/* * Copyright © 2011-2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Ben Widawsky * */ /* * This file implements HW context support. On gen5+ a HW context consists of an * opaque GPU object which is referenced at times of context saves and restores. * With RC6 enabled, the context is also referenced as the GPU enters and exists * from RC6 (GPU has it's own internal power context, except on gen5). Though * something like a context does exist for the media ring, the code only * supports contexts for the render ring. * * In software, there is a distinction between contexts created by the user, * and the default HW context. The default HW context is used by GPU clients * that do not request setup of their own hardware context. The default * context's state is never restored to help prevent programming errors. This * would happen if a client ran and piggy-backed off another clients GPU state. * The default context only exists to give the GPU some offset to load as the * current to invoke a save of the context we actually care about. In fact, the * code could likely be constructed, albeit in a more complicated fashion, to * never use the default context, though that limits the driver's ability to * swap out, and/or destroy other contexts. * * All other contexts are created as a request by the GPU client. These contexts * store GPU state, and thus allow GPU clients to not re-emit state (and * potentially query certain state) at any time. The kernel driver makes * certain that the appropriate commands are inserted. * * The context life cycle is semi-complicated in that context BOs may live * longer than the context itself because of the way the hardware, and object * tracking works. Below is a very crude representation of the state machine * describing the context life. * refcount pincount active * S0: initial state 0 0 0 * S1: context created 1 0 0 * S2: context is currently running 2 1 X * S3: GPU referenced, but not current 2 0 1 * S4: context is current, but destroyed 1 1 0 * S5: like S3, but destroyed 1 0 1 * * The most common (but not all) transitions: * S0->S1: client creates a context * S1->S2: client submits execbuf with context * S2->S3: other clients submits execbuf with context * S3->S1: context object was retired * S3->S2: clients submits another execbuf * S2->S4: context destroy called with current context * S3->S5->S0: destroy path * S4->S5->S0: destroy path on current context * * There are two confusing terms used above: * The "current context" means the context which is currently running on the * GPU. The GPU has loaded its state already and has stored away the gtt * offset of the BO. The GPU is not actively referencing the data at this * offset, but it will on the next context switch. The only way to avoid this * is to do a GPU reset. * * An "active context' is one which was previously the "current context" and is * on the active list waiting for the next context switch to occur. Until this * happens, the object must remain at the same gtt offset. It is therefore * possible to destroy a context, but it is still active. * */ #include #include #include "i915_drv.h" #include "i915_trace.h" #define ALL_L3_SLICES(dev) (1 << NUM_L3_SLICES(dev)) - 1 /* This is a HW constraint. The value below is the largest known requirement * I've seen in a spec to date, and that was a workaround for a non-shipping * part. It should be safe to decrease this, but it's more future proof as is. */ #define GEN6_CONTEXT_ALIGN (64<<10) #define GEN7_CONTEXT_ALIGN 4096 static size_t get_context_alignment(struct drm_i915_private *dev_priv) { if (IS_GEN6(dev_priv)) return GEN6_CONTEXT_ALIGN; return GEN7_CONTEXT_ALIGN; } static