/* * asus-laptop.c - Asus Laptop Support * * * Copyright (C) 2002-2005 Julien Lerouge, 2003-2006 Karol Kozimor * Copyright (C) 2006-2007 Corentin Chary * Copyright (C) 2011 Wind River Systems * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * * The development page for this driver is located at * http://sourceforge.net/projects/acpi4asus/ * * Credits: * Pontus Fuchs - Helper functions, cleanup * Johann Wiesner - Small compile fixes * John Belmonte - ACPI code for Toshiba laptop was a good starting point. * Eric Burghard - LED display support for W1N * Josh Green - Light Sens support * Thomas Tuttle - His first patch for led support was very helpful * Sam Lin - GPS support */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define ASUS_LAPTOP_VERSION "0.42" #define ASUS_LAPTOP_NAME "Asus Laptop Support" #define ASUS_LAPTOP_CLASS "hotkey" #define ASUS_LAPTOP_DEVICE_NAME "Hotkey" #define ASUS_LAPTOP_FILE KBUILD_MODNAME #define ASUS_LAPTOP_PREFIX "\\_SB.ATKD." MODULE_AUTHOR("Julien Lerouge, Karol Kozimor, Corentin Chary"); MODULE_DESCRIPTION(ASUS_LAPTOP_NAME); MODULE_LICENSE("GPL"); /* * WAPF defines the behavior of the Fn+Fx wlan key * The significance of values is yet to be found, but * most of the time: * Bit | Bluetooth | WLAN * 0 | Hardware | Hardware * 1 | Hardware | Software * 4 | Software | Software */ static uint wapf = 1; module_param(wapf, uint, 0444); MODULE_PARM_DESC(wapf, "WAPF value"); static char *wled_type = "unknown"; static char *bled_type = "unknown"; module_param(wled_type, charp, 0444); MODULE_PARM_DESC(wlan_status, "Set the wled type on boot " "(unknown, led or rfkill). " "default is unknown"); module_param(bled_type, charp, 0444); MODULE_PARM_DESC(bled_type, "Set the bled type on boot " "(unknown, led or rfkill). " "default is unknown"); static int wlan_status = 1; static int bluetooth_status = 1; static int wimax_status = -1; static int wwan_status = -1; static int als_status; module_param(wlan_status, int, 0444); MODULE_PARM_DESC(wlan_status, "Set the wireless status on boot " "(0 = disabled, 1 = enabled, -1 = don't do anything). " "default is -1"); module_param(bluetooth_status, int, 0444); MODULE_PARM_DESC(bluetooth_status, "Set the wireless status on boot " "(0 = disabled, 1 = enabled, -1 = don't do anything). " "default is -1"); module_param(wimax_status, int, 0444); MODULE_PARM_DESC(wimax_status, "Set the wireless status on boot " "(0 = disabled, 1 = enabled, -1 = don't do anything). " "default is -1"); module_param(wwan_status, int, 0444); MODULE_PARM_DESC(wwan_status, "Set the wireless status on boot " "(0 = disabled, 1 = enabled, -1 = don't do anything). " "default is -1"); module_param(als_status, int, 0444); MODULE_PARM_DESC(als_status, "Set the ALS status on boot " "(0 = disabled, 1 = enabled). " "default is 0"); /* * Some events we use, same for all Asus */ #define ATKD_BR_UP 0x10 /* (event & ~ATKD_BR_UP) = brightness level */ #define ATKD_BR_DOWN 0x20 /* (event & ~ATKD_BR_DOWN) = britghness level */ #define ATKD_BR_MIN ATKD_BR_UP #define ATKD_BR_MAX (ATKD_BR_DOWN | 0xF) /* 0x2f */ #define ATKD_LCD_ON 0x33 #define ATKD_LCD_OFF 0x34 /* * Known bits returned by \_SB.ATKD.HWRS */ #define WL_HWRS 0x80 #define BT_HWRS 0x100 /* * Flags for hotk status * WL_ON and BT_ON are also used for wireless_status() */ #define WL_RSTS 0x01 /* internal Wifi */ #define BT_RSTS 0x02 /* internal Bluetooth */ #define WM_RSTS 0x08 /* internal wimax */ #define WW_RSTS 0x20 /* internal wwan */ /* WLED and BLED type */ #define TYPE_UNKNOWN 0 #define TYPE_LED 1 #define TYPE_RFKILL 2 /* LED */ #define METHOD_MLED "MLED" #define METHOD_TLED "TLED" #define METHOD_RLED "RLED" /* W1JC */ #define METHOD_PLED "PLED" /* A7J */ #define METHOD_GLED "GLED" /* G1, G2 (probably) */ /* LEDD */ #define METHOD_LEDD "SLCM" /* * Bluetooth and WLAN * WLED and BLED are not handled like other XLED, because in some dsdt * they also control the WLAN/Bluetooth device. */ #define METHOD_WLAN "WLED" #define METHOD_BLUETOOTH "BLED" /* WWAN and WIMAX */ #define METHOD_WWAN "GSMC" #define METHOD_WIMAX "WMXC" #define METHOD_WL_STATUS "RSTS" /* Brightness */ #define METHOD_BRIGHTNESS_SET "SPLV" #define METHOD_BRIGHTNESS_GET "GPLV" /* Display */ #define METHOD_SWITCH_DISPLAY "SDSP" #define METHOD_ALS_CONTROL "ALSC" /* Z71A Z71V */ #define METHOD_ALS_LEVEL "ALSL" /* Z71A Z71V */ /* GPS */ /* R2H use different handle for GPS on/off */ #define METHOD_GPS_ON "SDON" #define METHOD_GPS_OFF "SDOF" #define METHOD_GPS_STATUS "GPST" /* Keyboard light */ #define METHOD_KBD_LIGHT_SET "SLKB" #define METHOD_KBD_LIGHT_GET "GLKB" /* For Pegatron Lucid tablet */ #define DEVICE_NAME_PEGA "Lucid" #define METHOD_PEGA_ENABLE "ENPR" #define METHOD_PEGA_DISABLE "DAPR" #define PEGA_WLAN 0x00 #define PEGA_BLUETOOTH 0x01 #define PEGA_WWAN 0x02 #define PEGA_ALS 0x04 #define PEGA_ALS_POWER 0x05 #define METHOD_PEGA_READ "RDLN" #define PEGA_READ_ALS_H 0x02 #define PEGA_READ_ALS_L 0x03 #define PEGA_ACCEL_NAME "pega_accel" #define PEGA_ACCEL_DESC "Pegatron Lucid Tablet Accelerometer" #define METHOD_XLRX "XLRX" #define METHOD_XLRY "XLRY" #define METHOD_XLRZ "XLRZ" #define PEGA_ACC_CLAMP 512 /* 1G accel is reported as ~256, so clamp to 2G */ #define PEGA_ACC_RETRIES 3 /* * Define a specific led structure to keep the main structure clean */ struct asus_led { int wk; struct work_struct work; struct led_classdev led; struct asus_laptop *asus; const char *method; }; /* * Same thing for rfkill */ struct asus_rfkill { /* type of control. Maps to PEGA_* values or *_RSTS */ int control_id; struct rfkill *rfkill; struct asus_laptop *asus; }; /* * This is the main structure, we can use it to store anything interesting * about the hotk device */ struct asus_laptop { char *name; /* laptop name */ struct acpi_table_header *dsdt_info; struct platform_device *platform_device; struct acpi_device *device; /* the device we are in */ struct backlight_device *backlight_device; struct input_dev *inputdev; struct