/* * ACPI device specific properties support. * * Copyright (C) 2014, Intel Corporation * All rights reserved. * * Authors: Mika Westerberg * Darren Hart * Rafael J. Wysocki * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include "internal.h" static int acpi_data_get_property_array(struct acpi_device_data *data, const char *name, acpi_object_type type, const union acpi_object **obj); /* ACPI _DSD device properties UUID: daffd814-6eba-4d8c-8a91-bc9bbf4aa301 */ static const u8 prp_uuid[16] = { 0x14, 0xd8, 0xff, 0xda, 0xba, 0x6e, 0x8c, 0x4d, 0x8a, 0x91, 0xbc, 0x9b, 0xbf, 0x4a, 0xa3, 0x01 }; /* ACPI _DSD data subnodes UUID: dbb8e3e6-5886-4ba6-8795-1319f52a966b */ static const u8 ads_uuid[16] = { 0xe6, 0xe3, 0xb8, 0xdb, 0x86, 0x58, 0xa6, 0x4b, 0x87, 0x95, 0x13, 0x19, 0xf5, 0x2a, 0x96, 0x6b }; static bool acpi_enumerate_nondev_subnodes(acpi_handle scope, const union acpi_object *desc, struct acpi_device_data *data, struct fwnode_handle *parent); static bool acpi_extract_properties(const union acpi_object *desc, struct acpi_device_data *data); static bool acpi_nondev_subnode_extract(const union acpi_object *desc, acpi_handle handle, const union acpi_object *link, struct list_head *list, struct fwnode_handle *parent) { struct acpi_data_node *dn; bool result; dn = kzalloc(sizeof(*dn), GFP_KERNEL); if (!dn) return false; dn->name = link->package.elements[0].string.pointer; dn->fwnode.type = FWNODE_ACPI_DATA; dn->fwnode.ops = &acpi_fwnode_ops; dn->parent = parent; INIT_LIST_HEAD(&dn->data.subnodes); result = acpi_extract_properties(desc, &dn->data); if (handle) { acpi_handle scope; acpi_status status; /* * The scope for the subnode object lookup is the one of the * namespace node (device) containing the object that has * returned the package. That is, it's the scope of that * object's parent. */ status = acpi_get_parent(handle, &scope); if (ACPI_SUCCESS(status) && acpi_enumerate_nondev_subnodes(scope, desc, &dn->data, &dn->fwnode)) result = true; } else if (acpi_enumerate_nondev_subnodes(NULL, desc, &dn->data, &dn->fwnode)) { result = true; } if (result) { dn->handle = handle; dn->data.pointer = desc; list_add_tail(&dn->sibling, list); return true; } kfree(dn); acpi_handle_debug(handle, "Invalid properties/subnodes data, skipping\n"); return false; } static bool acpi_nondev_subnode_data_ok(acpi_handle handle, const union acpi_object *link, struct list_head *list, struct fwnode_handle *parent) { struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER }; acpi_status status; status = acpi_evaluate_object_typed(handle, NULL, NULL, &buf, ACPI_TYPE_PACKAGE); if (ACPI_FAILURE(status)) return false; if (acpi_nondev_subnode_extract(buf.pointer, handle, link, list, parent)) return true; ACPI_FREE(buf.pointer); return false; } static bool acpi_nondev_subnode_ok(acpi_handle scope, const union acpi_object *link, struct list_head *list, struct fwnode_handle *parent) { acpi_handle handle; acpi_status status; if (!scope) return false; status = acpi_get_handle(scope, link->package.elements[1].string.pointer, &handle); if (ACPI_FAILURE(status)) return false; return acpi_nondev_subnode_data_ok(handle, link, list, parent); } static int acpi_add_nondev_subnodes(acpi_handle scope, const union acpi_object *links, struct list_head *list, struct fwnode_handle *parent) { bool ret = false; int i; for (i = 0; i < links->package.count; i++) { const union acpi_object *link, *desc; acpi_handle handle; bool result; link = &links->package.elements[i]; /* Only two elements allowed. */ if (link->package.count != 2) continue; /* The first one must be a string. */ if (link->package.elements[0].type != ACPI_TYPE_STRING) continue; /* The second one may be a