int get_context_size(struct drm_i915_private *dev_priv) { int ret; u32 reg; switch (INTEL_GEN(dev_priv)) { case 6: reg = I915_READ(CXT_SIZE); ret = GEN6_CXT_TOTAL_SIZE(reg) * 64; break; case 7: reg = I915_READ(GEN7_CXT_SIZE); if (IS_HASWELL(dev_priv)) ret = HSW_CXT_TOTAL_SIZE; else ret = GEN7_CXT_TOTAL_SIZE(reg) * 64; break; case 8: ret = GEN8_CXT_TOTAL_SIZE; break; default: BUG(); } return ret; } void i915_gem_context_free(struct kref *ctx_ref) { struct i915_gem_context *ctx = container_of(ctx_ref, typeof(*ctx), ref); int i; lockdep_assert_held(&ctx->i915->drm.struct_mutex); trace_i915_context_free(ctx); GEM_BUG_ON(!ctx->closed); i915_ppgtt_put(ctx->ppgtt); for (i = 0; i < I915_NUM_ENGINES; i++) { struct intel_context *ce = &ctx->engine[i]; if (!ce->state) continue; WARN_ON(ce->pin_count); if (ce->ring) intel_ring_free(ce->ring); __i915_gem_object_release_unless_active(ce->state->obj); } kfree(ctx->name); put_pid(ctx->pid); list_del(&ctx->link); ida_simple_remove(&ctx->i915->context_hw_ida, ctx->hw_id); kfree(ctx); } static struct drm_i915_gem_object * alloc_context_obj(struct drm_device *dev, u64 size) { struct drm_i915_gem_object *obj; int ret; lockdep_assert_held(&dev->struct_mutex); obj = i915_gem_object_create(dev, size); if (IS_ERR(obj)) return obj; /* * Try to make the context utilize L3 as well as LLC. * * On VLV we don't have L3 controls in the PTEs so we * shouldn't touch the cache level, especially as that * would make the object snooped which might have a * negative performance impact. * * Snooping is required on non-llc platforms in execlist * mode, but since all GGTT accesses use PAT entry 0 we * get snooping anyway regardless of cache_level. * * This is only applicable for Ivy Bridge devices since * later platforms don't have L3 control bits in the PTE. */ if (IS_IVYBRIDGE(to_i915(dev))) { ret = i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC); /* Failure shouldn't ever happen this early */ if (WARN_ON(ret)) { i915_gem_object_put(obj); return ERR_PTR(ret); } } return obj; } static void i915_ppgtt_close(struct i915_address_space *vm) { struct list_head *phases[] = { &vm->active_list, &vm->inactive_list, &vm->unbound_list, NULL, }, **phase; GEM_BUG_ON(vm->closed); vm->closed = true; for (phase = phases; *phase; phase++) { struct i915_vma *vma, *vn; list_for_each_entry_safe(vma, vn, *phase, vm_link) if (!i915_vma_is_closed(vma)) i915_vma_close(vma); } } static void context_close(struct i915_gem_context *ctx) { GEM_BUG_ON(ctx->closed); ctx->closed = true; if (ctx->ppgtt) i915_ppgtt_close(&ctx->ppgtt->base); ctx->file_priv = ERR_PTR(-EBADF); i915_gem_context_put(ctx); } static int assign_hw_id(struct drm_i915_private *dev_priv, unsigned *out) { int ret; ret = ida_simple_get(&dev_priv->context_hw_ida, 0, MAX_CONTEXT_HW_ID, GFP_KERNEL); if (ret < 0) { /* Contexts are only released when no longer active. * Flush any pending retires to hopefully release some * stale contexts and try again. */ i915_gem_retire_requests(dev_priv); ret = ida_simple_get(&dev_priv->context_hw_ida, 0, MAX_CONTEXT_HW_ID, GFP_KERNEL); if (ret < 0) return ret; } *out = ret; return 0; } static struct i915_gem_context * __create_hw_context(struct drm_device *dev, struct drm_i915_file_private *file_priv) { struct drm_i915_private *dev_priv = to_i915(dev); struct i915_gem_context *ctx; int ret; ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (ctx == NULL) return ERR_PTR(-ENOMEM); ret = assign_hw_id(dev_priv, &ctx->hw_id); if (ret) { kfree(ctx); return ERR_PTR(ret); } kref_init(&ctx->ref); list_add_tail(&ctx->link, &dev_priv->context_list); ctx->i915 = dev_priv; ctx->ggtt_alignment = get_context_alignment(dev_priv); if (dev_priv->hw_context_size) { struct drm_i915_gem_object *obj; struct i915_vma *vma; obj = alloc_context_obj(dev, dev_priv->hw_context_size); if (IS_ERR(obj)) { ret = PTR_ERR(obj); goto err_out; } vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL); if (IS_ERR(vma)) { i915_gem_object_put(obj); ret = PTR_ERR(vma); goto err_out; } ctx->engine[RCS].state = vma; } /* Default context will never have a file_priv */ ret = DEFAULT_CONTEXT_HANDLE; if (file_priv) { ret = idr_alloc(&file_priv->context_idr, ctx, DEFAULT_CONTEXT_HANDLE, 0, GFP_KERNEL); if (ret < 0) goto err_out; } ctx->user_handle = ret; ctx->file_priv = file_priv; if (file_priv) { ctx->pid = get_task_pid(current, PIDTYPE_PID); ctx->name = kasprintf(GFP_KERNEL, "%s[%d]/%x", current->comm, pid_nr(ctx->pid), ctx->user_handle); if (!ctx->name) { ret = -ENOMEM; goto err_pid; } } /* NB: Mark all slices as needing a remap so that when the context first * loads it will restore whatever remap state already exists. If there * is no remap info, it will be a NOP. */ ctx->remap_slice = ALL_L3_SLICES(dev_priv); ctx->bannable = true; ctx->ring_size = 4 * PAGE_SIZE; ctx->desc_template = GEN8_CTX_ADDRESSING_MODE(dev_priv) << GEN8_CTX_ADDRESSING_MODE_SHIFT; ATOMIC_INIT_NOTIFIER_HEAD(&ctx->status_notifier); return ctx; err_pid: put_pid(ctx->pid); idr_remove(&file_priv->context_idr, ctx->user_handle); err_out: context_close(ctx); return ERR_PTR(ret); } /** * The default context needs to exist per ring that uses contexts. It stores the * context state of the GPU for applications that don't utilize HW contexts, as * well as an idle case. */ static struct i915_gem_context * i915_gem_create_context(struct drm_device *dev, struct drm_i915_file_private *file_priv) { struct i915_gem_context *ctx; lockdep_assert_held(&dev->struct_mutex); ctx = __create_hw_context(dev, file_priv); if (IS_ERR(ctx)) return ctx; if (USES_FULL_PPGTT(dev)) { struct i915_hw_ppgtt *ppgtt; ppgtt = i915_ppgtt_create(to_i915(dev), file_priv, ctx->name); if (IS_ERR(ppgtt)) { DRM_DEBUG_DRIVER("PPGTT setup failed (%ld)\n", PTR_ERR(ppgtt)); idr_remove(&file_priv->context_idr, ctx->user_handle); context_close(ctx); return ERR_CAST(ppgtt); } ctx->ppgtt = ppgtt; } trace_i915_context_create(ctx); return ctx; } /** * i915_gem_context_create_gvt - create a GVT GEM context * @dev: drm device * * * This function is used to create a GVT specific GEM context. * * Returns: * pointer to i915_gem_context on success, error pointer if failed * */ struct i915_gem_context * i915_gem_context_create_gvt(struct drm_device *dev) { struct i915_gem_context *ctx; int ret; if (!IS_ENABLED(CONFIG_DRM_I915_GVT)) return ERR_PTR(-ENODEV); ret = i915_mutex_lock_interruptible(dev); if (ret) return ERR_PTR(ret); ctx = i915_gem_create_context(dev, NULL); if (IS_ERR(ctx)) goto out; ctx->execlists_force_single_submission = true; ctx->ring_size = 512 * PAGE_SIZE; /* Max ring buffer size */ out: mutex_unlock(&dev->struct_mutex); return ctx; } static void i915_gem_context_unpin(struct i915_gem_context *ctx, struct intel_engine_cs *engine) { if (i915.enable_execlists) { intel_lr_context_unpin(ctx, engine); } else { struct intel_context *ce = &ctx->engine[engine->id]; if (ce->state) i915_vma_unpin(ce->state); i915_gem_context_put(ctx); } } int i915_gem_context_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct i915_gem_context *ctx; /* Init should only be called once per module load. Eventually the * restriction on the context_disabled check can be loosened. */ if (WARN_ON(dev_priv->kernel_context)) return 0; if (intel_vgpu_active(dev_priv) && HAS_LOGICAL_RING_CONTEXTS(dev_priv)) { if (!i915.enable_execlists) { DRM_INFO("Only EXECLIST mode is supported in vgpu.