// SPDX-License-Identifier: GPL-2.0-only /* * Generic hugetlb support. * (C) Nadia Yvette Chambers, April 2004 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #include "hugetlb_vmemmap.h" int hugetlb_max_hstate __read_mostly; unsigned int default_hstate_idx; struct hstate hstates[HUGE_MAX_HSTATE]; #ifdef CONFIG_CMA static struct cma *hugetlb_cma[MAX_NUMNODES]; #endif static unsigned long hugetlb_cma_size __initdata; /* * Minimum page order among possible hugepage sizes, set to a proper value * at boot time. */ static unsigned int minimum_order __read_mostly = UINT_MAX; __initdata LIST_HEAD(huge_boot_pages); /* for command line parsing */ static struct hstate * __initdata parsed_hstate; static unsigned long __initdata default_hstate_max_huge_pages; static bool __initdata parsed_valid_hugepagesz = true; static bool __initdata parsed_default_hugepagesz; /* * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, * free_huge_pages, and surplus_huge_pages. */ DEFINE_SPINLOCK(hugetlb_lock); /* * Serializes faults on the same logical page. This is used to * prevent spurious OOMs when the hugepage pool is fully utilized. */ static int num_fault_mutexes; struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; /* Forward declaration */ static int hugetlb_acct_memory(struct hstate *h, long delta); static inline bool subpool_is_free(struct hugepage_subpool *spool) { if (spool->count) return false; if (spool->max_hpages != -1) return spool->used_hpages == 0; if (spool->min_hpages != -1) return spool->rsv_hpages == spool->min_hpages; return true; } static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, unsigned long irq_flags) { spin_unlock_irqrestore(&spool->lock, irq_flags); /* If no pages are used, and no other handles to the subpool * remain, give up any reservations based on minimum size and * free the subpool */ if (subpool_is_free(spool)) { if (spool->min_hpages != -1) hugetlb_acct_memory(spool->hstate, -spool->min_hpages); kfree(spool); } } struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, long min_hpages) { struct hugepage_subpool *spool; spool = kzalloc(sizeof(*spool), GFP_KERNEL); if (!spool) return NULL; spin_lock_init(&spool->lock); spool->count = 1; spool->max_hpages = max_hpages; spool->hstate = h; spool->min_hpages = min_hpages; if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { kfree(spool); return NULL; } spool->rsv_hpages = min_hpages; return spool; } void hugepage_put_subpool(struct hugepage_subpool *spool) { unsigned long flags; spin_lock_irqsave(&spool->lock, flags); BUG_ON(!spool->count); spool->count--; unlock_or_release_subpool(spool, flags); } /* * Subpool accounting for allocating and reserving pages. * Return -ENOMEM if there are not enough resources to satisfy the * request. Otherwise, return the number of pages by which the * global pools must be adjusted (upward). The returned value may * only be different than the passed value (delta) in the case where * a subpool minimum size must be maintained. */ static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, long delta) { long ret = delta; if (!spool) return ret; spin_lock_irq(&spool->lock); if (spool->max_hpages != -1) { /* maximum size accounting */ if ((spool->used_hpages + delta) <= spool->max_hpages) spool->used_hpages += delta; else { ret = -ENOMEM; goto unlock_ret; } } /* minimum size accounting */ if (spool->min_hpages != -1 && spool->rsv_hpages) { if (delta > spool->rsv_hpages) { /* * Asking for more reserves than those already taken on * behalf of subpool. Return difference. */ ret = delta - spool->rsv_hpages; spool->rsv_hpages = 0; } else { ret = 0; /* reserves already accounted for */ spool->rsv_hpages -= delta; } } unlock_ret: spin_unlock_irq(&spool->lock); return ret; } /* * Subpool accounting for freeing and unreserving pages. * Return the number of global page reservations that must be dropped. * The return value may only be different than the passed value (delta) * in the case where a subpool minimum size must be maintained. */ static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, long delta) { long ret = delta; unsigned long flags; if (!spool) return delta; spin_lock_irqsave(&spool->lock, flags); if (spool->max_hpages != -1) /* maximum size accounting */ spool->used_hpages -= delta; /* minimum size accounting */ if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { if (spool->rsv_hpages + delta <= spool->min_hpages) ret = 0; else ret = spool->rsv_hpages + delta - spool->min_hpages; spool->rsv_hpages += delta; if (spool->rsv_hpages > spool->min_hpages) spool->rsv_hpages = spool->min_hpages; } /* * If hugetlbfs_put_super couldn't free spool due to an outstanding * quota reference, free it now. */ unlock_or_release_subpool(spool, flags); return ret; } static inline struct hugepage_subpool *subpool_inode(struct inode *inode) { return HUGETLBFS_SB(inode->i_sb)->spool; } static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) { return subpool_inode(file_inode(vma->vm_file)); } /* Helper that removes a struct file_region from the resv_map cache and returns * it for use. */ static struct file_region * get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) { struct file_region *nrg = NULL; VM_BUG_ON(resv->region_cache_count <= 0); resv->region_cache_count--; nrg = list_first_entry(&resv->region_cache, struct file_region, link); list_del(&nrg->link); nrg->from = from; nrg->to = to; return nrg; } static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, struct file_region *rg) { #ifdef CONFIG_CGROUP_HUGETLB nrg->reservation_counter = rg->reservation_counter; nrg->css = rg->css; if (rg->css) css_get(rg->css); #endif } /* Helper that records hugetlb_cgroup uncharge info. */ static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, struct hstate *h, struct resv_map *resv, struct file_region *nrg) { #ifdef CONFIG_CGROUP_HUGETLB if (h_cg) { nrg->reservation_counter = &h_cg->rsvd_hugepage[hstate_index(h)]; nrg->css = &h_cg->css; /* * The caller will hold exactly one h_cg->css reference for the * whole contiguous reservation region. But this area might be * scattered when there are already some file_regions reside in * it. As a result, many file_regions may share only one css * reference. In order to ensure that one file_region must hold * exactly one h_cg->css reference, we should do css_get for * each file_region and leave the reference held by caller * untouched. */ css_get(&h_cg->css); if (!resv->pages_per_hpage) resv->pages_per_hpage = pages_per_huge_page(h); /* pages_per_hpage should be the same for all entries in * a resv_map. */ VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); } else { nrg->reservation_counter = NULL; nrg->css = NULL; } #endif } static void put_uncharge_info(struct file_region *rg) { #ifdef CONFIG_CGROUP_HUGETLB if (rg->css) css_put(rg->css); #endif } static bool has_same_uncharge_info(struct file_region *rg, struct file_region *org) { #ifdef CONFIG_CGROUP_HUGETLB return rg && org && rg->reservation_counter == org->reservation_counter && rg->css == org->css; #else return true; #endif } static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) { struct file_region *nrg = NULL, *prg = NULL; prg = list_prev_entry(rg, link); if (&prg->link != &resv->regions && prg->to == rg->from && has_same_uncharge_info(prg, rg)) { prg->to = rg->to; list_del(&rg->link); put_uncharge_info(rg); kfree(rg); rg = prg; } nrg = list_next_entry(rg, link); if (&nrg->link != &resv->regions && nrg->from == rg->to && has_same_uncharge_info(nrg, rg)) { nrg->from = rg->from; list_del(&rg->link); put_uncharge_info(rg); kfree(rg); } } static inline long hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from, long to, struct hstate *h, struct hugetlb_cgroup *cg, long *regions_needed) { struct file_region *nrg; if (!regions_needed) { nrg = get_file_region_entry_from_cache(map, from, to); record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); list_add(&nrg->link, rg->link.prev); coalesce_file_region(map, nrg); } else *regions_needed += 1; return to - from; } /* * Must be called with resv->lock held. * * Calling this with regions_needed != NULL will count the number of pages * to be added but will not modify the linked list. And regions_needed will * indicate the number of file_regions needed in the cache to carry out to add * the regions for this range. */ static long add_reservation_in_range(struct resv_map *resv, long f, long t, struct hugetlb_cgroup *h_cg, struct hstate *h, long *regions_needed) { long add = 0; struct list_head *head = &resv->regions; long last_accounted_offset = f; struct file_region *rg = NULL, *trg = NULL; if (regions_needed) *regions_needed = 0; /* In this loop, we essentially handle an entry for the range * [last_accounted_offset, rg->from), at every iteration, with some * bounds checking. */ list_for_each_entry_safe(rg, trg, head, link) { /* Skip irrelevant regions that start before our range. */ if (rg->from < f) { /* If this region ends after the last accounted offset, * then we need to update last_accounted_offset. */ if (rg->to > last_accounted_offset) last_accounted_offset = rg->to; continue; } /* When we find a region that starts beyond our range, we've * finished. */ if (rg->from >= t) break; /* Add an entry for last_accounted_offset -> rg->from, and * update last_accounted_offset. */ if (rg->from > last_accounted_offset) add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, rg->from, h, h_cg, regions_needed); last_accounted_offset = rg->to; } /* Handle the case where our range extends beyond * last_accounted_offset. */ if (last_accounted_offset < t) add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, t, h, h_cg, regions_needed); VM_BUG_ON(add < 0); return add; } /* Must be called with resv->lock acquired. Will drop lock to allocate entries. */ static int allocate_file_region_entries(struct resv_map *resv, int regions_needed) __must_hold(&resv->lock) { struct list_head allocated_regions; int to_allocate = 0, i = 0; struct file_region *trg = NULL, *rg = NULL; VM_BUG_ON(regions_needed < 0); INIT_LIST_HEAD(&allocated_regions); /* * Check for sufficient descriptors in the cache to accommodate * the number of in progress add operations plus regions_needed. * * This is a while loop because when we drop the lock, some other call * to region_add or region_del may have consumed some region_entries, * so we keep looping here until we finally have enough entries for * (adds_in_progress + regions_needed). */ while (resv->region_cache_count < (resv->adds_in_progress + regions_needed)) { to_allocate = resv->adds_in_progress + regions_needed - resv->region_cache_count; /* At this point, we should have enough entries in the cache * for all the existing adds_in_progress. We should only be * needing to allocate for regions_needed. */ VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); spin_unlock(&resv->lock); for (i = 0; i < to_allocate; i++) { trg = kmalloc(sizeof(*trg), GFP_KERNEL); if (!trg) goto out_of_memory; list_add(&trg->link, &allocated_regions); } spin_lock(&resv->lock); list_splice(&allocated_regions, &resv->region_cache); resv->region_cache_count += to_allocate; } return 0; out_of_memory: list_for_each_entry_safe(rg, trg, &allocated_regions, link) { list_del(&rg->link); kfree(rg); } return -ENOMEM; } /* * Add the huge page range represented by [f, t) to the reserve * map. Regions will be taken from the cache to fill in this range. * Sufficient regions should exist in the cache due to the previous * call to region_chg with the same range, but in some cases the cache will not * have sufficient entries due to races with other code doing region_add or * region_del. The extra needed entries will be allocated. * * regions_needed is the out value provided by a previous call to region_chg. * * Return the number of new huge pages added to the map. This number is greater * than or equal to zero. If file_region entries needed to be allocated for * this operation and we were not able to allocate, it returns -ENOMEM. * region_add of regions of length 1 never allocate file_regions and cannot * fail; region_chg will always allocate at least 1 entry and a region_add for * 1 page will only require at most 1 entry. */ static long region_add(struct resv_map *resv, long f, long t, long in_regions_needed, struct hstate *h, struct hugetlb_cgroup *h_cg) { long add = 0, actual_regions_needed = 0; spin_lock(&resv->lock); retry: /* Count how many regions are actually needed to execute this add. */ add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed); /* * Check for sufficient descriptors in the cache to accommodate * this add operation. Note that actual_regions_needed may be greater * than in_regions_needed, as the resv_map may have been modified since * the region_chg call. In this case, we need to make sure that we * allocate extra entries, such that we have enough for all the * existing adds_in_progress, plus the excess needed for this * operation. */ if (actual_regions_needed > in_regions_needed && resv->region_cache_count < resv->adds_in_progress + (actual_regions_needed - in_regions_needed)) { /* region_add operation of range 1 should never need to * allocate file_region entries. */ VM_BUG_ON(t - f <= 1); if (allocate_file_region_entries( resv, actual_regions_needed - in_regions_needed)) { return -ENOMEM; } goto retry; } add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); resv->adds_in_progress -= in_regions_needed; spin_unlock(&resv->lock); return add; } /* * Examine the existing reserve map and determine how many * huge pages in the specified range [f, t) are NOT currently * represented. This routine is called before a subsequent * call to region_add that will actually modify the reserve * map to add the specified range [f, t). region_chg does * not change the number of huge pages represented by the * map. A number of new file_region structures is added to the cache as a * placeholder, for the subsequent region_add call to use. At least 1 * file_region structure is added. * * out_regions_needed is the number of regions added to the * resv->adds_in_progress. This value needs to be provided to a follow up call * to region_add or region_abort for proper accounting. * * Returns the number of huge pages that need to be added to the existing * reservation map for the range [f, t). This number is greater or equal to * zero. -ENOMEM is returned if a new file_region structure or cache entry * is needed and can not be allocated. */ static long region_chg(struct resv_map *resv, long f, long t, long *out_regions_needed) { long chg = 0; spin_lock(&resv->lock); /* Count how many hugepages in this range are NOT represented. */ chg = add_reservation_in_range(resv, f, t, NULL, NULL, out_regions_needed); if (*out_regions_needed == 0) *out_regions_needed = 1; if (allocate_file_region_entries(resv, *out_regions_needed)) return -ENOMEM; resv->adds_in_progress += *out_regions_needed; spin_unlock(&resv->lock); return chg; } /* * Abort the in progress add operation. The adds_in_progress field * of the resv_map keeps track of the operations in progress between * calls to region_chg and region_add. Operations are sometimes * aborted after the call to region_chg. In such cases, region_abort * is called to decrement the adds_in_progress counter. regions_needed * is the value returned by the region_chg call, it is used to decrement * the adds_in_progress counter. * * NOTE: The range arguments [f, t) are not needed or used in this * routine. They are kept to make reading the calling code easier as * arguments will match the associated region_chg call. */ static void region_abort(struct resv_map *resv, long f, long t, long regions_needed) { spin_lock(&resv->lock); VM_BUG_ON(!resv->region_cache_count); resv->adds_in_progress -= regions_needed; spin_unlock(&resv->lock); } /* * Delete the specified range [f, t) from the reserve map. If the * t parameter is LONG_MAX, this indicates that ALL regions after f * should be deleted. Locate the regions which intersect [f, t) * and either trim, delete or split the existing regions. * * Returns the number of huge pages deleted from the reserve map. * In the normal case, the return value is zero or more. In the * case where a region must be split, a new region descriptor must * be allocated. If the allocation fails, -ENOMEM will be returned. * NOTE: If the parameter t == LONG_MAX, then we will never split * a region and possibly return -ENOMEM. Callers specifying * t == LONG_MAX do not need to check for -ENOMEM error. */ static long region_del(struct resv_map *resv, long f, long t) { struct list_head *head = &resv->regions; struct file_region *rg, *trg; struct file_region *nrg = NULL; long del = 0; retry: spin_lock(&resv->lock); list_for_each_entry_safe(rg, trg, head, link) { /* * Skip regions before the range to be deleted. file_region * ranges are normally of the form [from, to). However, there * may be a "placeholder" entry in the map which is of the form * (from, to) with from == to. Check for placeholder entries * at the beginning of the range to be deleted. */ if (rg->to <= f && (rg->to != rg->from || rg->to != f)) continue; if (rg->from >= t) break; if (f > rg->from && t < rg->to) { /* Must split region */ /* * Check for an entry in the cache before dropping * lock and attempting allocation. */ if (!nrg && resv->region_cache_count > resv->adds_in_progress) { nrg = list_first_entry(&resv->region_cache, struct file_region, link); list_del(&nrg->link); resv->region_cache_count--; } if (!nrg) { spin_unlock(&resv->lock); nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); if (!nrg) return -ENOMEM; goto retry; } del += t - f; hugetlb_cgroup_uncharge_file_region( resv, rg, t - f, false); /* New entry for end of split region */ nrg->from = t; nrg->to = rg->to; copy_hugetlb_cgroup_uncharge_info(nrg, rg); INIT_LIST_HEAD(&nrg->link); /* Original entry is trimmed */ rg->to = f; list_add(&nrg->link, &rg->link); nrg = NULL; break; } if (f <= rg->from && t >= rg->to) { /* Remove entire region */ del += rg->to - rg->from; hugetlb_cgroup_uncharge_file_region(resv, rg, rg->to - rg->from, true); list_del(&rg->link); kfree(rg); continue; } if (f <= rg->from) { /* Trim beginning of region */ hugetlb_cgroup_uncharge_file_region(resv, rg, t - rg->from, false); del += t - rg->from; rg->from = t; } else { /* Trim end of region */ hugetlb_cgroup_uncharge_file_region(resv, rg, rg->to - f, false); del += rg->to - f; rg->to = f; } } spin_unlock(&resv->lock); kfree(nrg); return del; } /* * A rare out of memory error was encountered which prevented removal of * the reserve map region for a page. The huge page itself was free'ed * and removed from the page cache. This routine will adjust the subpool * usage count, and the global reserve count if needed. By incrementing * these counts, the reserve map entry which could not be deleted will * appear as a "reserved" entry instead of simply dangling with incorrect * counts. */ void hugetlb_fix_reserve_counts(struct inode *inode) { struct hugepage_subpool *spool = subpool_inode(inode); long rsv_adjust; bool reserved = false; rsv_adjust = hugepage_subpool_get_pages(spool, 1); if (rsv_adjust > 0) { struct hstate *h = hstate_inode(inode); if (!hugetlb_acct_memory(h, 1)) reserved = true; } else if (!rsv_adjust) { reserved = true; } if (!reserved) pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); } /* * Count and return the number of huge pages in the reserve map * that intersect with the range [f, t). */ static long region_count(struct resv_map *resv, long f, long t) { struct list_head *head = &resv->regions; struct file_region *rg; long chg = 0; spin_lock(&resv->lock); /* Locate each segment we overlap with, and count that overlap. */ list_for_each_entry(rg, head, link) { long seg_from; long seg_to; if (rg->to <= f) continue; if (rg->from >= t) break; seg_from = max(rg->from, f); seg_to = min(rg->to, t); chg += seg_to - seg_from; } spin_unlock(&resv->lock); return chg; } /* * Convert the address within this vma to the page offset within * the mapping, in pagecache page units; huge pages here. */ static pgoff_t vma_hugecache_offset(struct hstate *h, struct vm_area_struct *vma, unsigned long address) { return ((address - vma->vm_start) >> huge_page_shift(h)) + (vma->vm_pgoff >> huge_page_order(h)); } pgoff_t linear_hugepage_index(struct vm_area_struct *vma, unsigned long address) { return vma_hugecache_offset(hstate_vma(vma), vma, address); } EXPORT_SYMBOL_GPL(linear_hugepage_index); /* * Return the size of the pages allocated when backing a VMA. In the majority * cases this will be same size as used by the page table entries. */ unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) { if (vma->vm_ops && vma->vm_ops->pagesize) return vma->vm_ops->pagesize(vma); return PAGE_SIZE; } EXPORT_SYMBOL_GPL(vma_kernel_pagesize); /* * Return the page size being used by the MMU to back a VMA. In the majority * of cases, the page size used by the kernel matches the MMU size. On * architectures where it differs, an architecture-specific 'strong' * version of this symbol is required. */ __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) { return vma_kernel_pagesize(vma); } /* * Flags for MAP_PRIVATE reservations. These are stored in the bottom * bits of the reservation map pointer, which are always clear due to * alignment. */ #define HPAGE_RESV_OWNER (1UL << 0) #define HPAGE_RESV_UNMAPPED (1UL << 1) #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) /* * These helpers are used to track how many pages are reserved for * faults in a MAP_PRIVATE mapping. Only the process that called mmap() * is guaranteed to have their future faults succeed. * * With the exception of reset_vma_resv_huge_pages() which is called at fork(), * the reserve counters are updated with the hugetlb_lock held. It is safe * to reset the VMA at fork() time as it is not in use yet and there is no * chance of the global counters getting corrupted as a result of the values. * * The private mapping reservation is represented in a subtly different * manner to a shared mapping. A shared mapping has a region map associated * with the underlying file, this region map represents the backing file * pages which have ever had a reservation assigned which this persists even * after the page is instantiated. A private mapping has a region map * associated with the original mmap which is attached to all VMAs which * reference it, this region map represents those offsets which have consumed * reservation ie. where pages have been instantiated. */ static unsigned long get_vma_private_data(struct vm_area_struct *vma) { return (unsigned long)vma->vm_private_data; } static void set_vma_private_data(struct vm_area_struct *vma, unsigned long value) { vma->vm_private_data = (void *)value; } static void resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, struct hugetlb_cgroup *h_cg, struct hstate *h) { #ifdef CONFIG_CGROUP_HUGETLB if (!h_cg || !h) { resv_map->reservation_counter = NULL; resv_map->pages_per_hpage = 0; resv_map->css = NULL; } else { resv_map->reservation_counter = &h_cg->rsvd_hugepage[hstate_index(h)]; resv_map->pages_per_hpage = pages_per_huge_page(h); resv_map->css = &h_cg->css; } #endif } struct resv_map *resv_map_alloc(void) { struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); if (!resv_map || !rg) { kfree(resv_map); kfree(rg); return NULL; } kref_init(&resv_map->refs); spin_lock_init(&resv_map->lock); INIT_LIST_HEAD(&resv_map->regions); resv_map->adds_in_progress = 0; /* * Initialize these to 0. On shared mappings, 0's here indicate these * fields don't do cgroup accounting. On private mappings, these will be * re-initialized to the proper values, to indicate that hugetlb cgroup * reservations are to be un-charged from here. */ resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); INIT_LIST_HEAD(&resv_map->region_cache); list_add(&rg->link, &resv_map->region_cache); resv_map->region_cache_count = 1; return resv_map; } void resv_map_release(struct kref *ref) { struct resv_map *resv_map = container_of(ref, struct resv_map, refs); struct list_head *head = &resv_map->region_cache; struct file_region *rg, *trg; /* Clear out any active regions before we release the map. */ region_del(resv_map, 0, LONG_MAX); /* ... and any entries left in the cache */ list_for_each_entry_safe(rg, trg, head, link) { list_del(&rg->link); kfree(rg); } VM_BUG_ON(resv_map->adds_in_progress); kfree(resv_map); } static inline struct resv_map *inode_resv_map(struct inode *inode) { /* * At inode evict time, i_mapping may not point to the original * address space within the inode. This original address space * contains the pointer to the resv_map. So, always use the * address space embedded within the inode. * The VERY common case is inode->mapping == &inode->i_data but, * this may not be true for device special inodes. */ return (struct resv_map *)(&inode->i_data)->private_data; } static struct resv_map *vma_resv_map(struct vm_area_struct *vma) { VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); if (vma->vm_flags & VM_MAYSHARE) { struct address_space *mapping = vma->vm_file->f_mapping; struct inode *inode = mapping->host; return inode_resv_map(inode); } else { return (struct resv_map *)(get_vma_private_data(vma) & ~HPAGE_RESV_MASK); } } static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) { VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); set_vma_private_data(vma, (get_vma_private_data(vma) & HPAGE_RESV_MASK) | (unsigned long)map); } static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) { VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); set_vma_private_data(vma, get_vma_private_data(vma) | flags); } static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) { VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); return (get_vma_private_data(vma) & flag) != 0; } /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ void reset_vma_resv_huge_pages(struct vm_area_struct *vma) { VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); if (!(vma->vm_flags & VM_MAYSHARE)) vma->vm_private_data = (void *)0; } /* Returns true if the VMA has associated reserve pages */ static bool vma_has_reserves(struct vm_area_struct *vma, long chg) { if (vma->vm_flags & VM_NORESERVE) { /* * This address is already reserved by other process(chg == 0), * so, we should decrement reserved count. Without decrementing, * reserve count remains after releasing inode, because this * allocated page will go into page cache and is regarded as * coming from reserved pool in releasing step. Currently, we * don't have any other solution to deal with this situation * properly, so add work-around here. */ if (vma->vm_flags & VM_MAYSHARE && chg == 0) return true; else return false; } /* Shared mappings always use reserves */ if (vma->vm_flags & VM_MAYSHARE) { /* * We know VM_NORESERVE is not set. Therefore, there SHOULD * be a region map for all pages. The only situation where * there is no region map is if a hole was punched via * fallocate. In this case, there really are no reserves to * use. This situation is indicated if chg != 0. */ if (chg) return false; else return true; } /* * Only the process that called mmap() has reserves for * private mappings. */ if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { /* * Like the shared case above, a hole punch or truncate * could have been performed on the private mapping. * Examine the value of chg to determine if reserves * actually exist or were previously consumed. * Very Subtle - The value of chg comes from a previous * call to vma_needs_reserves(). The reserve map for * private mappings has different (opposite) semantics * than that of shared mappings. vma_needs_reserves() * has already taken this difference in semantics into * account. Therefore, the meaning of chg is the same * as in the shared case above. Code could easily be * combined, but keeping it separate draws attention to * subtle differences. */ if (chg) return false; else return true; } return false; } static void enqueue_huge_page(struct hstate *h, struct page *page) { int nid = page_to_nid(page); lockdep_assert_held(&hugetlb_lock); list_move(&page->lru, &h->hugepage_freelists[nid]); h->free_huge_pages++; h->free_huge_pages_node[nid]++; SetHPageFreed(page); } static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) { struct page *page; bool pin = !!(current->flags & PF_MEMALLOC_PIN); lockdep_assert_held(&hugetlb_lock); list_for_each_entry(page, &h->hugepage_freelists[nid], lru) { if (pin && !is_pinnable_page(page)) continue; if (PageHWPoison(page)) continue; list_move(&page->lru, &h->hugepage_activelist); set_page_refcounted(page); ClearHPageFreed(page); h->free_huge_pages--; h->free_huge_pages_node[nid]--; return page; } return NULL; } static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, nodemask_t *nmask) { unsigned int cpuset_mems_cookie; struct zonelist *zonelist; struct zone *zone; struct zoneref *z; int node = NUMA_NO_NODE; zonelist = node_zonelist(nid, gfp_mask); retry_cpuset: cpuset_mems_cookie = read_mems_allowed_begin(); for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { struct page *page; if (!cpuset_zone_allowed(zone, gfp_mask)) continue; /* * no need to ask again on the same node. Pool is node rather than * zone aware */ if (zone_to_nid(zone) == node) continue; node = zone_to_nid(zone); page = dequeue_huge_page_node_exact(h, node); if (page) return page; } if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) goto retry_cpuset; return NULL; } static struct page *dequeue_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, unsigned long address, int avoid_reserve, long chg) { struct page *page; struct mempolicy *mpol; gfp_t gfp_mask; nodemask_t *nodemask; int nid; /* * A child process with MAP_PRIVATE mappings created by their parent * have no page reserves. This check ensures that reservations are * not "stolen". The child may still get SIGKILLed */ if (!vma_has_reserves(vma, chg) && h->free_huge_pages - h->resv_huge_pages == 0) goto err; /* If reserves cannot be used, ensure enough pages are in the pool */ if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) goto err; gfp_mask = htlb_alloc_mask(h); nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { SetHPageRestoreReserve(page); h->resv_huge_pages--; } mpol_cond_put(mpol); return page; err: return NULL; } /* * common helper functions for hstate_next_node_to_{alloc|free}. * We may have allocated or freed a huge page based on a different * nodes_allowed previously, so h->next_node_to_{alloc|free} might * be outside of *nodes_allowed. Ensure that we use an allowed * node for alloc or free. */ static int next_node_allowed(int nid, nodemask_t *nodes_allowed) { nid = next_node_in(nid, *nodes_allowed); VM_BUG_ON(nid >= MAX_NUMNODES); return nid; } static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) { if (!node_isset(nid, *nodes_allowed)) nid = next_node_allowed(nid, nodes_allowed); return nid; } /* * returns the previously saved node ["this node"] from which to * allocate a persistent huge page for the pool and advance the * next node from which to allocate, handling wrap at end of node * mask. */ static int hstate_next_node_to_alloc(struct hstate *h, nodemask_t *nodes_allowed) { int nid; VM_BUG_ON(!nodes_allowed); nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); return nid; } /* * helper for remove_pool_huge_page() - return the previously saved * node ["this node"] from which to free a huge page. Advance the * next node id whether or not we find a free huge page to free so * that the next attempt to free addresses the next node. */ static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) { int nid; VM_BUG_ON(!nodes_allowed); nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); return nid; } #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ for (nr_nodes = nodes_weight(*mask); \ nr_nodes > 0 && \ ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ nr_nodes--) #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ for (nr_nodes = nodes_weight(*mask); \ nr_nodes > 0 && \ ((node = hstate_next_node_to_free(hs, mask)) || 1); \ nr_nodes--) #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE static void destroy_compound_gigantic_page(struct page *page, unsigned int order) { int i; int nr_pages = 1 << order; struct page *p = page + 1; atomic_set(compound_mapcount_ptr(page), 0); atomic_set(compound_pincount_ptr(page), 0); for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { clear_compound_head(p); set_page_refcounted(p); } set_compound_order(page, 0); page[1].compound_nr = 0; __ClearPageHead(page); } static void free_gigantic_page(struct page *page, unsigned int order) { /* * If the page isn't allocated using the cma allocator, * cma_release() returns false. */ #ifdef CONFIG_CMA if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order)) return; #endif free_contig_range(page_to_pfn(page), 1 << order); } #ifdef CONFIG_CONTIG_ALLOC static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, int nid, nodemask_t *nodemask) { unsigned long nr_pages = pages_per_huge_page(h); if (nid == NUMA_NO_NODE) nid = numa_mem_id(); #ifdef CONFIG_CMA { struct page *page; int node; if (hugetlb_cma[nid]) { page = cma_alloc(hugetlb_cma[nid], nr_pages, huge_page_order(h), true); if (page) return page; } if (!(gfp_mask & __GFP_THISNODE)) { for_each_node_mask(node, *nodemask) { if (node == nid || !hugetlb_cma[node]) continue; page = cma_alloc(hugetlb_cma[node], nr_pages, huge_page_order(h), true); if (page) return page; } } } #endif return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); } static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); static void prep_compound_gigantic_page(struct page *page, unsigned int order); #else /* !CONFIG_CONTIG_ALLOC */ static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, int nid, nodemask_t *nodemask) { return NULL; } #endif /* CONFIG_CONTIG_ALLOC */ #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, int nid, nodemask_t *nodemask) { return NULL; } static inline void free_gigantic_page(struct page *page, unsigned int order) { } static inline void destroy_compound_gigantic_page(struct page *page, unsigned int order) { } #endif /* * Remove hugetlb page from lists, and update dtor so that page appears * as just a compound page. A reference is held on the page. * * Must be called with hugetlb lock held. */ static void remove_hugetlb_page(struct hstate *h, struct page *page, bool adjust_surplus) { int nid = page_to_nid(page); VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page); lockdep_assert_held(&hugetlb_lock); if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) return; list_del(&page->lru); if (HPageFreed(page)) { h->free_huge_pages--; h->free_huge_pages_node[nid]--; } if (adjust_surplus) { h->surplus_huge_pages--; h->surplus_huge_pages_node[nid]--; } set_page_refcounted(page); set_compound_page_dtor(page, NULL_COMPOUND_DTOR); h->nr_huge_pages--; h->nr_huge_pages_node[nid]--; } static void add_hugetlb_page(struct hstate *h, struct page *page, bool adjust_surplus) { int zeroed; int nid = page_to_nid(page); VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page); lockdep_assert_held(&hugetlb_lock); INIT_LIST_HEAD(&page->lru); h->nr_huge_pages++; h->nr_huge_pages_node[nid]++; if (adjust_surplus) { h->surplus_huge_pages++; h->surplus_huge_pages_node[nid]++; } set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); set_page_private(page, 0); SetHPageVmemmapOptimized(page); /* * This page is now managed by the hugetlb allocator and has * no users -- drop the last reference. */ zeroed = put_page_testzero(page); VM_BUG_ON_PAGE(!zeroed, page); arch_clear_hugepage_flags(page); enqueue_huge_page(h, page); } static void __update_and_free_page(struct hstate *h, struct page *page) { int i; struct page *subpage = page; if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) return; if (alloc_huge_page_vmemmap(h, page)) { spin_lock_irq(&hugetlb_lock); /* * If we cannot allocate vmemmap pages, just refuse to free the * page and put the page back on the hugetlb free list and treat * as a surplus page. */ add_hugetlb_page(h, page, true); spin_unlock_irq(&hugetlb_lock); return; } for (i = 0; i < pages_per_huge_page(h); i++, subpage = mem_map_next(subpage, page, i)) { subpage->flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | 1 << PG_dirty | 1 << PG_active | 1 << PG_private | 1 << PG_writeback); } if (hstate_is_gigantic(h)) { destroy_compound_gigantic_page(page, huge_page_order(h)); free_gigantic_page(page, huge_page_order(h)); } else { __free_pages(page, huge_page_order(h)); } } /* * As update_and_free_page() can be called under any context, so we cannot * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate * the vmemmap pages. * * free_hpage_workfn() locklessly retrieves the linked list of pages to be * freed and frees them one-by-one. As the page->mapping pointer is going * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node * structure of a lockless linked list of huge pages to be freed. */ static LLIST_HEAD(hpage_freelist); static void free_hpage_workfn(struct work_struct *work) { struct llist_node *node; node = llist_del_all(&hpage_freelist); while (node) { struct page *page; struct hstate *h; page = container_of((struct address_space **)node, struct page, mapping); node = node->next; page->mapping = NULL; /* * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate() * is going to trigger because a previous call to * remove_hugetlb_page() will set_compound_page_dtor(page, * NULL_COMPOUND_DTOR), so do not use page_hstate() directly. */ h = size_to_hstate(page_size(page)); __update_and_free_page(h, page); cond_resched(); } } static DECLARE_WORK(free_hpage_work, free_hpage_workfn); static inline void flush_free_hpage_work(struct hstate *h) { if (free_vmemmap_pages_per_hpage(h)) flush_work(&free_hpage_work); } static void update_and_free_page(struct hstate *h, struct page *page, bool atomic) { if (!HPageVmemmapOptimized(page) || !atomic) { __update_and_free_page(h, page); return; } /* * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. * * Only call schedule_work() if hpage_freelist is previously * empty. Otherwise, schedule_work() had been called but the workfn * hasn't retrieved the list yet. */ if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist)) schedule_work(&free_hpage_work); } static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) { struct page *page, *t_page; list_for_each_entry_safe(page, t_page, list, lru) { update_and_free_page(h, page, false); cond_resched(); } } struct hstate *size_to_hstate(unsigned long size) { struct hstate *h; for_each_hstate(h) { if (huge_page_size(h) == size) return h; } return NULL; } void free_huge_page(struct page *page) { /* * Can't pass hstate in here because it is called from the * compound page destructor. */ struct hstate *h = page_hstate(page); int nid = page_to_nid(page); struct hugepage_subpool *spool = hugetlb_page_subpool(page); bool restore_reserve; unsigned long flags; VM_BUG_ON_PAGE(page_count(page), page); VM_BUG_ON_PAGE(page_mapcount(page), page); hugetlb_set_page_subpool(page, NULL); page->mapping = NULL; restore_reserve = HPageRestoreReserve(page); ClearHPageRestoreReserve(page); /* * If HPageRestoreReserve was set on page, page allocation consumed a * reservation. If the page was associated with a subpool, there * would have been a page reserved in the subpool before allocation * via hugepage_subpool_get_pages(). Since we are 'restoring' the * reservation, do not call hugepage_subpool_put_pages() as this will * remove the reserved page from the subpool. */ if (!restore_reserve) { /* * A return code of zero implies that the subpool will be * under its minimum size if the reservation is not restored * after page is free. Therefore, force