string, a reference or a package. */ switch (link->package.elements[1].type) { case ACPI_TYPE_STRING: result = acpi_nondev_subnode_ok(scope, link, list, parent); break; case ACPI_TYPE_LOCAL_REFERENCE: handle = link->package.elements[1].reference.handle; result = acpi_nondev_subnode_data_ok(handle, link, list, parent); break; case ACPI_TYPE_PACKAGE: desc = &link->package.elements[1]; result = acpi_nondev_subnode_extract(desc, NULL, link, list, parent); break; default: result = false; break; } ret = ret || result; } return ret; } static bool acpi_enumerate_nondev_subnodes(acpi_handle scope, const union acpi_object *desc, struct acpi_device_data *data, struct fwnode_handle *parent) { int i; /* Look for the ACPI data subnodes UUID. */ for (i = 0; i < desc->package.count; i += 2) { const union acpi_object *uuid, *links; uuid = &desc->package.elements[i]; links = &desc->package.elements[i + 1]; /* * The first element must be a UUID and the second one must be * a package. */ if (uuid->type != ACPI_TYPE_BUFFER || uuid->buffer.length != 16 || links->type != ACPI_TYPE_PACKAGE) break; if (memcmp(uuid->buffer.pointer, ads_uuid, sizeof(ads_uuid))) continue; return acpi_add_nondev_subnodes(scope, links, &data->subnodes, parent); } return false; } static bool acpi_property_value_ok(const union acpi_object *value) { int j; /* * The value must be an integer, a string, a reference, or a package * whose every element must be an integer, a string, or a reference. */ switch (value->type) { case ACPI_TYPE_INTEGER: case ACPI_TYPE_STRING: case ACPI_TYPE_LOCAL_REFERENCE: return true; case ACPI_TYPE_PACKAGE: for (j = 0; j < value->package.count; j++) switch (value->package.elements[j].type) { case ACPI_TYPE_INTEGER: case ACPI_TYPE_STRING: case ACPI_TYPE_LOCAL_REFERENCE: continue; default: return false; } return true; } return false; } static bool acpi_properties_format_valid(const union acpi_object *properties) { int i; for (i = 0; i < properties->package.count; i++) { const union acpi_object *property; property = &properties->package.elements[i]; /* * Only two elements allowed, the first one must be a string and * the second one has to satisfy certain conditions. */ if (property->package.count != 2 || property->package.elements[0].type != ACPI_TYPE_STRING || !acpi_property_value_ok(&property->package.elements[1])) return false; } return true; } static void acpi_init_of_compatible(struct acpi_device *adev) { const union acpi_object *of_compatible; int ret; ret = acpi_data_get_property_array(&adev->data, "compatible", ACPI_TYPE_STRING, &of_compatible); if (ret) { ret = acpi_dev_get_property(adev, "compatible", ACPI_TYPE_STRING, &of_compatible); if (ret) { if (adev->parent && adev->parent->flags.of_compatible_ok) goto out; return; } } adev->data.of_compatible = of_compatible; out: adev->flags.of_compatible_ok = 1; } static bool acpi_extract_properties(const union acpi_object *desc, struct acpi_device_data *data) { int i; if (desc->package.count % 2) return false; /* Look for the device properties UUID. */ for (i = 0; i < desc->package.count; i += 2) { const union acpi_object *uuid, *properties; uuid = &desc->package.elements[i]; properties = &desc->package.elements[i + 1]; /* * The first element must be a UUID and the second one must be * a package. */ if (uuid->type != ACPI_TYPE_BUFFER || uuid->buffer.length != 16 || properties->type != ACPI_TYPE_PACKAGE) break; if (memcmp(uuid->buffer.pointer, prp_uuid, sizeof(prp_uuid))) continue; /* * We found the matching UUID. Now validate the format of the * package immediately following it. */ if (!acpi_properties_format_valid(properties)) break; data->properties = properties; return true; } return false; } void