\n"); return -EINVAL; } } /* Using the simple ida interface, the max is limited by sizeof(int) */ BUILD_BUG_ON(MAX_CONTEXT_HW_ID > INT_MAX); ida_init(&dev_priv->context_hw_ida); if (i915.enable_execlists) { /* NB: intentionally left blank. We will allocate our own * backing objects as we need them, thank you very much */ dev_priv->hw_context_size = 0; } else if (HAS_HW_CONTEXTS(dev_priv)) { dev_priv->hw_context_size = round_up(get_context_size(dev_priv), 4096); if (dev_priv->hw_context_size > (1<<20)) { DRM_DEBUG_DRIVER("Disabling HW Contexts; invalid size %d\n", dev_priv->hw_context_size); dev_priv->hw_context_size = 0; } } ctx = i915_gem_create_context(dev, NULL); if (IS_ERR(ctx)) { DRM_ERROR("Failed to create default global context (error %ld)\n", PTR_ERR(ctx)); return PTR_ERR(ctx); } ctx->priority = I915_PRIORITY_MIN; /* lowest priority; idle task */ dev_priv->kernel_context = ctx; DRM_DEBUG_DRIVER("%s context support initialized\n", i915.enable_execlists ? "LR" : dev_priv->hw_context_size ? "HW" : "fake"); return 0; } void i915_gem_context_lost(struct drm_i915_private *dev_priv) { struct intel_engine_cs *engine; enum intel_engine_id id; lockdep_assert_held(&dev_priv->drm.struct_mutex); for_each_engine(engine, dev_priv, id) { if (engine->last_context) { i915_gem_context_unpin(engine->last_context, engine); engine->last_context = NULL; } } /* Force the GPU state to be restored on enabling */ if (!i915.enable_execlists) { struct i915_gem_context *ctx; list_for_each_entry(ctx, &dev_priv->context_list, link) { if (!i915_gem_context_is_default(ctx)) continue; for_each_engine(engine, dev_priv, id) ctx->engine[engine->id].initialised = false; ctx->remap_slice = ALL_L3_SLICES(dev_priv); } for_each_engine(engine, dev_priv, id) { struct intel_context *kce = &dev_priv->kernel_context->engine[engine->id]; kce->initialised = true; } } } void i915_gem_context_fini(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct i915_gem_context *dctx = dev_priv->kernel_context; lockdep_assert_held(&dev->struct_mutex); context_close(dctx); dev_priv->kernel_context = NULL; ida_destroy(&dev_priv->context_hw_ida); } static int context_idr_cleanup(int id, void *p, void *data) { struct i915_gem_context *ctx = p; context_close(ctx); return 0; } int i915_gem_context_open(struct drm_device *dev, struct drm_file *file) { struct drm_i915_file_private *file_priv = file->driver_priv; struct i915_gem_context *ctx; idr_init(&file_priv->context_idr); mutex_lock(&dev->struct_mutex); ctx = i915_gem_create_context(dev, file_priv); mutex_unlock(&dev->struct_mutex); if (IS_ERR(ctx)) { idr_destroy(&file_priv->context_idr); return PTR_ERR(ctx); } return 0; } void i915_gem_context_close(struct drm_device *dev, struct drm_file *file) { struct drm_i915_file_private *file_priv = file->driver_priv; lockdep_assert_held(&dev->struct_mutex); idr_for_each(&file_priv->context_idr, context_idr_cleanup, NULL); idr_destroy(&file_priv->context_idr); } static inline int mi_set_context(struct drm_i915_gem_request *req, u32 hw_flags) { struct drm_i915_private *dev_priv = req->i915; struct intel_ring *ring = req->ring; struct intel_engine_cs *engine = req->engine; enum intel_engine_id id; u32 flags = hw_flags | MI_MM_SPACE_GTT; const int num_rings = /* Use an extended w/a on ivb+ if signalling from other rings */ i915.semaphores ? INTEL_INFO(dev_priv)->num_rings - 1 : 0; int len, ret; /* w/a: If Flush TLB Invalidation Mode is enabled, driver must do a TLB * invalidation prior to MI_SET_CONTEXT. On GEN6 we don't set the value * explicitly, so we rely on the value at ring init, stored in * itlb_before_ctx_switch. */ if (IS_GEN6(dev_priv)) { ret = engine->emit_flush(req, EMIT_INVALIDATE); if (ret) return ret; } /* These flags are for resource streamer on HSW+ */ if (IS_HASWELL(dev_priv) || INTEL_GEN(dev_priv) >= 8) flags |= (HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN); else if (INTEL_GEN(dev_priv) < 8) flags |= (MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN); len = 4; if (INTEL_GEN(dev_priv) >= 7) len += 2 + (num_rings ? 