include "display/intel_dp.h" #include "i915_drv.h" #include "intel_atomic.h" #include "intel_de.h" #include "intel_display_types.h" #include "intel_dp_aux.h" #include "intel_hdmi.h" #include "intel_psr.h" #include "intel_sprite.h" #include "skl_universal_plane.h" /** * DOC: Panel Self Refresh (PSR/SRD) * * Since Haswell Display controller supports Panel Self-Refresh on display * panels witch have a remote frame buffer (RFB) implemented according to PSR * spec in eDP1.3. PSR feature allows the display to go to lower standby states * when system is idle but display is on as it eliminates display refresh * request to DDR memory completely as long as the frame buffer for that * display is unchanged. * * Panel Self Refresh must be supported by both Hardware (source) and * Panel (sink). * * PSR saves power by caching the framebuffer in the panel RFB, which allows us * to power down the link and memory controller. For DSI panels the same idea * is called "manual mode". * * The implementation uses the hardware-based PSR support which automatically * enters/exits self-refresh mode. The hardware takes care of sending the * required DP aux message and could even retrain the link (that part isn't * enabled yet though). The hardware also keeps track of any frontbuffer * changes to know when to exit self-refresh mode again. Unfortunately that * part doesn't work too well, hence why the i915 PSR support uses the * software frontbuffer tracking to make sure it doesn't miss a screen * update. For this integration intel_psr_invalidate() and intel_psr_flush() * get called by the frontbuffer tracking code. Note that because of locking * issues the self-refresh re-enable code is done from a work queue, which * must be correctly synchronized/cancelled when shutting down the pipe." * * DC3CO (DC3 clock off) * * On top of PSR2, GEN12 adds a intermediate power savings state that turns * clock off automatically during PSR2 idle state. * The smaller overhead of DC3co entry/exit vs. the overhead of PSR2 deep sleep * entry/exit allows the HW to enter a low-power state even when page flipping * periodically (for instance a 30fps video playback scenario). * * Every time a flips occurs PSR2 will get out of deep sleep state(if it was), * so DC3CO is enabled and tgl_dc3co_disable_work is schedule to run after 6 * frames, if no other flip occurs and the function above is executed, DC3CO is * disabled and PSR2 is configured to enter deep sleep, resetting again in case * of another flip. * Front buffer modifications do not trigger DC3CO activation on purpose as it * would bring a lot of complexity and most of the moderns systems will only * use page flips. */ static bool psr_global_enabled(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); switch (intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK) { case I915_PSR_DEBUG_DEFAULT: return i915->params.enable_psr; case I915_PSR_DEBUG_DISABLE: return false; default: return true; } } static bool psr2_global_enabled(struct intel_dp *intel_dp) { switch (intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK) { case I915_PSR_DEBUG_DISABLE: case I915_PSR_DEBUG_FORCE_PSR1: return false; default: return true; } } static void psr_irq_control(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); enum transcoder trans_shift; i915_reg_t imr_reg; u32 mask, val; /* * gen12+ has registers relative to transcoder and one per transcoder * using the same bit definition: handle it as TRANSCODER_EDP to force * 0 shift in bit definition */ if (DISPLAY_VER(dev_priv) >= 12) { trans_shift = 0; imr_reg = TRANS_PSR_IMR(intel_dp->psr.transcoder); } else { trans_shift = intel_dp->psr.transcoder; imr_reg = EDP_PSR_IMR; } mask = EDP_PSR_ERROR(trans_shift); if (intel_dp->psr.debug & I915_PSR_DEBUG_IRQ) mask |= EDP_PSR_POST_EXIT(trans_shift) | EDP_PSR_PRE_ENTRY(trans_shift); /* Warning: it is masking/setting reserved bits too */ val = intel_de_read(dev_priv, imr_reg); val &= ~EDP_PSR_TRANS_MASK(trans_shift); val |= ~mask; intel_de_write(dev_priv, imr_reg, val); } static void psr_event_print(struct drm_i915_private *i915, u32 val, bool psr2_enabled) { drm_dbg_kms(&i915->drm, "PSR exit events: 0x%x\n", val); if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE) drm_dbg_kms(&i915->drm, "\tPSR2 watchdog timer expired\n"); if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled) drm_dbg_kms(&i915->drm, "\tPSR2 disabled\n"); if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN) drm_dbg_kms(&i915->drm, "\tSU dirty FIFO underrun\n"); if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN) drm_dbg_kms(&i915->drm, "\tSU CRC FIFO underrun\n"); if (val & PSR_EVENT_GRAPHICS_RESET) drm_dbg_kms(&i915->drm, "\tGraphics reset\n"); if (val & PSR_EVENT_PCH_INTERRUPT) drm_dbg_kms(&i915->drm, "\tPCH interrupt\n"); if (val & PSR_EVENT_MEMORY_UP) drm_dbg_kms(&i915->drm, "\tMemory up\n"); if (val & PSR_EVENT_FRONT_BUFFER_MODIFY) drm_dbg_kms(&i915->drm, "\tFront buffer modification\n"); if (val & PSR_EVENT_WD_TIMER_EXPIRE) drm_dbg_kms(&i915->drm, "\tPSR watchdog timer expired\n"); if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE) drm_dbg_kms(&i915->drm, "\tPIPE registers updated\n"); if (val & PSR_EVENT_REGISTER_UPDATE) drm_dbg_kms(&i915->drm, "\tRegister updated\n"); if (val & PSR_EVENT_HDCP_ENABLE) drm_dbg_kms(&i915->drm, "\tHDCP enabled\n"); if (val & PSR_EVENT_KVMR_SESSION_ENABLE) drm_dbg_kms(&i915->drm, "\tKVMR session enabled\n"); if (val & PSR_EVENT_VBI_ENABLE) drm_dbg_kms(&i915->drm, "\tVBI enabled\n"); if (val & PSR_EVENT_LPSP_MODE_EXIT) drm_dbg_kms(&i915->drm, "\tLPSP mode exited\n"); if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled) drm_dbg_kms(&i915->drm, "\tPSR disabled\n"); } void intel_psr_irq_handler(struct intel_dp *intel_dp, u32 psr_iir) { enum transcoder cpu_transcoder = intel_dp->psr.transcoder; struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); ktime_t time_ns = ktime_get(); enum transcoder trans_shift; i915_reg_t imr_reg; if (DISPLAY_VER(dev_priv) >= 12) { trans_shift = 0; imr_reg = TRANS_PSR_IMR(intel_dp->psr.transcoder); } else { trans_shift = intel_dp->psr.transcoder; imr_reg = EDP_PSR_IMR; } if (psr_iir & EDP_PSR_PRE_ENTRY(trans_shift)) { intel_dp->psr.last_entry_attempt = time_ns; drm_dbg_kms(&dev_priv->drm, "[transcoder %s] PSR entry attempt in 2 vblanks\n", transcoder_name(cpu_transcoder)); } if (psr_iir & EDP_PSR_POST_EXIT(trans_shift)) { intel_dp->psr.last_exit = time_ns; drm_dbg_kms(&dev_priv->drm, "[transcoder %s] PSR exit completed\n", transcoder_name(cpu_transcoder)); if (DISPLAY_VER(dev_priv) >= 9) { u32 val = intel_de_read(dev_priv, PSR_EVENT(cpu_transcoder)); bool psr2_enabled = intel_dp->psr.psr2_enabled; intel_de_write(dev_priv, PSR_EVENT(cpu_transcoder), val); psr_event_print(dev_priv, val, psr2_enabled); } } if (psr_iir & EDP_PSR_ERROR(trans_shift)) { u32 val; drm_warn(&dev_priv->drm, "[transcoder %s] PSR aux error\n", transcoder_name(cpu_transcoder)); intel_dp->psr.irq_aux_error = true; /* * If this interruption is not masked it will keep * interrupting so fast that it prevents the scheduled * work to run. * Also after a PSR error, we don't want to arm PSR * again so we don't care about unmask the interruption * or unset irq_aux_error. */ val = intel_de_read(dev_priv, imr_reg); val |= EDP_PSR_ERROR(trans_shift); intel_de_write(dev_priv, imr_reg, val); schedule_work(&intel_dp->psr.work); } } static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp) { u8 alpm_caps = 0; if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP, &alpm_caps) != 1) return false; return alpm_caps & DP_ALPM_CAP; } static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); u8 val = 8; /* assume the worst if we can't read the value */ if (drm_dp_dpcd_readb(&intel_dp->aux, DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1) val &= DP_MAX_RESYNC_FRAME_COUNT_MASK; else drm_dbg_kms(&i915->drm, "Unable to get sink synchronization latency, assuming 8 frames\n"); return val; } static void intel_dp_get_su_granularity(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); ssize_t r; u16 w; u8 y; /* If sink don't have specific granularity requirements set legacy ones */ if (!