acpi_init_properties(struct acpi_device *adev) { struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER }; struct acpi_hardware_id *hwid; acpi_status status; bool acpi_of = false; INIT_LIST_HEAD(&adev->data.subnodes); if (!adev->handle) return; /* * Check if ACPI_DT_NAMESPACE_HID is present and inthat case we fill in * Device Tree compatible properties for this device. */ list_for_each_entry(hwid, &adev->pnp.ids, list) { if (!strcmp(hwid->id, ACPI_DT_NAMESPACE_HID)) { acpi_of = true; break; } } status = acpi_evaluate_object_typed(adev->handle, "_DSD", NULL, &buf, ACPI_TYPE_PACKAGE); if (ACPI_FAILURE(status)) goto out; if (acpi_extract_properties(buf.pointer, &adev->data)) { adev->data.pointer = buf.pointer; if (acpi_of) acpi_init_of_compatible(adev); } if (acpi_enumerate_nondev_subnodes(adev->handle, buf.pointer, &adev->data, acpi_fwnode_handle(adev))) adev->data.pointer = buf.pointer; if (!adev->data.pointer) { acpi_handle_debug(adev->handle, "Invalid _DSD data, skipping\n"); ACPI_FREE(buf.pointer); } out: if (acpi_of && !adev->flags.of_compatible_ok) acpi_handle_info(adev->handle, ACPI_DT_NAMESPACE_HID " requires 'compatible' property\n"); } static void acpi_destroy_nondev_subnodes(struct list_head *list) { struct acpi_data_node *dn, *next; if (list_empty(list)) return; list_for_each_entry_safe_reverse(dn, next, list, sibling) { acpi_destroy_nondev_subnodes(&dn->data.subnodes); wait_for_completion(&dn->kobj_done); list_del(&dn->sibling); ACPI_FREE((void *)dn->data.pointer); kfree(dn); } } void acpi_free_properties(struct acpi_device *adev) { acpi_destroy_nondev_subnodes(&adev->data.subnodes); ACPI_FREE((void *)adev->data.pointer); adev->data.of_compatible = NULL; adev->data.pointer = NULL; adev->data.properties = NULL; } /** * acpi_data_get_property - return an ACPI property with given name * @data: ACPI device deta object to get the property from * @name: Name of the property * @type: Expected property type * @obj: Location to store the property value (if not %NULL) * * Look up a property with @name and store a pointer to the resulting ACPI * object at the location pointed to by @obj if found. * * Callers must not attempt to free the returned objects. These objects will be * freed by the ACPI core automatically during the removal of @data. * * Return: %0 if property with @name has been found (success), * %-EINVAL if the arguments are invalid, * %-EINVAL if the property doesn't exist, * %-EPROTO if the property value type doesn't match @type. */ static int acpi_data_get_property(struct acpi_device_data *data, const char *name, acpi_object_type type, const union acpi_object **obj) { const union acpi_object *properties; int i; if (!data || !name) return -EINVAL; if (!data->pointer || !data->properties) return -EINVAL; properties = data->properties; for (i = 0; i < properties->package.count; i++) { const union acpi_object *propname, *propvalue; const union acpi_object *property; property = &properties->package.elements[i]; propname = &property->package.elements[0]; propvalue = &property->package.elements[1]; if (!strcmp(name, propname->string.pointer)) { if (type != ACPI_TYPE_ANY && propvalue->type != type) return -EPROTO; if (obj) *obj = propvalue; return 0; } } return -EINVAL; } /** * acpi_dev_get_property - return an ACPI property with given name. * @adev: ACPI device to get the property from. * @name: Name of the property. * @type: Expected property type. * @obj: Location to store the property value (if not %NULL). */ int acpi_dev_get_property(struct acpi_device *adev, const char *name, acpi_object_type type, const union acpi_object **obj) { return adev ? acpi_data_get_property(&adev->data, name, type, obj) : -EINVAL; } EXPORT_SYMBOL_GPL(acpi_dev_get_property); static struct acpi_device_data *acpi_device_data_of_node(struct fwnode_handle *fwnode) { if (fwnode->type == FWNODE_ACPI) { struct acpi_device *adev = to_acpi_device_node(fwnode); return &adev->data; } else if (fwnode->type == FWNODE_ACPI_DATA) { struct acpi_data_node *dn = to_acpi_data_node(fwnode); return &dn->data; } return NULL; } /** * acpi_node_prop_get - return an ACPI property with given name. * @fwnode: Firmware node to get the property from. * @propname: Name of the property. * @valptr: Location to store a pointer to the property value (if not %NULL). */ int acpi_node_prop_get(struct fwnode_handle *fwnode, const char *propname, void **valptr) { return acpi_data_get_property(acpi_device_data_of_node(fwnode), propname, ACPI_TYPE_ANY, (const union acpi_object **)valptr); } /** * acpi_data_get_property_array - return an ACPI array property with given name * @adev: ACPI data object to get the property from * @name: Name of the property * @type: Expected type of array elements * @obj: Location to store a pointer to the property value (if not NULL) * * Look up an array property with @name and store a pointer to the resulting * ACPI object at the location pointed to by @obj if found. * * Callers must not attempt to free the returned objects. Those objects will be * freed by the ACPI core automatically during the removal of @data. * * Return: %0 if array property (package) with @name has been found (success), * %-EINVAL if the arguments are invalid, * %-EINVAL if the property doesn't exist, * %-EPROTO if the property is not a package or the type of its elements * doesn't match @type. */ static int acpi_data_get_property_array(struct acpi_device_data *data, const char *name, acpi_object_type type, const union acpi_object **obj) { const union acpi_object *prop; int ret, i; ret = acpi_data_get_property(data, name, ACPI_TYPE_PACKAGE, &prop); if (ret) return ret; if (type != ACPI_TYPE_ANY) { /* Check that all elements are of correct type. */ for (i = 0; i < prop->package.count; i++) if (prop->package.elements[i].type != type) return -EPROTO; } if (obj) *obj = prop; return 0; } /** * __acpi_node_get_property_reference - returns handle to the referenced object * @fwnode: Firmware node to get the property from * @propname: Name of the property * @index: Index of the reference to return * @num_args: Maximum number of arguments after each reference * @args: Location to store the returned reference with optional arguments * * Find property with @name, verifify that it is a package containing at least * one object reference and if so, store the ACPI device object pointer to the * target object in @args->adev. If the reference includes arguments, store * them in the @args->args[] array. * * If there's more than one reference in the property value package, @index is * used to select the one to return. * * It is possible to leave holes in the property value set like in the * example below: * * Package () { * "cs-gpios", * Package () { * ^GPIO, 19, 0, 0, * ^GPIO, 20, 0, 0, * 0, * ^GPIO, 21, 0, 0, * } * } * * Calling this function with index %2 return %-ENOENT and with index %3 * returns the last entry. If the property does not contain any more values * %-ENODATA is returned. The NULL entry must be single integer and * preferably contain value %0. * * Return: %0 on success, negative error code on failure. */ int __acpi_node_get_property_reference(struct fwnode_handle *fwnode, const char *propname, size_t index, size_t num_args, struct acpi_reference_args *args) { const union acpi_object *element, *end; const union acpi_object *obj; struct acpi_device_data *data; struct acpi_device *device; int ret, idx = 0; data = acpi_device_data_of_node(fwnode); if (!data) return -EINVAL; ret = acpi_data_get_property(data, propname, ACPI_TYPE_ANY, &obj); if (ret) return ret; /* * The simplest case is when the value is a single reference. Just * return that reference then. */ if (obj->type == ACPI_TYPE_LOCAL_REFERENCE) { if (index) return -EINVAL; ret = acpi_bus_get_device(obj->reference.handle, &device); if (ret) return ret; args->adev = device; args->nargs = 0; return 0; } /* * If it is not a single reference, then it is a package of * references followed by number of ints as follows: * * Package () { REF, INT, REF, INT, INT } * * The index argument is then used to determine which reference * the caller wants (along with the arguments). */ if (obj->type != ACPI_TYPE_PACKAGE || index >= obj->package.count) return -EPROTO; element = obj->package.elements; end = element + obj->package.count; while (element < end) { u32 nargs, i; if (element->type == ACPI_TYPE_LOCAL_REFERENCE) { ret = acpi_bus_get_device(element->reference.handle, &device); if (ret) return -ENODEV; nargs = 0; element++; /* assume following integer elements are all args */ for (i = 0; element + i < end && i < num_args; i++) { int type = element[i].type; if (type == ACPI_TYPE_INTEGER) nargs++; else if (type == ACPI_TYPE_LOCAL_REFERENCE) break; else return -EPROTO; } if (nargs > MAX_ACPI_REFERENCE_ARGS) return -EPROTO; if (idx == index) { args->adev = device; args->nargs = nargs; for (i = 0; i < nargs; i++) args->args[i] = element[i].integer.value; return 0; } element += nargs; } else if (element->type == ACPI_TYPE_INTEGER) { if (idx == index) return -ENOENT; element++; } else { return -EPROTO; } idx++; } return -ENODATA; } EXPORT_SYMBOL_GPL(__acpi_node_get_property_reference); static int acpi_data_prop_read_single(struct acpi_device_data *data, const char *propname, enum dev_prop_type proptype, void *val) { const union acpi_object *obj; int ret; if (!val) return -EINVAL; if (proptype >= DEV_PROP_U8 && proptype <= DEV_PROP_U64) { ret = acpi_data_get_property(data, propname, ACPI_TYPE_INTEGER, &obj); if (ret) return ret; switch (proptype) { case DEV_PROP_U8: if (obj->integer.value > U8_MAX) return -EOVERFLOW; *(u8 *)val = obj->integer.value; break; case DEV_PROP_U16: if (obj->integer.value > U16_MAX) return -EOVERFLOW; *(u16 *)val = obj->integer.value; break; case DEV_PROP_U32: if (obj->integer.value > U32_MAX) return -EOVERFLOW; *(u32 *)val = obj->integer.value; break; default: *(u64 *)val = obj->integer.value; break; } } else if (proptype == DEV_PROP_STRING) { ret = acpi_data_get_property(data, propname, ACPI_TYPE_STRING, &obj); if (ret) return ret; *(char **)val = obj->string.pointer; return 1; } else { ret = -EINVAL; } return ret; } int acpi_dev_prop_read_single(struct acpi_device *adev, const char *propname, enum dev_prop_type proptype, void *val) { int ret; if (!adev) return -EINVAL; ret = acpi_data_prop_read_single(&adev->data, propname, proptype, val); if (ret < 0 || proptype != ACPI_TYPE_STRING) return ret; return 0; } static int acpi_copy_property_array_u8(const union acpi_object *items, u8 *val, size_t nval) { int i; for (i = 0; i < nval; i++) { if (items[i].type != ACPI_TYPE_INTEGER) return -EPROTO; if (items[i].integer.value > U8_MAX) return -EOVERFLOW; val[i] = items[i].integer.value; } return 0; } static int acpi_copy_property_array_u16(const union acpi_object *items, u16 *val, size_t nval) { int i; for (i = 0; i < nval; i++) { if (items[i].type != ACPI_TYPE_INTEGER) return -EPROTO; if (items[i].integer.value > U16_MAX) return -EOVERFLOW; val[i] = items[i].integer.value; } return 0; } static int acpi_copy_property_array_u32(const union