4*num_rings + 6 : 0); ret = intel_ring_begin(req, len); if (ret) return ret; /* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */ if (INTEL_GEN(dev_priv) >= 7) { intel_ring_emit(ring, MI_ARB_ON_OFF | MI_ARB_DISABLE); if (num_rings) { struct intel_engine_cs *signaller; intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_rings)); for_each_engine(signaller, dev_priv, id) { if (signaller == engine) continue; intel_ring_emit_reg(ring, RING_PSMI_CTL(signaller->mmio_base)); intel_ring_emit(ring, _MASKED_BIT_ENABLE(GEN6_PSMI_SLEEP_MSG_DISABLE)); } } } intel_ring_emit(ring, MI_NOOP); intel_ring_emit(ring, MI_SET_CONTEXT); intel_ring_emit(ring, i915_ggtt_offset(req->ctx->engine[RCS].state) | flags); /* * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP * WaMiSetContext_Hang:snb,ivb,vlv */ intel_ring_emit(ring, MI_NOOP); if (INTEL_GEN(dev_priv) >= 7) { if (num_rings) { struct intel_engine_cs *signaller; i915_reg_t last_reg = {}; /* keep gcc quiet */ intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_rings)); for_each_engine(signaller, dev_priv, id) { if (signaller == engine) continue; last_reg = RING_PSMI_CTL(signaller->mmio_base); intel_ring_emit_reg(ring, last_reg); intel_ring_emit(ring, _MASKED_BIT_DISABLE(GEN6_PSMI_SLEEP_MSG_DISABLE)); } /* Insert a delay before the next switch! */ intel_ring_emit(ring, MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT); intel_ring_emit_reg(ring, last_reg); intel_ring_emit(ring, i915_ggtt_offset(engine->scratch)); intel_ring_emit(ring, MI_NOOP); } intel_ring_emit(ring, MI_ARB_ON_OFF | MI_ARB_ENABLE); } intel_ring_advance(ring); return ret; } static int remap_l3(struct drm_i915_gem_request *req, int slice) { u32 *remap_info = req->i915->l3_parity.remap_info[slice]; struct intel_ring *ring = req->ring; int i, ret; if (!remap_info) return 0; ret = intel_ring_begin(req, GEN7_L3LOG_SIZE/4 * 2 + 2); if (ret) return ret; /* * Note: We do not worry about the concurrent register cacheline hang * here because no other code should access these registers other than * at initialization time. */ intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4)); for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) { intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i)); intel_ring_emit(ring, remap_info[i]); } intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); return 0; } static inline bool skip_rcs_switch(struct i915_hw_ppgtt *ppgtt, struct intel_engine_cs *engine, struct i915_gem_context *to) { if (to->remap_slice) return false; if (!to->engine[RCS].initialised) return false; if (ppgtt && (intel_engine_flag(engine) & ppgtt->pd_dirty_rings)) return false; return to == engine->last_context; } static bool needs_pd_load_pre(struct i915_hw_ppgtt *ppgtt, struct intel_engine_cs *engine, struct i915_gem_context *to) { if (!ppgtt) return false; /* Always load the ppgtt on first use */ if (!engine->last_context) return true; /* Same context without new entries, skip */ if (engine->last_context == to && !