/* * Copyright 2016 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include #include "amdgpu.h" #include "gmc_v9_0.h" #include "amdgpu_atomfirmware.h" #include "amdgpu_gem.h" #include "gc/gc_9_0_sh_mask.h" #include "dce/dce_12_0_offset.h" #include "dce/dce_12_0_sh_mask.h" #include "vega10_enum.h" #include "mmhub/mmhub_1_0_offset.h" #include "athub/athub_1_0_sh_mask.h" #include "athub/athub_1_0_offset.h" #include "oss/osssys_4_0_offset.h" #include "soc15.h" #include "soc15d.h" #include "soc15_common.h" #include "umc/umc_6_0_sh_mask.h" #include "gfxhub_v1_0.h" #include "mmhub_v1_0.h" #include "athub_v1_0.h" #include "gfxhub_v1_1.h" #include "mmhub_v9_4.h" #include "mmhub_v1_7.h" #include "umc_v6_1.h" #include "umc_v6_0.h" #include "hdp_v4_0.h" #include "ivsrcid/vmc/irqsrcs_vmc_1_0.h" #include "amdgpu_ras.h" #include "amdgpu_xgmi.h" /* add these here since we already include dce12 headers and these are for DCN */ #define mmHUBP0_DCSURF_PRI_VIEWPORT_DIMENSION 0x055d #define mmHUBP0_DCSURF_PRI_VIEWPORT_DIMENSION_BASE_IDX 2 #define HUBP0_DCSURF_PRI_VIEWPORT_DIMENSION__PRI_VIEWPORT_WIDTH__SHIFT 0x0 #define HUBP0_DCSURF_PRI_VIEWPORT_DIMENSION__PRI_VIEWPORT_HEIGHT__SHIFT 0x10 #define HUBP0_DCSURF_PRI_VIEWPORT_DIMENSION__PRI_VIEWPORT_WIDTH_MASK 0x00003FFFL #define HUBP0_DCSURF_PRI_VIEWPORT_DIMENSION__PRI_VIEWPORT_HEIGHT_MASK 0x3FFF0000L #define mmDCHUBBUB_SDPIF_MMIO_CNTRL_0 0x049d #define mmDCHUBBUB_SDPIF_MMIO_CNTRL_0_BASE_IDX 2 static const char *gfxhub_client_ids[] = { "CB", "DB", "IA", "WD", "CPF", "CPC", "CPG", "RLC", "TCP", "SQC (inst)", "SQC (data)", "SQG", "PA", }; static const char *mmhub_client_ids_raven[][2] = { [0][0] = "MP1", [1][0] = "MP0", [2][0] = "VCN", [3][0] = "VCNU", [4][0] = "HDP", [5][0] = "DCE", [13][0] = "UTCL2", [19][0] = "TLS", [26][0] = "OSS", [27][0] = "SDMA0", [0][1] = "MP1", [1][1] = "MP0", [2][1] = "VCN", [3][1] = "VCNU", [4][1] = "HDP", [5][1] = "XDP", [6][1] = "DBGU0", [7][1] = "DCE", [8][1] = "DCEDWB0", [9][1] = "DCEDWB1", [26][1] = "OSS", [27][1] = "SDMA0", }; static const char *mmhub_client_ids_renoir[][2] = { [0][0] = "MP1", [1][0] = "MP0", [2][0] = "HDP", [4][0] = "DCEDMC", [5][0] = "DCEVGA", [13][0] = "UTCL2", [19][0] = "TLS", [26][0] = "OSS", [27][0] = "SDMA0", [28][0] = "VCN", [29][0] = "VCNU", [30][0] = "JPEG", [0][1] = "MP1", [1][1] = "MP0", [2][1] = "HDP", [3][1] = "XDP", [6][1] = "DBGU0", [7][1] = "DCEDMC", [8][1] = "DCEVGA", [9][1] = "DCEDWB", [26][1] = "OSS", [27][1] = "SDMA0", [28][1] = "VCN", [29][1] = "VCNU", [30][1] = "JPEG", }; static const char *mmhub_client_ids_vega10[][2] = { [0][0] = "MP0", [1][0] = "UVD", [2][0] = "UVDU", [3][0] = "HDP", [13][0] = "UTCL2", [14][0] = "OSS", [15][0] = "SDMA1", [32+0][0] = "VCE0", [32+1][0] = "VCE0U", [32+2][0] = "XDMA", [32+3][0] = "DCE", [32+4][0] = "MP1", [32+14][0] = "SDMA0", [0][1] = "MP0", [1][1] = "UVD", [2][1] = "UVDU", [3][1] = "DBGU0", [4][1] = "HDP", [5][1] = "XDP", [14][1] = "OSS", [15][1] = "SDMA0", [32+0][1] = "VCE0", [32+1][1] = "VCE0U", [32+2][1] = "XDMA", [32+3][1] = "DCE", [32+4][1] = "DCEDWB", [32+5][1] = "MP1", [32+6][1] = "DBGU1", [32+14][1] = "SDMA1", }; static const char *mmhub_client_ids_vega12[][2] = { [0][0] = "MP0", [1][0] = "VCE0", [2][0] = "VCE0U", [3][0] = "HDP", [13][0] = "UTCL2", [14][0] = "OSS", [15][0] = "SDMA1", [32+0][0] = "DCE", [32+1][0] = "XDMA", [32+2][0] = "UVD", [32+3][0] = "UVDU", [32+4][0] = "MP1", [32+15][0] = "SDMA0", [0][1] = "MP0", [1][1] = "VCE0", [2][1] = "VCE0U", [3][1] = "DBGU0", [4][1] = "HDP", [5][1] = "XDP", [14][1] = "OSS", [15][1] = "SDMA0", [32+0][1] = "DCE", [32+1][1] = "DCEDWB", [32+2][1] = "XDMA", [32+3][1] = "UVD", [32+4][1] = "UVDU", [32+5][1] = "MP1", [32+6][1] = "DBGU1", [32+15][1] = "SDMA1", }; static const char *mmhub_client_ids_vega20[][2] = { [0][0] = "XDMA", [1][0] = "DCE", [2][0] = "VCE0", [3][0] = "VCE0U", [4][0] = "UVD", [5][0] = "UVD1U", [13][0] = "OSS", [14][0] = "HDP", [15][0] = "SDMA0", [32+0][0] = "UVD", [32+1][0] = "UVDU", [32+2][0] = "MP1", [32+3][0] = "MP0", [32+12][0] = "UTCL2", [32+14][0] = "SDMA1", [0][1] = "XDMA", [1][1] = "DCE", [2][1] = "DCEDWB", [3][1] = "VCE0", [4][1] = "VCE0U", [5][1] = "UVD1", [6][1] = "UVD1U", [7][1] = "DBGU0", [8][1] = "XDP", [13][1] = "OSS", [14][1] = "HDP", [15][1] = "SDMA0", [32+0][1] = "UVD", [32+1][1] = "UVDU", [32+2][1] = "DBGU1", [32+3][1] = "MP1", [32+4][1] = "MP0", [32+14][1] = "SDMA1", }; static const char *mmhub_client_ids_arcturus[][2] = { [0][0] = "DBGU1", [1][0] = "XDP", [2][0] = "MP1", [14][0] = "HDP", [171][0] = "JPEG", [172][0] = "VCN", [173][0] = "VCNU", [203][0] = "JPEG1", [204][0] = "VCN1", [205][0] = "VCN1U", [256][0] = "SDMA0", [257][0] = "SDMA1", [258][0] = "SDMA2", [259][0] = "SDMA3", [260][0] = "SDMA4", [261][0] = "SDMA5", [262][0] = "SDMA6", [263][0] = "SDMA7", [384][0] = "OSS", [0][1] = "DBGU1", [1][1] = "XDP", [2][1] = "MP1", [14][1] = "HDP", [171][1] = "JPEG", [172][1] = "VCN", [173][1] = "VCNU", [203][1] = "JPEG1", [204][1] = "VCN1", [205][1] = "VCN1U", [256][1] = "SDMA0", [257][1] = "SDMA1", [258][1] = "SDMA2", [259][1] = "SDMA3", [260][1] = "SDMA4", [261][1] = "SDMA5", [262][1] = "SDMA6", [263][1] = "SDMA7", [384][1] = "OSS", }; static const char *mmhub_client_ids_aldebaran[][2] = { [2][0] = "MP1", [3][0] = "MP0", [32+1][0] = "DBGU_IO0", [32+2][0] = "DBGU_IO2", [32+4][0] = "MPIO", [96+11][0] = "JPEG0", [96+12][0] = "VCN0", [96+13][0] = "VCNU0", [128+11][0] = "JPEG1", [128+12][0] = "VCN1", [128+13][0] = "VCNU1", [160+1][0] = "XDP", [160+14][0] = "HDP", [256+0][0] = "SDMA0", [256+1][0] = "SDMA1", [256+2][0] = "SDMA2", [256+3][0] = "SDMA3", [256+4][0] = "SDMA4", [384+0][0] = "OSS", [2][1] = "MP1", [3][1] = "MP0", [32+1][1] = "DBGU_IO0", [32+2][1] = "DBGU_IO2", [32+4][1] = "MPIO", [96+11][1] = "JPEG0", [96+12][1] = "VCN0", [96+13][1] = "VCNU0", [128+11][1] = "JPEG1", [128+12][1] = "VCN1", [128+13][1] = "VCNU1", [160+1][1] = "XDP", [160+14][1] = "HDP", [256+0][1] = "SDMA0", [256+1][1] = "SDMA1", [256+2][1] = "SDMA2", [256+3][1] = "SDMA3", [256+4][1] = "SDMA4", [384+0][1] = "OSS", }; static const struct soc15_reg_golden golden_settings_mmhub_1_0_0[] = { SOC15_REG_GOLDEN_VALUE(MMHUB, 0, mmDAGB1_WRCLI2, 0x00000007, 0xfe5fe0fa), SOC15_REG_GOLDEN_VALUE(MMHUB, 0, mmMMEA1_DRAM_WR_CLI2GRP_MAP0, 0x00000030, 0x55555565) }; static const struct soc15_reg_golden golden_settings_athub_1_0_0[] = { SOC15_REG_GOLDEN_VALUE(ATHUB, 0, mmRPB_ARB_CNTL, 0x0000ff00, 0x00000800), SOC15_REG_GOLDEN_VALUE(ATHUB, 0, mmRPB_ARB_CNTL2, 0x00ff00ff, 0x00080008) }; static const uint32_t ecc_umc_mcumc_ctrl_addrs[] = { (0x000143c0 + 0x00000000), (0x000143c0 + 0x00000800), (0x000143c0 + 0x00001000), (0x000143c0 + 0x00001800), (0x000543c0 + 0x00000000), (0x000543c0 + 0x00000800), (0x000543c0 + 0x00001000), (0x000543c0 + 0x00001800), (0x000943c0 + 0x00000000), (0x000943c0 + 0x00000800), (0x000943c0 + 0x00001000), (0x000943c0 + 0x00001800), (0x000d43c0 + 0x00000000), (0x000d43c0 + 0x00000800), (0x000d43c0 + 0x00001000), (0x000d43c0 + 0x00001800), (0x001143c0 + 0x00000000), (0x001143c0 + 0x00000800), (0x001143c0 + 0x00001000), (0x001143c0 + 0x00001800), (0x001543c0 + 0x00000000), (0x001543c0 + 0x00000800), (0x001543c0 + 0x00001000), (0x001543c0 + 0x00001800), (0x001943c0 + 0x00000000), (0x001943c0 + 0x00000800), (0x001943c0 + 0x00001000), (0x001943c0 + 0x00001800), (0x001d43c0 + 0x00000000), (0x001d43c0 + 0x00000800), (0x001d43c0 + 0x00001000), (0x001d43c0 + 0x00001800), }; static const uint32_t ecc_umc_mcumc_ctrl_mask_addrs[] = { (0x000143e0 + 0x00000000), (0x000143e0 + 0x00000800), (0x000143e0 + 0x00001000), (0x000143e0 + 0x00001800), (0x000543e0 + 0x00000000), (0x000543e0 + 0x00000800), (0x000543e0 + 0x00001000), (0x000543e0 + 0x00001800), (0x000943e0 + 0x00000000), (0x000943e0 + 0x00000800), (0x000943e0 + 0x00001000), (0x000943e0 + 0x00001800), (0x000d43e0 + 0x00000000), (0x000d43e0 + 0x00000800), (0x000d43e0 + 0x00001000), (0x000d43e0 + 0x00001800), (0x001143e0 + 0x00000000), (0x001143e0 + 0x00000800), (0x001143e0 + 0x00001000), (0x001143e0 + 0x00001800), (0x001543e0 + 0x00000000), (0x001543e0 + 0x00000800), (0x001543e0 + 0x00001000), (0x001543e0 + 0x00001800), (0x001943e0 + 0x00000000), (0x001943e0 + 0x00000800), (0x001943e0 + 0x00001000), (0x001943e0 + 0x00001800), (0x001d43e0 + 0x00000000), (0x001d43e0 + 0x00000800), (0x001d43e0 + 0x00001000), (0x001d43e0 + 0x00001800), }; static int gmc_v9_0_ecc_interrupt_state(struct amdgpu_device *adev, struct amdgpu_irq_src *src, unsigned type, enum amdgpu_interrupt_state state) { u32 bits, i, tmp, reg; /* Devices newer then VEGA10/12 shall have these programming sequences performed by PSP BL */ if (adev->asic_type >= CHIP_VEGA20) return 0; bits = 0x7f; switch (state) { case AMDGPU_IRQ_STATE_DISABLE: for (i = 0; i < ARRAY_SIZE(ecc_umc_mcumc_ctrl_addrs); i++) { reg = ecc_umc_mcumc_ctrl_addrs[i]; tmp = RREG32(reg); tmp &= ~bits; WREG32(reg, tmp); } for (i = 0; i < ARRAY_SIZE(ecc_umc_mcumc_ctrl_mask_addrs); i++) { reg = ecc_umc_mcumc_ctrl_mask_addrs[i]; tmp = RREG32(reg); tmp &= ~bits; WREG32(reg, tmp); } break; case AMDGPU_IRQ_STATE_ENABLE: for (i = 0; i < ARRAY_SIZE(ecc_umc_mcumc_ctrl_addrs); i++) { reg = ecc_umc_mcumc_ctrl_addrs[i]; tmp = RREG32(reg); tmp |= bits; WREG32(reg, tmp); } for (i = 0; i < ARRAY_SIZE(ecc_umc_mcumc_ctrl_mask_addrs); i++) { reg = ecc_umc_mcumc_ctrl_mask_addrs[i]; tmp = RREG32(reg); tmp |= bits; WREG32(reg, tmp); } break; default: break; } return 0; } static int gmc_v9_0_vm_fault_interrupt_state(struct amdgpu_device *adev, struct amdgpu_irq_src *src, unsigned type, enum amdgpu_interrupt_state state) { struct amdgpu_vmhub *hub; u32 tmp, reg, bits, i, j; bits = VM_CONTEXT1_CNTL__RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | VM_CONTEXT1_CNTL__DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | VM_CONTEXT1_CNTL__PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | VM_CONTEXT1_CNTL__VALID_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | VM_CONTEXT1_CNTL__READ_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | VM_CONTEXT1_CNTL__WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | VM_CONTEXT1_CNTL__EXECUTE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK; switch (state) { case AMDGPU_IRQ_STATE_DISABLE: for (j = 0; j < adev->num_vmhubs; j++) { hub = &adev->vmhub[j]; for (i = 0; i < 16; i++) { reg = hub->vm_context0_cntl + i; tmp = RREG32(reg); tmp &= ~bits; WREG32(reg, tmp); } } break; case AMDGPU_IRQ_STATE_ENABLE: for (j = 0; j < adev->num_vmhubs; j++) { hub = &adev->vmhub[j]; for (i = 0; i < 16; i++) { reg = hub->vm_context0_cntl + i; tmp = RREG32(reg); tmp |= bits; WREG32(reg, tmp); } } break; default: break; } return 0; } static int gmc_v9_0_process_interrupt(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { bool retry_fault = !!