#ifndef __NET_CFG80211_H #define __NET_CFG80211_H /* * 802.11 device and configuration interface * * Copyright 2006-2010 Johannes Berg * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include /* remove once we remove the wext stuff */ #include #include /** * DOC: Introduction * * cfg80211 is the configuration API for 802.11 devices in Linux. It bridges * userspace and drivers, and offers some utility functionality associated * with 802.11. cfg80211 must, directly or indirectly via mac80211, be used * by all modern wireless drivers in Linux, so that they offer a consistent * API through nl80211. For backward compatibility, cfg80211 also offers * wireless extensions to userspace, but hides them from drivers completely. * * Additionally, cfg80211 contains code to help enforce regulatory spectrum * use restrictions. */ /** * DOC: Device registration * * In order for a driver to use cfg80211, it must register the hardware device * with cfg80211. This happens through a number of hardware capability structs * described below. * * The fundamental structure for each device is the 'wiphy', of which each * instance describes a physical wireless device connected to the system. Each * such wiphy can have zero, one, or many virtual interfaces associated with * it, which need to be identified as such by pointing the network interface's * @ieee80211_ptr pointer to a &struct wireless_dev which further describes * the wireless part of the interface, normally this struct is embedded in the * network interface's private data area. Drivers can optionally allow creating * or destroying virtual interfaces on the fly, but without at least one or the * ability to create some the wireless device isn't useful. * * Each wiphy structure contains device capability information, and also has * a pointer to the various operations the driver offers. The definitions and * structures here describe these capabilities in detail. */ /* * wireless hardware capability structures */ /** * enum ieee80211_band - supported frequency bands * * The bands are assigned this way because the supported * bitrates differ in these bands. * * @IEEE80211_BAND_2GHZ: 2.4GHz ISM band * @IEEE80211_BAND_5GHZ: around 5GHz band (4.9-5.7) * @IEEE80211_NUM_BANDS: number of defined bands */ enum ieee80211_band { IEEE80211_BAND_2GHZ = NL80211_BAND_2GHZ, IEEE80211_BAND_5GHZ = NL80211_BAND_5GHZ, /* keep last */ IEEE80211_NUM_BANDS }; /** * enum ieee80211_channel_flags - channel flags * * Channel flags set by the regulatory control code. * * @IEEE80211_CHAN_DISABLED: This channel is disabled. * @IEEE80211_CHAN_PASSIVE_SCAN: Only passive scanning is permitted * on this channel. * @IEEE80211_CHAN_NO_IBSS: IBSS is not allowed on this channel. * @IEEE80211_CHAN_RADAR: Radar detection is required on this channel. * @IEEE80211_CHAN_NO_HT40PLUS: extension channel above this channel * is not permitted. * @IEEE80211_CHAN_NO_HT40MINUS: extension channel below this channel * is not permitted. */ enum ieee80211_channel_flags { IEEE80211_CHAN_DISABLED = 1<<0, IEEE80211_CHAN_PASSIVE_SCAN = 1<<1, IEEE80211_CHAN_NO_IBSS = 1<<2, IEEE80211_CHAN_RADAR = 1<<3, IEEE80211_CHAN_NO_HT40PLUS = 1<<4, IEEE80211_CHAN_NO_HT40MINUS = 1<<5, }; #define IEEE80211_CHAN_NO_HT40 \ (IEEE80211_CHAN_NO_HT40PLUS | IEEE80211_CHAN_NO_HT40MINUS) /** * struct ieee80211_channel - channel definition * * This structure describes a single channel for use * with cfg80211. * * @center_freq: center frequency in MHz * @hw_value: hardware-specific value for the channel * @flags: channel flags from &enum ieee80211_channel_flags. * @orig_flags: channel flags at registration time, used by regulatory * code to support