(intel_engine_flag(engine) & ppgtt->pd_dirty_rings)) return false; if (engine->id != RCS) return true; if (INTEL_GEN(engine->i915) < 8) return true; return false; } static bool needs_pd_load_post(struct i915_hw_ppgtt *ppgtt, struct i915_gem_context *to, u32 hw_flags) { if (!ppgtt) return false; if (!IS_GEN8(to->i915)) return false; if (hw_flags & MI_RESTORE_INHIBIT) return true; return false; } struct i915_vma * i915_gem_context_pin_legacy(struct i915_gem_context *ctx, unsigned int flags) { struct i915_vma *vma = ctx->engine[RCS].state; int ret; /* Clear this page out of any CPU caches for coherent swap-in/out. * We only want to do this on the first bind so that we do not stall * on an active context (which by nature is already on the GPU). */ if (!(vma->flags & I915_VMA_GLOBAL_BIND)) { ret = i915_gem_object_set_to_gtt_domain(vma->obj, false); if (ret) return ERR_PTR(ret); } ret = i915_vma_pin(vma, 0, ctx->ggtt_alignment, PIN_GLOBAL | flags); if (ret) return ERR_PTR(ret); return vma; } static int do_rcs_switch(struct drm_i915_gem_request *req) { struct i915_gem_context *to = req->ctx; struct intel_engine_cs *engine = req->engine; struct i915_hw_ppgtt *ppgtt = to->ppgtt ?: req->i915->mm.aliasing_ppgtt; struct i915_vma *vma; struct i915_gem_context *from; u32 hw_flags; int ret, i; if (skip_rcs_switch(ppgtt, engine, to)) return 0; /* Trying to pin first makes error handling easier. */ vma = i915_gem_context_pin_legacy(to, 0); if (IS_ERR(vma)) return PTR_ERR(vma); /* * Pin can switch back to the default context if we end up calling into * evict_everything - as a last ditch gtt defrag effort that also * switches to the default context. Hence we need to reload from here. * * XXX: Doing so is painfully broken! */ from = engine->last_context; if (needs_pd_load_pre(ppgtt, engine, to)) { /* Older GENs and non render rings still want the load first, * "PP_DCLV followed by PP_DIR_BASE register through Load * Register Immediate commands in Ring Buffer before submitting * a context."*/ trace_switch_mm(engine, to); ret = ppgtt->switch_mm(ppgtt, req); if (ret) goto err; } if (!to->engine[RCS].initialised || i915_gem_context_is_default(to)) /* NB: If we inhibit the restore, the context is not allowed to * die because future work may end up depending on valid address * space. This means we must enforce that a page table load * occur when this occurs. */ hw_flags = MI_RESTORE_INHIBIT; else if (ppgtt && intel_engine_flag(engine) & ppgtt->pd_dirty_rings) hw_flags = MI_FORCE_RESTORE; else hw_flags = 0; if (to != from || (hw_flags & MI_FORCE_RESTORE)) { ret = mi_set_context(req, hw_flags); if (ret) goto err; } /* The backing object for the context is done after switching to the * *next* context. Therefore we cannot retire the previous context until * the next context has already started running. In fact, the below code * is a bit suboptimal because the retiring can occur simply after the * MI_SET_CONTEXT instead of when the next seqno has completed. */ if (from != NULL) { /* As long as MI_SET_CONTEXT is serializing, ie. it flushes the * whole damn pipeline, we don't need to explicitly mark the * object dirty. The only exception is that the context must be * correct in case the object gets swapped out. Ideally we'd be * able to defer doing this until we know the object would be * swapped, but there is no way to do that yet. */ i915_vma_move_to_active(from->engine[RCS].state, req, 0); /* state is kept alive until the next request */ i915_vma_unpin(from->engine[RCS].state); i915_gem_context_put(from); } engine->last_context = i915_gem_context_get(to); /* GEN8 does *not* require an explicit reload if the PDPs have been * setup, and we do not wish to move them. */ if (needs_pd_load_post(ppgtt, to, hw_flags)) { trace_switch_mm(engine, to); ret = ppgtt->switch_mm(ppgtt, req); /* The hardware context switch is emitted, but we haven't * actually changed the state - so it's probably safe to bail * here. Still, let the user know something dangerous has * happened. */ if (ret) return ret; } if (ppgtt) ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine); for (i = 0; i < MAX_L3_SLICES; i++) { if (!