(entry->src_data[1] & 0x80); uint32_t status = 0, cid = 0, rw = 0; struct amdgpu_task_info task_info; struct amdgpu_vmhub *hub; const char *mmhub_cid; const char *hub_name; u64 addr; addr = (u64)entry->src_data[0] << 12; addr |= ((u64)entry->src_data[1] & 0xf) << 44; if (retry_fault) { /* Returning 1 here also prevents sending the IV to the KFD */ /* Process it onyl if it's the first fault for this address */ if (entry->ih != &adev->irq.ih_soft && amdgpu_gmc_filter_faults(adev, addr, entry->pasid, entry->timestamp)) return 1; /* Delegate it to a different ring if the hardware hasn't * already done it. */ if (entry->ih == &adev->irq.ih) { amdgpu_irq_delegate(adev, entry, 8); return 1; } /* Try to handle the recoverable page faults by filling page * tables */ if (amdgpu_vm_handle_fault(adev, entry->pasid, addr)) return 1; } if (!printk_ratelimit()) return 0; if (entry->client_id == SOC15_IH_CLIENTID_VMC) { hub_name = "mmhub0"; hub = &adev->vmhub[AMDGPU_MMHUB_0]; } else if (entry->client_id == SOC15_IH_CLIENTID_VMC1) { hub_name = "mmhub1"; hub = &adev->vmhub[AMDGPU_MMHUB_1]; } else { hub_name = "gfxhub0"; hub = &adev->vmhub[AMDGPU_GFXHUB_0]; } memset(&task_info, 0, sizeof(struct amdgpu_task_info)); amdgpu_vm_get_task_info(adev, entry->pasid, &task_info); dev_err(adev->dev, "[%s] %s page fault (src_id:%u ring:%u vmid:%u " "pasid:%u, for process %s pid %d thread %s pid %d)\n", hub_name, retry_fault ? "retry" : "no-retry", entry->src_id, entry->ring_id, entry->vmid, entry->pasid, task_info.process_name, task_info.tgid, task_info.task_name, task_info.pid); dev_err(adev->dev, " in page starting at address 0x%016llx from IH client 0x%x (%s)\n", addr, entry->client_id, soc15_ih_clientid_name[entry->client_id]); if (amdgpu_sriov_vf(adev)) return 0; /* * Issue a dummy read to wait for the status register to * be updated to avoid reading an incorrect value due to * the new fast GRBM interface. */ if ((entry->vmid_src == AMDGPU_GFXHUB_0) && (adev->asic_type < CHIP_ALDEBARAN)) RREG32(hub->vm_l2_pro_fault_status); status = RREG32(hub->vm_l2_pro_fault_status); cid = REG_GET_FIELD(status, VM_L2_PROTECTION_FAULT_STATUS, CID); rw = REG_GET_FIELD(status, VM_L2_PROTECTION_FAULT_STATUS, RW); WREG32_P(hub->vm_l2_pro_fault_cntl, 1, ~1); dev_err(adev->dev, "VM_L2_PROTECTION_FAULT_STATUS:0x%08X\n", status); if (hub == &adev->vmhub[AMDGPU_GFXHUB_0]) { dev_err(adev->dev, "\t Faulty UTCL2 client ID: %s (0x%x)\n", cid >= ARRAY_SIZE(gfxhub_client_ids) ? "unknown" : gfxhub_client_ids[cid], cid); } else { switch (adev->asic_type) { case CHIP_VEGA10: mmhub_cid = mmhub_client_ids_vega10[cid][rw]; break; case CHIP_VEGA12: mmhub_cid = mmhub_client_ids_vega12[cid][rw]; break; case CHIP_VEGA20: mmhub_cid = mmhub_client_ids_vega20[cid][rw]; break; case CHIP_ARCTURUS: mmhub_cid = mmhub_client_ids_arcturus[cid][rw]; break; case CHIP_RAVEN: mmhub_cid = mmhub_client_ids_raven[cid][rw]; break; case CHIP_RENOIR: mmhub_cid = mmhub_client_ids_renoir[cid][rw]; break; case CHIP_ALDEBARAN: mmhub_cid = mmhub_client_ids_aldebaran[cid][rw]; break; default: mmhub_cid = NULL; break; } dev_err(adev->dev, "\t Faulty UTCL2 client ID: %s (0x%x)\n", mmhub_cid ? mmhub_cid : "unknown", cid); } dev_err(adev->dev, "\t MORE_FAULTS: 0x%lx\n", REG_GET_FIELD(status, VM_L2_PROTECTION_FAULT_STATUS, MORE_FAULTS)); dev_err(adev->dev, "\t WALKER_ERROR: 0x%lx\n", REG_GET_FIELD(status, VM_L2_PROTECTION_FAULT_STATUS, WALKER_ERROR)); dev_err(adev->dev, "\t PERMISSION_FAULTS: 0x%lx\n", REG_GET_FIELD(status, VM_L2_PROTECTION_FAULT_STATUS, PERMISSION_FAULTS)); dev_err(adev->dev, "\t MAPPING_ERROR: 0x%lx\n", REG_GET_FIELD(status, VM_L2_PROTECTION_FAULT_STATUS, MAPPING_ERROR)); dev_err(adev->dev, "\t RW: 0x%x\n", rw); return 0; } static const struct amdgpu_irq_src_funcs gmc_v9_0_irq_funcs = { .set = gmc_v9_0_vm_fault_interrupt_state, .process = gmc_v9_0_process_interrupt, }; static const struct amdgpu_irq_src_funcs gmc_v9_0_ecc_funcs = { .set = gmc_v9_0_ecc_interrupt_state, .process = amdgpu_umc_process_ecc_irq, }; static void gmc_v9_0_set_irq_funcs(struct amdgpu_device *adev) { adev->gmc.vm_fault.num_types = 1; adev->gmc.vm_fault.funcs = &gmc_v9_0_irq_funcs; if (!amdgpu_sriov_vf(adev) && !adev->gmc.xgmi.connected_to_cpu) { adev->gmc.ecc_irq.num_types = 1; adev->gmc.ecc_irq.funcs = &gmc_v9_0_ecc_funcs; } } static uint32_t gmc_v9_0_get_invalidate_req(unsigned int vmid, uint32_t flush_type) { u32 req = 0; req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ, PER_VMID_INVALIDATE_REQ, 1 << vmid); req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ, FLUSH_TYPE, flush_type); req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ, INVALIDATE_L2_PTES, 1); req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ, INVALIDATE_L2_PDE0, 1); req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ, INVALIDATE_L2_PDE1, 1); req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ, INVALIDATE_L2_PDE2, 1); req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ, INVALIDATE_L1_PTES, 1); req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ, CLEAR_PROTECTION_FAULT_STATUS_ADDR, 0); return req; } /** * gmc_v9_0_use_invalidate_semaphore - judge whether to use semaphore * * @adev: amdgpu_device pointer * @vmhub: vmhub type * */ static bool gmc_v9_0_use_invalidate_semaphore(struct amdgpu_device *adev, uint32_t vmhub) { if (adev->asic_type == CHIP_ALDEBARAN) return false; return ((vmhub == AMDGPU_MMHUB_0 || vmhub == AMDGPU_MMHUB_1) && (!amdgpu_sriov_vf(adev)) && (!(!