restore_reserve * operation. */ if (hugepage_subpool_put_pages(spool, 1) == 0) restore_reserve = true; } spin_lock_irqsave(&hugetlb_lock, flags); ClearHPageMigratable(page); hugetlb_cgroup_uncharge_page(hstate_index(h), pages_per_huge_page(h), page); hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), pages_per_huge_page(h), page); if (restore_reserve) h->resv_huge_pages++; if (HPageTemporary(page)) { remove_hugetlb_page(h, page, false); spin_unlock_irqrestore(&hugetlb_lock, flags); update_and_free_page(h, page, true); } else if (h->surplus_huge_pages_node[nid]) { /* remove the page from active list */ remove_hugetlb_page(h, page, true); spin_unlock_irqrestore(&hugetlb_lock, flags); update_and_free_page(h, page, true); } else { arch_clear_hugepage_flags(page); enqueue_huge_page(h, page); spin_unlock_irqrestore(&hugetlb_lock, flags); } } /* * Must be called with the hugetlb lock held */ static void __prep_account_new_huge_page(struct hstate *h, int nid) { lockdep_assert_held(&hugetlb_lock); h->nr_huge_pages++; h->nr_huge_pages_node[nid]++; } static void __prep_new_huge_page(struct hstate *h, struct page *page) { free_huge_page_vmemmap(h, page); INIT_LIST_HEAD(&page->lru); set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); hugetlb_set_page_subpool(page, NULL); set_hugetlb_cgroup(page, NULL); set_hugetlb_cgroup_rsvd(page, NULL); } static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) { __prep_new_huge_page(h, page); spin_lock_irq(&hugetlb_lock); __prep_account_new_huge_page(h, nid); spin_unlock_irq(&hugetlb_lock); } static void prep_compound_gigantic_page(struct page *page, unsigned int order) { int i; int nr_pages = 1 << order; struct page *p = page + 1; /* we rely on prep_new_huge_page to set the destructor */ set_compound_order(page, order); __ClearPageReserved(page); __SetPageHead(page); for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { /* * For gigantic hugepages allocated through bootmem at * boot, it's safer to be consistent with the not-gigantic * hugepages and clear the PG_reserved bit from all tail pages * too. Otherwise drivers using get_user_pages() to access tail * pages may get the reference counting wrong if they see * PG_reserved set on a tail page (despite the head page not * having PG_reserved set). Enforcing this consistency between * head and tail pages allows drivers to optimize away a check * on the head page when they need know if put_page() is needed * after get_user_pages(). */ __ClearPageReserved(p); set_page_count(p, 0); set_compound_head(p, page); } atomic_set(compound_mapcount_ptr(page), -1); atomic_set(compound_pincount_ptr(page), 0); } /* * PageHuge() only returns true for hugetlbfs pages, but not for normal or * transparent huge pages. See the PageTransHuge() documentation for more * details. */ int PageHuge(struct page *page) { if (!PageCompound(page)) return 0; page = compound_head(page); return page[1].compound_dtor == HUGETLB_PAGE_DTOR; } EXPORT_SYMBOL_GPL(PageHuge); /* * PageHeadHuge() only returns true for hugetlbfs head page, but not for * normal or transparent huge pages. */ int PageHeadHuge(struct page *page_head) { if (!PageHead(page_head)) return 0; return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR; } /* * Find and lock address space (mapping) in write mode. * * Upon entry, the page is locked which means that page_mapping() is * stable. Due to locking order, we can only trylock_write. If we can * not get the lock, simply return NULL to caller. */ struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) { struct address_space *mapping = page_mapping(hpage); if (!mapping) return mapping; if (i_mmap_trylock_write(mapping)) return mapping; return NULL; } pgoff_t hugetlb_basepage_index(struct page *page) { struct page *page_head = compound_head(page); pgoff_t index = page_index(page_head); unsigned long compound_idx; if (compound_order(page_head) >= MAX_ORDER) compound_idx = page_to_pfn(page) - page_to_pfn(page_head); else compound_idx = page - page_head; return (index << compound_order(page_head)) + compound_idx; } static struct page *alloc_buddy_huge_page(struct hstate *h, gfp_t gfp_mask, int nid, nodemask_t *nmask, nodemask_t *node_alloc_noretry) { int order = huge_page_order(h); struct page *page; bool alloc_try_hard = true; /* * By default we always try hard to allocate the page with * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in * a loop (to adjust global huge page counts) and previous allocation * failed, do not continue to try hard on the same node. Use the * node_alloc_noretry bitmap to manage this state information. */ if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) alloc_try_hard = false; gfp_mask |= __GFP_COMP|__GFP_NOWARN; if (alloc_try_hard) gfp_mask |= __GFP_RETRY_MAYFAIL; if (nid == NUMA_NO_NODE) nid = numa_mem_id(); page = __alloc_pages(gfp_mask, order, nid, nmask); if (page) __count_vm_event(HTLB_BUDDY_PGALLOC); else __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); /* * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this * indicates an overall state change. Clear bit so that we resume * normal 'try hard' allocations. */ if (node_alloc_noretry && page && !alloc_try_hard) node_clear(nid, *node_alloc_noretry); /* * If we tried hard to get a page but failed, set bit so that * subsequent attempts will not try as hard until there is an * overall state change. */ if (node_alloc_noretry && !page && alloc_try_hard) node_set(nid, *node_alloc_noretry); return page; } /* * Common helper to allocate a fresh hugetlb page. All specific allocators * should use this function to get new hugetlb pages */ static struct page *alloc_fresh_huge_page(struct hstate *h, gfp_t gfp_mask, int nid, nodemask_t *nmask, nodemask_t *node_alloc_noretry) { struct page *page; if (hstate_is_gigantic(h)) page = alloc_gigantic_page(h, gfp_mask, nid, nmask); else page = alloc_buddy_huge_page(h, gfp_mask, nid, nmask, node_alloc_noretry); if (!page) return NULL; if (hstate_is_gigantic(h)) prep_compound_gigantic_page(page, huge_page_order(h)); prep_new_huge_page(h, page, page_to_nid(page)); return page; } /* * Allocates a fresh page to the hugetlb allocator pool in the node interleaved * manner. */ static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, nodemask_t *node_alloc_noretry) { struct page *page; int nr_nodes, node; gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed, node_alloc_noretry); if (page) break; } if (!page) return 0; put_page(page); /* free it into the hugepage allocator */ return 1; } /* * Remove huge page from pool from next node to free. Attempt to keep * persistent huge pages more or less balanced over allowed nodes. * This routine only 'removes' the hugetlb page. The caller must make * an additional call to free the page to low level allocators. * Called with hugetlb_lock locked. */ static struct page *remove_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, bool acct_surplus) { int nr_nodes, node; struct page *page = NULL; lockdep_assert_held(&hugetlb_lock); for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { /* * If we're returning unused surplus pages, only examine * nodes with surplus pages. */ if ((!acct_surplus || h->surplus_huge_pages_node[node]) && !list_empty(&h->hugepage_freelists[node])) { page = list_entry(h->hugepage_freelists[node].next, struct page, lru); remove_hugetlb_page(h, page, acct_surplus); break; } } return page; } /* * Dissolve a given free hugepage into free buddy pages. This function does * nothing for in-use hugepages and non-hugepages. * This function returns values like below: * * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages * when the system is under memory pressure and the feature of * freeing unused vmemmap pages associated with each hugetlb page * is enabled. * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use * (allocated or reserved.) * 0: successfully dissolved free hugepages or the page is not a * hugepage (considered as already dissolved) */ int dissolve_free_huge_page(struct page *page) { int rc = -EBUSY; retry: /* Not to disrupt normal path by vainly holding hugetlb_lock */ if (!PageHuge(page)) return 0; spin_lock_irq(&hugetlb_lock); if (!PageHuge(page)) { rc = 0; goto out; } if (!page_count(page)) { struct page *head = compound_head(page); struct hstate *h = page_hstate(head); if (h->free_huge_pages - h->resv_huge_pages == 0) goto out; /* * We should make sure that the page is already on the free list * when it is dissolved. */ if (unlikely(!HPageFreed(head))) { spin_unlock_irq(&hugetlb_lock); cond_resched(); /* * Theoretically, we should return -EBUSY when we * encounter this race. In fact, we have a chance * to successfully dissolve the page if we do a * retry. Because the race window is quite small. * If we seize this opportunity, it is an optimization * for increasing the success rate of dissolving page. */ goto retry; } remove_hugetlb_page(h, head, false); h->max_huge_pages--; spin_unlock_irq(&hugetlb_lock); /* * Normally update_and_free_page will allocate required vmemmmap * before freeing the page. update_and_free_page will fail to * free the page if it can not allocate required vmemmap. We * need to adjust max_huge_pages if the page is not freed. * Attempt to allocate vmemmmap here so that we can take * appropriate action on failure. */ rc = alloc_huge_page_vmemmap(h, head); if (!rc) { /* * Move PageHWPoison flag from head page to the raw * error page, which makes any subpages rather than * the error page reusable. */ if (PageHWPoison(head) && page != head) { SetPageHWPoison(page); ClearPageHWPoison(head); } update_and_free_page(h, head, false); } else { spin_lock_irq(&hugetlb_lock); add_hugetlb_page(h, head, false); h->max_huge_pages++; spin_unlock_irq(&hugetlb_lock); } return rc; } out: spin_unlock_irq(&hugetlb_lock); return rc; } /* * Dissolve free hugepages in a given pfn range. Used by memory hotplug to * make specified memory blocks removable from the system. * Note that this will dissolve a free gigantic hugepage completely, if any * part of it lies within the given range. * Also note that if dissolve_free_huge_page() returns with an error, all * free hugepages that were dissolved before that error are lost. */ int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) { unsigned long pfn; struct page *page; int rc = 0; if (!hugepages_supported()) return rc; for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { page = pfn_to_page(pfn); rc = dissolve_free_huge_page(page); if (rc) break; } return rc; } /* * Allocates a fresh surplus page from the page allocator. */ static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, int nid, nodemask_t *nmask) { struct page *page = NULL; if (hstate_is_gigantic(h)) return NULL; spin_lock_irq(&hugetlb_lock); if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) goto out_unlock; spin_unlock_irq(&hugetlb_lock); page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); if (!page) return NULL; spin_lock_irq(&hugetlb_lock); /* * We could have raced with the pool size change. * Double check that and simply deallocate the new page * if we would end up overcommiting the surpluses. Abuse * temporary page to workaround the nasty free_huge_page * codeflow */ if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { SetHPageTemporary(page); spin_unlock_irq(&hugetlb_lock); put_page(page); return NULL; } else { h->surplus_huge_pages++; h->surplus_huge_pages_node[page_to_nid(page)]++; } out_unlock: spin_unlock_irq(&hugetlb_lock); return page; } static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, int nid, nodemask_t *nmask) { struct page *page; if (hstate_is_gigantic(h)) return NULL; page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); if (!page) return NULL; /* * We do not account these pages as surplus because they are only * temporary and will be released properly on the last reference */ SetHPageTemporary(page); return page; } /* * Use the VMA's mpolicy to allocate a huge page from the buddy. */ static struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, struct vm_area_struct *vma, unsigned long addr) { struct page *page; struct mempolicy *mpol; gfp_t gfp_mask = htlb_alloc_mask(h); int nid; nodemask_t *nodemask; nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); mpol_cond_put(mpol); return page; } /* page migration callback function */ struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, nodemask_t *nmask, gfp_t gfp_mask) { spin_lock_irq(&hugetlb_lock); if (h->free_huge_pages - h->resv_huge_pages > 0) { struct page *page; page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); if (page) { spin_unlock_irq(&hugetlb_lock); return page; } } spin_unlock_irq(&hugetlb_lock); return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); } /* mempolicy aware migration callback */ struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, unsigned long address) { struct mempolicy *mpol; nodemask_t *nodemask; struct page *page; gfp_t gfp_mask; int node; gfp_mask = htlb_alloc_mask(h); node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask); mpol_cond_put(mpol); return page; } /* * Increase the hugetlb pool such that it can accommodate a reservation * of size 'delta'. */ static int gather_surplus_pages(struct hstate *h, long delta) __must_hold(&hugetlb_lock) { struct list_head surplus_list; struct page *page, *tmp; int ret; long i; long needed, allocated; bool alloc_ok = true; lockdep_assert_held(&hugetlb_lock); needed = (h->resv_huge_pages + delta) - h->free_huge_pages; if (needed <= 0) { h->resv_huge_pages += delta; return 0; } allocated = 0; INIT_LIST_HEAD(&surplus_list); ret = -ENOMEM; retry: spin_unlock_irq(&hugetlb_lock); for (i = 0; i < needed; i++) { page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), NUMA_NO_NODE, NULL); if (!page) { alloc_ok = false; break; } list_add(&page->lru, &surplus_list); cond_resched(); } allocated += i; /* * After retaking hugetlb_lock, we need to recalculate 'needed' * because either resv_huge_pages or free_huge_pages may have changed. */ spin_lock_irq(&hugetlb_lock); needed = (h->resv_huge_pages + delta) - (h->free_huge_pages + allocated); if (needed > 0) { if (alloc_ok) goto retry; /* * We were not able to allocate enough pages to * satisfy the entire reservation so we free what * we've allocated so far. */ goto free; } /* * The surplus_list now contains _at_least_ the number of extra pages * needed to accommodate the reservation. Add the appropriate number * of pages to the hugetlb pool and free the extras back to the buddy * allocator. Commit the entire reservation here to prevent another * process from stealing the pages as they are added to the pool but * before they are reserved. */ needed += allocated; h->resv_huge_pages += delta; ret = 0; /* Free the needed pages to the hugetlb pool */ list_for_each_entry_safe(page, tmp, &surplus_list, lru) { int zeroed; if ((--needed) < 0) break; /* * This page is now managed by the hugetlb allocator and has * no users -- drop the buddy allocator's reference. */ zeroed = put_page_testzero(page); VM_BUG_ON_PAGE(!zeroed, page); enqueue_huge_page(h, page); } free: spin_unlock_irq(&hugetlb_lock); /* Free unnecessary surplus pages to the buddy allocator */ list_for_each_entry_safe(page, tmp, &surplus_list, lru) put_page(page); spin_lock_irq(&hugetlb_lock); return ret; } /* * This routine has two main purposes: * 1) Decrement the reservation count (resv_huge_pages) by the value passed * in unused_resv_pages. This corresponds to the prior adjustments made * to the associated reservation map. * 2) Free any unused surplus pages that may have been allocated to satisfy * the reservation. As many as unused_resv_pages may be freed. */ static void return_unused_surplus_pages(struct hstate *h, unsigned long unused_resv_pages) { unsigned long nr_pages; struct page *page; LIST_HEAD(page_list); lockdep_assert_held(&hugetlb_lock); /* Uncommit the reservation */ h->resv_huge_pages -= unused_resv_pages; /* Cannot return gigantic pages currently */ if (hstate_is_gigantic(h)) goto out; /* * Part (or even all) of the reservation could have been backed * by pre-allocated pages. Only free surplus pages. */ nr_pages = min(unused_resv_pages, h->surplus_huge_pages); /* * We want to release as many surplus pages as possible, spread * evenly across all nodes with memory. Iterate across these nodes * until we can no longer free unreserved surplus pages. This occurs * when the nodes with surplus pages have no free pages. * remove_pool_huge_page() will balance the freed pages across the * on-line nodes with memory and will handle the hstate accounting. */ while (nr_pages--) { page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); if (!page) goto out; list_add(&page->lru, &page_list); } out: spin_unlock_irq(&hugetlb_lock); update_and_free_pages_bulk(h, &page_list); spin_lock_irq(&hugetlb_lock); } /* * vma_needs_reservation, vma_commit_reservation and vma_end_reservation * are used by the huge page allocation routines to manage reservations. * * vma_needs_reservation is called to determine if the huge page at addr * within the vma has an associated reservation. If a reservation is * needed, the value 1 is returned. The caller is then responsible for * managing the global reservation and subpool usage counts. After * the huge page has been allocated, vma_commit_reservation is called * to add the page to the reservation map. If the page allocation fails, * the reservation must be ended instead of committed. vma_end_reservation * is called in such cases. * * In the normal case, vma_commit_reservation returns the same value * as the preceding vma_needs_reservation call. The only time this * is not the case is if a reserve map was changed between calls. It * is the responsibility of the caller to notice the difference and * take appropriate action. * * vma_add_reservation is used in error paths where a reservation must * be restored when a newly allocated huge page must be freed. It is * to be called after calling vma_needs_reservation to determine if a * reservation exists. * * vma_del_reservation is used in error paths where an entry in the reserve * map was created during huge page allocation and must be removed. It is to * be called after calling vma_needs_reservation to determine if a reservation * exists. */ enum vma_resv_mode { VMA_NEEDS_RESV, VMA_COMMIT_RESV, VMA_END_RESV, VMA_ADD_RESV, VMA_DEL_RESV, }; static long __vma_reservation_common(struct hstate *h, struct vm_area_struct *vma, unsigned long addr, enum vma_resv_mode mode) { struct resv_map *resv; pgoff_t idx; long ret; long dummy_out_regions_needed; resv = vma_resv_map(vma); if (!resv) return 1; idx = vma_hugecache_offset(h, vma, addr); switch (mode) { case VMA_NEEDS_RESV: ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); /* We assume that vma_reservation_* routines always operate on * 1 page, and that adding to resv map a 1 page entry can only * ever require 1 region. */ VM_BUG_ON(dummy_out_regions_needed != 1); break; case VMA_COMMIT_RESV: ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); /* region_add calls of range 1 should never fail. */ VM_BUG_ON(ret < 0); break; case VMA_END_RESV: region_abort(resv, idx, idx + 1, 1); ret = 0; break; case VMA_ADD_RESV: if (vma->vm_flags & VM_MAYSHARE) { ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); /* region_add calls of range 1 should never fail. */ VM_BUG_ON(ret < 0); } else { region_abort(resv, idx, idx + 1, 1); ret = region_del(resv, idx, idx + 1); } break; case VMA_DEL_RESV: if (vma->vm_flags & VM_MAYSHARE) { region_abort(resv, idx, idx + 1, 1); ret = region_del(resv, idx, idx + 1); } else { ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); /* region_add calls of range 1 should never fail. */ VM_BUG_ON(ret < 0); } break; default: BUG(); } if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) return ret; /* * We know private mapping must have HPAGE_RESV_OWNER