key_entry *keymap; struct input_polled_dev *pega_accel_poll; struct asus_led wled; struct asus_led bled; struct asus_led mled; struct asus_led tled; struct asus_led rled; struct asus_led pled; struct asus_led gled; struct asus_led kled; struct workqueue_struct *led_workqueue; int wled_type; int bled_type; int wireless_status; bool have_rsts; bool is_pega_lucid; bool pega_acc_live; int pega_acc_x; int pega_acc_y; int pega_acc_z; struct asus_rfkill wlan; struct asus_rfkill bluetooth; struct asus_rfkill wwan; struct asus_rfkill gps; acpi_handle handle; /* the handle of the hotk device */ u32 ledd_status; /* status of the LED display */ u8 light_level; /* light sensor level */ u8 light_switch; /* light sensor switch value */ u16 event_count[128]; /* count for each event TODO make this better */ }; static const struct key_entry asus_keymap[] = { /* Lenovo SL Specific keycodes */ {KE_KEY, 0x02, { KEY_SCREENLOCK } }, {KE_KEY, 0x05, { KEY_WLAN } }, {KE_KEY, 0x08, { KEY_F13 } }, {KE_KEY, 0x17, { KEY_ZOOM } }, {KE_KEY, 0x1f, { KEY_BATTERY } }, /* End of Lenovo SL Specific keycodes */ {KE_KEY, 0x30, { KEY_VOLUMEUP } }, {KE_KEY, 0x31, { KEY_VOLUMEDOWN } }, {KE_KEY, 0x32, { KEY_MUTE } }, {KE_KEY, 0x33, { KEY_SWITCHVIDEOMODE } }, {KE_KEY, 0x34, { KEY_SWITCHVIDEOMODE } }, {KE_KEY, 0x40, { KEY_PREVIOUSSONG } }, {KE_KEY, 0x41, { KEY_NEXTSONG } }, {KE_KEY, 0x43, { KEY_STOPCD } }, {KE_KEY, 0x45, { KEY_PLAYPAUSE } }, {KE_KEY, 0x4c, { KEY_MEDIA } }, {KE_KEY, 0x50, { KEY_EMAIL } }, {KE_KEY, 0x51, { KEY_WWW } }, {KE_KEY, 0x55, { KEY_CALC } }, {KE_KEY, 0x5C, { KEY_SCREENLOCK } }, /* Screenlock */ {KE_KEY, 0x5D, { KEY_WLAN } }, {KE_KEY, 0x5E, { KEY_WLAN } }, {KE_KEY, 0x5F, { KEY_WLAN } }, {KE_KEY, 0x60, { KEY_SWITCHVIDEOMODE } }, {KE_KEY, 0x61, { KEY_SWITCHVIDEOMODE } }, {KE_KEY, 0x62, { KEY_SWITCHVIDEOMODE } }, {KE_KEY, 0x63, { KEY_SWITCHVIDEOMODE } }, {KE_KEY, 0x6B, { KEY_F13 } }, /* Lock Touchpad */ {KE_KEY, 0x7E, { KEY_BLUETOOTH } }, {KE_KEY, 0x7D, { KEY_BLUETOOTH } }, {KE_KEY, 0x82, { KEY_CAMERA } }, {KE_KEY, 0x88, { KEY_WLAN } }, {KE_KEY, 0x8A, { KEY_PROG1 } }, {KE_KEY, 0x95, { KEY_MEDIA } }, {KE_KEY, 0x99, { KEY_PHONE } }, {KE_KEY, 0xc4, { KEY_KBDILLUMUP } }, {KE_KEY, 0xc5, { KEY_KBDILLUMDOWN } }, {KE_KEY, 0xb5, { KEY_CALC } }, {KE_END, 0}, }; /* * This function evaluates an ACPI method, given an int as parameter, the * method is searched within the scope of the handle, can be NULL. The output * of the method is written is output, which can also be NULL * * returns 0 if write is successful, -1 else. */ static int write_acpi_int_ret(acpi_handle handle, const char *method, int val, struct acpi_buffer *output) { struct acpi_object_list params; /* list of input parameters (an int) */ union acpi_object in_obj; /* the only param we use */ acpi_status status; if (!handle) return -1; params.count = 1; params.pointer = &in_obj; in_obj.type = ACPI_TYPE_INTEGER; in_obj.integer.value = val; status = acpi_evaluate_object(handle, (char *)method, ¶ms, output); if (status == AE_OK) return 0; else return -1; } static int write_acpi_int(acpi_handle handle, const char *method, int val) { return write_acpi_int_ret(handle, method, val, NULL); } static int acpi_check_handle(acpi_handle handle, const char *method, acpi_handle *ret) { acpi_status status; if (method == NULL) return -ENODEV; if (ret) status = acpi_get_handle(handle, (char *)method, ret); else { acpi_handle dummy; status = acpi_get_handle(handle, (char *)method, &dummy); } if (status != AE_OK) { if (ret) pr_warn("Error finding %s\n", method); return -ENODEV; } return 0; } static bool asus_check_pega_lucid(struct asus_laptop *asus) { return !strcmp(asus->name, DEVICE_NAME_PEGA) && !acpi_check_handle(asus->handle, METHOD_PEGA_ENABLE, NULL) && !acpi_check_handle(asus->handle, METHOD_PEGA_DISABLE, NULL) && !acpi_check_handle(asus->handle, METHOD_PEGA_READ, NULL); } static int asus_pega_lucid_set(struct asus_laptop *asus, int unit, bool enable) { char *method = enable ? METHOD_PEGA_ENABLE : METHOD_PEGA_DISABLE; return write_acpi_int(asus->handle, method, unit); } static int pega_acc_axis(struct asus_laptop *asus, int curr, char *method) { int i, delta; unsigned long long val; for (i = 0; i < PEGA_ACC_RETRIES; i++) { acpi_evaluate_integer(asus->handle, method, NULL, &val); /* The output is noisy. From reading the ASL * dissassembly, timeout errors are returned with 1's * in the high word, and the lack of locking around * thei hi/lo byte reads means that a transition * between (for example) -1 and 0 could be read as * 0xff00 or 0x00ff. */ delta = abs(curr - (short)val); if (delta < 128 && !(val & ~0xffff)) break; } return clamp_val((short)val, -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP); } static void pega_accel_poll(struct input_polled_dev *ipd) { struct device *parent = ipd->input->dev.parent; struct asus_laptop *asus = dev_get_drvdata(parent); /* In some cases, the very first call to poll causes a * recursive fault under the polldev worker. This is * apparently related to very early userspace access to the * device, and perhaps a firmware bug. Fake the first report. */ if (!asus->pega_acc_live) { asus->pega_acc_live = true; input_report_abs(ipd->input, ABS_X, 0); input_report_abs(ipd->input, ABS_Y, 0); input_report_abs(ipd->input, ABS_Z, 0); input_sync(ipd->input); return; } asus->pega_acc_x = pega_acc_axis(asus, asus->pega_acc_x, METHOD_XLRX); asus->pega_acc_y = pega_acc_axis(asus, asus->pega_acc_y, METHOD_XLRY); asus->pega_acc_z = pega_acc_axis(asus, asus->pega_acc_z, METHOD_XLRZ); /* Note transform, convert to "right/up/out" in the native * landscape orientation (i.e. the vector is the direction of * "real up" in the device's cartiesian coordinates). */ input_report_abs(ipd->input, ABS_X, -asus->pega_acc_x); input_report_abs(ipd->input, ABS_Y, -asus->pega_acc_y); input_report_abs(ipd->input, ABS_Z, asus->pega_acc_z); input_sync(ipd->input); } static void pega_accel_exit(struct asus_laptop *asus) { if (asus->pega_accel_poll) { input_unregister_polled_device(asus->pega_accel_poll); input_free_polled_device(asus->pega_accel_poll); } asus->pega_accel_poll = NULL; } static int pega_accel_init(struct asus_laptop *asus) { int err; struct input_polled_dev *ipd; if (!asus->is_pega_lucid) return -ENODEV; if (acpi_check_handle(asus->handle, METHOD_XLRX, NULL) || acpi_check_handle(asus->handle, METHOD_XLRY, NULL) || acpi_check_handle(asus->handle, METHOD_XLRZ, NULL)) return -ENODEV; ipd = input_allocate_polled_device(); if (!ipd) return -ENOMEM; ipd->poll = pega_accel_poll; ipd->poll_interval = 125; ipd->poll_interval_min = 50; ipd->poll_interval_max = 2000; ipd->input->name = PEGA_ACCEL_DESC; ipd->input->phys = PEGA_ACCEL_NAME "/input0"; ipd->input->dev.parent = &asus->platform_device->dev; ipd->input->id.bustype = BUS_HOST; set_bit(EV_ABS, ipd->input->evbit); input_set_abs_params(ipd->input, ABS_X, -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0); input_set_abs_params(ipd->input, ABS_Y, -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0); input_set_abs_params(ipd->input, ABS_Z, -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0); err = input_register_polled_device(ipd); if (err) goto exit; asus->pega_accel_poll = ipd; return 0; exit: input_free_polled_device(ipd); return err; } /* Generic LED function */ static int asus_led_set(struct asus_laptop *asus, const char *method, int value) { if (!strcmp(method, METHOD_MLED)) value = !value; else if (!strcmp(method, METHOD_GLED)) value = !value + 1; else value = !!value; return write_acpi_int(asus->handle, method, value); } /* * LEDs */ /* /sys/class/led handlers */ static void asus_led_cdev_set(struct led_classdev *led_cdev, enum led_brightness value) { struct asus_led *led = container_of(led_cdev, struct asus_led, led); struct asus_laptop *asus = led->asus; led->wk = !!value; queue_work(asus->led_workqueue, &led->work); } static void asus_led_cdev_update(struct work_struct *work) { struct asus_led *led = container_of(work, struct asus_led, work); struct asus_laptop *asus = led->asus; asus_led_set(asus, led->method, led->wk); } static enum led_brightness asus_led_cdev_get(struct led_classdev *led_cdev) { return led_cdev->brightness; } /* * Keyboard backlight (also a LED) */ static int asus_kled_lvl(struct asus_laptop *asus) { unsigned long long kblv; struct acpi_object_list params; union acpi_object in_obj; acpi_status rv; params.count = 1; params.pointer = &in_obj; in_obj.type = ACPI_TYPE_INTEGER; in_obj.integer.value = 2; rv = acpi_evaluate_integer(asus->handle, METHOD_KBD_LIGHT_GET, ¶ms, &kblv); if (ACPI_FAILURE(rv)) { pr_warn("Error reading kled level\n"); return -ENODEV; } return kblv; } static int asus_kled_set(struct asus_laptop *asus, int kblv) { if (kblv > 0) kblv = (1 << 7) | (kblv & 0x7F); else kblv = 0; if (write_acpi_int(asus->handle, METHOD_KBD_LIGHT_SET, kblv)) { pr_warn("Keyboard LED display write failed\n"); return -EINVAL; } return 0; } static void asus_kled_cdev_set(struct led_classdev *led_cdev, enum led_brightness value) { struct asus_led *led = container_of(led_cdev, struct asus_led, led); struct asus_laptop *asus = led->asus; led->wk = value; queue_work(asus->led_workqueue, &led->work); } static void asus_kled_cdev_update(struct work_struct *work) { struct asus_led *led = container_of(work, struct asus_led, work); struct asus_laptop *asus = led->asus; asus_kled_set(asus, led->wk); } static enum led_brightness asus_kled_cdev_get(struct led_classdev *led_cdev) { struct asus_led *led = container_of(led_cdev, struct asus_led, led); struct asus_laptop *asus = led->asus; return asus_kled_lvl(asus); } static void asus_led_exit(struct asus_laptop *asus) { if (!IS_ERR_OR_NULL(asus->wled.led.dev)) led_classdev_unregister(&asus->wled.led); if (!IS_ERR_OR_NULL(asus->bled.led.dev)) led_classdev_unregister(&asus->bled.led); if (!IS_ERR_OR_NULL(asus->mled.led.dev)) led_classdev_unregister(&asus->mled.led); if (!IS_ERR_OR_NULL(asus->tled.led.dev)) led_classdev_unregister(&asus->tled.led); if (!IS_ERR_OR_NULL(asus->pled.led.dev)) led_classdev_unregister(&asus->pled.led); if (!IS_ERR_OR_NULL(asus->rled.led.dev)) led_classdev_unregister(&asus->rled.led); if (!IS_ERR_OR_NULL(asus->gled.led.dev)) led_classdev_unregister(&asus->gled.led); if (!IS_ERR_OR_NULL(asus->kled.led.dev)) led_classdev_unregister(&asus->kled.led); if (asus->led_workqueue) { destroy_workqueue(asus->led_workqueue); asus->led_workqueue = NULL; } } /* Ugly macro, need to fix that later */ static int asus_led_register(struct asus_laptop *asus, struct asus_led *led, const char *name, const char *method) { struct led_classdev *led_cdev = &led->led; if (!method || acpi_check_handle(asus->handle, method, NULL)) return 0; /* Led not present */ led->asus = asus; led->method = method; INIT_WORK(&led->work, asus_led_cdev_update); led_cdev->name = name; led_cdev->brightness_set = asus_led_cdev_set; led_cdev->brightness_get = asus_led_cdev_get; led_cdev->max_brightness = 1; return led_classdev_register(&asus->platform_device->dev, led_cdev); } static int asus_led_init(struct asus_laptop *asus) { int r = 0; /* * The Pegatron Lucid has no physical leds, but all methods are * available in the DSDT... */ if (asus->is_pega_lucid) return 0; /* * Functions that actually update the LED's are called from a * workqueue. By doing this as separate work rather than when the LED * subsystem asks, we avoid messing with the Asus ACPI stuff during a * potentially bad time, such as a timer interrupt. */ asus->led_workqueue = create_singlethread_workqueue("led_workqueue"); if (!asus->led_workqueue) return -ENOMEM; if (asus->wled_type == TYPE_LED) r = asus_led_register(asus, &asus->wled, "asus::wlan", METHOD_WLAN); if (r) goto error; if (asus->bled_type == TYPE_LED) r = asus_led_register(asus, &asus->bled, "asus::bluetooth", METHOD_BLUETOOTH); if (r) goto error; r = asus_led_register(asus, &asus->mled, "asus::mail", METHOD_MLED); if (r) goto error; r = asus_led_register(asus, &asus->tled, "asus::touchpad", METHOD_TLED); if (r) goto error; r = asus_led_register(asus, &asus->rled, "asus::record", METHOD_RLED); if (r) goto error; r = asus_led_register(asus, &asus->pled, "asus::phone", METHOD_PLED); if (r) goto error; r = asus_led_register(asus, &asus->gled, "asus::gaming", METHOD_GLED); if (r) goto error; if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL) && !acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_GET, NULL)) { struct asus_led *led = &asus->kled; struct led_classdev *cdev = &led->led; led->asus = asus; INIT_WORK(&led->work, asus_kled_cdev_update); cdev->name = "asus::kbd_backlight"; cdev->brightness_set = asus_kled_cdev_set; cdev->brightness_get = asus_kled_cdev_get; cdev->max_brightness = 3; r = led_classdev_register(&asus->platform_device->dev, cdev); } error: if (r) asus_led_exit(asus); return r; } /* * Backlight device */ static int asus_read_brightness(struct backlight_device *bd) { struct asus_laptop *asus = bl_get_data(bd); unsigned long long value; acpi_status rv = AE_OK; rv = acpi_evaluate_integer(asus->handle, METHOD_BRIGHTNESS_GET, NULL, &value); if (ACPI_FAILURE(rv)) pr_warn("Error reading brightness\n"); return value; } static int asus_set_brightness(struct backlight_device *bd, int value) { struct asus_laptop *asus = bl_get_data(bd); if (write_acpi_int(asus->handle, METHOD_BRIGHTNESS_SET, value)) { pr_warn("Error changing brightness\n"); return -EIO; } return 0; } static int update_bl_status(struct backlight_device *bd) { int value = bd->props.brightness; return asus_set_brightness(bd, value); } static const struct backlight_ops asusbl_ops = { .get_brightness = asus_read_brightness, .update_status = update_bl_status, }; static int asus_backlight_notify(struct asus_laptop *asus) { struct backlight_device *bd = asus->backlight_device; int old = bd->props.brightness; backlight_force_update(bd, BACKLIGHT_UPDATE_HOTKEY); return old; } static int asus_backlight_init(struct asus_laptop *asus) { struct backlight_device *bd; struct backlight_properties props; if (acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_GET, NULL) || acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_SET, NULL)) return 0; memset(&props, 0, sizeof(struct backlight_properties)); props.max_brightness = 15; props.type = BACKLIGHT_PLATFORM; bd = backlight_device_register(ASUS_LAPTOP_FILE, &asus->platform_device->dev, asus, &asusbl_ops, &props); if (IS_ERR(bd)) { pr_err("Could not register asus backlight device\n"); asus->backlight_device = NULL; return PTR_ERR(bd); } asus->backlight_device = bd; bd->props.brightness = asus_read_brightness(bd); bd->props.power = FB_BLANK_UNBLANK; backlight_update_status(bd); return 0; } static void asus_backlight_exit(struct asus_laptop *asus) { if (asus->backlight_device) backlight_device_unregister(asus->backlight_device); asus->backlight_device = NULL; } /* * Platform device handlers */ /* * We write our info in page, we begin at offset off and cannot write more * than count bytes. We set eof to 1 if we handle those 2 values. We return the * number of bytes written in page */ static ssize_t show_infos(struct device *dev, struct device_attribute *attr, char *page) { struct asus_laptop *asus = dev_get_drvdata(dev); int len = 0; unsigned long long temp; char buf[16]; /* enough for all info */ acpi_status rv = AE_OK; /* * We use the easy way, we don't care of off and count, * so we don't set eof to 1 */ len += sprintf(page, ASUS_LAPTOP_NAME " " ASUS_LAPTOP_VERSION "\n"); len += sprintf(page + len, "Model reference : %s\n", asus->name); /* * The SFUN method probably allows the original driver to get the list * of features supported by a given model. For now, 0x0100 or 0x0800 * bit signifies that the laptop is equipped with a Wi-Fi MiniPCI card. * The significance of others is yet to be found. */ rv = acpi_evaluate_integer(asus->handle, "SFUN", NULL, &temp); if (!ACPI_FAILURE(rv)) len += sprintf(page + len, "SFUN value : %#x\n", (uint) temp); /* * The HWRS method return informations about the hardware. * 0x80 bit is for WLAN, 0x100 for Bluetooth. * The significance of others is yet to be found. * If we don't find the method, we assume the device are present. */ rv = acpi_evaluate_integer(asus->handle, "HRWS", NULL, &temp); if (!ACPI_FAILURE(rv)) len += sprintf(page + len, "HRWS value : %#x\n", (uint) temp); /* * Another value for userspace: the ASYM method returns 0x02 for * battery low and 0x04 for battery critical, its readings tend to be * more accurate than those provided by _BST. * Note: since not all the laptops provide this method, errors are * silently ignored. */ rv = acpi_evaluate_integer(asus->handle, "ASYM", NULL, &temp); if (!ACPI_FAILURE(rv)) len += sprintf(page + len, "ASYM value : %#x\n", (uint) temp); if (asus->dsdt_info) { snprintf(buf, 16, "%d", asus->dsdt_info->length); len += sprintf(page + len, "DSDT length : %s\n", buf); snprintf(buf, 16, "%d", asus->dsdt_info->checksum); len += sprintf(page + len, "DSDT checksum : %s\n", buf); snprintf(buf, 16, "%d", asus->dsdt_info->revision); len += sprintf(page + len, "DSDT revision : %s\n", buf); snprintf(buf, 7, "%s", asus->dsdt_info->oem_id); len += sprintf(page + len, "OEM id : %s\n", buf); snprintf(buf, 9, "%s", asus->dsdt_info->oem_table_id); len += sprintf(page + len, "OEM table id : %s\n", buf); snprintf(buf, 16, "%x", asus->dsdt_info->oem_revision); len += sprintf(page + len, "OEM revision : 0x%s\n", buf); snprintf(buf, 5, "%s", asus->dsdt_info->asl_compiler_id); len += sprintf(page + len, "ASL comp vendor id : %s\n", buf); snprintf(buf, 16, "%x", asus->dsdt_info->asl_compiler_revision); len += sprintf(page + len, "ASL comp revision : 0x%s\n", buf); } return len; } static int parse_arg(const char *buf, unsigned long count, int *val) { if (!count) return 0; if (count > 31) return -EINVAL; if (sscanf(buf, "%i", val) != 1) return -EINVAL; return count; } static ssize_t sysfs_acpi_set(struct asus_laptop *asus, const char *buf, size_t count, const char *method) { int rv, value; int out = 0; rv = parse_arg(buf, count, &value); if (rv > 0) out = value ? 