(intel_dp->psr_dpcd[1] & DP_PSR2_SU_GRANULARITY_REQUIRED)) { /* As PSR2 HW sends full lines, we do not care about x granularity */ w = 4; y = 4; goto exit; } r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_X_GRANULARITY, &w, 2); if (r != 2) drm_dbg_kms(&i915->drm, "Unable to read DP_PSR2_SU_X_GRANULARITY\n"); /* * Spec says that if the value read is 0 the default granularity should * be used instead. */ if (r != 2 || w == 0) w = 4; r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_Y_GRANULARITY, &y, 1); if (r != 1) { drm_dbg_kms(&i915->drm, "Unable to read DP_PSR2_SU_Y_GRANULARITY\n"); y = 4; } if (y == 0) y = 1; exit: intel_dp->psr.su_w_granularity = w; intel_dp->psr.su_y_granularity = y; } void intel_psr_init_dpcd(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(dp_to_dig_port(intel_dp)->base.base.dev); drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd, sizeof(intel_dp->psr_dpcd)); if (!intel_dp->psr_dpcd[0]) return; drm_dbg_kms(&dev_priv->drm, "eDP panel supports PSR version %x\n", intel_dp->psr_dpcd[0]); if (drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_PSR)) { drm_dbg_kms(&dev_priv->drm, "PSR support not currently available for this panel\n"); return; } if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) { drm_dbg_kms(&dev_priv->drm, "Panel lacks power state control, PSR cannot be enabled\n"); return; } intel_dp->psr.sink_support = true; intel_dp->psr.sink_sync_latency = intel_dp_get_sink_sync_latency(intel_dp); if (DISPLAY_VER(dev_priv) >= 9 && (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) { bool y_req = intel_dp->psr_dpcd[1] & DP_PSR2_SU_Y_COORDINATE_REQUIRED; bool alpm = intel_dp_get_alpm_status(intel_dp); /* * All panels that supports PSR version 03h (PSR2 + * Y-coordinate) can handle Y-coordinates in VSC but we are * only sure that it is going to be used when required by the * panel. This way panel is capable to do selective update * without a aux frame sync. * * To support PSR version 02h and PSR version 03h without * Y-coordinate requirement panels we would need to enable * GTC first. */ intel_dp->psr.sink_psr2_support = y_req && alpm; drm_dbg_kms(&dev_priv->drm, "PSR2 %ssupported\n", intel_dp->psr.sink_psr2_support ? "" : "not "); if (intel_dp->psr.sink_psr2_support) { intel_dp->psr.colorimetry_support = intel_dp_get_colorimetry_status(intel_dp); intel_dp_get_su_granularity(intel_dp); } } } static void hsw_psr_setup_aux(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u32 aux_clock_divider, aux_ctl; int i; static const u8 aux_msg[] = { [0] = DP_AUX_NATIVE_WRITE << 4, [1] = DP_SET_POWER >> 8, [2] = DP_SET_POWER & 0xff, [3] = 1 - 1, [4] = DP_SET_POWER_D0, }; u32 psr_aux_mask = EDP_PSR_AUX_CTL_TIME_OUT_MASK | EDP_PSR_AUX_CTL_MESSAGE_SIZE_MASK | EDP_PSR_AUX_CTL_PRECHARGE_2US_MASK | EDP_PSR_AUX_CTL_BIT_CLOCK_2X_MASK; BUILD_BUG_ON(sizeof(aux_msg) > 20); for (i = 0; i < sizeof(aux_msg); i += 4) intel_de_write(dev_priv, EDP_PSR_AUX_DATA(intel_dp->psr.transcoder, i >> 2), intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i)); aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0); /* Start with bits set for DDI_AUX_CTL register */ aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, sizeof(aux_msg), aux_clock_divider); /* Select only valid bits for SRD_AUX_CTL */ aux_ctl &= psr_aux_mask; intel_de_write(dev_priv, EDP_PSR_AUX_CTL(intel_dp->psr.transcoder), aux_ctl); } static void intel_psr_enable_sink(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u8 dpcd_val = DP_PSR_ENABLE; /* Enable ALPM at sink for psr2 */ if (intel_dp->psr.psr2_enabled) { drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG, DP_ALPM_ENABLE | DP_ALPM_LOCK_ERROR_IRQ_HPD_ENABLE); dpcd_val |= DP_PSR_ENABLE_PSR2 | DP_PSR_IRQ_HPD_WITH_CRC_ERRORS; } else { if (intel_dp->psr.link_standby) dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE; if (DISPLAY_VER(dev_priv) >= 8) dpcd_val |= DP_PSR_CRC_VERIFICATION; } if (intel_dp->psr.req_psr2_sdp_prior_scanline) dpcd_val |= DP_PSR_SU_REGION_SCANLINE_CAPTURE; drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val); drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0); } static u32 intel_psr1_get_tp_time(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u32 val = 0; if (DISPLAY_VER(dev_priv) >= 11) val |= EDP_PSR_TP4_TIME_0US; if (dev_priv->params.psr_safest_params) { val |= EDP_PSR_TP1_TIME_2500us; val |= EDP_PSR_TP2_TP3_TIME_2500us; goto check_tp3_sel; } if (dev_priv->vbt.psr.tp1_wakeup_time_us == 0) val |= EDP_PSR_TP1_TIME_0us; else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 100) val |= EDP_PSR_TP1_TIME_100us; else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 500) val |= EDP_PSR_TP1_TIME_500us; else val |= EDP_PSR_TP1_TIME_2500us; if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us == 0) val |= EDP_PSR_TP2_TP3_TIME_0us; else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100) val |= EDP_PSR_TP2_TP3_TIME_100us; else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500) val |= EDP_PSR_TP2_TP3_TIME_500us; else val |= EDP_PSR_TP2_TP3_TIME_2500us; check_tp3_sel: if (intel_dp_source_supports_hbr2(intel_dp) && drm_dp_tps3_supported(intel_dp->dpcd)) val |= EDP_PSR_TP1_TP3_SEL; else val |= EDP_PSR_TP1_TP2_SEL; return val; } static u8 psr_compute_idle_frames(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); int idle_frames; /* Let's use 6 as the minimum to cover all known cases including the * off-by-one issue that HW has in some cases. */ idle_frames = max(6, dev_priv->vbt.psr.idle_frames); idle_frames = max(idle_frames, intel_dp->psr.sink_sync_latency + 1); if (drm_WARN_ON(&dev_priv->drm, idle_frames > 0xf)) idle_frames = 0xf; return idle_frames; } static void hsw_activate_psr1(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u32 max_sleep_time = 0x1f; u32 val = EDP_PSR_ENABLE; val |= psr_compute_idle_frames(intel_dp) << EDP_PSR_IDLE_FRAME_SHIFT; val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT; if (IS_HASWELL(dev_priv)) val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES; if (intel_dp->psr.link_standby) val |= EDP_PSR_LINK_STANDBY; val |= intel_psr1_get_tp_time(intel_dp); if (DISPLAY_VER(dev_priv) >= 8) val |= EDP_PSR_CRC_ENABLE; val |= (intel_de_read(dev_priv, EDP_PSR_CTL(intel_dp->psr.transcoder)) & EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK); intel_de_write(dev_priv, EDP_PSR_CTL(intel_dp->psr.transcoder), val); } static u32 intel_psr2_get_tp_time(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u32 val = 0; if (dev_priv->params.psr_safest_params) return EDP_PSR2_TP2_TIME_2500us; if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us >= 0 && dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 50) val |= EDP_PSR2_TP2_TIME_50us; else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 100) val |= EDP_PSR2_TP2_TIME_100us; else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 500) val |= EDP_PSR2_TP2_TIME_500us; else val |= EDP_PSR2_TP2_TIME_2500us; return val; } static void hsw_activate_psr2(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u32 val; val = psr_compute_idle_frames(intel_dp) << EDP_PSR2_IDLE_FRAME_SHIFT; val |= EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE; if (DISPLAY_VER(dev_priv) >= 10 && DISPLAY_VER(dev_priv) <= 12) val |= EDP_Y_COORDINATE_ENABLE; val |= EDP_PSR2_FRAME_BEFORE_SU(intel_dp->psr.sink_sync_latency + 1); val |= intel_psr2_get_tp_time(intel_dp); /* Wa_22012278275:adl-p */ if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_D1)) { static const u8 map[] = { 2, /* 5 lines */ 1, /* 6 lines */ 0, /* 7 lines */ 3, /* 8 lines */ 6, /* 9 lines */ 5, /* 10 lines */ 4, /* 11 lines */ 7, /* 12 lines */ }; /* * Still using the default IO_BUFFER_WAKE and FAST_WAKE, see * comments bellow for more information */ u32 tmp, lines = 7; val |= TGL_EDP_PSR2_BLOCK_COUNT_NUM_2; tmp = map[lines - TGL_EDP_PSR2_IO_BUFFER_WAKE_MIN_LINES]; tmp = tmp << TGL_EDP_PSR2_IO_BUFFER_WAKE_SHIFT; val |= tmp; tmp = map[lines - TGL_EDP_PSR2_FAST_WAKE_MIN_LINES]; tmp = tmp << TGL_EDP_PSR2_FAST_WAKE_MIN_SHIFT; val |= tmp; } else if (DISPLAY_VER(dev_priv) >= 12) { /* * TODO: 7 lines of IO_BUFFER_WAKE and FAST_WAKE are default * values from BSpec. In order to setting an optimal power * consumption, lower than 4k resoluition mode needs to decrese * IO_BUFFER_WAKE and FAST_WAKE. And higher than 4K resolution * mode needs to increase IO_BUFFER_WAKE and FAST_WAKE. */ val |= TGL_EDP_PSR2_BLOCK_COUNT_NUM_2; val |= TGL_EDP_PSR2_IO_BUFFER_WAKE(7); val |= TGL_EDP_PSR2_FAST_WAKE(7); } else if (DISPLAY_VER(dev_priv) >= 9) { val |= EDP_PSR2_IO_BUFFER_WAKE(7); val |= EDP_PSR2_FAST_WAKE(7); } if (intel_dp->psr.req_psr2_sdp_prior_scanline) val |= EDP_PSR2_SU_SDP_SCANLINE; if (intel_dp->psr.psr2_sel_fetch_enabled) { /* WA 1408330847 */ if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_A0) || IS_RKL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_A0)) intel_de_rmw(dev_priv, CHICKEN_PAR1_1, DIS_RAM_BYPASS_PSR2_MAN_TRACK, DIS_RAM_BYPASS_PSR2_MAN_TRACK); intel_de_write(dev_priv, PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder), PSR2_MAN_TRK_CTL_ENABLE); } else if (HAS_PSR2_SEL_FETCH(dev_priv)) { intel_de_write(dev_priv, PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder), 0); } /* * PSR2 HW is incorrectly using EDP_PSR_TP1_TP3_SEL and BSpec is * recommending keep this bit unset while PSR2 is enabled. */ intel_de_write(dev_priv, EDP_PSR_CTL(intel_dp->psr.transcoder), 0); intel_de_write(dev_priv, EDP_PSR2_CTL(intel_dp->psr.transcoder), val); } static bool transcoder_has_psr2(struct drm_i915_private *dev_priv, enum transcoder trans) { if (DISPLAY_VER(dev_priv) < 9) return false; else if (DISPLAY_VER(dev_priv) >= 12) return trans == TRANSCODER_A; else return trans == TRANSCODER_EDP; } static u32 intel_get_frame_time_us(const struct intel_crtc_state *cstate) { if (!cstate || !cstate->hw.active) return 0; return DIV_ROUND_UP(1000 * 1000, drm_mode_vrefresh(&cstate->hw.adjusted_mode)); } static void psr2_program_idle_frames(struct intel_dp *intel_dp, u32 idle_frames) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u32 val; idle_frames <<= EDP_PSR2_IDLE_FRAME_SHIFT; val = intel_de_read(dev_priv, EDP_PSR2_CTL(intel_dp->psr.transcoder)); val &= ~EDP_PSR2_IDLE_FRAME_MASK; val |= idle_frames; intel_de_write(dev_priv, EDP_PSR2_CTL(intel_dp->psr.transcoder), val); } static void tgl_psr2_enable_dc3co(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); psr2_program_idle_frames(intel_dp, 0); intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_DC3CO); } static void tgl_psr2_disable_dc3co(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6); psr2_program_idle_frames(intel_dp, psr_compute_idle_frames(intel_dp)); } static void tgl_dc3co_disable_work(struct work_struct *work) { struct intel_dp *intel_dp = container_of(work, typeof(*intel_dp), psr.dc3co_work.work); mutex_lock(&intel_dp->psr.lock); /* If delayed work is pending, it is not idle */ if (delayed_work_pending(&intel_dp->psr.dc3co_work)) goto unlock; tgl_psr2_disable_dc3co(intel_dp); unlock: mutex_unlock(&intel_dp->psr.lock); } static void tgl_disallow_dc3co_on_psr2_exit(struct intel_dp *intel_dp) { if (!intel_dp->psr.dc3co_exitline) return; cancel_delayed_work(&intel_dp->psr.dc3co_work); /* Before PSR2 exit disallow dc3co*/ tgl_psr2_disable_dc3co(intel_dp); } static bool dc3co_is_pipe_port_compatible(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); enum pipe pipe = to_intel_crtc(crtc_state->uapi.crtc)->pipe; struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); enum port port = dig_port->base.port; if (IS_ALDERLAKE_P(dev_priv)) return pipe <= PIPE_B && port <= PORT_B; else return pipe == PIPE_A && port == PORT_A; } static void tgl_dc3co_exitline_compute_config(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state) { const u32 crtc_vdisplay = crtc_state->uapi.adjusted_mode.crtc_vdisplay; struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u32 exit_scanlines; /* * FIXME: Due to the changed sequence of activating/deactivating DC3CO, * disable DC3CO until the changed dc3co activating/deactivating sequence * is applied. B.Specs:49196 */ return; /* * DMC's DC3CO exit mechanism has an issue with Selective Fecth * TODO: when the issue is addressed, this restriction should be removed. */ if (crtc_state->enable_psr2_sel_fetch) return; if (!(dev_priv->dmc.allowed_dc_mask & DC_STATE_EN_DC3CO)) return; if (!dc3co_is_pipe_port_compatible(intel_dp, crtc_state)) return; /* Wa_16011303918:adl-p */ if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_A0)) return; /* * DC3CO Exit time 200us B.Spec 49196 * PSR2 transcoder Early Exit scanlines = ROUNDUP(200 / line time) + 1 */ exit_scanlines = intel_usecs_to_scanlines(&crtc_state->uapi.adjusted_mode, 200) + 1; if (drm_WARN_ON(&dev_priv->drm, exit_scanlines > crtc_vdisplay)) return; crtc_state->dc3co_exitline = crtc_vdisplay - exit_scanlines; } static bool intel_psr2_sel_fetch_config_valid(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state) { struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state); struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_plane_state *plane_state; struct intel_plane *plane; int i; if (!dev_priv->params.enable_psr2_sel_fetch && intel_dp->psr.debug != I915_PSR_DEBUG_ENABLE_SEL_FETCH) { drm_dbg_kms(&dev_priv->drm, "PSR2 sel fetch not enabled, disabled by parameter\n"); return false; } if (crtc_state->uapi.async_flip) { drm_dbg_kms(&dev_priv->drm, "PSR2 sel fetch not enabled, async flip enabled\n"); return false; } for_each_new_intel_plane_in_state(state, plane, plane_state, i) { if (plane_state->uapi.rotation != DRM_MODE_ROTATE_0) { drm_dbg_kms(&dev_priv->drm, "PSR2 sel fetch not enabled, plane rotated\n"); return false; } } /* Wa_14010254185 Wa_14010103792 */ if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B1)) { drm_dbg_kms(&dev_priv->drm, "PSR2 sel fetch not enabled, missing the implementation of WAs\n"); return false; } return crtc_state->enable_psr2_sel_fetch = true; } static bool psr2_granularity_check(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state) { const int crtc_hdisplay = crtc_state->hw.adjusted_mode.crtc_hdisplay; const int crtc_vdisplay = crtc_state->hw.adjusted_mode.crtc_vdisplay; u16 y_granularity = 0; /* PSR2 HW only send full lines so we only need to validate the width */ if (crtc_hdisplay % intel_dp->psr.su_w_granularity) return false; if (crtc_vdisplay % intel_dp->psr.su_y_granularity) return false; /* HW tracking is only aligned to 4 lines */ if (!crtc_state->enable_psr2_sel_fetch) return intel_dp->psr.su_y_granularity == 4; /* * For SW tracking we can adjust the y to match sink requirement if * multiple of 4 */ if (intel_dp->psr.su_y_granularity <= 2) y_granularity = 4; else if ((intel_dp->psr.su_y_granularity % 4) == 0) y_granularity = intel_dp->psr.su_y_granularity; if (y_granularity == 0 || crtc_vdisplay % y_granularity) return false; crtc_state->su_y_granularity = y_granularity; return true; } static bool _compute_psr2_sdp_prior_scanline_indication(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state) { const struct drm_display_mode *adjusted_mode = &crtc_state->uapi.adjusted_mode; struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u32 