set. * * In most cases, reserves always exist for private mappings. * However, a file associated with mapping could have been * hole punched or truncated after reserves were consumed. * As subsequent fault on such a range will not use reserves. * Subtle - The reserve map for private mappings has the * opposite meaning than that of shared mappings. If NO * entry is in the reserve map, it means a reservation exists. * If an entry exists in the reserve map, it means the * reservation has already been consumed. As a result, the * return value of this routine is the opposite of the * value returned from reserve map manipulation routines above. */ if (ret > 0) return 0; if (ret == 0) return 1; return ret; } static long vma_needs_reservation(struct hstate *h, struct vm_area_struct *vma, unsigned long addr) { return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); } static long vma_commit_reservation(struct hstate *h, struct vm_area_struct *vma, unsigned long addr) { return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); } static void vma_end_reservation(struct hstate *h, struct vm_area_struct *vma, unsigned long addr) { (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); } static long vma_add_reservation(struct hstate *h, struct vm_area_struct *vma, unsigned long addr) { return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); } static long vma_del_reservation(struct hstate *h, struct vm_area_struct *vma, unsigned long addr) { return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); } /* * This routine is called to restore reservation information on error paths. * It should ONLY be called for pages allocated via alloc_huge_page(), and * the hugetlb mutex should remain held when calling this routine. * * It handles two specific cases: * 1) A reservation was in place and the page consumed the reservation. * HPageRestoreReserve is set in the page. * 2) No reservation was in place for the page, so HPageRestoreReserve is * not set. However, alloc_huge_page always updates the reserve map. * * In case 1, free_huge_page later in the error path will increment the * global reserve count. But, free_huge_page does not have enough context * to adjust the reservation map. This case deals primarily with private * mappings. Adjust the reserve map here to be consistent with global * reserve count adjustments to be made by free_huge_page. Make sure the * reserve map indicates there is a reservation present. * * In case 2, simply undo reserve map modifications done by alloc_huge_page. */ void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, unsigned long address, struct page *page) { long rc = vma_needs_reservation(h, vma, address); if (HPageRestoreReserve(page)) { if (unlikely(rc < 0)) /* * Rare out of memory condition in reserve map * manipulation. Clear HPageRestoreReserve so that * global reserve count will not be incremented * by free_huge_page. This will make it appear * as though the reservation for this page was * consumed. This may prevent the task from * faulting in the page at a later time. This * is better than inconsistent global huge page * accounting of reserve counts. */ ClearHPageRestoreReserve(page); else if (rc) (void)vma_add_reservation(h, vma, address); else vma_end_reservation(h, vma, address); } else { if (!rc) { /* * This indicates there is an entry in the reserve map * added by alloc_huge_page. We know it was added * before the alloc_huge_page call, otherwise * HPageRestoreReserve would be set on the page. * Remove the entry so that a subsequent allocation * does not consume a reservation. */ rc = vma_del_reservation(h, vma, address); if (rc < 0) /* * VERY rare out of memory condition. Since * we can not delete the entry, set * HPageRestoreReserve so that the reserve * count will be incremented when the page * is freed. This reserve will be consumed * on a subsequent allocation. */ SetHPageRestoreReserve(page); } else if (rc < 0) { /* * Rare out of memory condition from * vma_needs_reservation call. Memory allocation is * only attempted if a new entry is needed. Therefore, * this implies there is not an entry in the * reserve map. * * For shared mappings, no entry in the map indicates * no reservation. We are done. */ if (!(vma->vm_flags & VM_MAYSHARE)) /* * For private mappings, no entry indicates * a reservation is present. Since we can * not add an entry, set SetHPageRestoreReserve * on the page so reserve count will be * incremented when freed. This reserve will * be consumed on a subsequent allocation. */ SetHPageRestoreReserve(page); } else /* * No reservation present, do nothing */ vma_end_reservation(h, vma, address); } } /* * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one * @h: struct hstate old page belongs to * @old_page: Old page to dissolve * @list: List to isolate the page in case we need to * Returns 0 on success, otherwise negated error. */ static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page, struct list_head *list) { gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; int nid = page_to_nid(old_page); struct page *new_page; int ret = 0; /* * Before dissolving the page, we need to allocate a new one for the * pool to remain stable. Here, we allocate the page and 'prep' it * by doing everything but actually updating counters and adding to * the pool. This simplifies and let us do most of the processing * under the lock. */ new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL); if (!new_page) return -ENOMEM; __prep_new_huge_page(h, new_page); retry: spin_lock_irq(&hugetlb_lock); if (!PageHuge(old_page)) { /* * Freed from under us. Drop new_page too. */ goto free_new; } else if (page_count(old_page)) { /* * Someone has grabbed the page, try to isolate it here. * Fail with -EBUSY if not possible. */ spin_unlock_irq(&hugetlb_lock); if (!isolate_huge_page(old_page, list)) ret = -EBUSY; spin_lock_irq(&hugetlb_lock); goto free_new; } else if (!HPageFreed(old_page)) { /* * Page's refcount is 0 but it has not been enqueued in the * freelist yet. Race window is small, so we can succeed here if * we retry. */ spin_unlock_irq(&hugetlb_lock); cond_resched(); goto retry; } else { /* * Ok, old_page is still a genuine free hugepage. Remove it from * the freelist and decrease the counters. These will be * incremented again when calling __prep_account_new_huge_page() * and enqueue_huge_page() for new_page. The counters will remain * stable since this happens under the lock. */ remove_hugetlb_page(h, old_page, false); /* * Reference count trick is needed because allocator gives us * referenced page but the pool requires pages with 0 refcount. */ __prep_account_new_huge_page(h, nid); page_ref_dec(new_page); enqueue_huge_page(h, new_page); /* * Pages have been replaced, we can safely free the old one. */ spin_unlock_irq(&hugetlb_lock); update_and_free_page(h, old_page, false); } return ret; free_new: spin_unlock_irq(&hugetlb_lock); update_and_free_page(h, new_page, false); return ret; } int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) { struct hstate *h; struct page *head; int ret = -EBUSY; /* * The page might have been dissolved from under our feet, so make sure * to carefully check the state under the lock. * Return success when racing as if we dissolved the page ourselves. */ spin_lock_irq(&hugetlb_lock); if (PageHuge(page)) { head = compound_head(page); h = page_hstate(head); } else { spin_unlock_irq(&hugetlb_lock); return 0; } spin_unlock_irq(&hugetlb_lock); /* * Fence off gigantic pages as there is a cyclic dependency between * alloc_contig_range and them. Return -ENOMEM as this has the effect * of bailing out right away without further retrying. */ if (hstate_is_gigantic(h)) return -ENOMEM; if (page_count(head) && isolate_huge_page(head, list)) ret = 0; else if (!page_count(head)) ret = alloc_and_dissolve_huge_page(h, head, list); return ret; } struct page *alloc_huge_page(struct vm_area_struct *vma, unsigned long addr, int avoid_reserve) { struct hugepage_subpool *spool = subpool_vma(vma); struct hstate *h = hstate_vma(vma); struct page *page; long map_chg, map_commit; long gbl_chg; int ret, idx; struct hugetlb_cgroup *h_cg; bool deferred_reserve; idx = hstate_index(h); /* * Examine the region/reserve map to determine if the process * has a reservation for the page to be allocated. A return * code of zero indicates a reservation exists (no change). */ map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); if (map_chg < 0) return ERR_PTR(-ENOMEM); /* * Processes that did not create the mapping will have no * reserves as indicated by the region/reserve map. Check * that the allocation will not exceed the subpool limit. * Allocations for MAP_NORESERVE mappings also need to be * checked against any subpool limit. */ if (map_chg || avoid_reserve) { gbl_chg = hugepage_subpool_get_pages(spool, 1); if (gbl_chg < 0) { vma_end_reservation(h, vma, addr); return ERR_PTR(-ENOSPC); } /* * Even though there was no reservation in the region/reserve * map, there could be reservations associated with the * subpool that can be used. This would be indicated if the * return value of hugepage_subpool_get_pages() is zero. * However, if avoid_reserve is specified we still avoid even * the subpool reservations. */ if (avoid_reserve) gbl_chg = 1; } /* If this allocation is not consuming a reservation, charge it now. */ deferred_reserve = map_chg || avoid_reserve; if (deferred_reserve) { ret = hugetlb_cgroup_charge_cgroup_rsvd( idx, pages_per_huge_page(h), &h_cg); if (ret) goto out_subpool_put; } ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); if (ret) goto out_uncharge_cgroup_reservation; spin_lock_irq(&hugetlb_lock); /* * glb_chg is passed to indicate whether or not a page must be taken * from the global free pool (global change). gbl_chg == 0 indicates * a reservation exists for the allocation. */ page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); if (!page) { spin_unlock_irq(&hugetlb_lock); page = alloc_buddy_huge_page_with_mpol(h, vma, addr); if (!page) goto out_uncharge_cgroup; if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { SetHPageRestoreReserve(page); h->resv_huge_pages--; } spin_lock_irq(&hugetlb_lock); list_add(&page->lru, &h->hugepage_activelist); /* Fall through */ } hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); /* If allocation is not consuming a reservation, also store the * hugetlb_cgroup pointer on the page. */ if (deferred_reserve) { hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), h_cg, page); } spin_unlock_irq(&hugetlb_lock); hugetlb_set_page_subpool(page, spool); map_commit = vma_commit_reservation(h, vma, addr); if (unlikely(map_chg > map_commit)) { /* * The page was added to the reservation map between * vma_needs_reservation and vma_commit_reservation. * This indicates a race with hugetlb_reserve_pages. * Adjust for the subpool count incremented above AND * in hugetlb_reserve_pages for the same page. Also, * the reservation count added in hugetlb_reserve_pages * no longer applies. */ long rsv_adjust; rsv_adjust = hugepage_subpool_put_pages(spool, 1); hugetlb_acct_memory(h, -rsv_adjust); if (deferred_reserve) hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), pages_per_huge_page(h), page); } return page; out_uncharge_cgroup: hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); out_uncharge_cgroup_reservation: if (deferred_reserve) hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), h_cg); out_subpool_put: if (map_chg || avoid_reserve) hugepage_subpool_put_pages(spool, 1); vma_end_reservation(h, vma, addr); return ERR_PTR(-ENOSPC); } int alloc_bootmem_huge_page(struct hstate *h) __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); int __alloc_bootmem_huge_page(struct hstate *h) { struct huge_bootmem_page *m; int nr_nodes, node; for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { void *addr; addr = memblock_alloc_try_nid_raw( huge_page_size(h), huge_page_size(h), 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); if (addr) { /* * Use the beginning of the huge page to store the * huge_bootmem_page struct (until gather_bootmem * puts them into the mem_map). */ m = addr; goto found; } } return 0; found: BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); /* Put them into a private list first because mem_map is not up yet */ INIT_LIST_HEAD(&m->list); list_add(&m->list, &huge_boot_pages); m->hstate = h; return 1; } static void __init prep_compound_huge_page(struct page *page, unsigned int order) { if (unlikely(order > (MAX_ORDER - 1))) prep_compound_gigantic_page(page, order); else prep_compound_page(page, order); } /* Put bootmem huge pages into the standard lists after mem_map is up */ static void __init gather_bootmem_prealloc(void) { struct huge_bootmem_page *m; list_for_each_entry(m, &huge_boot_pages, list) { struct page *page = virt_to_page(m); struct hstate *h = m->hstate; WARN_ON(page_count(page) != 1); prep_compound_huge_page(page, huge_page_order(h)); WARN_ON(PageReserved(page)); prep_new_huge_page(h, page, page_to_nid(page)); put_page(page); /* free it into the hugepage allocator */ /* * If we had gigantic hugepages allocated at boot time, we need * to restore the 'stolen' pages to totalram_pages in order to * fix confusing memory reports from free(1) and another * side-effects, like CommitLimit going negative. */ if (hstate_is_gigantic(h)) adjust_managed_page_count(page, pages_per_huge_page(h)); cond_resched(); } } static void __init hugetlb_hstate_alloc_pages(struct hstate *h) { unsigned long i; nodemask_t *node_alloc_noretry; if (!hstate_is_gigantic(h)) { /* * Bit mask controlling how hard we retry per-node allocations. * Ignore errors as lower level routines can deal with * node_alloc_noretry == NULL. If this kmalloc fails at boot * time, we are likely in bigger trouble. */ node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), GFP_KERNEL); } else { /* allocations done at boot time */ node_alloc_noretry = NULL; } /* bit mask controlling how hard we retry per-node allocations */ if (node_alloc_noretry) nodes_clear(*node_alloc_noretry); for (i = 0; i < h->max_huge_pages; ++i) { if (hstate_is_gigantic(h)) { if (hugetlb_cma_size) { pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); goto free; } if (!alloc_bootmem_huge_page(h)) break; } else if (!alloc_pool_huge_page(h, &node_states[N_MEMORY], node_alloc_noretry)) break; cond_resched(); } if (i < h->max_huge_pages) { char buf[32]; string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", h->max_huge_pages, buf, i); h->max_huge_pages = i; } free: kfree(node_alloc_noretry); } static void __init hugetlb_init_hstates(void) { struct hstate *h; for_each_hstate(h) { if (minimum_order > huge_page_order(h)) minimum_order = huge_page_order(h); /* oversize hugepages were init'ed in early boot */ if (!hstate_is_gigantic(h)) hugetlb_hstate_alloc_pages(h); } VM_BUG_ON(minimum_order == UINT_MAX); } static void __init report_hugepages(void) { struct hstate *h; for_each_hstate(h) { char buf[32]; string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", buf, h->free_huge_pages); } } #ifdef CONFIG_HIGHMEM static void try_to_free_low(struct hstate *h, unsigned long count, nodemask_t *nodes_allowed) { int i; LIST_HEAD(page_list); lockdep_assert_held(&hugetlb_lock); if (hstate_is_gigantic(h)) return; /* * Collect pages to be freed on a list, and free after dropping lock */ for_each_node_mask(i, *nodes_allowed) { struct page *page, *next; struct list_head *freel = &h->hugepage_freelists[i]; list_for_each_entry_safe(page, next, freel, lru) { if (count >= h->nr_huge_pages) goto out; if (PageHighMem(page)) continue; remove_hugetlb_page(h, page, false); list_add(&page->lru, &page_list); } } out: spin_unlock_irq(&hugetlb_lock); update_and_free_pages_bulk(h, &page_list); spin_lock_irq(&hugetlb_lock); } #else static inline void try_to_free_low(struct hstate *h, unsigned long count, nodemask_t *nodes_allowed) { } #endif /* * Increment or decrement surplus_huge_pages. Keep node-specific counters * balanced by operating on them in a round-robin fashion. * Returns 1 if an adjustment was made. */ static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, int delta) { int nr_nodes, node; lockdep_assert_held(&hugetlb_lock); VM_BUG_ON(delta != -1 && delta != 1); if (delta < 0) { for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { if (h->surplus_huge_pages_node[node]) goto found; } } else { for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { if (h->surplus_huge_pages_node[node] < h->nr_huge_pages_node[node]) goto found; } } return 0; found: h->surplus_huge_pages += delta; h->surplus_huge_pages_node[node] += delta; return 1; } #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, nodemask_t *nodes_allowed) { unsigned long min_count, ret; struct page *page; LIST_HEAD(page_list); NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); /* * Bit mask controlling how hard we retry per-node allocations. * If we can not allocate the bit mask, do not attempt to allocate * the requested huge pages. */ if (node_alloc_noretry) nodes_clear(*node_alloc_noretry); else return -ENOMEM; /* * resize_lock mutex prevents concurrent adjustments to number of * pages in hstate via the proc/sysfs interfaces. */ mutex_lock(&h->resize_lock); flush_free_hpage_work(h); spin_lock_irq(&hugetlb_lock); /* * Check for a node specific request. * Changing node specific huge page count may require a corresponding * change to the global count. In any case, the passed node mask * (nodes_allowed) will restrict alloc/free to the specified node. */ if (nid != NUMA_NO_NODE) { unsigned long old_count = count; count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; /* * User may have specified a large count value which caused the * above calculation to overflow. In this case, they wanted * to allocate as many huge pages as possible. Set count to * largest possible value to align with their intention. */ if (count < old_count) count = ULONG_MAX; } /* * Gigantic pages runtime allocation depend on the capability for large * page range allocation. * If the system does not provide this feature, return an error when * the user tries to allocate gigantic pages but let the user free the * boottime allocated gigantic pages. */ if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { if (count > persistent_huge_pages(h)) { spin_unlock_irq(&hugetlb_lock); mutex_unlock(&h->resize_lock); NODEMASK_FREE(node_alloc_noretry); return -EINVAL; } /* Fall through to decrease pool */ } /* * Increase the pool size * First take pages out of surplus state. Then make up the * remaining difference by allocating fresh huge pages. * * We might race with alloc_surplus_huge_page() here and be unable * to convert a surplus huge page to a normal huge page. That is * not critical, though, it just means the overall size of the * pool might be one hugepage larger than it needs to be, but * within all the constraints specified by the sysctls. */ while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { if (!adjust_pool_surplus(h, nodes_allowed, -1)) break; } while (count > persistent_huge_pages(h)) { /* * If this allocation races such that we no longer need the * page, free_huge_page will handle it by freeing the page * and reducing the surplus. */ spin_unlock_irq(&hugetlb_lock); /* yield cpu to avoid soft lockup */ cond_resched(); ret = alloc_pool_huge_page(h, nodes_allowed, node_alloc_noretry); spin_lock_irq(&hugetlb_lock); if (!ret) goto out; /* Bail for signals. Probably ctrl-c from user */ if (signal_pending(current)) goto out; } /* * Decrease the pool size * First return free pages to the buddy allocator (being careful * to keep enough around to satisfy reservations). Then place * pages into surplus state as needed so the pool will shrink * to the desired size as pages become free. * * By placing pages into the surplus state independent of the * overcommit value, we are allowing the surplus pool size to * exceed overcommit. There are few sane options here. Since * alloc_surplus_huge_page() is checking the global counter, * though, we'll note that we're not allowed to exceed surplus * and won't grow the pool anywhere else. Not until one of the * sysctls are changed, or the surplus pages go out of use. */ min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; min_count = max(count, min_count); try_to_free_low(h, min_count, nodes_allowed); /* * Collect pages to be removed on list without dropping lock */ while (min_count < persistent_huge_pages(h)) { page = remove_pool_huge_page(h, nodes_allowed, 0); if (!page) break; list_add(&page->lru, &page_list); } /* free the pages after dropping lock */ spin_unlock_irq(&hugetlb_lock); update_and_free_pages_bulk(h, &page_list); flush_free_hpage_work(h); spin_lock_irq(&hugetlb_lock); while (count < persistent_huge_pages(h)) { if (!adjust_pool_surplus(h, nodes_allowed, 1)) break; } out: h->max_huge_pages = persistent_huge_pages(h); spin_unlock_irq(&hugetlb_lock); mutex_unlock(&h->resize_lock); NODEMASK_FREE(node_alloc_noretry); return 0; } #define HSTATE_ATTR_RO(_name) \ static struct kobj_attribute _name##_attr = __ATTR_RO(_name) #define HSTATE_ATTR(_name) \ static struct kobj_attribute _name##_attr = \ __ATTR(_name, 0644, _name##_show, _name##_store) static struct kobject *hugepages_kobj; static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) { int i; for (i = 0; i < HUGE_MAX_HSTATE; i++) if (hstate_kobjs[i] == kobj) { if (nidp) *nidp = NUMA_NO_NODE; return &hstates[i]; } return kobj_to_node_hstate(kobj, nidp); } static ssize_t nr_hugepages_show_common(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct hstate *h; unsigned long nr_huge_pages; int nid; h = kobj_to_hstate(kobj, &nid); if (nid == NUMA_NO_NODE) nr_huge_pages = h->nr_huge_pages; else nr_huge_pages = h->nr_huge_pages_node[nid]; return sysfs_emit(buf, "%lu\n", nr_huge_pages); } static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, struct hstate *h, int nid, unsigned long count, size_t len) { int err; nodemask_t nodes_allowed, *n_mask; if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) return -EINVAL; if (nid == NUMA_NO_NODE) { /* * global hstate attribute */ if (!