(to->remap_slice & (1<remap_slice &= ~(1<engine[RCS].initialised) { if (engine->init_context) { ret = engine->init_context(req); if (ret) return ret; } to->engine[RCS].initialised = true; } return 0; err: i915_vma_unpin(vma); return ret; } /** * i915_switch_context() - perform a GPU context switch. * @req: request for which we'll execute the context switch * * The context life cycle is simple. The context refcount is incremented and * decremented by 1 and create and destroy. If the context is in use by the GPU, * it will have a refcount > 1. This allows us to destroy the context abstract * object while letting the normal object tracking destroy the backing BO. * * This function should not be used in execlists mode. Instead the context is * switched by writing to the ELSP and requests keep a reference to their * context. */ int i915_switch_context(struct drm_i915_gem_request *req) { struct intel_engine_cs *engine = req->engine; lockdep_assert_held(&req->i915->drm.struct_mutex); if (i915.enable_execlists) return 0; if (!req->ctx->engine[engine->id].state) { struct i915_gem_context *to = req->ctx; struct i915_hw_ppgtt *ppgtt = to->ppgtt ?: req->i915->mm.aliasing_ppgtt; if (needs_pd_load_pre(ppgtt, engine, to)) { int ret; trace_switch_mm(engine, to); ret = ppgtt->switch_mm(ppgtt, req); if (ret) return ret; ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine); } if (to != engine->last_context) { if (engine->last_context) i915_gem_context_put(engine->last_context); engine->last_context = i915_gem_context_get(to); } return 0; } return do_rcs_switch(req); } int i915_gem_switch_to_kernel_context(struct drm_i915_private *dev_priv) { struct intel_engine_cs *engine; struct i915_gem_timeline *timeline; enum intel_engine_id id; lockdep_assert_held(&dev_priv->drm.struct_mutex); for_each_engine(engine, dev_priv, id) { struct drm_i915_gem_request *req; int ret; req = i915_gem_request_alloc(engine, dev_priv->kernel_context); if (IS_ERR(req)) return PTR_ERR(req); /* Queue this switch after all other activity */ list_for_each_entry(timeline, &dev_priv->gt.timelines, link) { struct drm_i915_gem_request *prev; struct intel_timeline *tl; tl = &timeline->engine[engine->id]; prev = i915_gem_active_raw(&tl->last_request, &dev_priv->drm.struct_mutex); if (prev) i915_sw_fence_await_sw_fence_gfp(&req->submit, &prev->submit, GFP_KERNEL); } ret = i915_switch_context(req); i915_add_request_no_flush(req); if (ret) return ret; } return 0; } static bool contexts_enabled(struct drm_device *dev) { return i915.enable_execlists || to_i915(dev)->hw_context_size; } static bool client_is_banned(struct drm_i915_file_private *file_priv) { return file_priv->context_bans > I915_MAX_CLIENT_CONTEXT_BANS; } int i915_gem_context_create_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_context_create *args = data; struct drm_i915_file_private *file_priv = file->driver_priv; struct i915_gem_context *ctx; int ret; if (!contexts_enabled(dev)) return -ENODEV; if (args->pad != 0) return -EINVAL; if (client_is_banned(file_priv)) { DRM_DEBUG("client %s[%d] banned from creating ctx\n", current->comm, pid_nr(get_task_pid(current, PIDTYPE_PID))); return -EIO; } ret = i915_mutex_lock_interruptible(dev); if (ret) return ret; ctx = i915_gem_create_context(dev, file_priv); mutex_unlock(&dev->struct_mutex); if (IS_ERR(ctx)) return PTR_ERR(ctx); args->ctx_id = ctx->user_handle; DRM_DEBUG("HW context %d