devices with additional restrictions * @band: band this channel belongs to. * @max_antenna_gain: maximum antenna gain in dBi * @max_power: maximum transmission power (in dBm) * @beacon_found: helper to regulatory code to indicate when a beacon * has been found on this channel. Use regulatory_hint_found_beacon() * to enable this, this is useful only on 5 GHz band. * @orig_mag: internal use * @orig_mpwr: internal use */ struct ieee80211_channel { enum ieee80211_band band; u16 center_freq; u16 hw_value; u32 flags; int max_antenna_gain; int max_power; bool beacon_found; u32 orig_flags; int orig_mag, orig_mpwr; }; /** * enum ieee80211_rate_flags - rate flags * * Hardware/specification flags for rates. These are structured * in a way that allows using the same bitrate structure for * different bands/PHY modes. * * @IEEE80211_RATE_SHORT_PREAMBLE: Hardware can send with short * preamble on this bitrate; only relevant in 2.4GHz band and * with CCK rates. * @IEEE80211_RATE_MANDATORY_A: This bitrate is a mandatory rate * when used with 802.11a (on the 5 GHz band); filled by the * core code when registering the wiphy. * @IEEE80211_RATE_MANDATORY_B: This bitrate is a mandatory rate * when used with 802.11b (on the 2.4 GHz band); filled by the * core code when registering the wiphy. * @IEEE80211_RATE_MANDATORY_G: This bitrate is a mandatory rate * when used with 802.11g (on the 2.4 GHz band); filled by the * core code when registering the wiphy. * @IEEE80211_RATE_ERP_G: This is an ERP rate in 802.11g mode. */ enum ieee80211_rate_flags { IEEE80211_RATE_SHORT_PREAMBLE = 1<<0, IEEE80211_RATE_MANDATORY_A = 1<<1, IEEE80211_RATE_MANDATORY_B = 1<<2, IEEE80211_RATE_MANDATORY_G = 1<<3, IEEE80211_RATE_ERP_G = 1<<4, }; /** * struct ieee80211_rate - bitrate definition * * This structure describes a bitrate that an 802.11 PHY can * operate with. The two values @hw_value and @hw_value_short * are only for driver use when pointers to this structure are * passed around. * * @flags: rate-specific flags * @bitrate: bitrate in units of 100 Kbps * @hw_value: driver/hardware value for this rate * @hw_value_short: driver/hardware value for this rate when * short preamble is used */ struct ieee80211_rate { u32 flags; u16 bitrate; u16 hw_value, hw_value_short; }; /** * struct ieee80211_sta_ht_cap - STA's HT capabilities * * This structure describes most essential parameters needed * to describe 802.11n HT capabilities for an STA. * * @ht_supported: is HT supported by the STA * @cap: HT capabilities map as described in 802.11n spec * @ampdu_factor: Maximum A-MPDU length factor * @ampdu_density: Minimum A-MPDU spacing * @mcs: Supported MCS rates */ struct ieee80211_sta_ht_cap { u16 cap; /* use IEEE80211_HT_CAP_ */ bool ht_supported; u8 ampdu_factor; u8 ampdu_density; struct ieee80211_mcs_info mcs; }; /** * struct ieee80211_supported_band - frequency band definition * * This structure describes a frequency band a wiphy * is able to operate in. * * @channels: Array of channels the hardware can operate in * in this band. * @band: the band this structure represents * @n_channels: Number of channels in @channels * @bitrates: Array of bitrates the hardware can operate with * in this band. Must be sorted to give a valid "supported * rates" IE, i.e. CCK rates first, then OFDM. * @n_bitrates: Number of bitrates in @bitrates * @ht_cap: HT capabilities in this band */ struct ieee80211_supported_band { struct ieee80211_channel *channels; struct ieee80211_rate *bitrates; enum ieee80211_band band; int n_channels; int n_bitrates; struct ieee80211_sta_ht_cap ht_cap; }; /* * Wireless hardware/device configuration structures and methods */ /** * DOC: Actions and configuration * * Each wireless device and each virtual interface offer a set of configuration * operations and other actions that are invoked by userspace. Each of these * actions is described in the operations structure, and the parameters these * operations use are described separately. * * Additionally, some operations are asynchronous and expect to get status * information via some functions that drivers need to call. * * Scanning and BSS list handling with its associated functionality is described * in a separate chapter. */ /** * struct vif_params - describes virtual interface parameters * @use_4addr: use 4-address frames */ struct vif_params { int use_4addr; }; /** * struct key_params - key information * * Information about a key * * @key: key material * @key_len: length of key material * @cipher: cipher suite selector * @seq: sequence counter (IV/PN) for TKIP and CCMP keys, only used * with the get_key() callback, must be in little endian, * length given by @seq_len. * @seq_len: length of @seq. */ struct key_params { u8 *key; u8 *seq; int key_len; int seq_len; u32 cipher; }; /** * enum survey_info_flags - survey information flags * * @SURVEY_INFO_NOISE_DBM: noise (in dBm) was filled in * @SURVEY_INFO_IN_USE: channel is currently being used * @SURVEY_INFO_CHANNEL_TIME: channel active time (in ms) was filled in * @SURVEY_INFO_CHANNEL_TIME_BUSY: channel busy time was filled in * @SURVEY_INFO_CHANNEL_TIME_EXT_BUSY: extension channel busy time was filled in * @SURVEY_INFO_CHANNEL_TIME_RX: channel receive time was filled in * @SURVEY_INFO_CHANNEL_TIME_TX: channel transmit time was filled in * * Used by the driver to indicate which info in &struct survey_info * it has filled in during the get_survey(). */ enum survey_info_flags { SURVEY_INFO_NOISE_DBM = 1<<0, SURVEY_INFO_IN_USE = 1<<1, SURVEY_INFO_CHANNEL_TIME = 1<<2, SURVEY_INFO_CHANNEL_TIME_BUSY = 1<<3, SURVEY_INFO_CHANNEL_TIME_EXT_BUSY = 1<<4, SURVEY_INFO_CHANNEL_TIME_RX = 1<<5, SURVEY_INFO_CHANNEL_TIME_TX = 1<<6, }; /** * struct survey_info - channel survey response * * @channel: the channel this survey record reports, mandatory * @filled: bitflag of flags from &enum survey_info_flags * @noise: channel noise in dBm. This and all following fields are * optional * @channel_time: amount of time in ms the radio spent on the channel * @channel_time_busy: amount of time the primary channel was sensed busy * @channel_time_ext_busy: amount of time the extension channel was sensed busy * @channel_time_rx: amount of time the radio spent receiving data * @channel_time_tx: amount of time the radio spent transmitting data * * Used by dump_survey() to report back per-channel survey information. * * This structure can later be expanded with things like * channel duty cycle etc. */ struct survey_info { struct ieee80211_channel *channel; u64 channel_time; u64 channel_time_busy; u64 channel_time_ext_busy; u64 channel_time_rx; u64 channel_time_tx; u32 filled; s8 noise; }; /** * struct beacon_parameters - beacon parameters * * Used to configure the beacon for an interface. * * @head: head portion of beacon (before TIM IE) * or %NULL if not changed * @tail: tail portion of beacon (after TIM IE) * or %NULL if not changed * @interval: beacon interval or zero if not changed * @dtim_period: DTIM period or zero if not changed * @head_len: length of @head * @tail_len: length of @tail */ struct beacon_parameters { u8 *head, *tail; int interval, dtim_period; int head_len, tail_len; }; /** * enum plink_action - actions to perform in mesh peers * * @PLINK_ACTION_INVALID: action 0 is reserved * @PLINK_ACTION_OPEN: start mesh peer link establishment * @PLINK_ACTION_BLOCK: block traffic from this mesh peer */ enum plink_actions { PLINK_ACTION_INVALID, PLINK_ACTION_OPEN, PLINK_ACTION_BLOCK, }; /** * enum plink_states - state of a mesh peer link finite state machine * * @PLINK_LISTEN: initial state, considered the implicit state of non * existant mesh peer links * @PLINK_OPN_SNT: mesh plink open frame has been sent to this mesh * peer @PLINK_OPN_RCVD: mesh plink open frame has been received from * this mesh peer * @PLINK_CNF_RCVD: mesh plink confirm frame has been received from * this mesh peer * @PLINK_ESTAB: mesh peer link is established * @PLINK_HOLDING: mesh peer link is being closed or cancelled * @PLINK_BLOCKED: all frames transmitted from this mesh plink are * discarded * @PLINK_INVALID: reserved */ enum plink_state { PLINK_LISTEN, PLINK_OPN_SNT, PLINK_OPN_RCVD, PLINK_CNF_RCVD, PLINK_ESTAB, PLINK_HOLDING, PLINK_BLOCKED, PLINK_INVALID, }; /** * struct station_parameters - station parameters * * Used to change and create a new station. * * @vlan: vlan interface station should belong to * @supported_rates: supported rates in IEEE 802.11 format * (or NULL for no change) * @supported_rates_len: number of supported rates * @sta_flags_mask: station flags that changed * (bitmask of BIT(NL80211_STA_FLAG_...)) * @sta_flags_set: station flags values * (bitmask of BIT(NL80211_STA_FLAG_...)) * @listen_interval: listen interval or -1 for no change * @aid: AID or zero for no change * @plink_action: plink action to take * @plink_state: set the peer link state for a station * @ht_capa: HT capabilities of station */ struct station_parameters { u8 *supported_rates; struct net_device *vlan; u32 sta_flags_mask, sta_flags_set; int listen_interval; u16 aid; u8 supported_rates_len; u8 plink_action; u8 plink_state; struct ieee80211_ht_cap *ht_capa; }; /** * enum station_info_flags - station information flags * * Used by the driver to indicate which info in &struct station_info * it has filled in during get_station() or dump_station(). * * @STATION_INFO_INACTIVE_TIME: @inactive_time filled * @STATION_INFO_RX_BYTES: @rx_bytes filled * @STATION_INFO_TX_BYTES: @tx_bytes filled * @STATION_INFO_LLID: @llid filled * @STATION_INFO_PLID: @plid filled * @STATION_INFO_PLINK_STATE: @plink_state filled * @STATION_INFO_SIGNAL: @signal filled * @STATION_INFO_TX_BITRATE: @txrate fields are filled * (tx_bitrate, tx_bitrate_flags and tx_bitrate_mcs) * @STATION_INFO_RX_PACKETS: @rx_packets filled * @STATION_INFO_TX_PACKETS: @tx_packets filled * @STATION_INFO_TX_RETRIES: @tx_retries filled * @STATION_INFO_TX_FAILED: @tx_failed filled * @STATION_INFO_RX_DROP_MISC: @rx_dropped_misc filled * @STATION_INFO_SIGNAL_AVG: @signal_avg filled * @STATION_INFO_RX_BITRATE: @rxrate fields are filled * @STATION_INFO_BSS_PARAM: @bss_param filled * @STATION_INFO_CONNECTED_TIME: @connected_time filled */ enum station_info_flags { STATION_INFO_INACTIVE_TIME = 1<<0, STATION_INFO_RX_BYTES = 1<<1, STATION_INFO_TX_BYTES = 1<<2, STATION_INFO_LLID = 1<<3, STATION_INFO_PLID = 1<<4, STATION_INFO_PLINK_STATE = 1<<5, STATION_INFO_SIGNAL = 1<<6, STATION_INFO_TX_BITRATE = 1<<7, STATION_INFO_RX_PACKETS = 1<<8, STATION_INFO_TX_PACKETS = 1<<9, STATION_INFO_TX_RETRIES = 1<<10, STATION_INFO_TX_FAILED = 1<<11, STATION_INFO_RX_DROP_MISC = 1<<12, STATION_INFO_SIGNAL_AVG = 1<<13, STATION_INFO_RX_BITRATE = 1<<14, STATION_INFO_BSS_PARAM = 1<<15, STATION_INFO_CONNECTED_TIME = 1<<16 }; /** * enum station_info_rate_flags - bitrate info flags * * Used by the driver to indicate the specific rate transmission * type for 802.11n transmissions. * * @RATE_INFO_FLAGS_MCS: @tx_bitrate_mcs filled * @RATE_INFO_FLAGS_40_MHZ_WIDTH: 40 Mhz width