(obey_mempolicy && init_nodemask_of_mempolicy(&nodes_allowed))) n_mask = &node_states[N_MEMORY]; else n_mask = &nodes_allowed; } else { /* * Node specific request. count adjustment happens in * set_max_huge_pages() after acquiring hugetlb_lock. */ init_nodemask_of_node(&nodes_allowed, nid); n_mask = &nodes_allowed; } err = set_max_huge_pages(h, count, nid, n_mask); return err ? err : len; } static ssize_t nr_hugepages_store_common(bool obey_mempolicy, struct kobject *kobj, const char *buf, size_t len) { struct hstate *h; unsigned long count; int nid; int err; err = kstrtoul(buf, 10, &count); if (err) return err; h = kobj_to_hstate(kobj, &nid); return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); } static ssize_t nr_hugepages_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return nr_hugepages_show_common(kobj, attr, buf); } static ssize_t nr_hugepages_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t len) { return nr_hugepages_store_common(false, kobj, buf, len); } HSTATE_ATTR(nr_hugepages); #ifdef CONFIG_NUMA /* * hstate attribute for optionally mempolicy-based constraint on persistent * huge page alloc/free. */ static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return nr_hugepages_show_common(kobj, attr, buf); } static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t len) { return nr_hugepages_store_common(true, kobj, buf, len); } HSTATE_ATTR(nr_hugepages_mempolicy); #endif static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct hstate *h = kobj_to_hstate(kobj, NULL); return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); } static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { int err; unsigned long input; struct hstate *h = kobj_to_hstate(kobj, NULL); if (hstate_is_gigantic(h)) return -EINVAL; err = kstrtoul(buf, 10, &input); if (err) return err; spin_lock_irq(&hugetlb_lock); h->nr_overcommit_huge_pages = input; spin_unlock_irq(&hugetlb_lock); return count; } HSTATE_ATTR(nr_overcommit_hugepages); static ssize_t free_hugepages_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct hstate *h; unsigned long free_huge_pages; int nid; h = kobj_to_hstate(kobj, &nid); if (nid == NUMA_NO_NODE) free_huge_pages = h->free_huge_pages; else free_huge_pages = h->free_huge_pages_node[nid]; return sysfs_emit(buf, "%lu\n", free_huge_pages); } HSTATE_ATTR_RO(free_hugepages); static ssize_t resv_hugepages_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct hstate *h = kobj_to_hstate(kobj, NULL); return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); } HSTATE_ATTR_RO(resv_hugepages); static ssize_t surplus_hugepages_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct hstate *h; unsigned long surplus_huge_pages; int nid; h = kobj_to_hstate(kobj, &nid); if (nid == NUMA_NO_NODE) surplus_huge_pages = h->surplus_huge_pages; else surplus_huge_pages = h->surplus_huge_pages_node[nid]; return sysfs_emit(buf, "%lu\n", surplus_huge_pages); } HSTATE_ATTR_RO(surplus_hugepages); static struct attribute *hstate_attrs[] = { &nr_hugepages_attr.attr, &nr_overcommit_hugepages_attr.attr, &free_hugepages_attr.attr, &resv_hugepages_attr.attr, &surplus_hugepages_attr.attr, #ifdef CONFIG_NUMA &nr_hugepages_mempolicy_attr.attr, #endif NULL, }; static const struct attribute_group hstate_attr_group = { .attrs = hstate_attrs, }; static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, struct kobject **hstate_kobjs, const struct attribute_group *hstate_attr_group) { int retval; int hi = hstate_index(h); hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); if (!hstate_kobjs[hi]) return -ENOMEM; retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); if (retval) { kobject_put(hstate_kobjs[hi]); hstate_kobjs[hi] = NULL; } return retval; } static void __init hugetlb_sysfs_init(void) { struct hstate *h; int err; hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); if (!hugepages_kobj) return; for_each_hstate(h) { err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, hstate_kobjs, &hstate_attr_group); if (err) pr_err("HugeTLB: Unable to add hstate %s", h->name); } } #ifdef CONFIG_NUMA /* * node_hstate/s - associate per node hstate attributes, via their kobjects, * with node devices in node_devices[] using a parallel array. The array * index of a node device or _hstate == node id. * This is here to avoid any static dependency of the node device driver, in * the base kernel, on the hugetlb module. */ struct node_hstate { struct kobject *hugepages_kobj; struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; }; static struct node_hstate node_hstates[MAX_NUMNODES]; /* * A subset of global hstate attributes for node devices */ static struct attribute *per_node_hstate_attrs[] = { &nr_hugepages_attr.attr, &free_hugepages_attr.attr, &surplus_hugepages_attr.attr, NULL, }; static const struct attribute_group per_node_hstate_attr_group = { .attrs = per_node_hstate_attrs, }; /* * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. * Returns node id via non-NULL nidp. */ static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) { int nid; for (nid = 0; nid < nr_node_ids; nid++) { struct node_hstate *nhs = &node_hstates[nid]; int i; for (i = 0; i < HUGE_MAX_HSTATE; i++) if (nhs->hstate_kobjs[i] == kobj) { if (nidp) *nidp = nid; return &hstates[i]; } } BUG(); return NULL; } /* * Unregister hstate attributes from a single node device. * No-op if no hstate attributes attached. */ static void hugetlb_unregister_node(struct node *node) { struct hstate *h; struct node_hstate *nhs = &node_hstates[node->dev.id]; if (!nhs->hugepages_kobj) return; /* no hstate attributes */ for_each_hstate(h) { int idx = hstate_index(h); if (nhs->hstate_kobjs[idx]) { kobject_put(nhs->hstate_kobjs[idx]); nhs->hstate_kobjs[idx] = NULL; } } kobject_put(nhs->hugepages_kobj); nhs->hugepages_kobj = NULL; } /* * Register hstate attributes for a single node device. * No-op if attributes already registered. */ static void hugetlb_register_node(struct node *node) { struct hstate *h; struct node_hstate *nhs = &node_hstates[node->dev.id]; int err; if (nhs->hugepages_kobj) return; /* already allocated */ nhs->hugepages_kobj = kobject_create_and_add("hugepages", &node->dev.kobj); if (!nhs->hugepages_kobj) return; for_each_hstate(h) { err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, nhs->hstate_kobjs, &per_node_hstate_attr_group); if (err) { pr_err("HugeTLB: Unable to add hstate %s for node %d\n", h->name, node->dev.id); hugetlb_unregister_node(node); break; } } } /* * hugetlb init time: register hstate attributes for all registered node * devices of nodes that have memory. All on-line nodes should have * registered their associated device by this time. */ static void __init hugetlb_register_all_nodes(void) { int nid; for_each_node_state(nid, N_MEMORY) { struct node *node = node_devices[nid]; if (node->dev.id == nid) hugetlb_register_node(node); } /* * Let the node device driver know we're here so it can * [un]register hstate attributes on node hotplug. */ register_hugetlbfs_with_node(hugetlb_register_node, hugetlb_unregister_node); } #else /* !CONFIG_NUMA */ static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) { BUG(); if (nidp) *nidp = -1; return NULL; } static void hugetlb_register_all_nodes(void) { } #endif static int __init hugetlb_init(void) { int i; BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < __NR_HPAGEFLAGS); if (!hugepages_supported()) { if (hugetlb_max_hstate || default_hstate_max_huge_pages) pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); return 0; } /* * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some * architectures depend on setup being done here. */ hugetlb_add_hstate(HUGETLB_PAGE_ORDER); if (!parsed_default_hugepagesz) { /* * If we did not parse a default huge page size, set * default_hstate_idx to HPAGE_SIZE hstate. And, if the * number of huge pages for this default size was implicitly * specified, set that here as well. * Note that the implicit setting will overwrite an explicit * setting. A warning will be printed in this case. */ default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); if (default_hstate_max_huge_pages) { if (default_hstate.max_huge_pages) { char buf[32]; string_get_size(huge_page_size(&default_hstate), 1, STRING_UNITS_2, buf, 32); pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", default_hstate.max_huge_pages, buf); pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", default_hstate_max_huge_pages); } default_hstate.max_huge_pages = default_hstate_max_huge_pages; } } hugetlb_cma_check(); hugetlb_init_hstates(); gather_bootmem_prealloc(); report_hugepages(); hugetlb_sysfs_init(); hugetlb_register_all_nodes(); hugetlb_cgroup_file_init(); #ifdef CONFIG_SMP num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); #else num_fault_mutexes = 1; #endif hugetlb_fault_mutex_table = kmalloc_array(num_fault_mutexes, sizeof(struct mutex), GFP_KERNEL); BUG_ON(!hugetlb_fault_mutex_table); for (i = 0; i < num_fault_mutexes; i++) mutex_init(&hugetlb_fault_mutex_table[i]); return 0; } subsys_initcall(hugetlb_init); /* Overwritten by architectures with more huge page sizes */ bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) { return size == HPAGE_SIZE; } void __init hugetlb_add_hstate(unsigned int order) { struct hstate *h; unsigned long i; if (size_to_hstate(PAGE_SIZE << order)) { return; } BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); BUG_ON(order == 0); h = &hstates[hugetlb_max_hstate++]; mutex_init(&h->resize_lock); h->order = order; h->mask = ~(huge_page_size(h) - 1); for (i = 0; i < MAX_NUMNODES; ++i) INIT_LIST_HEAD(&h->hugepage_freelists[i]); INIT_LIST_HEAD(&h->hugepage_activelist); h->next_nid_to_alloc = first_memory_node; h->next_nid_to_free = first_memory_node; snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", huge_page_size(h)/1024); hugetlb_vmemmap_init(h); parsed_hstate = h; } /* * hugepages command line processing * hugepages normally follows a valid hugepagsz or default_hugepagsz * specification. If not, ignore the hugepages value. hugepages can also * be the first huge page command line option in which case it implicitly * specifies the number of huge pages for the default size. */ static int __init hugepages_setup(char *s) { unsigned long *mhp; static unsigned long *last_mhp; if (!parsed_valid_hugepagesz) { pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); parsed_valid_hugepagesz = true; return 0; } /* * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter * yet, so this hugepages= parameter goes to the "default hstate". * Otherwise, it goes with the previously parsed hugepagesz or * default_hugepagesz. */ else if (!hugetlb_max_hstate) mhp = &default_hstate_max_huge_pages; else mhp = &parsed_hstate->max_huge_pages; if (mhp == last_mhp) { pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); return 0; } if (sscanf(s, "%lu", mhp) <= 0) *mhp = 0; /* * Global state is always initialized later in hugetlb_init. * But we need to allocate gigantic hstates here early to still * use the bootmem allocator. */ if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) hugetlb_hstate_alloc_pages(parsed_hstate); last_mhp = mhp; return 1; } __setup("hugepages=", hugepages_setup); /* * hugepagesz command line processing * A specific huge page size can only be specified once with hugepagesz. * hugepagesz is followed by hugepages on the command line. The global * variable 'parsed_valid_hugepagesz' is used to determine if prior * hugepagesz argument was valid. */ static int __init hugepagesz_setup(char *s) { unsigned long size; struct hstate *h; parsed_valid_hugepagesz = false; size = (unsigned long)memparse(s, NULL); if (!arch_hugetlb_valid_size(size)) { pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); return 0; } h = size_to_hstate(size); if (h) { /* * hstate for this size already exists. This is normally * an error, but is allowed if the existing hstate is the * default hstate. More specifically, it is only allowed if * the number of huge pages for the default hstate was not * previously specified. */ if (!parsed_default_hugepagesz || h != &default_hstate || default_hstate.max_huge_pages) { pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); return 0; } /* * No need to call hugetlb_add_hstate() as hstate already * exists. But, do set parsed_hstate so that a following * hugepages= parameter will be applied to this hstate. */ parsed_hstate = h; parsed_valid_hugepagesz = true; return 1; } hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); parsed_valid_hugepagesz = true; return 1; } __setup("hugepagesz=", hugepagesz_setup); /* * default_hugepagesz command line input * Only one instance of default_hugepagesz allowed on command line. */ static int __init default_hugepagesz_setup(char *s) { unsigned long size; parsed_valid_hugepagesz = false; if (parsed_default_hugepagesz) { pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); return 0; } size = (unsigned long)memparse(s, NULL); if (!arch_hugetlb_valid_size(size)) { pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); return 0; } hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); parsed_valid_hugepagesz = true; parsed_default_hugepagesz = true; default_hstate_idx = hstate_index(size_to_hstate(size)); /* * The number of default huge pages (for this size) could have been * specified as the first hugetlb parameter: hugepages=X. If so, * then default_hstate_max_huge_pages is set. If the default huge * page size is gigantic (>= MAX_ORDER), then the pages must be * allocated here from bootmem allocator. */ if (default_hstate_max_huge_pages) { default_hstate.max_huge_pages = default_hstate_max_huge_pages; if (hstate_is_gigantic(&default_hstate)) hugetlb_hstate_alloc_pages(&default_hstate); default_hstate_max_huge_pages = 0; } return 1; } __setup("default_hugepagesz=", default_hugepagesz_setup); static unsigned int allowed_mems_nr(struct hstate *h) { int node; unsigned int nr = 0; nodemask_t *mpol_allowed; unsigned int *array = h->free_huge_pages_node; gfp_t gfp_mask = htlb_alloc_mask(h); mpol_allowed = policy_nodemask_current(gfp_mask); for_each_node_mask(node, cpuset_current_mems_allowed) { if (!mpol_allowed || node_isset(node, *mpol_allowed)) nr += array[node]; } return nr; } #ifdef CONFIG_SYSCTL static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos, unsigned long *out) { struct ctl_table dup_table; /* * In order to avoid races with __do_proc_doulongvec_minmax(), we * can duplicate the @table and alter the duplicate of it. */ dup_table = *table; dup_table.data = out; return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); } static int hugetlb_sysctl_handler_common(bool obey_mempolicy, struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos) { struct hstate *h = &default_hstate; unsigned long tmp = h->max_huge_pages; int ret; if (!hugepages_supported()) return -EOPNOTSUPP; ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, &tmp); if (ret) goto out; if (write) ret = __nr_hugepages_store_common(obey_mempolicy, h, NUMA_NO_NODE, tmp, *length); out: return ret; } int hugetlb_sysctl_handler(struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos) { return hugetlb_sysctl_handler_common(false, table, write, buffer, length, ppos); } #ifdef CONFIG_NUMA int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos) { return hugetlb_sysctl_handler_common(true, table, write, buffer, length, ppos); } #endif /* CONFIG_NUMA */ int hugetlb_overcommit_handler(struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos) { struct hstate *h = &default_hstate; unsigned long tmp; int ret; if (!hugepages_supported()) return -EOPNOTSUPP; tmp = h->nr_overcommit_huge_pages; if (write && hstate_is_gigantic(h)) return -EINVAL; ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, &tmp); if (ret) goto out; if (write) { spin_lock_irq(&hugetlb_lock); h->nr_overcommit_huge_pages = tmp; spin_unlock_irq(&hugetlb_lock); } out: return ret; } #endif /* CONFIG_SYSCTL */ void hugetlb_report_meminfo(struct seq_file *m) { struct hstate *h; unsigned long total = 0; if (!hugepages_supported()) return; for_each_hstate(h) { unsigned long count = h->nr_huge_pages; total += huge_page_size(h) * count; if (h == &default_hstate) seq_printf(m, "HugePages_Total: %5lu\n" "HugePages_Free: %5lu\n" "HugePages_Rsvd: %5lu\n" "HugePages_Surp: %5lu\n" "Hugepagesize: %8lu kB\n", count, h->free_huge_pages, h->resv_huge_pages, h->surplus_huge_pages, huge_page_size(h) / SZ_1K); } seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); } int hugetlb_report_node_meminfo(char *buf, int len, int nid) { struct hstate *h = &default_hstate; if (!hugepages_supported()) return 0; return sysfs_emit_at(buf, len, "Node %d HugePages_Total: %5u\n" "Node %d HugePages_Free: %5u\n" "Node %d HugePages_Surp: %5u\n", nid, h->nr_huge_pages_node[nid], nid, h->free_huge_pages_node[nid], nid, h->surplus_huge_pages_node[nid]); } void hugetlb_show_meminfo(void) { struct hstate *h; int nid; if (!hugepages_supported()) return; for_each_node_state(nid, N_MEMORY) for_each_hstate(h) pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", nid, h->nr_huge_pages_node[nid], h->free_huge_pages_node[nid], h->surplus_huge_pages_node[nid], huge_page_size(h) / SZ_1K); } void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) { seq_printf(m, "HugetlbPages:\t%8lu kB\n", atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); } /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ unsigned long hugetlb_total_pages(void) { struct hstate *h; unsigned long nr_total_pages = 0; for_each_hstate(h) nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); return nr_total_pages; } static int hugetlb_acct_memory(struct hstate *h, long delta) { int