1 : 0; if (write_acpi_int(asus->handle, method, value)) return -ENODEV; return rv; } /* * LEDD display */ static ssize_t show_ledd(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_laptop *asus = dev_get_drvdata(dev); return sprintf(buf, "0x%08x\n", asus->ledd_status); } static ssize_t store_ledd(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_laptop *asus = dev_get_drvdata(dev); int rv, value; rv = parse_arg(buf, count, &value); if (rv > 0) { if (write_acpi_int(asus->handle, METHOD_LEDD, value)) { pr_warn("LED display write failed\n"); return -ENODEV; } asus->ledd_status = (u32) value; } return rv; } /* * Wireless */ static int asus_wireless_status(struct asus_laptop *asus, int mask) { unsigned long long status; acpi_status rv = AE_OK; if (!asus->have_rsts) return (asus->wireless_status & mask) ? 1 : 0; rv = acpi_evaluate_integer(asus->handle, METHOD_WL_STATUS, NULL, &status); if (ACPI_FAILURE(rv)) { pr_warn("Error reading Wireless status\n"); return -EINVAL; } return !!(status & mask); } /* * WLAN */ static int asus_wlan_set(struct asus_laptop *asus, int status) { if (write_acpi_int(asus->handle, METHOD_WLAN, !!status)) { pr_warn("Error setting wlan status to %d\n", status); return -EIO; } return 0; } static ssize_t show_wlan(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_laptop *asus = dev_get_drvdata(dev); return sprintf(buf, "%d\n", asus_wireless_status(asus, WL_RSTS)); } static ssize_t store_wlan(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_laptop *asus = dev_get_drvdata(dev); return sysfs_acpi_set(asus, buf, count, METHOD_WLAN); } /*e * Bluetooth */ static int asus_bluetooth_set(struct asus_laptop *asus, int status) { if (write_acpi_int(asus->handle, METHOD_BLUETOOTH, !!status)) { pr_warn("Error setting bluetooth status to %d\n", status); return -EIO; } return 0; } static ssize_t show_bluetooth(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_laptop *asus = dev_get_drvdata(dev); return sprintf(buf, "%d\n", asus_wireless_status(asus, BT_RSTS)); } static ssize_t store_bluetooth(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_laptop *asus = dev_get_drvdata(dev); return sysfs_acpi_set(asus, buf, count, METHOD_BLUETOOTH); } /* * Wimax */ static int asus_wimax_set(struct asus_laptop *asus, int status) { if (write_acpi_int(asus->handle, METHOD_WIMAX, !!status)) { pr_warn("Error setting wimax status to %d\n", status); return -EIO; } return 0; } static ssize_t show_wimax(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_laptop *asus = dev_get_drvdata(dev); return sprintf(buf, "%d\n", asus_wireless_status(asus, WM_RSTS)); } static ssize_t store_wimax(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_laptop *asus = dev_get_drvdata(dev); return sysfs_acpi_set(asus, buf, count, METHOD_WIMAX); } /* * Wwan */ static int asus_wwan_set(struct asus_laptop *asus, int status) { if (write_acpi_int(asus->handle, METHOD_WWAN, !!status)) { pr_warn("Error setting wwan status to %d\n", status); return -EIO; } return 0; } static ssize_t show_wwan(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_laptop *asus = dev_get_drvdata(dev); return sprintf(buf, "%d\n", asus_wireless_status(asus, WW_RSTS)); } static ssize_t store_wwan(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_laptop *asus = dev_get_drvdata(dev); return sysfs_acpi_set(asus, buf, count, METHOD_WWAN); } /* * Display */ static void asus_set_display(struct asus_laptop *asus, int value) { /* no sanity check needed for now */ if (write_acpi_int(asus->handle, METHOD_SWITCH_DISPLAY, value)) pr_warn("Error setting display\n"); return; } /* * Experimental support for display switching. As of now: 1 should activate * the LCD output, 2 should do for CRT, 4 for TV-Out and 8 for DVI. * Any combination (bitwise) of these will suffice. I never actually tested 4 * displays hooked up simultaneously, so be warned. See the acpi4asus README * for more info. */ static ssize_t store_disp(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_laptop *asus = dev_get_drvdata(dev); int rv, value; rv = parse_arg(buf, count, &value); if (rv > 0) asus_set_display(asus, value); return rv; } /* * Light Sens */ static void asus_als_switch(struct asus_laptop *asus, int value) { int ret; if (asus->is_pega_lucid) { ret = asus_pega_lucid_set(asus, PEGA_ALS, value); if (!ret) ret = asus_pega_lucid_set(asus, PEGA_ALS_POWER, value); } else { ret = write_acpi_int(asus->handle, METHOD_ALS_CONTROL, value); } if (ret) pr_warning("Error setting light sensor switch\n"); asus->light_switch = value; } static ssize_t show_lssw(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_laptop *asus = dev_get_drvdata(dev); return sprintf(buf, "%d\n", asus->light_switch); } static ssize_t store_lssw(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_laptop *asus = dev_get_drvdata(dev); int rv, value; rv = parse_arg(buf, count, &value); if (rv > 0) asus_als_switch(asus, value ? 1 : 0); return rv; } static void asus_als_level(struct asus_laptop *asus, int value) { if (write_acpi_int(asus->handle, METHOD_ALS_LEVEL, value)) pr_warn("Error setting light sensor level\n"); asus->light_level = value; } static ssize_t show_lslvl(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_laptop *asus = dev_get_drvdata(dev); return sprintf(buf, "%d\n", asus->light_level); } static ssize_t store_lslvl(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_laptop *asus = dev_get_drvdata(dev); int rv, value; rv = parse_arg(buf, count, &value); if (rv > 0) { value = (0 < value) ? ((15 < value) ? 