transmission * @RATE_INFO_FLAGS_SHORT_GI: 400ns guard interval */ enum rate_info_flags { RATE_INFO_FLAGS_MCS = 1<<0, RATE_INFO_FLAGS_40_MHZ_WIDTH = 1<<1, RATE_INFO_FLAGS_SHORT_GI = 1<<2, }; /** * struct rate_info - bitrate information * * Information about a receiving or transmitting bitrate * * @flags: bitflag of flags from &enum rate_info_flags * @mcs: mcs index if struct describes a 802.11n bitrate * @legacy: bitrate in 100kbit/s for 802.11abg */ struct rate_info { u8 flags; u8 mcs; u16 legacy; }; /** * enum station_info_rate_flags - bitrate info flags * * Used by the driver to indicate the specific rate transmission * type for 802.11n transmissions. * * @BSS_PARAM_FLAGS_CTS_PROT: whether CTS protection is enabled * @BSS_PARAM_FLAGS_SHORT_PREAMBLE: whether short preamble is enabled * @BSS_PARAM_FLAGS_SHORT_SLOT_TIME: whether short slot time is enabled */ enum bss_param_flags { BSS_PARAM_FLAGS_CTS_PROT = 1<<0, BSS_PARAM_FLAGS_SHORT_PREAMBLE = 1<<1, BSS_PARAM_FLAGS_SHORT_SLOT_TIME = 1<<2, }; /** * struct sta_bss_parameters - BSS parameters for the attached station * * Information about the currently associated BSS * * @flags: bitflag of flags from &enum bss_param_flags * @dtim_period: DTIM period for the BSS * @beacon_interval: beacon interval */ struct sta_bss_parameters { u8 flags; u8 dtim_period; u16 beacon_interval; }; /** * struct station_info - station information * * Station information filled by driver for get_station() and dump_station. * * @filled: bitflag of flags from &enum station_info_flags * @connected_time: time(in secs) since a station is last connected * @inactive_time: time since last station activity (tx/rx) in milliseconds * @rx_bytes: bytes received from this station * @tx_bytes: bytes transmitted to this station * @llid: mesh local link id * @plid: mesh peer link id * @plink_state: mesh peer link state * @signal: signal strength of last received packet in dBm * @signal_avg: signal strength average in dBm * @txrate: current unicast bitrate from this station * @rxrate: current unicast bitrate to this station * @rx_packets: packets received from this station * @tx_packets: packets transmitted to this station * @tx_retries: cumulative retry counts * @tx_failed: number of failed transmissions (retries exceeded, no ACK) * @rx_dropped_misc: Dropped for un-specified reason. * @generation: generation number for nl80211 dumps. * This number should increase every time the list of stations * changes, i.e. when a station is added or removed, so that * userspace can tell whether it got a consistent snapshot. */ struct station_info { u32 filled; u32 connected_time; u32 inactive_time; u32 rx_bytes; u32 tx_bytes; u16 llid; u16 plid; u8 plink_state; s8 signal; s8 signal_avg; struct rate_info txrate; struct rate_info rxrate; u32 rx_packets; u32 tx_packets; u32 tx_retries; u32 tx_failed; u32 rx_dropped_misc; struct sta_bss_parameters bss_param; int generation; }; /** * enum monitor_flags - monitor flags * * Monitor interface configuration flags. Note that these must be the bits * according to the nl80211 flags. * * @MONITOR_FLAG_FCSFAIL: pass frames with bad FCS * @MONITOR_FLAG_PLCPFAIL: pass frames with bad PLCP * @MONITOR_FLAG_CONTROL: pass control frames * @MONITOR_FLAG_OTHER_BSS: disable BSSID filtering * @MONITOR_FLAG_COOK_FRAMES: report frames after processing */ enum monitor_flags { MONITOR_FLAG_FCSFAIL = 1<bss_priv_size bytes */ struct cfg80211_bss { struct ieee80211_channel *channel; u8 bssid[ETH_ALEN]; u64 tsf; u16 beacon_interval; u16 capability; u8 *information_elements; size_t len_information_elements; u8 *beacon_ies; size_t len_beacon_ies; u8 *proberesp_ies; size_t len_proberesp_ies; s32 