/* SPDX-License-Identifier: MIT */ /* * Copyright © 2014-2019 Intel Corporation */ #ifndef _INTEL_GUC_H_ #define _INTEL_GUC_H_ #include #include #include "intel_uncore.h" #include "intel_guc_fw.h" #include "intel_guc_fwif.h" #include "intel_guc_ct.h" #include "intel_guc_log.h" #include "intel_guc_reg.h" #include "intel_uc_fw.h" #include "i915_utils.h" #include "i915_vma.h" struct __guc_ads_blob; /* * Top level structure of GuC. It handles firmware loading and manages client * pool. intel_guc owns a intel_guc_client to replace the legacy ExecList * submission. */ struct intel_guc { struct intel_uc_fw fw; struct intel_guc_log log; struct intel_guc_ct ct; /* Global engine used to submit requests to GuC */ struct i915_sched_engine *sched_engine; struct i915_request *stalled_request; /* intel_guc_recv interrupt related state */ spinlock_t irq_lock; unsigned int msg_enabled_mask; atomic_t outstanding_submission_g2h; struct { void (*reset)(struct intel_guc *guc); void (*enable)(struct intel_guc *guc); void (*disable)(struct intel_guc *guc); } interrupts; /* * contexts_lock protects the pool of free guc ids and a linked list of * guc ids available to be stolen */ spinlock_t contexts_lock; struct ida guc_ids; struct list_head guc_id_list; bool submission_selected; struct i915_vma *ads_vma; struct __guc_ads_blob *ads_blob; u32 ads_regset_size; struct i915_vma *lrc_desc_pool; void *lrc_desc_pool_vaddr; /* guc_id to intel_context lookup */ struct xarray context_lookup; /* Control params for fw initialization */ u32 params[GUC_CTL_MAX_DWORDS]; /* GuC's FW specific registers used in MMIO send */ struct { u32 base; unsigned int count; enum forcewake_domains fw_domains; } send_regs; /* register used to send interrupts to the GuC FW */ i915_reg_t notify_reg; /* Store msg (e.g. log flush) that we see while CTBs are disabled */ u32 mmio_msg; /* To serialize the intel_guc_send actions */ struct mutex send_mutex; }; static inline struct intel_guc *log_to_guc(struct intel_guc_log *log) { return container_of(log, struct intel_guc, log); } static inline int intel_guc_send(struct intel_guc *guc, const u32 *action, u32 len) { return intel_guc_ct_send(&guc->ct, action, len, NULL, 0, 0); } static inline int intel_guc_send_nb(struct intel_guc *guc, const u32 *action, u32 len, u32 g2h_len_dw) { return intel_guc_ct_send(&guc->ct, action, len, NULL, 0, MAKE_SEND_FLAGS(g2h_len_dw)); } static inline int intel_guc_send_and_receive(struct intel_guc *guc, const u32 *action, u32 len, u32 *response_buf, u32 response_buf_size) { return intel_guc_ct_send(&guc->ct, action, len, response_buf, response_buf_size, 0); } static inline int intel_guc_send_busy_loop(struct intel_guc *guc, const u32 *action, u32 len, u32 g2h_len_dw, bool loop) { int err; unsigned int sleep_period_ms = 1; bool not_atomic = !in_atomic() && !irqs_disabled(); /* * FIXME: Have caller pass in if we are in an atomic context to avoid * using in_atomic(). It is likely safe here as we check for irqs * disabled which basically all the spin locks in the i915 do but * regardless this should be cleaned up. */ /* No sleeping with spin locks, just busy loop */ might_sleep_if(loop && not_atomic); retry: err = intel_guc_send_nb(guc, action, len, g2h_len_dw); if (unlikely(err == -EBUSY && loop)) { if (likely(not_atomic)) { if (msleep_interruptible(sleep_period_ms)) return -EINTR; sleep_period_ms = sleep_period_ms << 1; } else { cpu_relax(); } goto retry; } return err; } static inline void intel_guc_to_host_event_handler(struct intel_guc *guc) { intel_guc_ct_event_handler(&guc->ct); } /* GuC addresses above GUC_GGTT_TOP also don't map through the GTT */ #define GUC_GGTT_TOP 0xFEE00000 /** * intel_guc_ggtt_offset() - Get and validate the GGTT offset of @vma * @guc: intel_guc structure. * @vma: i915 graphics virtual memory area. * * GuC does