hblank_total, hblank_ns, req_ns; hblank_total = adjusted_mode->crtc_hblank_end - adjusted_mode->crtc_hblank_start; hblank_ns = div_u64(1000000ULL * hblank_total, adjusted_mode->crtc_clock); /* From spec: (72 / number of lanes) * 1000 / symbol clock frequency MHz */ req_ns = (72 / crtc_state->lane_count) * 1000 / (crtc_state->port_clock / 1000); if ((hblank_ns - req_ns) > 100) return true; if (DISPLAY_VER(dev_priv) < 13 || intel_dp->edp_dpcd[0] < DP_EDP_14b) return false; crtc_state->req_psr2_sdp_prior_scanline = true; return true; } static bool intel_psr2_config_valid(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); int crtc_hdisplay = crtc_state->hw.adjusted_mode.crtc_hdisplay; int crtc_vdisplay = crtc_state->hw.adjusted_mode.crtc_vdisplay; int psr_max_h = 0, psr_max_v = 0, max_bpp = 0; if (!intel_dp->psr.sink_psr2_support) return false; /* JSL and EHL only supports eDP 1.3 */ if (IS_JSL_EHL(dev_priv)) { drm_dbg_kms(&dev_priv->drm, "PSR2 not supported by phy\n"); return false; } /* Wa_16011181250 */ if (IS_ROCKETLAKE(dev_priv) || IS_ALDERLAKE_S(dev_priv)) { drm_dbg_kms(&dev_priv->drm, "PSR2 is defeatured for this platform\n"); return false; } /* * We are missing the implementation of some workarounds to enabled PSR2 * in Alderlake_P, until ready PSR2 should be kept disabled. */ if (IS_ALDERLAKE_P(dev_priv)) { drm_dbg_kms(&dev_priv->drm, "PSR2 is missing the implementation of workarounds\n"); return false; } if (!transcoder_has_psr2(dev_priv, crtc_state->cpu_transcoder)) { drm_dbg_kms(&dev_priv->drm, "PSR2 not supported in transcoder %s\n", transcoder_name(crtc_state->cpu_transcoder)); return false; } if (!psr2_global_enabled(intel_dp)) { drm_dbg_kms(&dev_priv->drm, "PSR2 disabled by flag\n"); return false; } /* * DSC and PSR2 cannot be enabled simultaneously. If a requested * resolution requires DSC to be enabled, priority is given to DSC * over PSR2. */ if (crtc_state->dsc.compression_enable) { drm_dbg_kms(&dev_priv->drm, "PSR2 cannot be enabled since DSC is enabled\n"); return false; } if (crtc_state->crc_enabled) { drm_dbg_kms(&dev_priv->drm, "PSR2 not enabled because it would inhibit pipe CRC calculation\n"); return false; } if (DISPLAY_VER(dev_priv) >= 12) { psr_max_h = 5120; psr_max_v = 3200; max_bpp = 30; } else if (DISPLAY_VER(dev_priv) >= 10) { psr_max_h = 4096; psr_max_v = 2304; max_bpp = 24; } else if (DISPLAY_VER(dev_priv) == 9) { psr_max_h = 3640; psr_max_v = 2304; max_bpp = 24; } if (crtc_state->pipe_bpp > max_bpp) { drm_dbg_kms(&dev_priv->drm, "PSR2 not enabled, pipe bpp %d > max supported %d\n", crtc_state->pipe_bpp, max_bpp); return false; } if (HAS_PSR2_SEL_FETCH(dev_priv)) { if (!intel_psr2_sel_fetch_config_valid(intel_dp, crtc_state) && !HAS_PSR_HW_TRACKING(dev_priv)) { drm_dbg_kms(&dev_priv->drm, "PSR2 not enabled, selective fetch not valid and no HW tracking available\n"); return false; } } /* Wa_2209313811 */ if (!crtc_state->enable_psr2_sel_fetch && IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B1)) { drm_dbg_kms(&dev_priv->drm, "PSR2 HW tracking is not supported this Display stepping\n"); return false; } if (!psr2_granularity_check(intel_dp, crtc_state)) { drm_dbg_kms(&dev_priv->drm, "PSR2 not enabled, SU granularity not compatible\n"); return false; } if (!crtc_state->enable_psr2_sel_fetch && (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v)) { drm_dbg_kms(&dev_priv->drm, "PSR2 not enabled, resolution %dx%d > max supported %dx%d\n", crtc_hdisplay, crtc_vdisplay, psr_max_h, psr_max_v); return false; } if (!_compute_psr2_sdp_prior_scanline_indication(intel_dp, crtc_state)) { drm_dbg_kms(&dev_priv->drm, "PSR2 not enabled, PSR2 SDP indication do not fit in hblank\n"); return false; } /* Wa_16011303918:adl-p */ if (crtc_state->vrr.enable && IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_A0)) { drm_dbg_kms(&dev_priv->drm, "PSR2 not enabled, not compatible with HW stepping + VRR\n"); return false; } tgl_dc3co_exitline_compute_config(intel_dp, crtc_state); return true; } void intel_psr_compute_config(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; int psr_setup_time; /* * Current PSR panels dont work reliably with VRR enabled * So if VRR is enabled, do not enable PSR. */ if (crtc_state->vrr.enable) return; if (!CAN_PSR(intel_dp)) return; if (!psr_global_enabled(intel_dp)) { drm_dbg_kms(&dev_priv->drm, "PSR disabled by flag\n"); return; } if (intel_dp->psr.sink_not_reliable) { drm_dbg_kms(&dev_priv->drm, "PSR sink implementation is not reliable\n"); return; } if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { drm_dbg_kms(&dev_priv->drm, "PSR condition failed: Interlaced mode enabled\n"); return; } psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd); if (psr_setup_time < 0) { drm_dbg_kms(&dev_priv->drm, "PSR condition failed: Invalid PSR setup time (0x%02x)\n", intel_dp->psr_dpcd[1]); return; } if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) > adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) { drm_dbg_kms(&dev_priv->drm, "PSR condition failed: PSR setup time (%d us) too long\n", psr_setup_time); return; } crtc_state->has_psr = true; crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state); crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC); } void intel_psr_get_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_digital_port *dig_port = enc_to_dig_port(encoder); struct intel_dp *intel_dp; u32 val; if (!dig_port) return; intel_dp = &dig_port->dp; if (!CAN_PSR(intel_dp)) return; mutex_lock(&intel_dp->psr.lock); if (!intel_dp->psr.enabled) goto unlock; /* * Not possible to read EDP_PSR/PSR2_CTL registers as it is * enabled/disabled because of frontbuffer tracking and others. */ pipe_config->has_psr = true; pipe_config->has_psr2 = intel_dp->psr.psr2_enabled; pipe_config->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC); if (!intel_dp->psr.psr2_enabled) goto unlock; if (HAS_PSR2_SEL_FETCH(dev_priv)) { val = intel_de_read(dev_priv, PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder)); if (val & PSR2_MAN_TRK_CTL_ENABLE) pipe_config->enable_psr2_sel_fetch = true; } if (DISPLAY_VER(dev_priv) >= 12) { val = intel_de_read(dev_priv, EXITLINE(intel_dp->psr.transcoder)); val &= EXITLINE_MASK; pipe_config->dc3co_exitline = val; } unlock: mutex_unlock(&intel_dp->psr.lock); } static void intel_psr_activate(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); enum transcoder transcoder = intel_dp->psr.transcoder; if (transcoder_has_psr2(dev_priv, transcoder)) drm_WARN_ON(&dev_priv->drm, intel_de_read(dev_priv, EDP_PSR2_CTL(transcoder)) & EDP_PSR2_ENABLE); drm_WARN_ON(&dev_priv->drm, intel_de_read(dev_priv, EDP_PSR_CTL(transcoder)) & EDP_PSR_ENABLE); drm_WARN_ON(&dev_priv->drm, intel_dp->psr.active); lockdep_assert_held(&intel_dp->psr.lock); /* psr1 and psr2 are mutually exclusive.