(adev->apu_flags & AMD_APU_IS_RAVEN2) && (adev->apu_flags & AMD_APU_IS_PICASSO)))); } static bool gmc_v9_0_get_atc_vmid_pasid_mapping_info(struct amdgpu_device *adev, uint8_t vmid, uint16_t *p_pasid) { uint32_t value; value = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid); *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK; return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK); } /* * GART * VMID 0 is the physical GPU addresses as used by the kernel. * VMIDs 1-15 are used for userspace clients and are handled * by the amdgpu vm/hsa code. */ /** * gmc_v9_0_flush_gpu_tlb - tlb flush with certain type * * @adev: amdgpu_device pointer * @vmid: vm instance to flush * @vmhub: which hub to flush * @flush_type: the flush type * * Flush the TLB for the requested page table using certain type. */ static void gmc_v9_0_flush_gpu_tlb(struct amdgpu_device *adev, uint32_t vmid, uint32_t vmhub, uint32_t flush_type) { bool use_semaphore = gmc_v9_0_use_invalidate_semaphore(adev, vmhub); const unsigned eng = 17; u32 j, inv_req, inv_req2, tmp; struct amdgpu_vmhub *hub; BUG_ON(vmhub >= adev->num_vmhubs); hub = &adev->vmhub[vmhub]; if (adev->gmc.xgmi.num_physical_nodes && adev->asic_type == CHIP_VEGA20) { /* Vega20+XGMI caches PTEs in TC and TLB. Add a * heavy-weight TLB flush (type 2), which flushes * both. Due to a race condition with concurrent * memory accesses using the same TLB cache line, we * still need a second TLB flush after this. */ inv_req = gmc_v9_0_get_invalidate_req(vmid, 2); inv_req2 = gmc_v9_0_get_invalidate_req(vmid, flush_type); } else { inv_req = gmc_v9_0_get_invalidate_req(vmid, flush_type); inv_req2 = 0; } /* This is necessary for a HW workaround under SRIOV as well * as GFXOFF under bare metal */ if (adev->gfx.kiq.ring.sched.ready && (amdgpu_sriov_runtime(adev) || !amdgpu_sriov_vf(adev)) && down_read_trylock(&adev->reset_sem)) { uint32_t req = hub->vm_inv_eng0_req + hub->eng_distance * eng; uint32_t ack = hub->vm_inv_eng0_ack + hub->eng_distance * eng; amdgpu_virt_kiq_reg_write_reg_wait(adev, req, ack, inv_req, 1 << vmid); up_read(&adev->reset_sem); return; } spin_lock(&adev->gmc.invalidate_lock); /* * It may lose gpuvm invalidate acknowldege state across power-gating * off cycle, add semaphore acquire before invalidation and semaphore * release after invalidation to avoid entering power gated state * to WA the Issue */ /* TODO: It needs to continue working on debugging with semaphore for GFXHUB as well. */ if (use_semaphore) { for (j = 0; j < adev->usec_timeout; j++) { /* a read return value of 1 means semaphore acuqire */ tmp = RREG32_NO_KIQ(hub->vm_inv_eng0_sem + hub->eng_distance * eng); if (tmp & 0x1) break; udelay(1); } if (j >= adev->usec_timeout) DRM_ERROR("Timeout waiting for sem acquire in VM flush!\n"); } do { WREG32_NO_KIQ(hub->vm_inv_eng0_req + hub->eng_distance * eng, inv_req); /* * Issue a dummy read to wait for the ACK register to * be cleared to avoid a false ACK due to the new fast * GRBM interface. */ if ((vmhub == AMDGPU_GFXHUB_0) && (adev->asic_type < CHIP_ALDEBARAN)) RREG32_NO_KIQ(hub->vm_inv_eng0_req + hub->eng_distance * eng); for (j = 0; j < adev->usec_timeout; j++) { tmp = RREG32_NO_KIQ(hub->vm_inv_eng0_ack + hub->eng_distance * eng); if (tmp & (1 << vmid)) break; udelay(1); } inv_req = inv_req2; inv_req2 = 0; } while (inv_req); /* TODO: It needs to continue working on debugging with semaphore for GFXHUB as well. */ if (use_semaphore) /* * add semaphore release after invalidation, * write with 0 means semaphore release */ WREG32_NO_KIQ(hub->vm_inv_eng0_sem + hub->eng_distance * eng, 0); spin_unlock(&adev->gmc.invalidate_lock); if (j < adev->usec_timeout) return; DRM_ERROR("Timeout waiting for VM flush ACK!\n"); } /** * gmc_v9_0_flush_gpu_tlb_pasid - tlb flush via pasid * * @adev: amdgpu_device pointer * @pasid: pasid to be flush * @flush_type: the flush type * @all_hub: flush all hubs * * Flush the TLB for the requested pasid. */ static int gmc_v9_0_flush_gpu_tlb_pasid(struct amdgpu_device *adev, uint16_t pasid, uint32_t flush_type, bool all_hub) { int vmid, i; signed long r; uint32_t seq; uint16_t queried_pasid; bool ret; struct amdgpu_ring *ring = &adev->gfx.kiq.ring; struct amdgpu_kiq *kiq = &adev->gfx.kiq; if (amdgpu_in_reset(adev)) return -EIO; if (ring->sched.ready && down_read_trylock(&adev->reset_sem)) { /* Vega20+XGMI caches PTEs in TC and TLB. Add a * heavy-weight TLB flush (type 2), which flushes * both. Due to a race condition with concurrent * memory accesses using the same TLB cache line, we * still need a second TLB flush after this. */ bool vega20_xgmi_wa = (adev->gmc.xgmi.num_physical_nodes && adev->asic_type == CHIP_VEGA20); /* 2 dwords flush + 8 dwords fence */ unsigned int ndw = kiq->pmf->invalidate_tlbs_size + 8; if (vega20_xgmi_wa) ndw += kiq->pmf->invalidate_tlbs_size; spin_lock(&adev->gfx.kiq.ring_lock); /* 2 dwords flush + 8 dwords fence */ amdgpu_ring_alloc(ring, ndw); if (vega20_xgmi_wa) kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 2, all_hub); kiq->pmf->kiq_invalidate_tlbs(ring, pasid, flush_type, all_hub); r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); if (r) { amdgpu_ring_undo(ring); spin_unlock(&adev->gfx.kiq.ring_lock); up_read(&adev->reset_sem); return -ETIME; } amdgpu_ring_commit(ring); spin_unlock(&adev->gfx.kiq.ring_lock); r = amdgpu_fence_wait_polling(ring, seq, adev->usec_timeout); if (r < 1) { dev_err(adev->dev, "wait for kiq fence error: %ld.