ret = -ENOMEM; if (!delta) return 0; spin_lock_irq(&hugetlb_lock); /* * When cpuset is configured, it breaks the strict hugetlb page * reservation as the accounting is done on a global variable. Such * reservation is completely rubbish in the presence of cpuset because * the reservation is not checked against page availability for the * current cpuset. Application can still potentially OOM'ed by kernel * with lack of free htlb page in cpuset that the task is in. * Attempt to enforce strict accounting with cpuset is almost * impossible (or too ugly) because cpuset is too fluid that * task or memory node can be dynamically moved between cpusets. * * The change of semantics for shared hugetlb mapping with cpuset is * undesirable. However, in order to preserve some of the semantics, * we fall back to check against current free page availability as * a best attempt and hopefully to minimize the impact of changing * semantics that cpuset has. * * Apart from cpuset, we also have memory policy mechanism that * also determines from which node the kernel will allocate memory * in a NUMA system. So similar to cpuset, we also should consider * the memory policy of the current task. Similar to the description * above. */ if (delta > 0) { if (gather_surplus_pages(h, delta) < 0) goto out; if (delta > allowed_mems_nr(h)) { return_unused_surplus_pages(h, delta); goto out; } } ret = 0; if (delta < 0) return_unused_surplus_pages(h, (unsigned long) -delta); out: spin_unlock_irq(&hugetlb_lock); return ret; } static void hugetlb_vm_op_open(struct vm_area_struct *vma) { struct resv_map *resv = vma_resv_map(vma); /* * This new VMA should share its siblings reservation map if present. * The VMA will only ever have a valid reservation map pointer where * it is being copied for another still existing VMA. As that VMA * has a reference to the reservation map it cannot disappear until * after this open call completes. It is therefore safe to take a * new reference here without additional locking. */ if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) kref_get(&resv->refs); } static void hugetlb_vm_op_close(struct vm_area_struct *vma) { struct hstate *h = hstate_vma(vma); struct resv_map *resv = vma_resv_map(vma); struct hugepage_subpool *spool = subpool_vma(vma); unsigned long reserve, start, end; long gbl_reserve; if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) return; start = vma_hugecache_offset(h, vma, vma->vm_start); end = vma_hugecache_offset(h, vma, vma->vm_end); reserve = (end - start) - region_count(resv, start, end); hugetlb_cgroup_uncharge_counter(resv, start, end); if (reserve) { /* * Decrement reserve counts. The global reserve count may be * adjusted if the subpool has a minimum size. */ gbl_reserve = hugepage_subpool_put_pages(spool, reserve); hugetlb_acct_memory(h, -gbl_reserve); } kref_put(&resv->refs, resv_map_release); } static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) { if (addr & ~(huge_page_mask(hstate_vma(vma)))) return -EINVAL; return 0; } static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) { return huge_page_size(hstate_vma(vma)); } /* * We cannot handle pagefaults against hugetlb pages at all. They cause * handle_mm_fault() to try to instantiate regular-sized pages in the * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get * this far. */ static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) { BUG(); return 0; } /* * When a new function is introduced to vm_operations_struct and added * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. * This is because under System V memory model, mappings created via * shmget/shmat with "huge page" specified are backed by hugetlbfs files, * their original vm_ops are overwritten with shm_vm_ops. */ const struct vm_operations_struct hugetlb_vm_ops = { .fault = hugetlb_vm_op_fault, .open = hugetlb_vm_op_open, .close = hugetlb_vm_op_close, .may_split = hugetlb_vm_op_split, .pagesize = hugetlb_vm_op_pagesize, }; static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, int writable) { pte_t entry; unsigned int shift = huge_page_shift(hstate_vma(vma)); if (writable) { entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, vma->vm_page_prot))); } else { entry = huge_pte_wrprotect(mk_huge_pte(page, vma->vm_page_prot)); } entry = pte_mkyoung(entry); entry = pte_mkhuge(entry); entry = arch_make_huge_pte(entry, shift, vma->vm_flags); return entry; } static void set_huge_ptep_writable(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { pte_t entry; entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) update_mmu_cache(vma, address, ptep); } bool is_hugetlb_entry_migration(pte_t pte) { swp_entry_t swp; if (huge_pte_none(pte) || pte_present(pte)) return false; swp = pte_to_swp_entry(pte); if (is_migration_entry(swp)) return true; else return false; } static bool is_hugetlb_entry_hwpoisoned(pte_t pte) { swp_entry_t swp; if (huge_pte_none(pte) || pte_present(pte)) return false; swp = pte_to_swp_entry(pte); if (is_hwpoison_entry(swp)) return true; else return false; } static void hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, struct page *new_page) { __SetPageUptodate(new_page); set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1)); hugepage_add_new_anon_rmap(new_page, vma, addr); hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); ClearHPageRestoreReserve(new_page); SetHPageMigratable(new_page); } int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, struct vm_area_struct *vma) { pte_t *src_pte, *dst_pte, entry, dst_entry; struct page *ptepage; unsigned long addr; bool cow = is_cow_mapping(vma->vm_flags); struct hstate *h = hstate_vma(vma); unsigned long sz = huge_page_size(h); unsigned long npages = pages_per_huge_page(h); struct address_space *mapping = vma->vm_file->f_mapping; struct mmu_notifier_range range; int ret = 0; if (cow) { mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src, vma->vm_start, vma->vm_end); mmu_notifier_invalidate_range_start(&range); } else { /* * For shared mappings i_mmap_rwsem must be held to call * huge_pte_alloc, otherwise the returned ptep could go * away if part of a shared pmd and another thread calls * huge_pmd_unshare. */ i_mmap_lock_read(mapping); } for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { spinlock_t *src_ptl, *dst_ptl; src_pte = huge_pte_offset(src, addr, sz); if (!src_pte) continue; dst_pte = huge_pte_alloc(dst, vma, addr, sz); if (!dst_pte) { ret = -ENOMEM; break; } /* * If the pagetables are shared don't copy or take references. * dst_pte == src_pte is the common case of src/dest sharing. * * However, src could have 'unshared' and dst shares with * another vma. If dst_pte !none, this implies sharing. * Check here before taking page table lock, and once again * after taking the lock below. */ dst_entry = huge_ptep_get(dst_pte); if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) continue; dst_ptl = huge_pte_lock(h, dst, dst_pte); src_ptl = huge_pte_lockptr(h, src, src_pte); spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); entry = huge_ptep_get(src_pte); dst_entry = huge_ptep_get(dst_pte); again: if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { /* * Skip if src entry none. Also, skip in the * unlikely case dst entry !none as this implies * sharing with another vma. */ ; } else if (unlikely(is_hugetlb_entry_migration(entry) || is_hugetlb_entry_hwpoisoned(entry))) { swp_entry_t swp_entry = pte_to_swp_entry(entry); if (is_write_migration_entry(swp_entry) && cow) { /* * COW mappings require pages in both * parent and child to be set to read. */ make_migration_entry_read(&swp_entry); entry = swp_entry_to_pte(swp_entry); set_huge_swap_pte_at(src, addr, src_pte, entry, sz); } set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); } else { entry = huge_ptep_get(src_pte); ptepage = pte_page(entry); get_page(ptepage); /* * This is a rare case where we see pinned hugetlb * pages while they're prone to COW. We need to do the * COW earlier during fork. * * When pre-allocating the page or copying data, we * need to be without the pgtable locks since we could * sleep during the process. */ if (unlikely(page_needs_cow_for_dma(vma, ptepage))) { pte_t src_pte_old = entry; struct page *new; spin_unlock(src_ptl); spin_unlock(dst_ptl); /* Do not use reserve as it's private owned */ new = alloc_huge_page(vma, addr, 1); if (IS_ERR(new)) { put_page(ptepage); ret = PTR_ERR(new); break; } copy_user_huge_page(new, ptepage, addr, vma, npages); put_page(ptepage); /* Install the new huge page if src pte stable */ dst_ptl = huge_pte_lock(h, dst, dst_pte); src_ptl = huge_pte_lockptr(h, src, src_pte); spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); entry = huge_ptep_get(src_pte); if (!pte_same(src_pte_old, entry)) { restore_reserve_on_error(h, vma, addr, new); put_page(new); /* dst_entry won't change as in child */ goto again; } hugetlb_install_page(vma, dst_pte, addr, new); spin_unlock(src_ptl); spin_unlock(dst_ptl); continue; } if (cow) { /* * No need to notify as we are downgrading page * table protection not changing it to point * to a new page. * * See Documentation/vm/mmu_notifier.rst */ huge_ptep_set_wrprotect(src, addr, src_pte); entry = huge_pte_wrprotect(entry); } page_dup_rmap(ptepage, true); set_huge_pte_at(dst, addr, dst_pte, entry); hugetlb_count_add(npages, dst); } spin_unlock(src_ptl); spin_unlock(dst_ptl); } if (cow) mmu_notifier_invalidate_range_end(&range); else i_mmap_unlock_read(mapping); return ret; } void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long start, unsigned long end, struct page *ref_page) { struct mm_struct *mm = vma->vm_mm; unsigned long address; pte_t *ptep; pte_t pte; spinlock_t *ptl; struct page *page; struct hstate *h = hstate_vma(vma); unsigned long sz = huge_page_size(h); struct mmu_notifier_range range; WARN_ON(!is_vm_hugetlb_page(vma)); BUG_ON(start & ~huge_page_mask(h)); BUG_ON(end & ~huge_page_mask(h)); /* * This is a hugetlb vma, all the pte entries should point * to huge page. */ tlb_change_page_size(tlb, sz); tlb_start_vma(tlb, vma); /* * If sharing possible, alert mmu notifiers of worst case. */ mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, end); adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); mmu_notifier_invalidate_range_start(&range); address = start; for (; address < end; address += sz) { ptep = huge_pte_offset(mm, address, sz); if (!ptep) continue; ptl = huge_pte_lock(h, mm, ptep); if (huge_pmd_unshare(mm, vma, &address, ptep)) { spin_unlock(ptl); /* * We just unmapped a page of PMDs by clearing a PUD. * The caller's TLB flush range should cover this area. */ continue; } pte = huge_ptep_get(ptep); if (huge_pte_none(pte)) { spin_unlock(ptl); continue; } /* * Migrating hugepage or HWPoisoned hugepage is already * unmapped and its refcount is dropped, so just clear pte here. */ if (unlikely(!pte_present(pte))) { huge_pte_clear(mm, address, ptep, sz); spin_unlock(ptl); continue; } page = pte_page(pte); /* * If a reference page is supplied, it is because a specific * page is being unmapped, not a range. Ensure the page we * are about to unmap is the actual page of interest. */ if (ref_page) { if (page != ref_page) { spin_unlock(ptl); continue; } /* * Mark the VMA as having unmapped its page so that * future faults in this VMA will fail rather than * looking like data was lost */ set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); } pte = huge_ptep_get_and_clear(mm, address, ptep); tlb_remove_huge_tlb_entry(h, tlb, ptep, address); if (huge_pte_dirty(pte)) set_page_dirty(page); hugetlb_count_sub(pages_per_huge_page(h), mm); page_remove_rmap(page, true); spin_unlock(ptl); tlb_remove_page_size(tlb, page, huge_page_size(h)); /* * Bail out after unmapping reference page if supplied */ if (ref_page) break; } mmu_notifier_invalidate_range_end(&range); tlb_end_vma(tlb, vma); } void __unmap_hugepage_range_final(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long start, unsigned long end, struct page *ref_page) { __unmap_hugepage_range(tlb, vma, start, end, ref_page); /* * Clear this flag so that x86's huge_pmd_share page_table_shareable * test will fail on a vma being torn down, and not grab a page table * on its way out. We're lucky that the flag has such an appropriate * name, and can in fact be safely cleared here. We could clear it * before the __unmap_hugepage_range above, but all that's necessary * is to clear it before releasing the i_mmap_rwsem. This works * because in the context this is called, the VMA is about to be * destroyed and the i_mmap_rwsem is held. */ vma->vm_flags &= ~VM_MAYSHARE; } void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, unsigned long end, struct page *ref_page) { struct mmu_gather tlb; tlb_gather_mmu(&tlb, vma->vm_mm); __unmap_hugepage_range(&tlb, vma, start, end, ref_page); tlb_finish_mmu(&tlb); } /* * This is called when the original mapper is failing to COW a MAP_PRIVATE * mapping it owns the reserve page for. The intention is to unmap the page * from other VMAs and let the children be SIGKILLed if they are faulting the * same region. */ static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, struct page *page, unsigned long address) { struct hstate *h = hstate_vma(vma); struct vm_area_struct *iter_vma; struct address_space *mapping; pgoff_t pgoff; /* * vm_pgoff is in PAGE_SIZE units, hence the different calculation * from page cache lookup which is in HPAGE_SIZE units. */ address = address & huge_page_mask(h); pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; mapping = vma->vm_file->f_mapping; /* * Take the mapping lock for the duration of the table walk. As * this mapping should be shared between all the VMAs, * __unmap_hugepage_range() is called as the lock is already held */ i_mmap_lock_write(mapping); vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { /* Do not unmap the current VMA */ if (iter_vma == vma) continue; /* * Shared VMAs have their own reserves and do not affect * MAP_PRIVATE accounting but it is possible that a shared * VMA is using the same page so check and skip such VMAs. */ if (iter_vma->vm_flags & VM_MAYSHARE) continue; /* * Unmap the page from other VMAs without their own reserves. * They get marked to be SIGKILLed if they fault in these * areas. This is because a future no-page fault on this VMA * could insert a zeroed page instead of the data existing * from the time of fork. This would look like data corruption */ if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) unmap_hugepage_range(iter_vma, address, address + huge_page_size(h), page); } i_mmap_unlock_write(mapping); } /* * Hugetlb_cow() should be called with page lock of the original hugepage held. * Called with hugetlb_instantiation_mutex held and pte_page locked so we * cannot race with other handlers or page migration. * Keep the pte_same checks anyway to make transition from the mutex easier. */ static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, pte_t *ptep, struct page *pagecache_page, spinlock_t *ptl) { pte_t pte; struct hstate *h = hstate_vma(vma); struct page *old_page, *new_page; int outside_reserve = 0; vm_fault_t ret = 0; unsigned long haddr = address & huge_page_mask(h); struct mmu_notifier_range range; pte = huge_ptep_get(ptep); old_page = pte_page(pte); retry_avoidcopy: /* If no-one else is actually using this page, avoid the copy * and just make the page writable */ if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { page_move_anon_rmap(old_page, vma); set_huge_ptep_writable(vma, haddr, ptep); return 0; } /* * If the process that created a MAP_PRIVATE mapping is about to * perform a COW due to a shared page count, attempt to satisfy * the allocation without using the existing reserves. The pagecache * page is used to determine if the reserve at this address was * consumed or not. If reserves were used, a partial faulted mapping * at the time of fork() could consume its reserves on COW instead * of the full address range. */ if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && old_page != pagecache_page) outside_reserve = 1; get_page(old_page); /* * Drop page table lock as buddy allocator may be called. It will * be acquired again before returning to the caller, as expected. */ spin_unlock(ptl); new_page = alloc_huge_page(vma, haddr, outside_reserve); if (IS_ERR(new_page)) { /* * If a process owning a MAP_PRIVATE mapping fails to COW, * it is due to references held by a child and an insufficient * huge page pool. To guarantee the original mappers * reliability, unmap the page from child processes. The child * may get SIGKILLed if it later faults. */ if (outside_reserve) { struct address_space *mapping = vma->vm_file->f_mapping; pgoff_t idx; u32 hash; put_page(old_page); BUG_ON(huge_pte_none(pte)); /* * Drop hugetlb_fault_mutex and i_mmap_rwsem before * unmapping. unmapping needs to hold i_mmap_rwsem * in write mode. Dropping i_mmap_rwsem in read mode * here is OK as COW mappings do not interact with * PMD sharing. * * Reacquire both after unmap operation. */ idx = vma_hugecache_offset(h, vma, haddr); hash = hugetlb_fault_mutex_hash(mapping, idx); mutex_unlock(&hugetlb_fault_mutex_table[hash]); i_mmap_unlock_read(mapping); unmap_ref_private(mm, vma, old_page, haddr); i_mmap_lock_read(mapping); mutex_lock(&hugetlb_fault_mutex_table[hash]); spin_lock(ptl); ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) goto retry_avoidcopy; /* * race occurs while re-acquiring page table * lock, and our job is done. */ return 0; } ret = vmf_error(PTR_ERR(new_page)); goto out_release_old; } /* * When the original hugepage is shared one, it does not have * anon_vma prepared. */ if (unlikely(anon_vma_prepare(vma))) { ret = VM_FAULT_OOM; goto out_release_all; } copy_user_huge_page(new_page, old_page, address, vma, pages_per_huge_page(h)); __SetPageUptodate(new_page); mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, haddr + huge_page_size(h)); mmu_notifier_invalidate_range_start(&range); /* * Retake the page table lock to check for racing updates * before the page tables are altered */ spin_lock(ptl); ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { ClearHPageRestoreReserve(new_page); /* Break COW */ huge_ptep_clear_flush(vma, haddr, ptep); mmu_notifier_invalidate_range(mm, range.start, range.end); set_huge_pte_at(mm, haddr, ptep, make_huge_pte(vma, new_page, 1)); page_remove_rmap(old_page, true); hugepage_add_new_anon_rmap(new_page, vma, haddr); SetHPageMigratable(new_page); /* Make the old page be freed below */ new_page = old_page; } spin_unlock(ptl); mmu_notifier_invalidate_range_end(&range); out_release_all: restore_reserve_on_error(h, vma, haddr, new_page); put_page(new_page); out_release_old: put_page(old_page); spin_lock(ptl); /* Caller expects lock to be held */ return ret; } /* Return the pagecache page at a given address within a VMA */ static struct page *hugetlbfs_pagecache_page(struct hstate *h, struct vm_area_struct *vma, unsigned long address) { struct address_space *mapping; pgoff_t idx; mapping = vma->vm_file->f_mapping; idx = vma_hugecache_offset(h, vma, address); return find_lock_page(mapping, idx); } /* * Return whether there is a pagecache page to back given address within VMA. * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. */ static bool hugetlbfs_pagecache_present(struct hstate *h, struct vm_area_struct *vma, unsigned long address) { struct address_space *mapping; pgoff_t idx; struct page *page; mapping = vma->vm_file->f_mapping; idx = vma_hugecache_offset(h, vma, address); page = find_get_page(mapping, idx); if (page) put_page(page); return page != NULL; } int huge_add_to_page_cache(struct page *page, struct address_space *mapping, pgoff_t idx) { struct inode *inode = mapping->host; struct hstate *h = hstate_inode(inode); int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); if (err) return err; ClearHPageRestoreReserve(page); /* * set page dirty so that it will