15 : value) : 0; /* 0 <= value <= 15 */ asus_als_level(asus, value); } return rv; } static int pega_int_read(struct asus_laptop *asus, int arg, int *result) { struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; int err = write_acpi_int_ret(asus->handle, METHOD_PEGA_READ, arg, &buffer); if (!err) { union acpi_object *obj = buffer.pointer; if (obj && obj->type == ACPI_TYPE_INTEGER) *result = obj->integer.value; else err = -EIO; } return err; } static ssize_t show_lsvalue(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_laptop *asus = dev_get_drvdata(dev); int err, hi, lo; err = pega_int_read(asus, PEGA_READ_ALS_H, &hi); if (!err) err = pega_int_read(asus, PEGA_READ_ALS_L, &lo); if (!err) return sprintf(buf, "%d\n", 10 * hi + lo); return err; } /* * GPS */ static int asus_gps_status(struct asus_laptop *asus) { unsigned long long status; acpi_status rv = AE_OK; rv = acpi_evaluate_integer(asus->handle, METHOD_GPS_STATUS, NULL, &status); if (ACPI_FAILURE(rv)) { pr_warn("Error reading GPS status\n"); return -ENODEV; } return !!status; } static int asus_gps_switch(struct asus_laptop *asus, int status) { const char *meth = status ? METHOD_GPS_ON : METHOD_GPS_OFF; if (write_acpi_int(asus->handle, meth, 0x02)) return -ENODEV; return 0; } static ssize_t show_gps(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_laptop *asus = dev_get_drvdata(dev); return sprintf(buf, "%d\n", asus_gps_status(asus)); } static ssize_t store_gps(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_laptop *asus = dev_get_drvdata(dev); int rv, value; int ret; rv = parse_arg(buf, count, &value); if (rv <= 0) return -EINVAL; ret = asus_gps_switch(asus, !!value); if (ret) return ret; rfkill_set_sw_state(asus->gps.rfkill, !value); return rv; } /* * rfkill */ static int asus_gps_rfkill_set(void *data, bool blocked) { struct asus_laptop *asus = data; return asus_gps_switch(asus, !blocked); } static const struct rfkill_ops asus_gps_rfkill_ops = { .set_block = asus_gps_rfkill_set, }; static int asus_rfkill_set(void *data, bool blocked) { struct asus_rfkill *rfk = data; struct asus_laptop *asus = rfk->asus; if (rfk->control_id == WL_RSTS) return asus_wlan_set(asus, !blocked); else if (rfk->control_id == BT_RSTS) return asus_bluetooth_set(asus, !blocked); return -EINVAL; } static const struct rfkill_ops asus_rfkill_ops = { .set_block = asus_rfkill_set, }; static void asus_rfkill_terminate(struct asus_rfkill *rfk) { if (!rfk->rfkill) return ; rfkill_unregister(rfk->rfkill); rfkill_destroy(rfk->rfkill); rfk->rfkill = NULL; } static void asus_rfkill_exit(struct asus_laptop *asus) { asus_rfkill_terminate(&asus->wwan); asus_rfkill_terminate(&asus->bluetooth); asus_rfkill_terminate(&asus->wlan); asus_rfkill_terminate(&asus->gps); } static int asus_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk, const char *name, int control_id, int type, const struct rfkill_ops *ops) { int result; rfk->control_id = control_id; rfk->asus = asus; rfk->rfkill = rfkill_alloc(name, &asus->platform_device->dev, type, ops, rfk); if (!rfk->rfkill) return -EINVAL; result = rfkill_register(rfk->rfkill); if (result) { rfkill_destroy(rfk->rfkill); rfk->rfkill = NULL; } return result; } static int asus_rfkill_init(struct asus_laptop *asus) { int result = 0; if (!acpi_check_handle(asus->handle, METHOD_GPS_ON, NULL) && !acpi_check_handle(asus->handle, METHOD_GPS_OFF, NULL) && !acpi_check_handle(asus->handle, METHOD_GPS_STATUS, NULL)) result = asus_rfkill_setup(asus, &asus->gps, "asus-gps", -1, RFKILL_TYPE_GPS, &asus_gps_rfkill_ops); if (result) goto exit; if (asus->wled_type == TYPE_RFKILL) result = asus_rfkill_setup(asus, &asus->wlan, "asus-wlan", WL_RSTS, RFKILL_TYPE_WLAN, &asus_rfkill_ops); if (result) goto exit; if (asus->bled_type == TYPE_RFKILL) result = asus_rfkill_setup(asus, &asus->bluetooth, "asus-bluetooth", BT_RSTS, RFKILL_TYPE_BLUETOOTH, &asus_rfkill_ops); if (result) goto exit; exit: if (result) asus_rfkill_exit(asus); return result; } static int pega_rfkill_set(void *data, bool blocked) { struct asus_rfkill *rfk = data; int ret = asus_pega_lucid_set(rfk->asus, rfk->control_id, !blocked); return ret; } static const struct rfkill_ops pega_rfkill_ops = { .set_block = pega_rfkill_set, }; static int pega_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk, const char *name, int controlid, int rfkill_type) { return asus_rfkill_setup(asus, rfk, name, controlid, rfkill_type, &pega_rfkill_ops); } static int pega_rfkill_init(struct asus_laptop *asus) { int ret = 0; if(!asus->is_pega_lucid) return -ENODEV; ret = pega_rfkill_setup(asus, &asus->wlan, "pega-wlan", PEGA_WLAN, RFKILL_TYPE_WLAN); if(ret) goto exit; ret = pega_rfkill_setup(asus, &asus->bluetooth, "pega-bt", PEGA_BLUETOOTH, RFKILL_TYPE_BLUETOOTH); if(ret) goto exit; ret = pega_rfkill_setup(asus, &asus->wwan, "pega-wwan", PEGA_WWAN, RFKILL_TYPE_WWAN); exit: if (ret) asus_rfkill_exit(asus); return ret; } /* * Input device (i.e. hotkeys) */ static void asus_input_notify(struct asus_laptop *asus, int event) { if (!asus->inputdev) return ; if (!sparse_keymap_report_event(asus->inputdev, event, 1, true)) pr_info("Unknown key %x pressed\n", event); } static int asus_input_init(struct asus_laptop *asus) { struct input_dev *input; int error; input = input_allocate_device(); if (!input) { pr_warn("Unable to allocate input device\n"); return -ENOMEM; } input->name = "Asus Laptop extra buttons"; input->phys = ASUS_LAPTOP_FILE "/input0"; input->id.bustype = BUS_HOST; input->dev.parent = &asus->platform_device->dev; error = sparse_keymap_setup(input, asus_keymap, NULL); if (error) { pr_err("Unable to setup input device keymap\n"); goto err_free_dev; } error = input_register_device(input); if (error) { pr_warn("Unable to register input device\n"); goto err_free_keymap; } asus->inputdev = input; return 0; err_free_keymap: sparse_keymap_free(input); err_free_dev: input_free_device(input); return error; } static void asus_input_exit(struct asus_laptop *asus) { if (asus->inputdev) { sparse_keymap_free(asus->inputdev); input_unregister_device(asus->inputdev); } asus->inputdev = NULL; } /* * ACPI driver */ static void asus_acpi_notify(struct acpi_device *device, u32 event) { struct