*/ if (intel_dp->psr.psr2_enabled) hsw_activate_psr2(intel_dp); else hsw_activate_psr1(intel_dp); intel_dp->psr.active = true; } static void intel_psr_enable_source(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); enum transcoder cpu_transcoder = intel_dp->psr.transcoder; u32 mask; /* Only HSW and BDW have PSR AUX registers that need to be setup. SKL+ * use hardcoded values PSR AUX transactions */ if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) hsw_psr_setup_aux(intel_dp); if (intel_dp->psr.psr2_enabled && DISPLAY_VER(dev_priv) == 9) { i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder); u32 chicken = intel_de_read(dev_priv, reg); chicken |= PSR2_VSC_ENABLE_PROG_HEADER | PSR2_ADD_VERTICAL_LINE_COUNT; intel_de_write(dev_priv, reg, chicken); } /* * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD also * mask LPSP to avoid dependency on other drivers that might block * runtime_pm besides preventing other hw tracking issues now we * can rely on frontbuffer tracking. */ mask = EDP_PSR_DEBUG_MASK_MEMUP | EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP | EDP_PSR_DEBUG_MASK_MAX_SLEEP; if (DISPLAY_VER(dev_priv) < 11) mask |= EDP_PSR_DEBUG_MASK_DISP_REG_WRITE; intel_de_write(dev_priv, EDP_PSR_DEBUG(intel_dp->psr.transcoder), mask); psr_irq_control(intel_dp); if (intel_dp->psr.dc3co_exitline) { u32 val; /* * TODO: if future platforms supports DC3CO in more than one * transcoder, EXITLINE will need to be unset when disabling PSR */ val = intel_de_read(dev_priv, EXITLINE(cpu_transcoder)); val &= ~EXITLINE_MASK; val |= intel_dp->psr.dc3co_exitline << EXITLINE_SHIFT; val |= EXITLINE_ENABLE; intel_de_write(dev_priv, EXITLINE(cpu_transcoder), val); } if (HAS_PSR_HW_TRACKING(dev_priv) && HAS_PSR2_SEL_FETCH(dev_priv)) intel_de_rmw(dev_priv, CHICKEN_PAR1_1, IGNORE_PSR2_HW_TRACKING, intel_dp->psr.psr2_sel_fetch_enabled ? IGNORE_PSR2_HW_TRACKING : 0); /* Wa_16011168373:adl-p */ if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_A0) && intel_dp->psr.psr2_enabled) intel_de_rmw(dev_priv, TRANS_SET_CONTEXT_LATENCY(intel_dp->psr.transcoder), TRANS_SET_CONTEXT_LATENCY_MASK, TRANS_SET_CONTEXT_LATENCY_VALUE(1)); } static bool psr_interrupt_error_check(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u32 val; /* * If a PSR error happened and the driver is reloaded, the EDP_PSR_IIR * will still keep the error set even after the reset done in the * irq_preinstall and irq_uninstall hooks. * And enabling in this situation cause the screen to freeze in the * first time that PSR HW tries to activate so lets keep PSR disabled * to avoid any rendering problems. */ if (DISPLAY_VER(dev_priv) >= 12) { val = intel_de_read(dev_priv, TRANS_PSR_IIR(intel_dp->psr.transcoder)); val &= EDP_PSR_ERROR(0); } else { val = intel_de_read(dev_priv, EDP_PSR_IIR); val &= EDP_PSR_ERROR(intel_dp->psr.transcoder); } if (val) { intel_dp->psr.sink_not_reliable = true; drm_dbg_kms(&dev_priv->drm, "PSR interruption error set, not enabling PSR\n"); return false; } return true; } static void intel_psr_enable_locked(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_encoder *encoder = &dig_port->base; u32 val; drm_WARN_ON(&dev_priv->drm, intel_dp->psr.enabled); intel_dp->psr.psr2_enabled = crtc_state->has_psr2; intel_dp->psr.busy_frontbuffer_bits = 0; intel_dp->psr.pipe = to_intel_crtc(crtc_state->uapi.crtc)->pipe; intel_dp->psr.transcoder = crtc_state->cpu_transcoder; /* DC5/DC6 requires at least 6 idle frames */ val = usecs_to_jiffies(intel_get_frame_time_us(crtc_state) * 6); intel_dp->psr.dc3co_exit_delay = val; intel_dp->psr.dc3co_exitline = crtc_state->dc3co_exitline; intel_dp->psr.psr2_sel_fetch_enabled = crtc_state->enable_psr2_sel_fetch; intel_dp->psr.req_psr2_sdp_prior_scanline = crtc_state->req_psr2_sdp_prior_scanline; if (!psr_interrupt_error_check(intel_dp)) return; drm_dbg_kms(&dev_priv->drm, "Enabling PSR%s\n", intel_dp->psr.psr2_enabled ? "2" : "1"); intel_dp_compute_psr_vsc_sdp(intel_dp, crtc_state, conn_state, &intel_dp->psr.vsc); intel_write_dp_vsc_sdp(encoder, crtc_state, &intel_dp->psr.vsc); intel_psr_enable_sink(intel_dp); intel_psr_enable_source(intel_dp); intel_dp->psr.enabled = true; intel_dp->psr.paused = false; intel_psr_activate(intel_dp); } /** * intel_psr_enable - Enable PSR * @intel_dp: Intel DP * @crtc_state: new CRTC state * @conn_state: new CONNECTOR state * * This function can only be called after the pipe is fully trained and enabled. */ void intel_psr_enable(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); if (!CAN_PSR(intel_dp)) return; if (!crtc_state->has_psr) return; drm_WARN_ON(&dev_priv->drm, dev_priv->drrs.dp); mutex_lock(&intel_dp->psr.lock); intel_psr_enable_locked(intel_dp, crtc_state, conn_state); mutex_unlock(&intel_dp->psr.lock); } static void intel_psr_exit(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u32 val; if (!intel_dp->psr.active) { if (transcoder_has_psr2(dev_priv, intel_dp->psr.transcoder)) { val = intel_de_read(dev_priv, EDP_PSR2_CTL(intel_dp->psr.transcoder)); drm_WARN_ON(&dev_priv->drm, val & EDP_PSR2_ENABLE); } val = intel_de_read(dev_priv, EDP_PSR_CTL(intel_dp->psr.transcoder)); drm_WARN_ON(&dev_priv->drm, val & EDP_PSR_ENABLE); return; } if (intel_dp->psr.psr2_enabled) { tgl_disallow_dc3co_on_psr2_exit(intel_dp); val = intel_de_read(dev_priv, EDP_PSR2_CTL(intel_dp->psr.transcoder)); drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR2_ENABLE)); val &= ~EDP_PSR2_ENABLE; intel_de_write(dev_priv, EDP_PSR2_CTL(intel_dp->psr.transcoder), val); } else { val = intel_de_read(dev_priv, EDP_PSR_CTL(intel_dp->psr.transcoder)); drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR_ENABLE)); val &= ~EDP_PSR_ENABLE; intel_de_write(dev_priv, EDP_PSR_CTL(intel_dp->psr.transcoder), val); } intel_dp->psr.active = false; } static void intel_psr_wait_exit_locked(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); i915_reg_t psr_status; u32 psr_status_mask; if (intel_dp->psr.psr2_enabled) { psr_status = EDP_PSR2_STATUS(intel_dp->psr.transcoder); psr_status_mask = EDP_PSR2_STATUS_STATE_MASK; } else { psr_status = EDP_PSR_STATUS(intel_dp->psr.transcoder); psr_status_mask = EDP_PSR_STATUS_STATE_MASK; } /* Wait till PSR is idle */ if (intel_de_wait_for_clear(dev_priv, psr_status, psr_status_mask, 2000)) drm_err(&dev_priv->drm, "Timed out waiting PSR idle state\n"); } static void intel_psr_disable_locked(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); lockdep_assert_held(&intel_dp->psr.lock); if (!intel_dp->psr.enabled) return; drm_dbg_kms(&dev_priv->drm, "Disabling PSR%s\n", intel_dp->psr.psr2_enabled ? "2" : "1"); intel_psr_exit(intel_dp); intel_psr_wait_exit_locked(intel_dp); /* WA 1408330847 */ if (intel_dp->psr.psr2_sel_fetch_enabled && (IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_A0) || IS_RKL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_A0))) intel_de_rmw(dev_priv, CHICKEN_PAR1_1, DIS_RAM_BYPASS_PSR2_MAN_TRACK, 0); /* Wa_16011168373:adl-p */ if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_A0) && intel_dp->psr.psr2_enabled) intel_de_rmw(dev_priv, TRANS_SET_CONTEXT_LATENCY(intel_dp->psr.transcoder), TRANS_SET_CONTEXT_LATENCY_MASK, 0); /* Disable PSR on Sink */ drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0); if (intel_dp->psr.psr2_enabled) drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG, 0); intel_dp->psr.enabled = false; } /** * intel_psr_disable - Disable PSR * @intel_dp: Intel DP * @old_crtc_state: old CRTC state * * This function needs to be called before disabling pipe. */ void intel_psr_disable(struct intel_dp *intel_dp, const struct intel_crtc_state *old_crtc_state) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); if (!old_crtc_state->has_psr) return; if (drm_WARN_ON(&dev_priv->drm, !CAN_PSR(intel_dp))) return; mutex_lock(&intel_dp->psr.lock); intel_psr_disable_locked(intel_dp); mutex_unlock(&intel_dp->psr.lock); cancel_work_sync(&intel_dp->psr.work); cancel_delayed_work_sync(&intel_dp->psr.dc3co_work); } /** * intel_psr_pause - Pause PSR * @intel_dp: Intel DP * * This function need to be called after enabling psr. */ void intel_psr_pause(struct intel_dp *intel_dp) { struct intel_psr *psr = &intel_dp->psr; if (!CAN_PSR(intel_dp)) return; mutex_lock(&psr->lock); if (!psr->enabled) { mutex_unlock(&psr->lock); return; } intel_psr_exit(intel_dp); intel_psr_wait_exit_locked(intel_dp); psr->paused = true; mutex_unlock(&psr->lock); cancel_work_sync(&psr->work); cancel_delayed_work_sync(&psr->dc3co_work); } /** * intel_psr_resume - Resume PSR * @intel_dp: Intel DP * * This function need to be called after pausing psr. */ void intel_psr_resume(struct intel_dp *intel_dp) { struct intel_psr *psr = &intel_dp->psr; if (!CAN_PSR(intel_dp)) return; mutex_lock(&psr->lock); if (!psr->paused) goto unlock; psr->paused = false; intel_psr_activate(intel_dp); unlock: mutex_unlock(&psr->lock); } static void psr_force_hw_tracking_exit(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); if (DISPLAY_VER(dev_priv) >= 9) /* * Display WA #0884: skl+ * This documented WA for bxt can be safely applied * broadly so we can force HW tracking to exit PSR * instead of disabling and re-enabling. * Workaround tells us to write 0 to CUR_SURFLIVE_A, * but it makes more sense write to the current active * pipe. */ intel_de_write(dev_priv, CURSURFLIVE(intel_dp->psr.pipe), 0); else /* * A write to CURSURFLIVE do not cause HW tracking to exit PSR * on older gens so doing the manual exit instead. */ intel_psr_exit(intel_dp); } void intel_psr2_program_plane_sel_fetch(struct intel_plane *plane, const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state, int color_plane) { struct drm_i915_private *dev_priv = to_i915(plane->base.dev); enum pipe pipe = plane->pipe; const struct drm_rect *clip; u32 val, offset; int ret, x, y; if (!crtc_state->enable_psr2_sel_fetch) return; val = plane_state ? plane_state->ctl : 0; val &= plane->id == PLANE_CURSOR ? val : PLANE_SEL_FETCH_CTL_ENABLE; intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_CTL(pipe, plane->id), val); if (!val || plane->id == PLANE_CURSOR) return; clip = &plane_state->psr2_sel_fetch_area; val = (clip->y1 + plane_state->uapi.dst.y1) << 16; val |= plane_state->uapi.dst.x1; intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_POS(pipe, plane->id), val); /* TODO: consider auxiliary surfaces */ x = plane_state->uapi.src.x1 >> 16; y = (plane_state->uapi.src.y1 >> 16) + clip->y1; ret = skl_calc_main_surface_offset(plane_state, &x, &y, &offset); if (ret) drm_warn_once(&dev_priv->drm, "skl_calc_main_surface_offset() returned %i\n", ret); val = y << 16 | x; intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_OFFSET(pipe, plane->id), val); /* Sizes are 0 based */ val = (drm_rect_height(clip) - 1) << 16; val |= (drm_rect_width(&plane_state->uapi.src) >> 16) - 1; intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_SIZE(pipe, plane->id), val); } void intel_psr2_program_trans_man_trk_ctl(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); if (!HAS_PSR2_SEL_FETCH(dev_priv) || !crtc_state->enable_psr2_sel_fetch) return; intel_de_write(dev_priv, PSR2_MAN_TRK_CTL(crtc_state->cpu_transcoder), crtc_state->psr2_man_track_ctl); } static void psr2_man_trk_ctl_calc(struct intel_crtc_state *crtc_state, struct drm_rect *clip, bool full_update) { u32 val = PSR2_MAN_TRK_CTL_ENABLE; if (full_update) { val |= PSR2_MAN_TRK_CTL_SF_SINGLE_FULL_FRAME; goto exit; } if (clip->y1 == -1) goto exit; drm_WARN_ON(crtc_state->uapi.crtc->dev, clip->y1 % 4 || clip->y2 % 4); val |= PSR2_MAN_TRK_CTL_SF_PARTIAL_FRAME_UPDATE; val |= PSR2_MAN_TRK_CTL_SU_REGION_START_ADDR(clip->y1 / 4 + 1); val |= PSR2_MAN_TRK_CTL_SU_REGION_END_ADDR(clip->y2 / 4 + 1); exit: crtc_state->psr2_man_track_ctl = val; } static void clip_area_update(struct drm_rect *overlap_damage_area, struct drm_rect *damage_area) { if (overlap_damage_area->y1 == -1) { overlap_damage_area->y1 = damage_area->y1; overlap_damage_area->y2 = damage_area->y2; return; } if (damage_area->y1 < overlap_damage_area->y1) overlap_damage_area->y1 = damage_area->y1; if (damage_area->y2 > overlap_damage_area->y2) overlap_damage_area->y2 = damage_area->y2; } static void intel_psr2_sel_fetch_pipe_alignment(const struct intel_crtc_state *crtc_state, struct drm_rect *pipe_clip) { const u16 y_alignment = crtc_state->su_y_granularity; pipe_clip->y1 -= pipe_clip->y1 % y_alignment; if (pipe_clip->y2 % y_alignment) pipe_clip->y2 = ((pipe_clip->y2 / y_alignment) + 1) * y_alignment; } int intel_psr2_sel_fetch_update(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); struct drm_rect pipe_clip = { .x1 = 0, .y1 = -1, .x2 = INT_MAX, .y2 = -1 }; struct intel_plane_state *new_plane_state, *old_plane_state; struct intel_plane *plane; bool full_update = false; int i, ret; if (!crtc_state->enable_psr2_sel_fetch) return 0; ret = drm_atomic_add_affected_planes(&state->base, &crtc->base); if (ret) return ret; /* * Calculate minimal selective fetch area of each plane and calculate * the pipe damaged area. * In the next loop the plane selective fetch area will actually be set * using whole pipe damaged area. */ for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, new_plane_state, i) { struct drm_rect src, damaged_area = { .y1 = -1 }; struct drm_mode_rect *damaged_clips; u32 num_clips, j; if (new_plane_state->uapi.crtc != crtc_state->uapi.crtc) continue; if (!new_plane_state->uapi.visible && !old_plane_state->uapi.visible) continue; /* * TODO: Not clear how to handle planes with negative position, * also planes are not updated if they have a negative X * position so for now doing a full update in this cases */ if (new_plane_state->uapi.dst.y1 < 0 || new_plane_state->uapi.dst.x1 < 0) { full_update = true; break; } num_clips = drm_plane_get_damage_clips_count(&new_plane_state->uapi); /* * If visibility or plane moved, mark the whole plane area as * damaged as it needs to be complete redraw in the new and old * position. */ if (new_plane_state->uapi.visible != old_plane_state->uapi.visible || !drm_rect_equals(&new_plane_state->uapi.dst, &old_plane_state->uapi.dst)) { if (old_plane_state->uapi.visible) { damaged_area.y1 = old_plane_state->uapi.dst.y1; damaged_area.y2 = old_plane_state->uapi.dst.y2; clip_area_update(&pipe_clip, &damaged_area); } if (new_plane_state->uapi.visible) { damaged_area.y1 = new_plane_state->uapi.dst.y1; damaged_area.y2 = new_plane_state->uapi.dst.y2; clip_area_update(&pipe_clip, &damaged_area); } continue; } else if (new_plane_state->uapi.alpha != old_plane_state->uapi.alpha || (!num_clips && new_plane_state->uapi.fb != old_plane_state->uapi.fb)) { /* * If the plane don't have damaged areas but the * framebuffer changed or alpha changed, mark the whole * plane area as damaged. */ damaged_area.y1 = new_plane_state->uapi.dst.y1; damaged_area.y2 = new_plane_state->uapi.dst.y2; clip_area_update(&pipe_clip, &damaged_area); continue; } drm_rect_fp_to_int(&src, &new_plane_state->uapi.src); damaged_clips = drm_plane_get_damage_clips(&new_plane_state->uapi); for (j = 0; j < num_clips; j++) { struct drm_rect clip; clip.x1 = damaged_clips[j].x1; clip.y1 = damaged_clips[j].y1; clip.x2 = damaged_clips[j].x2; clip.y2 = damaged_clips[j].y2; if (drm_rect_intersect(&clip, &src)) clip_area_update(&damaged_area, &clip); } if (damaged_area.y1 == -1) continue; damaged_area.y1 += new_plane_state->uapi.dst.y1 - src.y1; damaged_area.y2 += new_plane_state->uapi.dst.y1 - src.y1; clip_area_update(&pipe_clip, &damaged_area); } if (full_update) goto skip_sel_fetch_set_loop; intel_psr2_sel_fetch_pipe_alignment(crtc_state, &pipe_clip); /* * Now that we have the pipe damaged area check if it intersect with * every plane, if it does set the plane selective fetch area. */ for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, new_plane_state, i) { struct drm_rect *sel_fetch_area, inter; if (new_plane_state->uapi.crtc != crtc_state->uapi.crtc || !new_plane_state->uapi.visible) continue; inter = pipe_clip; if (!drm_rect_intersect(&inter, &new_plane_state->uapi.dst)) continue; sel_fetch_area = &new_plane_state->psr2_sel_fetch_area; sel_fetch_area->y1 = inter.y1 - new_plane_state->uapi.dst.y1; sel_fetch_area->y2 = inter.y2 - new_plane_state->uapi.dst.y1; } skip_sel_fetch_set_loop: psr2_man_trk_ctl_calc(crtc_state, &pipe_clip, full_update); return 0; } /** * intel_psr_update - Update PSR state * @intel_dp: Intel DP * @crtc_state: new CRTC state * @conn_state: new CONNECTOR state * * This functions will update PSR states, disabling, enabling or switching PSR * version when executing fastsets. For