\n", r); up_read(&adev->reset_sem); return -ETIME; } up_read(&adev->reset_sem); return 0; } for (vmid = 1; vmid < 16; vmid++) { ret = gmc_v9_0_get_atc_vmid_pasid_mapping_info(adev, vmid, &queried_pasid); if (ret && queried_pasid == pasid) { if (all_hub) { for (i = 0; i < adev->num_vmhubs; i++) gmc_v9_0_flush_gpu_tlb(adev, vmid, i, flush_type); } else { gmc_v9_0_flush_gpu_tlb(adev, vmid, AMDGPU_GFXHUB_0, flush_type); } break; } } return 0; } static uint64_t gmc_v9_0_emit_flush_gpu_tlb(struct amdgpu_ring *ring, unsigned vmid, uint64_t pd_addr) { bool use_semaphore = gmc_v9_0_use_invalidate_semaphore(ring->adev, ring->funcs->vmhub); struct amdgpu_device *adev = ring->adev; struct amdgpu_vmhub *hub = &adev->vmhub[ring->funcs->vmhub]; uint32_t req = gmc_v9_0_get_invalidate_req(vmid, 0); unsigned eng = ring->vm_inv_eng; /* * It may lose gpuvm invalidate acknowldege state across power-gating * off cycle, add semaphore acquire before invalidation and semaphore * release after invalidation to avoid entering power gated state * to WA the Issue */ /* TODO: It needs to continue working on debugging with semaphore for GFXHUB as well. */ if (use_semaphore) /* a read return value of 1 means semaphore acuqire */ amdgpu_ring_emit_reg_wait(ring, hub->vm_inv_eng0_sem + hub->eng_distance * eng, 0x1, 0x1); amdgpu_ring_emit_wreg(ring, hub->ctx0_ptb_addr_lo32 + (hub->ctx_addr_distance * vmid), lower_32_bits(pd_addr)); amdgpu_ring_emit_wreg(ring, hub->ctx0_ptb_addr_hi32 + (hub->ctx_addr_distance * vmid), upper_32_bits(pd_addr)); amdgpu_ring_emit_reg_write_reg_wait(ring, hub->vm_inv_eng0_req + hub->eng_distance * eng, hub->vm_inv_eng0_ack + hub->eng_distance * eng, req, 1 << vmid); /* TODO: It needs to continue working on debugging with semaphore for GFXHUB as well. */ if (use_semaphore) /* * add semaphore release after invalidation, * write with 0 means semaphore release */ amdgpu_ring_emit_wreg(ring, hub->vm_inv_eng0_sem + hub->eng_distance * eng, 0); return pd_addr; } static void gmc_v9_0_emit_pasid_mapping(struct amdgpu_ring *ring, unsigned vmid, unsigned pasid) { struct amdgpu_device *adev = ring->adev; uint32_t reg; /* Do nothing because there's no lut register for mmhub1. */ if (ring->funcs->vmhub == AMDGPU_MMHUB_1) return; if (ring->funcs->vmhub == AMDGPU_GFXHUB_0) reg = SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid; else reg = SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT_MM) + vmid; amdgpu_ring_emit_wreg(ring, reg, pasid); } /* * PTE format on VEGA 10: * 63:59 reserved * 58:57 mtype * 56 F * 55 L * 54 P * 53 SW * 52 T * 50:48 reserved * 47:12 4k physical page base address * 11:7 fragment * 6 write * 5 read * 4 exe * 3 Z * 2 snooped * 1 system * 0 valid * * PDE format on VEGA 10: * 63:59 block fragment size * 58:55 reserved * 54 P * 53:48 reserved * 47:6 physical base address of PD or PTE * 5:3 reserved * 2 C * 1 system * 0 valid */ static uint64_t gmc_v9_0_map_mtype(struct amdgpu_device *adev, uint32_t flags) { switch (flags) { case AMDGPU_VM_MTYPE_DEFAULT: return AMDGPU_PTE_MTYPE_VG10(MTYPE_NC); case AMDGPU_VM_MTYPE_NC: return AMDGPU_PTE_MTYPE_VG10(MTYPE_NC); case AMDGPU_VM_MTYPE_WC: return AMDGPU_PTE_MTYPE_VG10(MTYPE_WC); case AMDGPU_VM_MTYPE_RW: return AMDGPU_PTE_MTYPE_VG10(MTYPE_RW); case AMDGPU_VM_MTYPE_CC: return AMDGPU_PTE_MTYPE_VG10(MTYPE_CC); case AMDGPU_VM_MTYPE_UC: return AMDGPU_PTE_MTYPE_VG10(MTYPE_UC); default: return AMDGPU_PTE_MTYPE_VG10(MTYPE_NC); } } static void gmc_v9_0_get_vm_pde(struct amdgpu_device *adev, int level, uint64_t *addr, uint64_t *flags) { if (!(*flags & AMDGPU_PDE_PTE) && !(*flags & AMDGPU_PTE_SYSTEM)) *addr = amdgpu_gmc_vram_mc2pa(adev, *addr); BUG_ON(*addr & 0xFFFF00000000003FULL); if (!adev->gmc.translate_further) return; if (level == AMDGPU_VM_PDB1) { /* Set the block fragment size */ if (!(*flags & AMDGPU_PDE_PTE)) *flags |= AMDGPU_PDE_BFS(0x9); } else if (level == AMDGPU_VM_PDB0) { if (*flags & AMDGPU_PDE_PTE) *flags &= ~AMDGPU_PDE_PTE; else *flags |= AMDGPU_PTE_TF; } } static void gmc_v9_0_get_vm_pte(struct amdgpu_device *adev, struct amdgpu_bo_va_mapping *mapping, uint64_t *flags) { *flags &= ~AMDGPU_PTE_EXECUTABLE; *flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE; *flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; *flags |= mapping->flags & AMDGPU_PTE_MTYPE_VG10_MASK; if (mapping->flags & AMDGPU_PTE_PRT) { *flags |= AMDGPU_PTE_PRT; *flags &= ~AMDGPU_PTE_VALID; } if ((adev->asic_type == CHIP_ARCTURUS || adev->asic_type == CHIP_ALDEBARAN) && !(*flags & AMDGPU_PTE_SYSTEM) && mapping->bo_va->is_xgmi) *flags |= AMDGPU_PTE_SNOOPED; if (adev->asic_type == CHIP_ALDEBARAN) *flags |= mapping->flags & AMDGPU_PTE_SNOOPED; } static unsigned gmc_v9_0_get_vbios_fb_size(struct amdgpu_device *adev) { u32 d1vga_control = RREG32_SOC15(DCE, 0, mmD1VGA_CONTROL); unsigned size; if (REG_GET_FIELD(d1vga_control, D1VGA_CONTROL, D1VGA_MODE_ENABLE)) { size = AMDGPU_VBIOS_VGA_ALLOCATION; } else { u32 viewport; switch (adev->asic_type) { case CHIP_RAVEN: case CHIP_RENOIR: viewport = RREG32_SOC15(DCE, 0, mmHUBP0_DCSURF_PRI_VIEWPORT_DIMENSION); size = (REG_GET_FIELD(viewport, HUBP0_DCSURF_PRI_VIEWPORT_DIMENSION, PRI_VIEWPORT_HEIGHT) * REG_GET_FIELD(viewport, HUBP0_DCSURF_PRI_VIEWPORT_DIMENSION, PRI_VIEWPORT_WIDTH) * 4); break; case CHIP_VEGA10: case CHIP_VEGA12: case CHIP_VEGA20: default: viewport = RREG32_SOC15(DCE, 0, mmSCL0_VIEWPORT_SIZE); size = (REG_GET_FIELD(viewport, SCL0_VIEWPORT_SIZE, VIEWPORT_HEIGHT) * REG_GET_FIELD(viewport, SCL0_VIEWPORT_SIZE, VIEWPORT_WIDTH) * 4); break; } } return size; } static const struct amdgpu_gmc_funcs gmc_v9_0_gmc_funcs = { .flush_gpu_tlb = gmc_v9_0_flush_gpu_tlb, .flush_gpu_tlb_pasid = gmc_v9_0_flush_gpu_tlb_pasid, .emit_flush_gpu_tlb = gmc_v9_0_emit_flush_gpu_tlb, .emit_pasid_mapping = gmc_v9_0_emit_pasid_mapping, .map_mtype = gmc_v9_0_map_mtype, .get_vm_pde = gmc_v9_0_get_vm_pde, .get_vm_pte = gmc_v9_0_get_vm_pte, .get_vbios_fb_size = gmc_v9_0_get_vbios_fb_size, }; static void gmc_v9_0_set_gmc_funcs(struct amdgpu_device *adev) { adev->gmc.gmc_funcs = &gmc_v9_0_gmc_funcs; } static void gmc_v9_0_set_umc_funcs(struct amdgpu_device *adev) { switch (adev->asic_type) { case CHIP_VEGA10: adev->umc.funcs = &umc_v6_0_funcs; break; case CHIP_VEGA20: adev->umc.max_ras_err_cnt_per_query = UMC_V6_1_TOTAL_CHANNEL_NUM; adev->umc.channel_inst_num = UMC_V6_1_CHANNEL_INSTANCE_NUM; adev->umc.umc_inst_num = UMC_V6_1_UMC_INSTANCE_NUM; adev->umc.channel_offs = UMC_V6_1_PER_CHANNEL_OFFSET_VG20; adev->umc.channel_idx_tbl = &umc_v6_1_channel_idx_tbl[0][0]; adev->umc.ras_funcs = &umc_v6_1_ras_funcs; break; case CHIP_ARCTURUS: adev->umc.max_ras_err_cnt_per_query = UMC_V6_1_TOTAL_CHANNEL_NUM; adev->umc.channel_inst_num = UMC_V6_1_CHANNEL_INSTANCE_NUM; adev->umc.umc_inst_num = UMC_V6_1_UMC_INSTANCE_NUM; adev->umc.channel_offs = UMC_V6_1_PER_CHANNEL_OFFSET_ARCT; adev->umc.channel_idx_tbl = &umc_v6_1_channel_idx_tbl[0][0]; adev->umc.ras_funcs = &umc_v6_1_ras_funcs; break; default: break; } } static void gmc_v9_0_set_mmhub_funcs(struct amdgpu_device *adev) { switch (adev->asic_type) { case CHIP_ARCTURUS: adev->mmhub.funcs = &mmhub_v9_4_funcs; break; case CHIP_ALDEBARAN: adev->mmhub.funcs = &mmhub_v1_7_funcs; break; default: adev->mmhub.funcs = &mmhub_v1_0_funcs; break; } } static void gmc_v9_0_set_mmhub_ras_funcs(struct amdgpu_device *adev) { switch (adev->asic_type) { case CHIP_VEGA20: adev->mmhub.ras_funcs = &mmhub_v1_0_ras_funcs; break; case CHIP_ARCTURUS: adev->mmhub.ras_funcs = &mmhub_v9_4_ras_funcs; break; case CHIP_ALDEBARAN: adev->mmhub.ras_funcs = &mmhub_v1_7_ras_funcs; break; default: /* mmhub ras is not available */ break; } } static void gmc_v9_0_set_gfxhub_funcs(struct amdgpu_device *adev) { adev->gfxhub.funcs = &gfxhub_v1_0_funcs; } static void gmc_v9_0_set_hdp_ras_funcs(struct amdgpu_device *adev) { adev->hdp.ras_funcs = &hdp_v4_0_ras_funcs; } static int gmc_v9_0_early_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (adev->asic_type == CHIP_VEGA20 || adev->asic_type == CHIP_ARCTURUS) adev->gmc.xgmi.supported = true; if (adev->asic_type == CHIP_ALDEBARAN) { adev->gmc.xgmi.supported = true; adev->gmc.xgmi.connected_to_cpu = adev->smuio.funcs->is_host_gpu_xgmi_supported(adev); } gmc_v9_0_set_gmc_funcs(adev); gmc_v9_0_set_irq_funcs(adev); gmc_v9_0_set_umc_funcs(adev); gmc_v9_0_set_mmhub_funcs(adev); gmc_v9_0_set_mmhub_ras_funcs(adev); gmc_v9_0_set_gfxhub_funcs(adev); gmc_v9_0_set_hdp_ras_funcs(adev); adev->gmc.shared_aperture_start = 0x2000000000000000ULL; adev->gmc.shared_aperture_end = adev->gmc.shared_aperture_start + (4ULL << 30) - 1; adev->gmc.private_aperture_start = 0x1000000000000000ULL; adev->gmc.private_aperture_end = adev->gmc.private_aperture_start + (4ULL << 30) - 1; return 0; } static int gmc_v9_0_late_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int r; r = amdgpu_gmc_allocate_vm_inv_eng(adev); if (r) return r; /* * Workaround performance drop issue with VBIOS enables partial * writes, while disables HBM ECC for vega10. */ if (!amdgpu_sriov_vf(adev) && (adev->asic_type == CHIP_VEGA10)) { if (!(adev->ras_features & (1 << AMDGPU_RAS_BLOCK__UMC))) { if (adev->df.funcs->enable_ecc_force_par_wr_rmw) adev->df.funcs->enable_ecc_force_par_wr_rmw(adev, false); } } if (adev->mmhub.ras_funcs && adev->mmhub.ras_funcs->reset_ras_error_count) adev->mmhub.ras_funcs->reset_ras_error_count(adev); if (adev->hdp.ras_funcs && adev->hdp.ras_funcs->reset_ras_error_count) adev->hdp.ras_funcs->reset_ras_error_count(adev); r = amdgpu_gmc_ras_late_init(adev); if (r) return r; return amdgpu_irq_get(adev, &adev->gmc.vm_fault, 0); } static void gmc_v9_0_vram_gtt_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc) { u64 base = 0; if (!amdgpu_sriov_vf(adev)) base = adev->mmhub.funcs->get_fb_location(adev); /* add the xgmi offset of the physical node */ base += adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size; if (adev->gmc.xgmi.connected_to_cpu) { amdgpu_gmc_sysvm_location(adev, mc); } else { amdgpu_gmc_vram_location(adev, mc, base); amdgpu_gmc_gart_location(adev, mc); amdgpu_gmc_agp_location(adev, mc); } /* base offset of vram pages */ adev->vm_manager.vram_base_offset = adev->gfxhub.funcs->get_mc_fb_offset(adev); /* XXX: add the xgmi offset of the physical node? */ adev->vm_manager.vram_base_offset += adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size; } /** * gmc_v9_0_mc_init - initialize the memory controller driver params * * @adev: amdgpu_device pointer * * Look up the amount of vram, vram width, and decide how to place * vram and gart within the GPU's physical address space. * Returns 0 for success. */ static int gmc_v9_0_mc_init(struct amdgpu_device *adev) { int r; /* size in MB on si */ adev->gmc.mc_vram_size = adev->nbio.funcs->get_memsize(adev) * 1024ULL * 1024ULL; adev->gmc.real_vram_size = adev->gmc.mc_vram_size; if (!(adev->flags & AMD_IS_APU) && !adev->gmc.xgmi.connected_to_cpu) { r = amdgpu_device_resize_fb_bar(adev); if (r) return r; } adev->gmc.aper_base = pci_resource_start(adev->pdev, 0); adev->gmc.aper_size = pci_resource_len(adev->pdev, 0); #ifdef CONFIG_X86_64 /* * AMD Accelerated Processing Platform (APP) supporting GPU-HOST xgmi * interface can use VRAM through here as it appears system reserved * memory in host address space. * * For APUs, VRAM is just the stolen system memory and can be accessed * directly. * * Otherwise, use the legacy Host Data Path (HDP) through PCIe BAR. */ /* check whether both host-gpu and gpu-gpu xgmi links exist */ if ((adev->flags & AMD_IS_APU) || (adev->gmc.xgmi.supported && adev->gmc.xgmi.connected_to_cpu)) { adev->gmc.aper_base = adev->gfxhub.funcs->get_mc_fb_offset(adev) + adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size; adev->gmc.aper_size = adev->gmc.real_vram_size; } #endif /* In case the PCI BAR is larger than the actual amount of vram */ adev->gmc.visible_vram_size = adev->gmc.aper_size; if (adev->gmc.visible_vram_size > adev->gmc.real_vram_size) adev->gmc.visible_vram_size = adev->gmc.real_vram_size; /* set the gart size */ if (amdgpu_gart_size == -1) { switch (adev->asic_type) { case CHIP_VEGA10: /* all engines support GPUVM */ case CHIP_VEGA12: /* all engines support GPUVM */ case CHIP_VEGA20: case CHIP_ARCTURUS: case CHIP_ALDEBARAN: default: adev->gmc.gart_size = 512ULL << 20; break; case CHIP_RAVEN: /* DCE SG support */ case CHIP_RENOIR: adev->gmc.gart_size = 1024ULL << 20; break; } } else { adev->gmc.gart_size = (u64)amdgpu_gart_size << 20; } adev->gmc.gart_size += adev->pm.smu_prv_buffer_size; gmc_v9_0_vram_gtt_location(adev, &adev->gmc); return 0; } static int gmc_v9_0_gart_init(struct amdgpu_device *adev) { int r; if (adev->gart.bo) { WARN(1, "VEGA10 PCIE GART already initialized\n"); return 0; } if (adev->gmc.xgmi.connected_to_cpu) { adev->gmc.vmid0_page_table_depth = 1; adev->gmc.vmid0_page_table_block_size = 12; } else { adev->gmc.vmid0_page_table_depth = 0; adev->gmc.vmid0_page_table_block_size = 0; } /* Initialize common gart structure */ r = amdgpu_gart_init(adev); if (r) return r; adev->gart.table_size = adev->gart.num_gpu_pages * 8; adev->gart.gart_pte_flags = AMDGPU_PTE_MTYPE_VG10(MTYPE_UC) | AMDGPU_PTE_EXECUTABLE; r = amdgpu_gart_table_vram_alloc(adev); if (r) return r; if (adev->gmc.xgmi.connected_to_cpu) { r = amdgpu_gmc_pdb0_alloc(adev); } return r; } /** * gmc_v9_0_save_registers - saves regs * * @adev: amdgpu_device pointer * * This saves potential register values that should be * restored upon resume */ static void gmc_v9_0_save_registers(struct amdgpu_device *adev) { if (adev->asic_type == CHIP_RAVEN) adev->gmc.sdpif_register = RREG32_SOC15(DCE, 0, mmDCHUBBUB_SDPIF_MMIO_CNTRL_0); } static int gmc_v9_0_sw_init(void *handle) { int r, vram_width = 0, vram_type = 0, vram_vendor = 0; struct amdgpu_device *adev = (struct amdgpu_device *)handle; adev->gfxhub.funcs->init(adev); adev->mmhub.funcs->init(adev); spin_lock_init(&adev->gmc.invalidate_lock); r = amdgpu_atomfirmware_get_vram_info(adev, &vram_width, &vram_type, &vram_vendor); if (amdgpu_sriov_vf(adev)) /* For Vega10 SR-IOV, vram_width can't be read from ATOM as RAVEN, * and DF related registers is not readable, seems hardcord is the * only way to set the correct vram_width */ adev->gmc.vram_width = 2048; else if (amdgpu_emu_mode != 1) adev->gmc.vram_width = vram_width; if (!adev->gmc.vram_width) { int chansize, numchan; /* hbm memory channel size */ if (adev->flags & AMD_IS_APU) chansize = 64; else chansize = 128; numchan = adev->df.funcs->get_hbm_channel_number(adev); adev->gmc.vram_width = numchan * chansize; } adev->gmc.vram_type = vram_type; adev->gmc.vram_vendor = vram_vendor; switch (adev->asic_type) { case CHIP_RAVEN: adev->num_vmhubs = 2; if (adev->rev_id == 0x0 || adev->rev_id == 0x1) { amdgpu_vm_adjust_size(adev, 256 * 1024, 9, 3, 48); } else { /* vm_size is 128TB + 512GB for legacy 3-level page support */ amdgpu_vm_adjust_size(adev, 128 * 1024 + 512, 9, 2, 48); adev->gmc.translate_further = adev->vm_manager.num_level > 1; } break; case CHIP_VEGA10: case CHIP_VEGA12: case CHIP_VEGA20: case CHIP_RENOIR: case CHIP_ALDEBARAN: adev->num_vmhubs = 2; /* * To fulfill 4-level page support, * vm size is 256TB (48bit), maximum size of Vega10, * block size 512 (9bit) */ /* sriov restrict max_pfn below AMDGPU_GMC_HOLE */ if (amdgpu_sriov_vf(adev)) amdgpu_vm_adjust_size(adev, 256 * 1024, 9, 3, 47); else amdgpu_vm_adjust_size(adev, 256 * 1024, 9, 3, 48); break; case CHIP_ARCTURUS: adev->num_vmhubs = 3; /* Keep the vm size same with Vega20 */ amdgpu_vm_adjust_size(adev, 256 * 1024, 9, 3, 48); break; default: break; } /* This interrupt is VMC page fault.*/ r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_VMC, VMC_1_0__SRCID__VM_FAULT, &adev->gmc.vm_fault); if (r) return r; if (adev->asic_type == CHIP_ARCTURUS) { r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_VMC1, VMC_1_0__SRCID__VM_FAULT, &adev->gmc.vm_fault); if (r) return r; } r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_UTCL2, UTCL2_1_0__SRCID__FAULT, &adev->gmc.vm_fault); if (r) return r; if (!amdgpu_sriov_vf(adev) && !adev->gmc.xgmi.connected_to_cpu) { /* interrupt sent to DF. */ r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_DF, 0, &adev->gmc.ecc_irq); if (r) return r; } /* Set the internal MC address mask * This is the max address of the GPU's * internal address space. */ adev->gmc.mc_mask = 0xffffffffffffULL; /* 48 bit MC */ r = dma_set_mask_and_coherent(adev->dev, DMA_BIT_MASK(44)); if (r) { printk(KERN_WARNING "amdgpu: No suitable DMA available.\n"); return r; } adev->need_swiotlb = drm_need_swiotlb(44); if (adev->gmc.xgmi.supported) { r = adev->gfxhub.funcs->get_xgmi_info(adev); if (r) return r; } r = gmc_v9_0_mc_init(adev); if (r) return r; amdgpu_gmc_get_vbios_allocations(adev); /* Memory manager */ r = amdgpu_bo_init(adev); if (r) return r; r = gmc_v9_0_gart_init(adev); if (r) return r; /* * number of VMs * VMID 0 is reserved for System * amdgpu graphics/compute will use VMIDs 1..n-1 * amdkfd will use VMIDs n..15 * * The first KFD VMID is 8 for GPUs with graphics, 3 for * compute-only GPUs. On compute-only GPUs that leaves 2 VMIDs * for video processing. */ adev->vm_manager.first_kfd_vmid = (adev->asic_type == CHIP_ARCTURUS || adev->asic_type == CHIP_ALDEBARAN) ? 