created\n", args->ctx_id); return 0; } int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_context_destroy *args = data; struct drm_i915_file_private *file_priv = file->driver_priv; struct i915_gem_context *ctx; int ret; if (args->pad != 0) return -EINVAL; if (args->ctx_id == DEFAULT_CONTEXT_HANDLE) return -ENOENT; ret = i915_mutex_lock_interruptible(dev); if (ret) return ret; ctx = i915_gem_context_lookup(file_priv, args->ctx_id); if (IS_ERR(ctx)) { mutex_unlock(&dev->struct_mutex); return PTR_ERR(ctx); } idr_remove(&file_priv->context_idr, ctx->user_handle); context_close(ctx); mutex_unlock(&dev->struct_mutex); DRM_DEBUG("HW context %d destroyed\n", args->ctx_id); return 0; } int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_file_private *file_priv = file->driver_priv; struct drm_i915_gem_context_param *args = data; struct i915_gem_context *ctx; int ret; ret = i915_mutex_lock_interruptible(dev); if (ret) return ret; ctx = i915_gem_context_lookup(file_priv, args->ctx_id); if (IS_ERR(ctx)) { mutex_unlock(&dev->struct_mutex); return PTR_ERR(ctx); } args->size = 0; switch (args->param) { case I915_CONTEXT_PARAM_BAN_PERIOD: ret = -EINVAL; break; case I915_CONTEXT_PARAM_NO_ZEROMAP: args->value = ctx->flags & CONTEXT_NO_ZEROMAP; break; case I915_CONTEXT_PARAM_GTT_SIZE: if (ctx->ppgtt) args->value = ctx->ppgtt->base.total; else if (to_i915(dev)->mm.aliasing_ppgtt) args->value = to_i915(dev)->mm.aliasing_ppgtt->base.total; else args->value = to_i915(dev)->ggtt.base.total; break; case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE: args->value = !!(ctx->flags & CONTEXT_NO_ERROR_CAPTURE); break; case I915_CONTEXT_PARAM_BANNABLE: args->value = ctx->bannable; break; default: ret = -EINVAL; break; } mutex_unlock(&dev->struct_mutex); return ret; } int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_file_private *file_priv = file->driver_priv; struct drm_i915_gem_context_param *args = data; struct i915_gem_context *ctx; int ret; ret = i915_mutex_lock_interruptible(dev); if (ret) return ret; ctx = i915_gem_context_lookup(file_priv, args->ctx_id); if (IS_ERR(ctx)) { mutex_unlock(&dev->struct_mutex); return PTR_ERR(ctx); } switch (args->param) { case I915_CONTEXT_PARAM_BAN_PERIOD: ret = -EINVAL; break; case I915_CONTEXT_PARAM_NO_ZEROMAP: if (args->size) { ret = -EINVAL; } else { ctx->flags &= ~CONTEXT_NO_ZEROMAP; ctx->flags |= args->value ? CONTEXT_NO_ZEROMAP : 0; } break; case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE: if (args->size) { ret = -EINVAL; } else { if (args->value) ctx->flags |= CONTEXT_NO_ERROR_CAPTURE; else ctx->flags &= ~CONTEXT_NO_ERROR_CAPTURE; } break; case I915_CONTEXT_PARAM_BANNABLE: if (args->size) ret = -EINVAL; else if (!capable(CAP_SYS_ADMIN) && !args->value) ret = -EPERM; else ctx->bannable = args->value; break; default: ret = -EINVAL; break; } mutex_unlock(&dev->struct_mutex); return ret; } int i915_gem_context_reset_stats_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_private *dev_priv = to_i915(dev); struct drm_i915_reset_stats *args = data; struct i915_gem_context *ctx; int ret; if (args->flags || args->pad) return -EINVAL; if (args->ctx_id == DEFAULT_CONTEXT_HANDLE && !capable(CAP_SYS_ADMIN)) return -EPERM; ret = i915_mutex_lock_interruptible(dev); if (ret) return ret; ctx = i915_gem_context_lookup(file->driver_priv, args->ctx_id); if (IS_ERR(ctx)) { mutex_unlock(&dev->struct_mutex); return PTR_ERR(ctx); } if (capable(CAP_SYS_ADMIN)) args->reset_count = i915_reset_count(&dev_priv->gpu_error); else args->reset_count = 0; args->batch_active = ctx->guilty_count; args->batch_pending = ctx->active_count; mutex_unlock(&dev->struct_mutex); return 0; }