acpi_object *items, u32 *val, size_t nval) { int i; for (i = 0; i < nval; i++) { if (items[i].type != ACPI_TYPE_INTEGER) return -EPROTO; if (items[i].integer.value > U32_MAX) return -EOVERFLOW; val[i] = items[i].integer.value; } return 0; } static int acpi_copy_property_array_u64(const union acpi_object *items, u64 *val, size_t nval) { int i; for (i = 0; i < nval; i++) { if (items[i].type != ACPI_TYPE_INTEGER) return -EPROTO; val[i] = items[i].integer.value; } return 0; } static int acpi_copy_property_array_string(const union acpi_object *items, char **val, size_t nval) { int i; for (i = 0; i < nval; i++) { if (items[i].type != ACPI_TYPE_STRING) return -EPROTO; val[i] = items[i].string.pointer; } return nval; } static int acpi_data_prop_read(struct acpi_device_data *data, const char *propname, enum dev_prop_type proptype, void *val, size_t nval) { const union acpi_object *obj; const union acpi_object *items; int ret; if (val && nval == 1) { ret = acpi_data_prop_read_single(data, propname, proptype, val); if (ret >= 0) return ret; } ret = acpi_data_get_property_array(data, propname, ACPI_TYPE_ANY, &obj); if (ret) return ret; if (!val) return obj->package.count; if (proptype != DEV_PROP_STRING && nval > obj->package.count) return -EOVERFLOW; else if (nval <= 0) return -EINVAL; items = obj->package.elements; switch (proptype) { case DEV_PROP_U8: ret = acpi_copy_property_array_u8(items, (u8 *)val, nval); break; case DEV_PROP_U16: ret = acpi_copy_property_array_u16(items, (u16 *)val, nval); break; case DEV_PROP_U32: ret = acpi_copy_property_array_u32(items, (u32 *)val, nval); break; case DEV_PROP_U64: ret = acpi_copy_property_array_u64(items, (u64 *)val, nval); break; case DEV_PROP_STRING: ret = acpi_copy_property_array_string( items, (char **)val, min_t(u32, nval, obj->package.count)); break; default: ret = -EINVAL; break; } return ret; } int acpi_dev_prop_read(struct acpi_device *adev, const char *propname, enum dev_prop_type proptype, void *val, size_t nval) { return adev ? acpi_data_prop_read(&adev->data, propname, proptype, val, nval) : -EINVAL; } /** * acpi_node_prop_read - retrieve the value of an ACPI property with given name. * @fwnode: Firmware node to get the property from. * @propname: Name of the property. * @proptype: Expected property type. * @val: Location to store the property value (if not %NULL). * @nval: Size of the array pointed to by @val. * * If @val is %NULL, return the number of array elements comprising the value * of the property. Otherwise, read at most @nval values to the array at the * location pointed to by @val. */ int acpi_node_prop_read(struct fwnode_handle *fwnode, const char *propname, enum dev_prop_type proptype, void *val, size_t nval) { return acpi_data_prop_read(acpi_device_data_of_node(fwnode), propname, proptype, val, nval); } /** * acpi_get_next_subnode - Return the next child node handle for a fwnode * @fwnode: Firmware node to find the next child node for. * @child: Handle to one of the device's child nodes or a null handle. */ struct fwnode_handle *acpi_get_next_subnode(struct fwnode_handle *fwnode, struct fwnode_handle *child) { struct acpi_device *adev = to_acpi_device_node(fwnode); struct list_head *head, *next; if (!child || child->type == FWNODE_ACPI) { if (adev) head = &adev->children; else goto nondev; if (list_empty(head)) goto nondev; if (child) { adev = to_acpi_device_node(child); next = adev->node.next; if (next == head) { child = NULL; goto nondev; } adev = list_entry(next, struct acpi_device, node); } else { adev = list_first_entry(head, struct acpi_device, node); } return acpi_fwnode_handle(adev); } nondev: if (!child || child->type == FWNODE_ACPI_DATA) { struct