full modeset, intel_psr_disable() and * intel_psr_enable() should be called instead. */ void intel_psr_update(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_psr *psr = &intel_dp->psr; bool enable, psr2_enable; if (!CAN_PSR(intel_dp)) return; mutex_lock(&intel_dp->psr.lock); enable = crtc_state->has_psr; psr2_enable = crtc_state->has_psr2; if (enable == psr->enabled && psr2_enable == psr->psr2_enabled && crtc_state->enable_psr2_sel_fetch == psr->psr2_sel_fetch_enabled) { /* Force a PSR exit when enabling CRC to avoid CRC timeouts */ if (crtc_state->crc_enabled && psr->enabled) psr_force_hw_tracking_exit(intel_dp); else if (DISPLAY_VER(dev_priv) < 9 && psr->enabled) { /* * Activate PSR again after a force exit when enabling * CRC in older gens */ if (!intel_dp->psr.active && !intel_dp->psr.busy_frontbuffer_bits) schedule_work(&intel_dp->psr.work); } goto unlock; } if (psr->enabled) intel_psr_disable_locked(intel_dp); if (enable) intel_psr_enable_locked(intel_dp, crtc_state, conn_state); unlock: mutex_unlock(&intel_dp->psr.lock); } /** * psr_wait_for_idle - wait for PSR1 to idle * @intel_dp: Intel DP * @out_value: PSR status in case of failure * * Returns: 0 on success or -ETIMEOUT if PSR status does not idle. * */ static int psr_wait_for_idle(struct intel_dp *intel_dp, u32 *out_value) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); /* * From bspec: Panel Self Refresh (BDW+) * Max. time for PSR to idle = Inverse of the refresh rate + 6 ms of * exit training time + 1.5 ms of aux channel handshake. 50 ms is * defensive enough to cover everything. */ return __intel_wait_for_register(&dev_priv->uncore, EDP_PSR_STATUS(intel_dp->psr.transcoder), EDP_PSR_STATUS_STATE_MASK, EDP_PSR_STATUS_STATE_IDLE, 2, 50, out_value); } /** * intel_psr_wait_for_idle - wait for PSR1 to idle * @new_crtc_state: new CRTC state * * This function is expected to be called from pipe_update_start() where it is * not expected to race with PSR enable or disable. */ void intel_psr_wait_for_idle(const struct intel_crtc_state *new_crtc_state) { struct drm_i915_private *dev_priv = to_i915(new_crtc_state->uapi.crtc->dev); struct intel_encoder *encoder; if (!new_crtc_state->has_psr) return; for_each_intel_encoder_mask_with_psr(&dev_priv->drm, encoder, new_crtc_state->uapi.encoder_mask) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); u32 psr_status; mutex_lock(&intel_dp->psr.lock); if (!intel_dp->psr.enabled || intel_dp->psr.psr2_enabled) { mutex_unlock(&intel_dp->psr.lock); continue; } /* when the PSR1 is enabled */ if (psr_wait_for_idle(intel_dp, &psr_status)) drm_err(&dev_priv->drm, "PSR idle timed out 0x%x, atomic update may fail\n", psr_status); mutex_unlock(&intel_dp->psr.lock); } } static bool __psr_wait_for_idle_locked(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); i915_reg_t reg; u32 mask; int err; if (!intel_dp->psr.enabled) return false; if (intel_dp->psr.psr2_enabled) { reg = EDP_PSR2_STATUS(intel_dp->psr.transcoder); mask = EDP_PSR2_STATUS_STATE_MASK; } else { reg = EDP_PSR_STATUS(intel_dp->psr.transcoder); mask = EDP_PSR_STATUS_STATE_MASK; } mutex_unlock(&intel_dp->psr.lock); err = intel_de_wait_for_clear(dev_priv, reg, mask, 50); if (err) drm_err(&dev_priv->drm, "Timed out waiting for PSR Idle for re-enable\n"); /* After the unlocked wait, verify that PSR is still wanted! */ mutex_lock(&intel_dp->psr.lock); return err == 0 && intel_dp->psr.enabled; } static int intel_psr_fastset_force(struct drm_i915_private *dev_priv) { struct drm_connector_list_iter conn_iter; struct drm_device *dev = &dev_priv->drm; struct drm_modeset_acquire_ctx ctx; struct drm_atomic_state *state; struct drm_connector *conn; int err = 0; state = drm_atomic_state_alloc(dev); if (!state) return -ENOMEM; drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE); state->acquire_ctx = &ctx; retry: drm_connector_list_iter_begin(dev, &conn_iter); drm_for_each_connector_iter(conn, &conn_iter) { struct drm_connector_state *conn_state; struct drm_crtc_state *crtc_state; if (conn->connector_type != DRM_MODE_CONNECTOR_eDP) continue; conn_state = drm_atomic_get_connector_state(state, conn); if (IS_ERR(conn_state)) { err = PTR_ERR(conn_state); break; } if (!conn_state->crtc) continue; crtc_state = drm_atomic_get_crtc_state(state, conn_state->crtc); if (IS_ERR(crtc_state)) { err = PTR_ERR(crtc_state); break; } /* Mark mode as changed to trigger a pipe->update() */ crtc_state->mode_changed = true; } drm_connector_list_iter_end(&conn_iter); if (err == 0) err = drm_atomic_commit(state); if (err == -EDEADLK) { drm_atomic_state_clear(state); err = drm_modeset_backoff(&ctx); if (!err) goto retry; } drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); drm_atomic_state_put(state); return err; } int intel_psr_debug_set(struct intel_dp *intel_dp, u64 val) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); const u32 mode = val & I915_PSR_DEBUG_MODE_MASK; u32 old_mode; int ret; if (val & ~(I915_PSR_DEBUG_IRQ | I915_PSR_DEBUG_MODE_MASK) || mode > I915_PSR_DEBUG_ENABLE_SEL_FETCH) { drm_dbg_kms(&dev_priv->drm, "Invalid debug mask %llx\n", val); return -EINVAL; } ret = mutex_lock_interruptible(&intel_dp->psr.lock); if (ret) return ret; old_mode = intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK; intel_dp->psr.debug = val; /* * Do it right away if it's already enabled, otherwise it will be done * when enabling the source. */ if (intel_dp->psr.enabled) psr_irq_control(intel_dp); mutex_unlock(&intel_dp->psr.lock); if (old_mode != mode) ret = intel_psr_fastset_force(dev_priv); return ret; } static void intel_psr_handle_irq(struct intel_dp *intel_dp) { struct intel_psr *psr = &intel_dp->psr; intel_psr_disable_locked(intel_dp); psr->sink_not_reliable = true; /* let's make sure that sink is awaken */ drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0); } static void intel_psr_work(struct work_struct *work) { struct intel_dp *intel_dp = container_of(work, typeof(*intel_dp), psr.work); mutex_lock(&intel_dp->psr.lock); if (!intel_dp->psr.enabled) goto unlock; if (READ_ONCE(intel_dp->psr.irq_aux_error)) intel_psr_handle_irq(intel_dp); /* * We have to make sure PSR is ready for re-enable * otherwise it keeps disabled until next full enable/disable cycle. * PSR might take some time to get fully disabled * and be ready for re-enable. */ if (!__psr_wait_for_idle_locked(intel_dp)) goto unlock; /* * The delayed work can race with an invalidate hence we need to * recheck. Since psr_flush first clears this and then reschedules we * won't ever miss a flush when bailing out here. */ if (intel_dp->psr.busy_frontbuffer_bits || intel_dp->psr.active) goto unlock; intel_psr_activate(intel_dp); unlock: mutex_unlock(&intel_dp->psr.lock); } /** * intel_psr_invalidate - Invalidade PSR * @dev_priv: i915 device * @frontbuffer_bits: frontbuffer plane tracking bits * @origin: which operation caused the invalidate * * Since the hardware frontbuffer tracking has gaps we need to integrate * with the software frontbuffer tracking. This function gets called every * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be * disabled if the frontbuffer mask contains a buffer relevant to PSR. * * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits." */ void intel_psr_invalidate(struct drm_i915_private *dev_priv, unsigned frontbuffer_bits, enum fb_op_origin origin) { struct intel_encoder *encoder; if (origin == ORIGIN_FLIP) return; for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) { unsigned int pipe_frontbuffer_bits = frontbuffer_bits; struct intel_dp *intel_dp = enc_to_intel_dp(encoder); mutex_lock(&intel_dp->psr.lock); if (!intel_dp->psr.enabled) { mutex_unlock(&intel_dp->psr.lock); continue; } pipe_frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe); intel_dp->psr.busy_frontbuffer_bits |= pipe_frontbuffer_bits; if (pipe_frontbuffer_bits) intel_psr_exit(intel_dp); mutex_unlock(&intel_dp->psr.lock); } } /* * When we will be completely rely on PSR2 S/W tracking in future, * intel_psr_flush() will invalidate and flush the PSR for ORIGIN_FLIP * event also therefore tgl_dc3co_flush() require to be changed * accordingly in future. */ static void tgl_dc3co_flush(struct intel_dp *intel_dp, unsigned int frontbuffer_bits, enum fb_op_origin origin) { mutex_lock(&intel_dp->psr.lock); if (!intel_dp->psr.dc3co_exitline) goto unlock; if (!intel_dp->psr.psr2_enabled || !intel_dp->psr.active) goto unlock; /* * At every frontbuffer flush flip event modified delay of delayed work, * when delayed work schedules that means display has been idle. */ if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe))) goto unlock; tgl_psr2_enable_dc3co(intel_dp); mod_delayed_work(system_wq, &intel_dp->psr.dc3co_work, intel_dp->psr.dc3co_exit_delay); unlock: mutex_unlock(&intel_dp->psr.lock); } /** * intel_psr_flush - Flush PSR * @dev_priv: i915 device * @frontbuffer_bits: frontbuffer plane tracking bits * @origin: which operation caused the flush * * Since the hardware frontbuffer tracking has gaps we need to integrate * with the software frontbuffer tracking. This function gets called every * time frontbuffer rendering has completed and flushed out to memory. PSR * can be enabled again if no other frontbuffer relevant to PSR is dirty. * * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits. */ void intel_psr_flush(struct drm_i915_private *dev_priv, unsigned frontbuffer_bits, enum fb_op_origin origin) { struct intel_encoder *encoder; for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) { unsigned int pipe_frontbuffer_bits = frontbuffer_bits; struct intel_dp *intel_dp = enc_to_intel_dp(encoder); if (origin == ORIGIN_FLIP) { tgl_dc3co_flush(intel_dp, frontbuffer_bits, origin); continue; } mutex_lock(&intel_dp->psr.lock); if (!intel_dp->psr.enabled) { mutex_unlock(&intel_dp->psr.lock); continue; } pipe_frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe); intel_dp->psr.busy_frontbuffer_bits &= ~pipe_frontbuffer_bits; /* * If the PSR is paused by an explicit intel_psr_paused() call, * we have to ensure that the PSR is not activated until * intel_psr_resume() is called. */ if (intel_dp->psr.paused) { mutex_unlock(&intel_dp->psr.lock); continue; } /* By definition flush = invalidate + flush */ if (pipe_frontbuffer_bits) psr_force_hw_tracking_exit(intel_dp); if (!intel_dp->psr.active && !intel_dp->psr.busy_frontbuffer_bits) schedule_work(&intel_dp->psr.work); mutex_unlock(&intel_dp->psr.lock); } } /** * intel_psr_init - Init basic PSR work and mutex. * @intel_dp: Intel DP * * This function is called after the initializing connector. * (the initializing of connector treats the handling of connector capabilities) * And it initializes basic PSR stuff for each DP Encoder. */ void intel_psr_init(struct intel_dp *intel_dp) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); if (!HAS_PSR(dev_priv)) return; /* * HSW spec explicitly says PSR is tied to port A. * BDW+ platforms have a instance of PSR registers per transcoder but * BDW, GEN9 and GEN11 are not validated by HW team in other transcoder * than eDP one. * For now it only supports one instance of PSR for BDW, GEN9 and GEN11. * So lets keep it hardcoded to PORT_A for BDW, GEN9 and GEN11. * But GEN12 supports a instance of PSR registers per transcoder. */ if (DISPLAY_VER(dev_priv) < 12 && dig_port->base.port != PORT_A) { drm_dbg_kms(&dev_priv->drm, "PSR condition failed: Port not supported\n"); return; } intel_dp->psr.source_support = true; if (IS_HASWELL(dev_priv)) /* * HSW don't have PSR registers on the same space as transcoder * so set this to a value that when subtract to the register * in transcoder space results in the right offset for HSW */ dev_priv->hsw_psr_mmio_adjust = _SRD_CTL_EDP - _HSW_EDP_PSR_BASE; if (dev_priv->params.enable_psr == -1) if (DISPLAY_VER(dev_priv) < 9 || !dev_priv->vbt.psr.enable) dev_priv->params.enable_psr = 0; /* Set link_standby x link_off defaults */ if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) /* HSW and BDW require workarounds that we don't implement. */ intel_dp->psr.link_standby = false; else if (DISPLAY_VER(dev_priv) < 12) /* For new platforms up to TGL let's respect VBT back again */ intel_dp->psr.link_standby = dev_priv->vbt.psr.full_link; INIT_WORK(&intel_dp->psr.work, intel_psr_work); INIT_DELAYED_WORK(&intel_dp->psr.dc3co_work, tgl_dc3co_disable_work); mutex_init(&intel_dp->psr.lock); } static int psr_get_status_and_error_status(struct intel_dp *intel_dp, u8 *status, u8 *error_status) { struct drm_dp_aux *aux = &intel_dp->aux; int ret; ret = drm_dp_dpcd_readb(aux, DP_PSR_STATUS, status); if (ret != 1) return ret; ret = drm_dp_dpcd_readb(aux, DP_PSR_ERROR_STATUS, error_status); if (ret != 1) return ret; *status = *status & DP_PSR_SINK_STATE_MASK; return 0; } static void psr_alpm_check(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct drm_dp_aux *aux = &intel_dp->aux; struct intel_psr *psr = &intel_dp->psr; u8 val; int r; if (!psr->psr2_enabled) return; r = drm_dp_dpcd_readb(aux, DP_RECEIVER_ALPM_STATUS, &val); if (r != 1) { drm_err(&dev_priv->drm, "Error reading ALPM status\n"); return; } if (val & DP_ALPM_LOCK_TIMEOUT_ERROR) { intel_psr_disable_locked(intel_dp); psr->sink_not_reliable = true; drm_dbg_kms(&dev_priv->drm, "ALPM lock timeout error, disabling PSR\n"); /* Clearing error */ drm_dp_dpcd_writeb(aux, DP_RECEIVER_ALPM_STATUS, val); } } static void psr_capability_changed_check(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_psr *psr = &intel_dp->psr; u8 val; int r; r = drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ESI, &val); if (r != 1) { drm_err(&dev_priv->drm, "Error reading DP_PSR_ESI\n"); return; } if (val & DP_PSR_CAPS_CHANGE) { intel_psr_disable_locked(intel_dp); psr->sink_not_reliable = true; drm_dbg_kms(&dev_priv->drm, "Sink PSR capability changed, disabling PSR\n"); /* Clearing it */ drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ESI, val); } } void intel_psr_short_pulse(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_psr *psr = &intel_dp->psr; u8 status, error_status; const u8 errors = DP_PSR_RFB_STORAGE_ERROR | DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR | DP_PSR_LINK_CRC_ERROR; if (!CAN_PSR(intel_dp)) return; mutex_lock(&psr->lock); if (!psr->enabled) goto exit; if (psr_get_status_and_error_status(intel_dp, &status, &error_status)) { drm_err(&dev_priv->drm, "Error reading PSR status or error status\n"); goto exit; } if (status == DP_PSR_SINK_INTERNAL_ERROR || (error_status & errors)) { intel_psr_disable_locked(intel_dp); psr->sink_not_reliable = true; } if (status == DP_PSR_SINK_INTERNAL_ERROR && !error_status) drm_dbg_kms(&dev_priv->drm, "PSR sink internal error, disabling PSR\n"); if (error_status & DP_PSR_RFB_STORAGE_ERROR) drm_dbg_kms(&dev_priv->drm, "PSR RFB storage error, disabling PSR\n"); if (error_status & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR) drm_dbg_kms(&dev_priv->drm, "PSR VSC SDP uncorrectable error, disabling PSR\n"); if (error_status & DP_PSR_LINK_CRC_ERROR) drm_dbg_kms(&dev_priv->drm, "PSR Link CRC error, disabling PSR\n"); if (error_status & ~errors) drm_err(&dev_priv->drm, "PSR_ERROR_STATUS unhandled errors %x\n", error_status & ~errors); /* clear status register */ drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, error_status); psr_alpm_check(intel_dp); psr_capability_changed_check(intel_dp); exit: mutex_unlock(&psr->lock); } bool intel_psr_enabled(struct intel_dp *intel_dp) { bool ret; if (!CAN_PSR(intel_dp)) return false; mutex_lock(&intel_dp->psr.lock); ret = intel_dp->psr.enabled; mutex_unlock(&intel_dp->psr.lock); return ret; }