not be removed from cache/file * by non-hugetlbfs specific code paths. */ set_page_dirty(page); spin_lock(&inode->i_lock); inode->i_blocks += blocks_per_huge_page(h); spin_unlock(&inode->i_lock); return 0; } static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, struct address_space *mapping, pgoff_t idx, unsigned int flags, unsigned long haddr, unsigned long reason) { vm_fault_t ret; u32 hash; struct vm_fault vmf = { .vma = vma, .address = haddr, .flags = flags, /* * Hard to debug if it ends up being * used by a callee that assumes * something about the other * uninitialized fields... same as in * memory.c */ }; /* * hugetlb_fault_mutex and i_mmap_rwsem must be * dropped before handling userfault. Reacquire * after handling fault to make calling code simpler. */ hash = hugetlb_fault_mutex_hash(mapping, idx); mutex_unlock(&hugetlb_fault_mutex_table[hash]); i_mmap_unlock_read(mapping); ret = handle_userfault(&vmf, reason); i_mmap_lock_read(mapping); mutex_lock(&hugetlb_fault_mutex_table[hash]); return ret; } static vm_fault_t hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, struct address_space *mapping, pgoff_t idx, unsigned long address, pte_t *ptep, unsigned int flags) { struct hstate *h = hstate_vma(vma); vm_fault_t ret = VM_FAULT_SIGBUS; int anon_rmap = 0; unsigned long size; struct page *page; pte_t new_pte; spinlock_t *ptl; unsigned long haddr = address & huge_page_mask(h); bool new_page = false; /* * Currently, we are forced to kill the process in the event the * original mapper has unmapped pages from the child due to a failed * COW. Warn that such a situation has occurred as it may not be obvious */ if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", current->pid); return ret; } /* * We can not race with truncation due to holding i_mmap_rwsem. * i_size is modified when holding i_mmap_rwsem, so check here * once for faults beyond end of file. */ size = i_size_read(mapping->host) >> huge_page_shift(h); if (idx >= size) goto out; retry: page = find_lock_page(mapping, idx); if (!page) { /* Check for page in userfault range */ if (userfaultfd_missing(vma)) { ret = hugetlb_handle_userfault(vma, mapping, idx, flags, haddr, VM_UFFD_MISSING); goto out; } page = alloc_huge_page(vma, haddr, 0); if (IS_ERR(page)) { /* * Returning error will result in faulting task being * sent SIGBUS. The hugetlb fault mutex prevents two * tasks from racing to fault in the same page which * could result in false unable to allocate errors. * Page migration does not take the fault mutex, but * does a clear then write of pte's under page table * lock. Page fault code could race with migration, * notice the clear pte and try to allocate a page * here. Before returning error, get ptl and make * sure there really is no pte entry. */ ptl = huge_pte_lock(h, mm, ptep); ret = 0; if (huge_pte_none(huge_ptep_get(ptep))) ret = vmf_error(PTR_ERR(page)); spin_unlock(ptl); goto out; } clear_huge_page(page, address, pages_per_huge_page(h)); __SetPageUptodate(page); new_page = true; if (vma->vm_flags & VM_MAYSHARE) { int err = huge_add_to_page_cache(page, mapping, idx); if (err) { put_page(page); if (err == -EEXIST) goto retry; goto out; } } else { lock_page(page); if (unlikely(anon_vma_prepare(vma))) { ret = VM_FAULT_OOM; goto backout_unlocked; } anon_rmap = 1; } } else { /* * If memory error occurs between mmap() and fault, some process * don't have hwpoisoned swap entry for errored virtual address. * So we need to block hugepage fault by PG_hwpoison bit check. */ if (unlikely(PageHWPoison(page))) { ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h)); goto backout_unlocked; } /* Check for page in userfault range. */ if (userfaultfd_minor(vma)) { unlock_page(page); put_page(page); ret = hugetlb_handle_userfault(vma, mapping, idx, flags, haddr, VM_UFFD_MINOR); goto out; } } /* * If we are going to COW a private mapping later, we examine the * pending reservations for this page now. This will ensure that * any allocations necessary to record that reservation occur outside * the spinlock. */ if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { if (vma_needs_reservation(h, vma, haddr) < 0) { ret = VM_FAULT_OOM; goto backout_unlocked; } /* Just decrements count, does not deallocate */ vma_end_reservation(h, vma, haddr); } ptl = huge_pte_lock(h, mm, ptep); ret = 0; if (!huge_pte_none(huge_ptep_get(ptep))) goto backout; if (anon_rmap) { ClearHPageRestoreReserve(page); hugepage_add_new_anon_rmap(page, vma, haddr); } else page_dup_rmap(page, true); new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) && (vma->vm_flags & VM_SHARED))); set_huge_pte_at(mm, haddr, ptep, new_pte); hugetlb_count_add(pages_per_huge_page(h), mm); if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { /* Optimization, do the COW without a second fault */ ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); } spin_unlock(ptl); /* * Only set HPageMigratable in newly allocated pages. Existing pages * found in the pagecache may not have HPageMigratableset if they have * been isolated for migration. */ if (new_page) SetHPageMigratable(page); unlock_page(page); out: return ret; backout: spin_unlock(ptl); backout_unlocked: unlock_page(page); restore_reserve_on_error(h, vma, haddr, page); put_page(page); goto out; } #ifdef CONFIG_SMP u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) { unsigned long key[2]; u32 hash; key[0] = (unsigned long) mapping; key[1] = idx; hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); return hash & (num_fault_mutexes - 1); } #else /* * For uniprocessor systems we always use a single mutex, so just * return 0 and avoid the hashing overhead. */ u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) { return 0; } #endif vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, unsigned int flags) { pte_t *ptep, entry; spinlock_t *ptl; vm_fault_t ret; u32 hash; pgoff_t idx; struct page *page = NULL; struct page *pagecache_page = NULL; struct hstate *h = hstate_vma(vma); struct address_space *mapping; int need_wait_lock = 0; unsigned long haddr = address & huge_page_mask(h); ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); if (ptep) { /* * Since we hold no locks, ptep could be stale. That is * OK as we are only making decisions based on content and * not actually modifying content here. */ entry = huge_ptep_get(ptep); if (unlikely(is_hugetlb_entry_migration(entry))) { migration_entry_wait_huge(vma, mm, ptep); return 0; } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) return VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h)); } /* * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold * until finished with ptep. This serves two purposes: * 1) It prevents huge_pmd_unshare from being called elsewhere * and making the ptep no longer valid. * 2) It synchronizes us with i_size modifications during truncation. * * ptep could have already be assigned via huge_pte_offset. That * is OK, as huge_pte_alloc will return the same value unless * something has changed. */ mapping = vma->vm_file->f_mapping; i_mmap_lock_read(mapping); ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); if (!ptep) { i_mmap_unlock_read(mapping); return VM_FAULT_OOM; } /* * Serialize hugepage allocation and instantiation, so that we don't * get spurious allocation failures if two CPUs race to instantiate * the same page in the page cache. */ idx = vma_hugecache_offset(h, vma, haddr); hash = hugetlb_fault_mutex_hash(mapping, idx); mutex_lock(&hugetlb_fault_mutex_table[hash]); entry = huge_ptep_get(ptep); if (huge_pte_none(entry)) { ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); goto out_mutex; } ret = 0; /* * entry could be a migration/hwpoison entry at this point, so this * check prevents the kernel from going below assuming that we have * an active hugepage in pagecache. This goto expects the 2nd page * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will * properly handle it. */ if (!pte_present(entry)) goto out_mutex; /* * If we are going to COW the mapping later, we examine the pending * reservations for this page now. This will ensure that any * allocations necessary to record that reservation occur outside the * spinlock. For private mappings, we also lookup the pagecache * page now as it is used to determine if a reservation has been * consumed. */ if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { if (vma_needs_reservation(h, vma, haddr) < 0) { ret = VM_FAULT_OOM; goto out_mutex; } /* Just decrements count, does not deallocate */ vma_end_reservation(h, vma, haddr); if (!(vma->vm_flags & VM_MAYSHARE)) pagecache_page = hugetlbfs_pagecache_page(h, vma, haddr); } ptl = huge_pte_lock(h, mm, ptep); /* Check for a racing update before calling hugetlb_cow */ if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) goto out_ptl; /* * hugetlb_cow() requires page locks of pte_page(entry) and * pagecache_page, so here we need take the former one * when page != pagecache_page or !pagecache_page. */ page = pte_page(entry); if (page != pagecache_page) if (!trylock_page(page)) { need_wait_lock = 1; goto out_ptl; } get_page(page); if (flags & FAULT_FLAG_WRITE) { if (!huge_pte_write(entry)) { ret = hugetlb_cow(mm, vma, address, ptep, pagecache_page, ptl); goto out_put_page; } entry = huge_pte_mkdirty(entry); } entry = pte_mkyoung(entry); if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, flags & FAULT_FLAG_WRITE)) update_mmu_cache(vma, haddr, ptep); out_put_page: if (page != pagecache_page) unlock_page(page); put_page(page); out_ptl: spin_unlock(ptl); if (pagecache_page) { unlock_page(pagecache_page); put_page(pagecache_page); } out_mutex: mutex_unlock(&hugetlb_fault_mutex_table[hash]); i_mmap_unlock_read(mapping); /* * Generally it's safe to hold refcount during waiting page lock. But * here we just wait to defer the next page fault to avoid busy loop and * the page is not used after unlocked before returning from the current * page fault. So we are safe from accessing freed page, even if we wait * here without taking refcount. */ if (need_wait_lock) wait_on_page_locked(page); return ret; } #ifdef CONFIG_USERFAULTFD /* * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with * modifications for huge pages. */ int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, pte_t *dst_pte, struct vm_area_struct *dst_vma, unsigned long dst_addr, unsigned long src_addr, enum mcopy_atomic_mode mode, struct page **pagep) { bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE); struct address_space *mapping; pgoff_t idx; unsigned long size; int vm_shared = dst_vma->vm_flags & VM_SHARED; struct hstate *h = hstate_vma(dst_vma); pte_t _dst_pte; spinlock_t *ptl; int ret; struct page *page; int writable; mapping = dst_vma->vm_file->f_mapping; idx = vma_hugecache_offset(h, dst_vma, dst_addr); if (is_continue) { ret = -EFAULT; page = find_lock_page(mapping, idx); if (!page) goto out; } else if (!*pagep) { /* If a page already exists, then it's UFFDIO_COPY for * a non-missing case. Return -EEXIST. */ if (vm_shared && hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { ret = -EEXIST; goto out; } page = alloc_huge_page(dst_vma, dst_addr, 0); if (IS_ERR(page)) { ret = -ENOMEM; goto out; } ret = copy_huge_page_from_user(page, (const void __user *) src_addr, pages_per_huge_page(h), false); /* fallback to copy_from_user outside mmap_lock */ if (unlikely(ret)) { ret = -ENOENT; *pagep = page; /* don't free the page */ goto out; } } else { page = *pagep; *pagep = NULL; } /* * The memory barrier inside __SetPageUptodate makes sure that * preceding stores to the page contents become visible before * the set_pte_at() write. */ __SetPageUptodate(page); /* Add shared, newly allocated pages to the page cache. */ if (vm_shared && !is_continue) { size = i_size_read(mapping->host) >> huge_page_shift(h); ret = -EFAULT; if (idx >= size) goto out_release_nounlock; /* * Serialization between remove_inode_hugepages() and * huge_add_to_page_cache() below happens through the * hugetlb_fault_mutex_table that here must be hold by * the caller. */ ret = huge_add_to_page_cache(page, mapping, idx); if (ret) goto out_release_nounlock; } ptl = huge_pte_lockptr(h, dst_mm, dst_pte); spin_lock(ptl); /* * Recheck the i_size after holding PT lock to make sure not * to leave any page mapped (as page_mapped()) beyond the end * of the i_size (remove_inode_hugepages() is strict about * enforcing that). If we bail out here, we'll also leave a * page in the radix tree in the vm_shared case beyond the end * of the i_size, but remove_inode_hugepages() will take care * of it as soon as we drop the hugetlb_fault_mutex_table. */ size = i_size_read(mapping->host) >> huge_page_shift(h); ret = -EFAULT; if (idx >= size) goto out_release_unlock; ret = -EEXIST; if (!huge_pte_none(huge_ptep_get(dst_pte))) goto out_release_unlock; if (vm_shared) { page_dup_rmap(page, true); } else { ClearHPageRestoreReserve(page); hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); } /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */ if (is_continue && !vm_shared) writable = 0; else writable = dst_vma->vm_flags & VM_WRITE; _dst_pte = make_huge_pte(dst_vma, page, writable); if (writable) _dst_pte = huge_pte_mkdirty(_dst_pte); _dst_pte = pte_mkyoung(_dst_pte); set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, dst_vma->vm_flags & VM_WRITE); hugetlb_count_add(pages_per_huge_page(h), dst_mm); /* No need to invalidate - it was non-present before */ update_mmu_cache(dst_vma, dst_addr, dst_pte); spin_unlock(ptl); if (!is_continue) SetHPageMigratable(page); if (vm_shared || is_continue) unlock_page(page); ret = 0; out: return ret; out_release_unlock: spin_unlock(ptl); if (vm_shared || is_continue) unlock_page(page); out_release_nounlock: restore_reserve_on_error(h, dst_vma, dst_addr, page); put_page(page); goto out; } #endif /* CONFIG_USERFAULTFD */ static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma, int refs, struct page **pages, struct vm_area_struct **vmas) { int nr; for (nr = 0; nr < refs; nr++) { if (likely(pages)) pages[nr] = mem_map_offset(page, nr); if (vmas) vmas[nr] = vma; } } long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, struct page **pages, struct vm_area_struct **vmas, unsigned long *position, unsigned long *nr_pages, long i, unsigned int flags, int *locked) { unsigned long pfn_offset; unsigned long vaddr = *position; unsigned long remainder = *nr_pages; struct hstate *h = hstate_vma(vma); int err = -EFAULT, refs; while (vaddr < vma->vm_end && remainder) { pte_t *pte; spinlock_t *ptl = NULL; int absent; struct page *page; /* * If we have a pending SIGKILL, don't keep faulting pages and * potentially allocating memory. */ if (fatal_signal_pending(current)) { remainder = 0; break; } /* * Some archs (sparc64, sh*) have multiple pte_ts to * each hugepage. We have to make sure we get the * first, for the page indexing below to work. * * Note that page table lock is not held when pte is null. */ pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), huge_page_size(h)); if (pte) ptl = huge_pte_lock(h, mm, pte); absent = !pte || huge_pte_none(huge_ptep_get(pte)); /* * When coredumping, it suits get_dump_page if we just return * an error where there's an empty slot with no huge pagecache * to back it. This way, we avoid allocating a hugepage, and * the sparse dumpfile avoids allocating disk blocks, but its * huge holes still show up with zeroes where they need to be. */ if (absent && (flags & FOLL_DUMP) && !hugetlbfs_pagecache_present(h, vma, vaddr)) { if (pte) spin_unlock(ptl); remainder = 0; break; } /* * We need call hugetlb_fault for both hugepages under migration * (in which case hugetlb_fault waits for the migration,) and * hwpoisoned hugepages (in which case we need to prevent the * caller from accessing to them.) In order to do this, we use * here is_swap_pte instead of is_hugetlb_entry_migration and * is_hugetlb_entry_hwpoisoned. This is because it simply covers * both cases, and because we can't follow correct pages * directly from any kind of swap entries. */ if (absent || is_swap_pte(huge_ptep_get(pte)) || ((flags & FOLL_WRITE) && !huge_pte_write(huge_ptep_get(pte)))) { vm_fault_t ret; unsigned int fault_flags = 0; if (pte) spin_unlock(ptl); if (flags & FOLL_WRITE) fault_flags |= FAULT_FLAG_WRITE; if (locked) fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; if (flags & FOLL_NOWAIT) fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; if (flags & FOLL_TRIED) { /* * Note: FAULT_FLAG_ALLOW_RETRY and * FAULT_FLAG_TRIED can co-exist */ fault_flags |= FAULT_FLAG_TRIED; } ret = hugetlb_fault(mm, vma, vaddr, fault_flags); if (ret & VM_FAULT_ERROR) { err = vm_fault_to_errno(ret, flags); remainder = 0; break; } if (ret & VM_FAULT_RETRY) { if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) *locked = 0; *nr_pages = 0; /* * VM_FAULT_RETRY must not return an * error, it will return zero * instead. * * No need to update "position" as the * caller will not check it after * *nr_pages is set to 0. */ return i; } continue; } pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; page = pte_page(huge_ptep_get(pte)); /* * If subpage information not requested, update counters * and skip the same_page loop below. */ if (!pages && !vmas && !pfn_offset && (vaddr + huge_page_size(h) < vma->vm_end) && (remainder >= pages_per_huge_page(h))) { vaddr += huge_page_size(h); remainder -= pages_per_huge_page(h); i += pages_per_huge_page(h); spin_unlock(ptl); continue; } refs = min3(pages_per_huge_page(h) - pfn_offset, (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder); if (pages || vmas) record_subpages_vmas(mem_map_offset(page, pfn_offset), vma, refs, likely(pages) ? pages + i : NULL, vmas ? vmas + i : NULL); if (pages) { /* * try_grab_compound_head() should always succeed here, * because: a) we hold the ptl lock, and b) we've just * checked that the huge page is present in the page * tables. If the huge page is present, then the tail * pages must also be present. The ptl prevents the * head page and tail pages from being rearranged in * any way. So this page must be available at this * point, unless the page refcount overflowed: */ if (WARN_ON_ONCE(!try_grab_compound_head(pages[i], refs, flags))) { spin_unlock(ptl); remainder = 0; err = -ENOMEM; break; } } vaddr += (refs << PAGE_SHIFT); remainder -= refs; i += refs; spin_unlock(ptl); } *nr_pages = remainder; /* * setting position is actually required only if remainder is * not zero but it's faster not to add a "if (remainder)" * branch. */ *position = vaddr; return i ? i : err; } unsigned long hugetlb_change_protection(struct vm_area_struct *vma, unsigned long address, unsigned long end, pgprot_t newprot) { struct mm_struct *mm = vma->vm_mm; unsigned long start = address; pte_t *ptep; pte_t pte; struct hstate *h = hstate_vma(vma); unsigned long pages = 0; bool shared_pmd = false; struct mmu_notifier_range range; /* * In the case of shared PMDs, the area to flush could be beyond * start/end. Set range.start/range.end to cover the maximum possible * range if PMD sharing is possible. */ mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0, vma, mm, start, end); adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); BUG_ON(address >= end); flush_cache_range(vma, range.start, range.end); mmu_notifier_invalidate_range_start(&range); i_mmap_lock_write(vma->vm_file->f_mapping); for (; address < end; address += huge_page_size(h)) { spinlock_t *ptl; ptep = huge_pte_offset(mm, address, huge_page_size(h)); if (!ptep) continue; ptl = huge_pte_lock(h, mm, ptep); if (huge_pmd_unshare(mm, vma, &address, ptep)) { pages++; spin_unlock(ptl); shared_pmd = true; continue; } pte = huge_ptep_get(ptep); if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { spin_unlock(ptl); continue; } if (unlikely(is_hugetlb_entry_migration(pte))) { swp_entry_t entry = pte_to_swp_entry(pte); if (is_write_migration_entry(entry)) { pte_t