acpi_data_node *data = to_acpi_data_node(fwnode); struct acpi_data_node *dn; if (adev) head = &adev->data.subnodes; else if (data) head = &data->data.subnodes; else return NULL; if (list_empty(head)) return NULL; if (child) { dn = to_acpi_data_node(child); next = dn->sibling.next; if (next == head) return NULL; dn = list_entry(next, struct acpi_data_node, sibling); } else { dn = list_first_entry(head, struct acpi_data_node, sibling); } return &dn->fwnode; } return NULL; } /** * acpi_node_get_parent - Return parent fwnode of this fwnode * @fwnode: Firmware node whose parent to get * * Returns parent node of an ACPI device or data firmware node or %NULL if * not available. */ struct fwnode_handle *acpi_node_get_parent(struct fwnode_handle *fwnode) { if (is_acpi_data_node(fwnode)) { /* All data nodes have parent pointer so just return that */ return to_acpi_data_node(fwnode)->parent; } else if (is_acpi_device_node(fwnode)) { acpi_handle handle, parent_handle; handle = to_acpi_device_node(fwnode)->handle; if (ACPI_SUCCESS(acpi_get_parent(handle, &parent_handle))) { struct acpi_device *adev; if (!acpi_bus_get_device(parent_handle, &adev)) return acpi_fwnode_handle(adev); } } return NULL; } /** * acpi_graph_get_next_endpoint - Get next endpoint ACPI firmware node * @fwnode: Pointer to the parent firmware node * @prev: Previous endpoint node or %NULL to get the first * * Looks up next endpoint ACPI firmware node below a given @fwnode. Returns * %NULL if there is no next endpoint, ERR_PTR() in case of error. In case * of success the next endpoint is returned. */ struct fwnode_handle *acpi_graph_get_next_endpoint(struct fwnode_handle *fwnode, struct fwnode_handle *prev) { struct fwnode_handle *port = NULL; struct fwnode_handle *endpoint; if (!prev) { do { port = fwnode_get_next_child_node(fwnode, port); /* Ports must have port property */ if (fwnode_property_present(port, "port")) break; } while (port); } else { port = fwnode_get_parent(prev); } if (!port) return NULL; endpoint = fwnode_get_next_child_node(port, prev); while (!endpoint) { port = fwnode_get_next_child_node(fwnode, port); if (!port) break; if (fwnode_property_present(port, "port")) endpoint = fwnode_get_next_child_node(port, NULL); } if (endpoint) { /* Endpoints must have "endpoint" property */ if (!fwnode_property_present(endpoint, "endpoint")) return ERR_PTR(-EPROTO); } return endpoint; } /** * acpi_graph_get_child_prop_value - Return a child with a given property value * @fwnode: device fwnode * @prop_name: The name of the property to look for * @val: the desired property value * * Return the port node corresponding to a given port number. Returns * the child node on success, NULL otherwise. */ static struct fwnode_handle *acpi_graph_get_child_prop_value( struct fwnode_handle *fwnode, const char *prop_name, unsigned int val) { struct fwnode_handle *child; fwnode_for_each_child_node(fwnode, child) { u32 nr; if (!fwnode_property_read_u32(fwnode, prop_name, &nr)) continue; if (val == nr) return child; } return NULL; } /** * acpi_graph_get_remote_enpoint - Parses and returns remote end of an endpoint * @fwnode: Endpoint firmware node pointing to a remote device * @parent: Firmware node of remote port parent is filled here if not %NULL * @port: Firmware node of remote port is filled here if not %NULL * @endpoint: Firmware node of remote endpoint is filled here if not %NULL * * Function parses remote end of ACPI firmware remote endpoint and fills in * fields requested by the caller. Returns %0 in case of success and * negative errno otherwise. */ int acpi_graph_get_remote_endpoint(struct fwnode_handle *fwnode, struct fwnode_handle **parent, struct fwnode_handle **port, struct