not allow any gfx GGTT address that falls into range * [0, ggtt.pin_bias), which is reserved for Boot ROM, SRAM and WOPCM. * Currently, in order to exclude [0, ggtt.pin_bias) address space from * GGTT, all gfx objects used by GuC are allocated with intel_guc_allocate_vma() * and pinned with PIN_OFFSET_BIAS along with the value of ggtt.pin_bias. * * Return: GGTT offset of the @vma. */ static inline u32 intel_guc_ggtt_offset(struct intel_guc *guc, struct i915_vma *vma) { u32 offset = i915_ggtt_offset(vma); GEM_BUG_ON(offset < i915_ggtt_pin_bias(vma)); GEM_BUG_ON(range_overflows_t(u64, offset, vma->size, GUC_GGTT_TOP)); return offset; } void intel_guc_init_early(struct intel_guc *guc); void intel_guc_init_send_regs(struct intel_guc *guc); void intel_guc_write_params(struct intel_guc *guc); int intel_guc_init(struct intel_guc *guc); void intel_guc_fini(struct intel_guc *guc); void intel_guc_notify(struct intel_guc *guc); int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len, u32 *response_buf, u32 response_buf_size); int intel_guc_to_host_process_recv_msg(struct intel_guc *guc, const u32 *payload, u32 len); int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset); int intel_guc_suspend(struct intel_guc *guc); int intel_guc_resume(struct intel_guc *guc); struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size); int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size, struct i915_vma **out_vma, void **out_vaddr); static inline bool intel_guc_is_supported(struct intel_guc *guc) { return intel_uc_fw_is_supported(&guc->fw); } static inline bool intel_guc_is_wanted(struct intel_guc *guc) { return intel_uc_fw_is_enabled(&guc->fw); } static inline bool intel_guc_is_used(struct intel_guc *guc) { GEM_BUG_ON(__intel_uc_fw_status(&guc->fw) == INTEL_UC_FIRMWARE_SELECTED); return intel_uc_fw_is_available(&guc->fw); } static inline bool intel_guc_is_fw_running(struct intel_guc *guc) { return intel_uc_fw_is_running(&guc->fw); } static inline bool intel_guc_is_ready(struct intel_guc *guc) { return intel_guc_is_fw_running(guc) && intel_guc_ct_enabled(&guc->ct); } static inline void intel_guc_reset_interrupts(struct intel_guc *guc) { guc->interrupts.reset(guc); } static inline void intel_guc_enable_interrupts(struct intel_guc *guc) { guc->interrupts.enable(guc); } static inline void intel_guc_disable_interrupts(struct intel_guc *guc) { guc->interrupts.disable(guc); } static inline int intel_guc_sanitize(struct intel_guc *guc) { intel_uc_fw_sanitize(&guc->fw); intel_guc_disable_interrupts(guc); intel_guc_ct_sanitize(&guc->ct); guc->mmio_msg = 0; return 0; } static inline void intel_guc_enable_msg(struct intel_guc *guc, u32 mask) { spin_lock_irq(&guc->irq_lock); guc->msg_enabled_mask |= mask; spin_unlock_irq(&guc->irq_lock); } static inline void intel_guc_disable_msg(struct intel_guc *guc, u32 mask) { spin_lock_irq(&guc->irq_lock); guc->msg_enabled_mask &= ~mask; spin_unlock_irq(&guc->irq_lock); } int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout); int intel_guc_deregister_done_process_msg(struct intel_guc *guc, const u32 *msg, u32 len); int intel_guc_sched_done_process_msg(struct intel_guc *guc, const u32 *msg, u32 len); int intel_guc_context_reset_process_msg(struct intel_guc *guc, const u32 *msg, u32 len); int intel_guc_engine_failure_process_msg(struct intel_guc *guc, const u32 *msg, u32 len); void intel_guc_find_hung_context(struct intel_engine_cs *engine); int intel_guc_global_policies_update(struct intel_guc *guc); void intel_guc_submission_reset_prepare(struct intel_guc *guc); void intel_guc_submission_reset(struct intel_guc *guc, bool stalled); void intel_guc_submission_reset_finish(struct intel_guc *guc); void intel_guc_submission_cancel_requests(struct intel_guc *guc); void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p); #endif