newpte; make_migration_entry_read(&entry); newpte = swp_entry_to_pte(entry); set_huge_swap_pte_at(mm, address, ptep, newpte, huge_page_size(h)); pages++; } spin_unlock(ptl); continue; } if (!huge_pte_none(pte)) { pte_t old_pte; unsigned int shift = huge_page_shift(hstate_vma(vma)); old_pte = huge_ptep_modify_prot_start(vma, address, ptep); pte = pte_mkhuge(huge_pte_modify(old_pte, newprot)); pte = arch_make_huge_pte(pte, shift, vma->vm_flags); huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); pages++; } spin_unlock(ptl); } /* * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare * may have cleared our pud entry and done put_page on the page table: * once we release i_mmap_rwsem, another task can do the final put_page * and that page table be reused and filled with junk. If we actually * did unshare a page of pmds, flush the range corresponding to the pud. */ if (shared_pmd) flush_hugetlb_tlb_range(vma, range.start, range.end); else flush_hugetlb_tlb_range(vma, start, end); /* * No need to call mmu_notifier_invalidate_range() we are downgrading * page table protection not changing it to point to a new page. * * See Documentation/vm/mmu_notifier.rst */ i_mmap_unlock_write(vma->vm_file->f_mapping); mmu_notifier_invalidate_range_end(&range); return pages << h->order; } /* Return true if reservation was successful, false otherwise. */ bool hugetlb_reserve_pages(struct inode *inode, long from, long to, struct vm_area_struct *vma, vm_flags_t vm_flags) { long chg, add = -1; struct hstate *h = hstate_inode(inode); struct hugepage_subpool *spool = subpool_inode(inode); struct resv_map *resv_map; struct hugetlb_cgroup *h_cg = NULL; long gbl_reserve, regions_needed = 0; /* This should never happen */ if (from > to) { VM_WARN(1, "%s called with a negative range\n", __func__); return false; } /* * Only apply hugepage reservation if asked. At fault time, an * attempt will be made for VM_NORESERVE to allocate a page * without using reserves */ if (vm_flags & VM_NORESERVE) return true; /* * Shared mappings base their reservation on the number of pages that * are already allocated on behalf of the file. Private mappings need * to reserve the full area even if read-only as mprotect() may be * called to make the mapping read-write. Assume !vma is a shm mapping */ if (!vma || vma->vm_flags & VM_MAYSHARE) { /* * resv_map can not be NULL as hugetlb_reserve_pages is only * called for inodes for which resv_maps were created (see * hugetlbfs_get_inode). */ resv_map = inode_resv_map(inode); chg = region_chg(resv_map, from, to, ®ions_needed); } else { /* Private mapping. */ resv_map = resv_map_alloc(); if (!resv_map) return false; chg = to - from; set_vma_resv_map(vma, resv_map); set_vma_resv_flags(vma, HPAGE_RESV_OWNER); } if (chg < 0) goto out_err; if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), chg * pages_per_huge_page(h), &h_cg) < 0) goto out_err; if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { /* For private mappings, the hugetlb_cgroup uncharge info hangs * of the resv_map. */ resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); } /* * There must be enough pages in the subpool for the mapping. If * the subpool has a minimum size, there may be some global * reservations already in place (gbl_reserve). */ gbl_reserve = hugepage_subpool_get_pages(spool, chg); if (gbl_reserve < 0) goto out_uncharge_cgroup; /* * Check enough hugepages are available for the reservation. * Hand the pages back to the subpool if there are not */ if (hugetlb_acct_memory(h, gbl_reserve) < 0) goto out_put_pages; /* * Account for the reservations made. Shared mappings record regions * that have reservations as they are shared by multiple VMAs. * When the last VMA disappears, the region map says how much * the reservation was and the page cache tells how much of * the reservation was consumed. Private mappings are per-VMA and * only the consumed reservations are tracked. When the VMA * disappears, the original reservation is the VMA size and the * consumed reservations are stored in the map. Hence, nothing * else has to be done for private mappings here */ if (!vma || vma->vm_flags & VM_MAYSHARE) { add = region_add(resv_map, from, to, regions_needed, h, h_cg); if (unlikely(add < 0)) { hugetlb_acct_memory(h, -gbl_reserve); goto out_put_pages; } else if (unlikely(chg > add)) { /* * pages in this range were added to the reserve * map between region_chg and region_add. This * indicates a race with alloc_huge_page. Adjust * the subpool and reserve counts modified above * based on the difference. */ long rsv_adjust; /* * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the * reference to h_cg->css. See comment below for detail. */ hugetlb_cgroup_uncharge_cgroup_rsvd( hstate_index(h), (chg - add) * pages_per_huge_page(h), h_cg); rsv_adjust = hugepage_subpool_put_pages(spool, chg - add); hugetlb_acct_memory(h, -rsv_adjust); } else if (h_cg) { /* * The file_regions will hold their own reference to * h_cg->css. So we should release the reference held * via hugetlb_cgroup_charge_cgroup_rsvd() when we are * done. */ hugetlb_cgroup_put_rsvd_cgroup(h_cg); } } return true; out_put_pages: /* put back original number of pages, chg */ (void)hugepage_subpool_put_pages(spool, chg); out_uncharge_cgroup: hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), chg * pages_per_huge_page(h), h_cg); out_err: if (!vma || vma->vm_flags & VM_MAYSHARE) /* Only call region_abort if the region_chg succeeded but the * region_add failed or didn't run. */ if (chg >= 0 && add < 0) region_abort(resv_map, from, to, regions_needed); if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) kref_put(&resv_map->refs, resv_map_release); return false; } long hugetlb_unreserve_pages(struct inode *inode, long start, long end, long freed) { struct hstate *h = hstate_inode(inode); struct resv_map *resv_map = inode_resv_map(inode); long chg = 0; struct hugepage_subpool *spool = subpool_inode(inode); long gbl_reserve; /* * Since this routine can be called in the evict inode path for all * hugetlbfs inodes, resv_map could be NULL. */ if (resv_map) { chg = region_del(resv_map, start, end); /* * region_del() can fail in the rare case where a region * must be split and another region descriptor can not be * allocated. If end == LONG_MAX, it will not fail. */ if (chg < 0) return chg; } spin_lock(&inode->i_lock); inode->i_blocks -= (blocks_per_huge_page(h) * freed); spin_unlock(&inode->i_lock); /* * If the subpool has a minimum size, the number of global * reservations to be released may be adjusted. * * Note that !resv_map implies freed == 0. So (chg - freed) * won't go negative. */ gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); hugetlb_acct_memory(h, -gbl_reserve); return 0; } #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE static unsigned long page_table_shareable(struct vm_area_struct *svma, struct vm_area_struct *vma, unsigned long addr, pgoff_t idx) { unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + svma->vm_start; unsigned long sbase = saddr & PUD_MASK; unsigned long s_end = sbase + PUD_SIZE; /* Allow segments to share if only one is marked locked */ unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; /* * match the virtual addresses, permission and the alignment of the * page table page. */ if (pmd_index(addr) != pmd_index(saddr) || vm_flags != svm_flags || !range_in_vma(svma, sbase, s_end)) return 0; return saddr; } static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) { unsigned long base = addr & PUD_MASK; unsigned long end = base + PUD_SIZE; /* * check on proper vm_flags and page table alignment */ if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) return true; return false; } bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) { #ifdef CONFIG_USERFAULTFD if (uffd_disable_huge_pmd_share(vma)) return false; #endif return vma_shareable(vma, addr); } /* * Determine if start,end range within vma could be mapped by shared pmd. * If yes, adjust start and end to cover range associated with possible * shared pmd mappings. */ void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, unsigned long *start, unsigned long *end) { unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); /* * vma needs to span at least one aligned PUD size, and the range * must be at least partially within in. */ if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || (*end <= v_start) || (*start >= v_end)) return; /* Extend the range to be PUD aligned for a worst case scenario */ if (*start > v_start) *start = ALIGN_DOWN(*start, PUD_SIZE); if (*end < v_end) *end = ALIGN(*end, PUD_SIZE); } /* * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() * and returns the corresponding pte. While this is not necessary for the * !shared pmd case because we can allocate the pmd later as well, it makes the * code much cleaner. * * This routine must be called with i_mmap_rwsem held in at least read mode if * sharing is possible. For hugetlbfs, this prevents removal of any page * table entries associated with the address space. This is important as we * are setting up sharing based on existing page table entries (mappings). * * NOTE: This routine is only called from huge_pte_alloc. Some callers of * huge_pte_alloc know that sharing is not possible and do not take * i_mmap_rwsem as a performance optimization. This is handled by the * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is * only required for subsequent processing. */ pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, pud_t *pud) { struct address_space *mapping = vma->vm_file->f_mapping; pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; struct vm_area_struct *svma; unsigned long saddr; pte_t *spte = NULL; pte_t *pte; spinlock_t *ptl; i_mmap_assert_locked(mapping); vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { if (svma == vma) continue; saddr = page_table_shareable(svma, vma, addr, idx); if (saddr) { spte = huge_pte_offset(svma->vm_mm, saddr, vma_mmu_pagesize(svma)); if (spte) { get_page(virt_to_page(spte)); break; } } } if (!spte) goto out; ptl = huge_pte_lock(hstate_vma(vma), mm, spte); if (pud_none(*pud)) { pud_populate(mm, pud, (pmd_t *)((unsigned long)spte & PAGE_MASK)); mm_inc_nr_pmds(mm); } else { put_page(virt_to_page(spte)); } spin_unlock(ptl); out: pte = (pte_t *)pmd_alloc(mm, pud, addr); return pte; } /* * unmap huge page backed by shared pte. * * Hugetlb pte page is ref counted at the time of mapping. If pte is shared * indicated by page_count > 1, unmap is achieved by clearing pud and * decrementing the ref count. If count == 1, the pte page is not shared. * * Called with page table lock held and i_mmap_rwsem held in write mode. * * returns: 1 successfully unmapped a shared pte page * 0 the underlying pte page is not shared, or it is the last user */ int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long *addr, pte_t *ptep) { pgd_t *pgd = pgd_offset(mm, *addr); p4d_t *p4d = p4d_offset(pgd, *addr); pud_t *pud = pud_offset(p4d, *addr); i_mmap_assert_write_locked(vma->vm_file->f_mapping); BUG_ON(page_count(virt_to_page(ptep)) == 0); if (page_count(virt_to_page(ptep)) == 1) return 0; pud_clear(pud); put_page(virt_to_page(ptep)); mm_dec_nr_pmds(mm); *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; return 1; } #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, pud_t *pud) { return NULL; } int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long *addr, pte_t *ptep) { return 0; } void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, unsigned long *start, unsigned long *end) { } bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) { return false; } #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long sz) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pte_t *pte = NULL; pgd = pgd_offset(mm, addr); p4d = p4d_alloc(mm, pgd, addr); if (!p4d) return NULL; pud = pud_alloc(mm, p4d, addr); if (pud) { if (sz == PUD_SIZE) { pte = (pte_t *)pud; } else { BUG_ON(sz != PMD_SIZE); if (want_pmd_share(vma, addr) && pud_none(*pud)) pte = huge_pmd_share(mm, vma, addr, pud); else pte = (pte_t *)pmd_alloc(mm, pud, addr); } } BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); return pte; } /* * huge_pte_offset() - Walk the page table to resolve the hugepage * entry at address @addr * * Return: Pointer to page table entry (PUD or PMD) for * address @addr, or NULL if a !p*d_present() entry is encountered and the * size @sz doesn't match the hugepage size at this level of the page * table. */ pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pgd = pgd_offset(mm, addr); if (!pgd_present(*pgd)) return NULL; p4d = p4d_offset(pgd, addr); if (!p4d_present(*p4d)) return NULL; pud = pud_offset(p4d, addr); if (sz == PUD_SIZE) /* must be pud huge, non-present or none */ return (pte_t *)pud; if (!pud_present(*pud)) return NULL; /* must have a valid entry and size to go further */ pmd = pmd_offset(pud, addr); /* must be pmd huge, non-present or none */ return (pte_t *)pmd; } #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ /* * These functions are overwritable if your architecture needs its own * behavior. */ struct page * __weak follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) { return ERR_PTR(-EINVAL); } struct page * __weak follow_huge_pd(struct vm_area_struct *vma, unsigned long address, hugepd_t hpd, int flags, int pdshift) { WARN(1, "hugepd follow called with no support for hugepage directory format\n"); return NULL; } struct page * __weak follow_huge_pmd(struct mm_struct *mm, unsigned long address, pmd_t *pmd, int flags) { struct page *page = NULL; spinlock_t *ptl; pte_t pte; /* FOLL_GET and FOLL_PIN are mutually exclusive. */ if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == (FOLL_PIN | FOLL_GET))) return NULL; retry: ptl = pmd_lockptr(mm, pmd); spin_lock(ptl); /* * make sure that the address range covered by this pmd is not * unmapped from other threads. */ if (!pmd_huge(*pmd)) goto out; pte = huge_ptep_get((pte_t *)pmd); if (pte_present(pte)) { page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); /* * try_grab_page() should always succeed here, because: a) we * hold the pmd (ptl) lock, and b) we've just checked that the * huge pmd (head) page is present in the page tables. The ptl * prevents the head page and tail pages from being rearranged * in any way. So this page must be available at this point, * unless the page refcount overflowed: */ if (WARN_ON_ONCE(!try_grab_page(page, flags))) { page = NULL; goto out; } } else { if (is_hugetlb_entry_migration(pte)) { spin_unlock(ptl); __migration_entry_wait(mm, (pte_t *)pmd, ptl); goto retry; } /* * hwpoisoned entry is treated as no_page_table in * follow_page_mask(). */ } out: spin_unlock(ptl); return page; } struct page * __weak follow_huge_pud(struct mm_struct *mm, unsigned long address, pud_t *pud, int flags) { if (flags & (FOLL_GET | FOLL_PIN)) return NULL; return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); } struct page * __weak follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) { if (flags & (FOLL_GET | FOLL_PIN)) return NULL; return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); } bool isolate_huge_page(struct page *page, struct list_head *list) { bool ret = true; spin_lock_irq(&hugetlb_lock); if (!PageHeadHuge(page) || !HPageMigratable(page) || !get_page_unless_zero(page)) { ret = false; goto unlock; } ClearHPageMigratable(page); list_move_tail(&page->lru, list); unlock: spin_unlock_irq(&hugetlb_lock); return ret; } int get_hwpoison_huge_page(struct page *page, bool *hugetlb) { int ret = 0; *hugetlb = false; spin_lock_irq(&hugetlb_lock); if (PageHeadHuge(page)) { *hugetlb = true; if (HPageFreed(page) || HPageMigratable(page)) ret = get_page_unless_zero(page); else ret = -EBUSY; } spin_unlock_irq(&hugetlb_lock); return ret; } void putback_active_hugepage(struct page *page) { spin_lock_irq(&hugetlb_lock); SetHPageMigratable(page); list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); spin_unlock_irq(&hugetlb_lock); put_page(page); } void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) { struct hstate *h = page_hstate(oldpage); hugetlb_cgroup_migrate(oldpage, newpage); set_page_owner_migrate_reason(newpage, reason); /* * transfer temporary state of the new huge page. This is * reverse to other transitions because the newpage is going to * be final while the old one will be freed so it takes over * the temporary status. * * Also note that we have to transfer the per-node surplus state * here as well otherwise the global surplus count will not match * the per-node's. */ if (HPageTemporary(newpage)) { int old_nid = page_to_nid(oldpage); int new_nid = page_to_nid(newpage); SetHPageTemporary(oldpage); ClearHPageTemporary(newpage); /* * There is no need to transfer the per-node surplus state * when we do not cross the node. */ if (new_nid == old_nid) return; spin_lock_irq(&hugetlb_lock); if (h->surplus_huge_pages_node[old_nid]) { h->surplus_huge_pages_node[old_nid]--; h->surplus_huge_pages_node[new_nid]++; } spin_unlock_irq(&hugetlb_lock); } } /* * This function will unconditionally remove all the shared pmd pgtable entries * within the specific vma for a hugetlbfs memory range. */ void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { struct hstate *h = hstate_vma(vma); unsigned long sz = huge_page_size(h); struct mm_struct *mm = vma->vm_mm; struct mmu_notifier_range range; unsigned long address, start, end; spinlock_t *ptl; pte_t *ptep; if (!(vma->vm_flags & VM_MAYSHARE)) return; start = ALIGN(vma->vm_start, PUD_SIZE); end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); if (start >= end) return; /* * No need to call adjust_range_if_pmd_sharing_possible(), because * we have already done the PUD_SIZE alignment. */ mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, start, end); mmu_notifier_invalidate_range_start(&range); i_mmap_lock_write(vma->vm_file->f_mapping); for (address = start; address < end; address += PUD_SIZE) { unsigned long tmp = address; ptep = huge_pte_offset(mm, address, sz); if (!ptep) continue; ptl = huge_pte_lock(h, mm, ptep); /* We don't want 'address' to be changed */ huge_pmd_unshare(mm, vma, &tmp, ptep); spin_unlock(ptl); } flush_hugetlb_tlb_range(vma, start, end); i_mmap_unlock_write(vma->vm_file->f_mapping); /* * No need to call mmu_notifier_invalidate_range(), see * Documentation/vm/mmu_notifier.rst. */ mmu_notifier_invalidate_range_end(&range); } #ifdef CONFIG_CMA static bool cma_reserve_called __initdata; static int __init cmdline_parse_hugetlb_cma(char *p) { hugetlb_cma_size = memparse(p, &p); return 0; } early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); void __init hugetlb_cma_reserve(int order) { unsigned long size, reserved, per_node; int nid; cma_reserve_called = true; if (!hugetlb_cma_size) return; if (hugetlb_cma_size < (PAGE_SIZE << order)) { pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", (PAGE_SIZE << order) / SZ_1M); return; } /* * If 3 GB area is requested on a machine with 4 numa nodes, * let's allocate 1 GB on first three nodes and ignore the last one. */ per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", hugetlb_cma_size / SZ_1M, per_node / SZ_1M); reserved = 0; for_each_node_state(nid, N_ONLINE) { int res; char name[CMA_MAX_NAME]; size = min(per_node, hugetlb_cma_size - reserved); size = round_up(size, PAGE_SIZE << order); snprintf(name, sizeof(name), "hugetlb%d", nid); res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order, 0, false, name, &hugetlb_cma[nid], nid); if (res) { pr_warn("hugetlb_cma: reservation failed: err %d, node %d", res, nid); continue; } reserved += size; pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", size / SZ_1M, nid); if (reserved >= hugetlb_cma_size) break; } } void __init hugetlb_cma_check(void) { if (!hugetlb_cma_size || cma_reserve_called) return; pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); } #endif /* CONFIG_CMA */