asus_laptop *asus = acpi_driver_data(device); u16 count; /* TODO Find a better way to handle events count. */ count = asus->event_count[event % 128]++; acpi_bus_generate_proc_event(asus->device, event, count); acpi_bus_generate_netlink_event(asus->device->pnp.device_class, dev_name(&asus->device->dev), event, count); /* Brightness events are special */ if (event >= ATKD_BR_MIN && event <= ATKD_BR_MAX) { /* Ignore them completely if the acpi video driver is used */ if (asus->backlight_device != NULL) { /* Update the backlight device. */ asus_backlight_notify(asus); } return ; } /* Accelerometer "coarse orientation change" event */ if (asus->pega_accel_poll && event == 0xEA) { kobject_uevent(&asus->pega_accel_poll->input->dev.kobj, KOBJ_CHANGE); return ; } asus_input_notify(asus, event); } static DEVICE_ATTR(infos, S_IRUGO, show_infos, NULL); static DEVICE_ATTR(wlan, S_IRUGO | S_IWUSR, show_wlan, store_wlan); static DEVICE_ATTR(bluetooth, S_IRUGO | S_IWUSR, show_bluetooth, store_bluetooth); static DEVICE_ATTR(wimax, S_IRUGO | S_IWUSR, show_wimax, store_wimax); static DEVICE_ATTR(wwan, S_IRUGO | S_IWUSR, show_wwan, store_wwan); static DEVICE_ATTR(display, S_IWUSR, NULL, store_disp); static DEVICE_ATTR(ledd, S_IRUGO | S_IWUSR, show_ledd, store_ledd); static DEVICE_ATTR(ls_value, S_IRUGO, show_lsvalue, NULL); static DEVICE_ATTR(ls_level, S_IRUGO | S_IWUSR, show_lslvl, store_lslvl); static DEVICE_ATTR(ls_switch, S_IRUGO | S_IWUSR, show_lssw, store_lssw); static DEVICE_ATTR(gps, S_IRUGO | S_IWUSR, show_gps, store_gps); static struct attribute *asus_attributes[] = { &dev_attr_infos.attr, &dev_attr_wlan.attr, &dev_attr_bluetooth.attr, &dev_attr_wimax.attr, &dev_attr_wwan.attr, &dev_attr_display.attr, &dev_attr_ledd.attr, &dev_attr_ls_value.attr, &dev_attr_ls_level.attr, &dev_attr_ls_switch.attr, &dev_attr_gps.attr, NULL }; static umode_t asus_sysfs_is_visible(struct kobject *kobj, struct attribute *attr, int idx) { struct device *dev = container_of(kobj, struct device, kobj); struct platform_device *pdev = to_platform_device(dev); struct asus_laptop *asus = platform_get_drvdata(pdev); acpi_handle handle = asus->handle; bool supported; if (asus->is_pega_lucid) { /* no ls_level interface on the Lucid */ if (attr == &dev_attr_ls_switch.attr) supported = true; else if (attr == &dev_attr_ls_level.attr) supported = false; else goto normal; return supported; } normal: if (attr == &dev_attr_wlan.attr) { supported = !acpi_check_handle(handle, METHOD_WLAN, NULL); } else if (attr == &dev_attr_bluetooth.attr) { supported = !acpi_check_handle(handle, METHOD_BLUETOOTH, NULL); } else if (attr == &dev_attr_display.attr) { supported = !acpi_check_handle(handle, METHOD_SWITCH_DISPLAY, NULL); } else if (attr == &dev_attr_wimax.attr) { supported = !acpi_check_handle(asus->handle, METHOD_WIMAX, NULL); } else if (attr == &dev_attr_wwan.attr) { supported = !acpi_check_handle(asus->handle, METHOD_WWAN, NULL); } else if (attr == &dev_attr_ledd.attr) { supported = !acpi_check_handle(handle, METHOD_LEDD, NULL); } else if (attr == &dev_attr_ls_switch.attr || attr == &dev_attr_ls_level.attr) { supported = !acpi_check_handle(handle, METHOD_ALS_CONTROL, NULL) && !acpi_check_handle(handle, METHOD_ALS_LEVEL, NULL); } else if (attr == &dev_attr_ls_value.attr) { supported = asus->is_pega_lucid; } else if (attr == &dev_attr_gps.attr) { supported = !acpi_check_handle(handle, METHOD_GPS_ON, NULL) && !acpi_check_handle(handle, METHOD_GPS_OFF, NULL) && !acpi_check_handle(handle, METHOD_GPS_STATUS, NULL); } else { supported = true; } return supported ? attr->mode : 0; } static const struct attribute_group asus_attr_group = { .is_visible = asus_sysfs_is_visible, .attrs = asus_attributes, }; static int asus_platform_init(struct asus_laptop *asus) { int result; asus->platform_device = platform_device_alloc(ASUS_LAPTOP_FILE, -1); if (!asus->platform_device) return -ENOMEM; platform_set_drvdata(asus->platform_device, asus); result = platform_device_add(asus->platform_device); if (result) goto fail_platform_device; result = sysfs_create_group(&asus->platform_device->dev.kobj, &asus_attr_group); if (result) goto fail_sysfs; return 0; fail_sysfs: platform_device_del(asus->platform_device); fail_platform_device: platform_device_put(asus->platform_device); return result; } static void asus_platform_exit(struct asus_laptop *asus) { sysfs_remove_group(&asus->platform_device->dev.kobj, &asus_attr_group); platform_device_unregister(asus->platform_device); } static struct platform_driver platform_driver = { .driver = { .name = ASUS_LAPTOP_FILE, .owner = THIS_MODULE, }, }; /* * This function is used to initialize the context with right values. In this * method, we can make all the detection we want, and modify the asus_laptop * struct */ static int asus_laptop_get_info(struct asus_laptop *asus) { struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *model = NULL; unsigned long long bsts_result, hwrs_result; char *string = NULL; acpi_status status; /* * Get DSDT headers early enough to allow for differentiating between * models, but late enough to allow acpi_bus_register_driver() to fail * before doing anything ACPI-specific. Should we encounter a machine, * which needs special handling (i.e. its hotkey device has a different * HID), this bit will be moved. */ status = acpi_get_table(ACPI_SIG_DSDT, 1, &asus->dsdt_info); if (ACPI_FAILURE(status)) pr_warn("Couldn't get the DSDT table header\n"); /* We have to write 0 on init this far for all ASUS models */ if (write_acpi_int_ret(asus->handle, "INIT", 0, &buffer)) { pr_err("Hotkey initialization failed\n"); return -ENODEV; } /* This needs to be called for some laptops to init properly */ status = acpi_evaluate_integer(asus->handle, "BSTS", NULL, &bsts_result); if (ACPI_FAILURE(status)) pr_warn("Error calling BSTS\n"); else if (bsts_result) pr_notice("BSTS called, 0x%02x returned\n", (uint) bsts_result); /* This too ... */ if (write_acpi_int(asus->handle, "CWAP", wapf)) pr_err("Error calling CWAP(%d)\n", wapf); /* * Try to match the object returned by INIT to the specific model. * Handle every possible object (or the lack of thereof) the DSDT * writers might throw at us. When in trouble, we pass NULL to * asus_model_match() and try something completely different. */ if (buffer.pointer) { model = buffer.pointer; switch (model->type) { case ACPI_TYPE_STRING: string = model->string.pointer; break; case ACPI_TYPE_BUFFER: string = model->buffer.pointer; break; default: string = ""; break; } } asus->name = kstrdup(string, GFP_KERNEL); if (!asus->name) { kfree(buffer.pointer); return -ENOMEM; } if (*string) pr_notice(" %s model detected\n", string); /* * The HWRS method return informations about the hardware. * 0x80 bit is for WLAN, 0x100 for Bluetooth, * 0x40 for WWAN, 0x10 for WIMAX. * The significance of others is yet to be found. */ status = acpi_evaluate_integer(asus->handle, "HRWS", NULL, &hwrs_result); if (!ACPI_FAILURE(status)) pr_notice(" HRWS returned %x", (int)hwrs_result); if (!acpi_check_handle(asus->handle, METHOD_WL_STATUS, NULL)) asus->have_rsts = true; kfree(model); return AE_OK; } static int __devinit asus_acpi_init(struct asus_laptop *asus) { int result = 0; result = acpi_bus_get_status(asus->device); if (result) return result; if (!asus->device->status.present) { pr_err("Hotkey device not present, aborting\n"); return -ENODEV; } result = asus_laptop_get_info(asus); if (result) return result; if (!strcmp(bled_type, "led")) asus->bled_type = TYPE_LED; else if (!strcmp(bled_type, "rfkill")) asus->bled_type = TYPE_RFKILL; if (!strcmp(wled_type, "led")) asus->wled_type = TYPE_LED; else if (!strcmp(wled_type, "rfkill")) asus->wled_type = TYPE_RFKILL; if (bluetooth_status >= 0) asus_bluetooth_set(asus, !!bluetooth_status); if (wlan_status >= 0) asus_wlan_set(asus, !!wlan_status); if (wimax_status >= 0) asus_wimax_set(asus, !!wimax_status); if (wwan_status >= 0) asus_wwan_set(asus, !!wwan_status); /* Keyboard Backlight is on by default */ if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL)) asus_kled_set(asus, 1); /* LED display is off by default */ asus->ledd_status = 0xFFF; /* Set initial values of light sensor and level */ asus->light_switch = !!als_status; asus->light_level = 5; /* level 5 for sensor sensitivity */ if (asus->is_pega_lucid) { asus_als_switch(asus, asus->light_switch); } else if (!acpi_check_handle(asus->handle, METHOD_ALS_CONTROL, NULL) && !acpi_check_handle(asus->handle, METHOD_ALS_LEVEL, NULL)) { asus_als_switch(asus, asus->light_switch); asus_als_level(asus, asus->light_level); } return result; } static void __devinit asus_dmi_check(void) { const char *model; model = dmi_get_system_info(DMI_PRODUCT_NAME); if (!model) return; /* On L1400B WLED control the sound card, don't mess with it ... */ if (strncmp(model, "L1400B", 6) == 0) { wlan_status = -1; } } static bool asus_device_present; static int __devinit asus_acpi_add(struct acpi_device *device) { struct asus_laptop *asus; int result; pr_notice("Asus Laptop Support version %s\n", ASUS_LAPTOP_VERSION); asus = kzalloc(sizeof(struct asus_laptop), GFP_KERNEL); if (!asus) return -ENOMEM; asus->handle = device->handle; strcpy(acpi_device_name(device), ASUS_LAPTOP_DEVICE_NAME); strcpy(acpi_device_class(device), ASUS_LAPTOP_CLASS); device->driver_data = asus; asus->device = device; asus_dmi_check(); result = asus_acpi_init(asus); if (result) goto fail_platform; /* * Need platform type detection first, then the platform * device. It is used as a parent for the sub-devices below. */ asus->is_pega_lucid = asus_check_pega_lucid(asus); result = asus_platform_init(asus); if (result) goto fail_platform; if (!acpi_video_backlight_support()) { result = asus_backlight_init(asus); if (result) goto fail_backlight; } else pr_info("Backlight controlled by ACPI video driver\n"); result = asus_input_init(asus); if (result) goto fail_input; result = asus_led_init(asus); if (result) goto fail_led; result = asus_rfkill_init(asus); if (result) goto fail_rfkill; result = pega_accel_init(asus); if (result && result != -ENODEV) goto fail_pega_accel; result = pega_rfkill_init(asus); if (result && result != -ENODEV) goto fail_pega_rfkill; asus_device_present = true; return 0; fail_pega_rfkill: pega_accel_exit(asus); fail_pega_accel: asus_rfkill_exit(asus); fail_rfkill: asus_led_exit(asus); fail_led: asus_input_exit(asus); fail_input: asus_backlight_exit(asus); fail_backlight: asus_platform_exit(asus); fail_platform: kfree(asus->name); kfree(asus); return result; } static int asus_acpi_remove(struct acpi_device *device, int type) { struct asus_laptop *asus = acpi_driver_data(device); asus_backlight_exit(asus); asus_rfkill_exit(asus); asus_led_exit(asus); asus_input_exit(asus); pega_accel_exit(asus); asus_platform_exit(asus); kfree(asus->name); kfree(asus); return 0; } static const struct acpi_device_id asus_device_ids[] = { {"ATK0100", 0}, {"ATK0101", 0}, {"", 0}, }; MODULE_DEVICE_TABLE(acpi, asus_device_ids); static struct acpi_driver asus_acpi_driver = { .name = ASUS_LAPTOP_NAME, .class = ASUS_LAPTOP_CLASS, .owner = THIS_MODULE, .ids = asus_device_ids, .flags = ACPI_DRIVER_ALL_NOTIFY_EVENTS, .ops = { .add = asus_acpi_add, .remove = asus_acpi_remove, .notify = asus_acpi_notify, }, }; static int __init asus_laptop_init(void) { int result; result = platform_driver_register(&platform_driver); if (result < 0) return result; result = acpi_bus_register_driver(&asus_acpi_driver); if (result < 0) goto fail_acpi_driver; if (!asus_device_present) { result = -ENODEV; goto fail_no_device; } return 0; fail_no_device: acpi_bus_unregister_driver(&asus_acpi_driver); fail_acpi_driver: platform_driver_unregister(&platform_driver); return result; } static void __exit asus_laptop_exit(void) { acpi_bus_unregister_driver(&asus_acpi_driver); platform_driver_unregister(&platform_driver); } module_init(asus_laptop_init); module_exit(asus_laptop_exit);