3 : 8; amdgpu_vm_manager_init(adev); gmc_v9_0_save_registers(adev); return 0; } static int gmc_v9_0_sw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; amdgpu_gmc_ras_fini(adev); amdgpu_gem_force_release(adev); amdgpu_vm_manager_fini(adev); amdgpu_gart_table_vram_free(adev); amdgpu_bo_unref(&adev->gmc.pdb0_bo); amdgpu_bo_fini(adev); amdgpu_gart_fini(adev); return 0; } static void gmc_v9_0_init_golden_registers(struct amdgpu_device *adev) { switch (adev->asic_type) { case CHIP_VEGA10: if (amdgpu_sriov_vf(adev)) break; fallthrough; case CHIP_VEGA20: soc15_program_register_sequence(adev, golden_settings_mmhub_1_0_0, ARRAY_SIZE(golden_settings_mmhub_1_0_0)); soc15_program_register_sequence(adev, golden_settings_athub_1_0_0, ARRAY_SIZE(golden_settings_athub_1_0_0)); break; case CHIP_VEGA12: break; case CHIP_RAVEN: /* TODO for renoir */ soc15_program_register_sequence(adev, golden_settings_athub_1_0_0, ARRAY_SIZE(golden_settings_athub_1_0_0)); break; default: break; } } /** * gmc_v9_0_restore_registers - restores regs * * @adev: amdgpu_device pointer * * This restores register values, saved at suspend. */ void gmc_v9_0_restore_registers(struct amdgpu_device *adev) { if (adev->asic_type == CHIP_RAVEN) { WREG32_SOC15(DCE, 0, mmDCHUBBUB_SDPIF_MMIO_CNTRL_0, adev->gmc.sdpif_register); WARN_ON(adev->gmc.sdpif_register != RREG32_SOC15(DCE, 0, mmDCHUBBUB_SDPIF_MMIO_CNTRL_0)); } } /** * gmc_v9_0_gart_enable - gart enable * * @adev: amdgpu_device pointer */ static int gmc_v9_0_gart_enable(struct amdgpu_device *adev) { int r; if (adev->gmc.xgmi.connected_to_cpu) amdgpu_gmc_init_pdb0(adev); if (adev->gart.bo == NULL) { dev_err(adev->dev, "No VRAM object for PCIE GART.\n"); return -EINVAL; } r = amdgpu_gart_table_vram_pin(adev); if (r) return r; r = adev->gfxhub.funcs->gart_enable(adev); if (r) return r; r = adev->mmhub.funcs->gart_enable(adev); if (r) return r; DRM_INFO("PCIE GART of %uM enabled.\n", (unsigned)(adev->gmc.gart_size >> 20)); if (adev->gmc.pdb0_bo) DRM_INFO("PDB0 located at 0x%016llX\n", (unsigned long long)amdgpu_bo_gpu_offset(adev->gmc.pdb0_bo)); DRM_INFO("PTB located at 0x%016llX\n", (unsigned long long)amdgpu_bo_gpu_offset(adev->gart.bo)); adev->gart.ready = true; return 0; } static int gmc_v9_0_hw_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; bool value; int r, i; /* The sequence of these two function calls matters.*/ gmc_v9_0_init_golden_registers(adev); if (adev->mode_info.num_crtc) { /* Lockout access through VGA aperture*/ WREG32_FIELD15(DCE, 0, VGA_HDP_CONTROL, VGA_MEMORY_DISABLE, 1); /* disable VGA render */ WREG32_FIELD15(DCE, 0, VGA_RENDER_CONTROL, VGA_VSTATUS_CNTL, 0); } if (adev->mmhub.funcs->update_power_gating) adev->mmhub.funcs->update_power_gating(adev, true); adev->hdp.funcs->init_registers(adev); /* After HDP is initialized, flush HDP.*/ adev->hdp.funcs->flush_hdp(adev, NULL); if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_ALWAYS) value = false; else value = true; if (!amdgpu_sriov_vf(adev)) { adev->gfxhub.funcs->set_fault_enable_default(adev, value); adev->mmhub.funcs->set_fault_enable_default(adev, value); } for (i = 0; i < adev->num_vmhubs; ++i) gmc_v9_0_flush_gpu_tlb(adev, 0, i, 0); if (adev->umc.funcs && adev->umc.funcs->init_registers) adev->umc.funcs->init_registers(adev); r = gmc_v9_0_gart_enable(adev); return r; } /** * gmc_v9_0_gart_disable - gart disable * * @adev: amdgpu_device pointer * * This disables all VM page table. */ static void gmc_v9_0_gart_disable(struct amdgpu_device *adev) { adev->gfxhub.funcs->gart_disable(adev); adev->mmhub.funcs->gart_disable(adev); amdgpu_gart_table_vram_unpin(adev); } static int gmc_v9_0_hw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (amdgpu_sriov_vf(adev)) { /* full access mode, so don't touch any GMC register */ DRM_DEBUG("For SRIOV client, shouldn't do anything.\n"); return 0; } amdgpu_irq_put(adev, &adev->gmc.ecc_irq, 0); amdgpu_irq_put(adev, &adev->gmc.vm_fault, 0); gmc_v9_0_gart_disable(adev); return 0; } static int gmc_v9_0_suspend(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; return gmc_v9_0_hw_fini(adev); } static int gmc_v9_0_resume(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; r = gmc_v9_0_hw_init(adev); if (r) return r; amdgpu_vmid_reset_all(adev); return 0; } static bool gmc_v9_0_is_idle(void *handle) { /* MC is always ready in GMC v9.*/ return true; } static int gmc_v9_0_wait_for_idle(void *handle) { /* There is no need to wait for MC idle in GMC v9.*/ return 0; } static int gmc_v9_0_soft_reset(void *handle) { /* XXX for emulation.*/ return 0; } static int gmc_v9_0_set_clockgating_state(void *handle, enum amd_clockgating_state state) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; adev->mmhub.funcs->set_clockgating(adev, state); athub_v1_0_set_clockgating(adev, state); return 0; } static void gmc_v9_0_get_clockgating_state(void *handle, u32 *flags) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; adev->mmhub.funcs->get_clockgating(adev, flags); athub_v1_0_get_clockgating(adev, flags); } static int gmc_v9_0_set_powergating_state(void *handle, enum amd_powergating_state state) { return 0; } const struct amd_ip_funcs gmc_v9_0_ip_funcs = { .name = "gmc_v9_0", .early_init = gmc_v9_0_early_init, .late_init = gmc_v9_0_late_init, .sw_init = gmc_v9_0_sw_init, .sw_fini = gmc_v9_0_sw_fini, .hw_init = gmc_v9_0_hw_init, .hw_fini = gmc_v9_0_hw_fini, .suspend = gmc_v9_0_suspend, .resume = gmc_v9_0_resume, .is_idle = gmc_v9_0_is_idle, .wait_for_idle = gmc_v9_0_wait_for_idle, .soft_reset = gmc_v9_0_soft_reset, .set_clockgating_state = gmc_v9_0_set_clockgating_state, .set_powergating_state = gmc_v9_0_set_powergating_state, .get_clockgating_state = gmc_v9_0_get_clockgating_state, }; const struct amdgpu_ip_block_version gmc_v9_0_ip_block = { .type = AMD_IP_BLOCK_TYPE_GMC, .major = 9, .minor = 0, .rev = 0, .funcs = &gmc_v9_0_ip_funcs, };