fwnode_handle **endpoint) { unsigned int port_nr, endpoint_nr; struct acpi_reference_args args; int ret; memset(&args, 0, sizeof(args)); ret = acpi_node_get_property_reference(fwnode, "remote-endpoint", 0, &args); if (ret) return ret; /* * Always require two arguments with the reference: port and * endpoint indices. */ if (args.nargs != 2) return -EPROTO; fwnode = acpi_fwnode_handle(args.adev); port_nr = args.args[0]; endpoint_nr = args.args[1]; if (parent) *parent = fwnode; if (!port && !endpoint) return 0; fwnode = acpi_graph_get_child_prop_value(fwnode, "port", port_nr); if (!fwnode) return -EPROTO; if (port) *port = fwnode; if (!endpoint) return 0; fwnode = acpi_graph_get_child_prop_value(fwnode, "endpoint", endpoint_nr); if (!fwnode) return -EPROTO; *endpoint = fwnode; return 0; } static bool acpi_fwnode_device_is_available(struct fwnode_handle *fwnode) { if (!is_acpi_device_node(fwnode)) return false; return acpi_device_is_present(to_acpi_device_node(fwnode)); } static bool acpi_fwnode_property_present(struct fwnode_handle *fwnode, const char *propname) { return !acpi_node_prop_get(fwnode, propname, NULL); } static int acpi_fwnode_property_read_int_array(struct fwnode_handle *fwnode, const char *propname, unsigned int elem_size, void *val, size_t nval) { enum dev_prop_type type; switch (elem_size) { case sizeof(u8): type = DEV_PROP_U8; break; case sizeof(u16): type = DEV_PROP_U16; break; case sizeof(u32): type = DEV_PROP_U32; break; case sizeof(u64): type = DEV_PROP_U64; break; default: return -ENXIO; } return acpi_node_prop_read(fwnode, propname, type, val, nval); } static int acpi_fwnode_property_read_string_array(struct fwnode_handle *fwnode, const char *propname, const char **val, size_t nval) { return acpi_node_prop_read(fwnode, propname, DEV_PROP_STRING, val, nval); } static struct fwnode_handle * acpi_fwnode_get_named_child_node(struct fwnode_handle *fwnode, const char *childname) { struct fwnode_handle *child; /* * Find first matching named child node of this fwnode. * For ACPI this will be a data only sub-node. */ fwnode_for_each_child_node(fwnode, child) if (acpi_data_node_match(child, childname)) return child; return NULL; } static struct fwnode_handle * acpi_fwnode_graph_get_next_endpoint(struct fwnode_handle *fwnode, struct fwnode_handle *prev) { struct fwnode_handle *endpoint; endpoint = acpi_graph_get_next_endpoint(fwnode, prev); if (IS_ERR(endpoint)) return NULL; return endpoint; } static struct fwnode_handle * acpi_fwnode_graph_get_remote_endpoint(struct fwnode_handle *fwnode) { struct fwnode_handle *endpoint = NULL; acpi_graph_get_remote_endpoint(fwnode, NULL, NULL, &endpoint); return endpoint; } static int acpi_fwnode_graph_parse_endpoint(struct fwnode_handle *fwnode, struct fwnode_endpoint *endpoint) { struct fwnode_handle *port_fwnode = fwnode_get_parent(fwnode); endpoint->local_fwnode = fwnode; fwnode_property_read_u32(port_fwnode, "port", &endpoint->port); fwnode_property_read_u32(fwnode, "endpoint", &endpoint->id); return 0; } const struct fwnode_operations acpi_fwnode_ops = { .device_is_available = acpi_fwnode_device_is_available, .property_present = acpi_fwnode_property_present, .property_read_int_array = acpi_fwnode_property_read_int_array, .property_read_string_array = acpi_fwnode_property_read_string_array, .get_parent = acpi_node_get_parent, .get_next_child_node = acpi_get_next_subnode, .get_named_child_node = acpi_fwnode_get_named_child_node, .graph_get_next_endpoint = acpi_fwnode_graph_get_next_endpoint, .graph_get_remote_endpoint = acpi_fwnode_graph_get_remote_endpoint, .graph_get_port_parent = acpi_node_get_parent, .graph_parse_endpoint = acpi_fwnode_graph_parse_endpoint, };