signal; void (*free_priv)(struct cfg80211_bss *bss); u8 priv[0] __attribute__((__aligned__(sizeof(void *)))); }; /** * ieee80211_bss_get_ie - find IE with given ID * @bss: the bss to search * @ie: the IE ID * Returns %NULL if not found. */ const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie); /** * struct cfg80211_crypto_settings - Crypto settings * @wpa_versions: indicates which, if any, WPA versions are enabled * (from enum nl80211_wpa_versions) * @cipher_group: group key cipher suite (or 0 if unset) * @n_ciphers_pairwise: number of AP supported unicast ciphers * @ciphers_pairwise: unicast key cipher suites * @n_akm_suites: number of AKM suites * @akm_suites: AKM suites * @control_port: Whether user space controls IEEE 802.1X port, i.e., * sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is * required to assume that the port is unauthorized until authorized by * user space. Otherwise, port is marked authorized by default. * @control_port_ethertype: the control port protocol that should be * allowed through even on unauthorized ports * @control_port_no_encrypt: TRUE to prevent encryption of control port * protocol frames. */ struct cfg80211_crypto_settings { u32 wpa_versions; u32 cipher_group; int n_ciphers_pairwise; u32 ciphers_pairwise[NL80211_MAX_NR_CIPHER_SUITES]; int n_akm_suites; u32 akm_suites[NL80211_MAX_NR_AKM_SUITES]; bool control_port; __be16 control_port_ethertype; bool control_port_no_encrypt; }; /** * struct cfg80211_auth_request - Authentication request data * * This structure provides information needed to complete IEEE 802.11 * authentication. * * @bss: The BSS to authenticate with. * @auth_type: Authentication type (algorithm) * @ie: Extra IEs to add to Authentication frame or %NULL * @ie_len: Length of ie buffer in octets * @key_len: length of WEP key for shared key authentication * @key_idx: index of WEP key for shared key authentication * @key: WEP key for shared key authentication * @local_state_change: This is a request for a local state only, i.e., no * Authentication frame is to be transmitted and authentication state is * to be changed without having to wait for a response from the peer STA * (AP). */ struct cfg80211_auth_request { struct cfg80211_bss *bss; const u8 *ie; size_t ie_len; enum nl80211_auth_type auth_type; const u8 *key; u8 key_len, key_idx; bool local_state_change; }; /** * struct cfg80211_assoc_request - (Re)Association request data * * This structure provides information needed to complete IEEE 802.11 * (re)association. * @bss: The BSS to associate with. * @ie: Extra IEs to add to (Re)Association Request frame or %NULL * @ie_len: Length of ie buffer in octets * @use_mfp: Use management frame protection (IEEE 802.11w) in this association * @crypto: crypto settings * @prev_bssid: previous BSSID, if not %NULL use reassociate frame */ struct cfg80211_assoc_request { struct cfg80211_bss *bss; const u8 *ie, *prev_bssid; size_t ie_len; struct cfg80211_crypto_settings crypto; bool use_mfp; }; /** * struct cfg80211_deauth_request - Deauthentication request data * * This structure provides information needed to complete IEEE 802.11 * deauthentication. * * @bss: the BSS to deauthenticate from * @ie: Extra IEs to add to Deauthentication frame or %NULL * @ie_len: Length of ie buffer in octets * @reason_code: The reason code for the deauthentication * @local_state_change: This is a request for a local state only, i.e., no * Deauthentication frame is to be transmitted. */ struct cfg80211_deauth_request { struct cfg80211_bss *bss; const u8 *ie; size_t ie_len; u16 reason_code; bool local_state_change; }; /** * struct cfg80211_disassoc_request - Disassociation request data * * This structure provides information needed to complete IEEE 802.11 * disassocation. * * @bss: the BSS to disassociate from * @ie: Extra IEs to add to Disassociation frame or %NULL * @ie_len: Length of ie buffer in octets * @reason_code: The reason code for the disassociation * @local_state_change: This is a request for a local state only, i.e., no * Disassociation frame is to be transmitted. */ struct cfg80211_disassoc_request { struct cfg80211_bss *bss; const u8 *ie; size_t ie_len; u16 reason_code; bool local_state_change; }; /** * struct cfg80211_ibss_params - IBSS parameters * * This structure defines the IBSS parameters for the join_ibss() * method. * * @ssid: The SSID, will always be non-null. * @ssid_len: The length of the SSID, will always be non-zero. * @bssid: Fixed BSSID requested, maybe be %NULL, if set do not * search for IBSSs with a different BSSID. * @channel: The channel to use if no IBSS can be found to join. * @channel_fixed: The channel should be fixed -- do not search for * IBSSs to join on other channels. * @ie: information element(s) to include in the beacon * @ie_len: length of that * @beacon_interval: beacon interval to use * @privacy: this is a protected network, keys will be configured * after joining * @basic_rates: bitmap of basic rates to use when creating the IBSS * @mcast_rate: per-band multicast rate index + 1 (0: disabled) */ struct cfg80211_ibss_params { u8 *ssid; u8 *bssid; struct ieee80211_channel *channel; u8 *ie; u8 ssid_len, ie_len; u16 beacon_interval; u32 basic_rates; bool channel_fixed; bool privacy; int mcast_rate[IEEE80211_NUM_BANDS]; }; /** * struct cfg80211_connect_params - Connection parameters * * This structure provides information needed to complete IEEE 802.11 * authentication and association. * * @channel: The channel to use or %NULL if not specified (auto-select based * on scan results) * @bssid: The AP BSSID or %NULL if not specified (auto-select based on scan * results) * @ssid: SSID * @ssid_len: Length of ssid in octets * @auth_type: Authentication type (algorithm) * @ie: IEs for association request * @ie_len: Length of assoc_ie in octets * @privacy: indicates whether privacy-enabled APs should be used * @crypto: crypto settings * @key_len: length of WEP key for shared key authentication * @key_idx: index of WEP key for shared key authentication * @key: WEP key for shared key authentication */ struct cfg80211_connect_params { struct ieee80211_channel *channel; u8 *bssid; u8 *ssid; size_t ssid_len; enum nl80211_auth_type auth_type; u8 *ie; size_t ie_len; bool privacy; struct cfg80211_crypto_settings crypto; const u8 *key; u8 key_len, key_idx; }; /** * enum wiphy_params_flags - set_wiphy_params bitfield values * @WIPHY_PARAM_RETRY_SHORT: wiphy->retry_short has changed * @WIPHY_PARAM_RETRY_LONG: wiphy->retry_long has changed * @WIPHY_PARAM_FRAG_THRESHOLD: wiphy->frag_threshold has changed * @WIPHY_PARAM_RTS_THRESHOLD: wiphy->rts_threshold has changed * @WIPHY_PARAM_COVERAGE_CLASS: coverage class changed */ enum wiphy_params_flags { WIPHY_PARAM_RETRY_SHORT = 1 << 0, WIPHY_PARAM_RETRY_LONG = 1 << 1, WIPHY_PARAM_FRAG_THRESHOLD = 1 << 2, WIPHY_PARAM_RTS_THRESHOLD = 1 << 3, WIPHY_PARAM_COVERAGE_CLASS = 1 << 4, }; /* * cfg80211_bitrate_mask - masks for bitrate control */ struct cfg80211_bitrate_mask { struct { u32 legacy; /* TODO: add support for masking MCS rates; e.g.: */ /* u8 mcs[IEEE80211_HT_MCS_MASK_LEN]; */ } control[IEEE80211_NUM_BANDS]; }; /** * struct cfg80211_pmksa - PMK Security Association * * This structure is passed to the set/del_pmksa() method for PMKSA * caching. * * @bssid: The AP's BSSID. * @pmkid: The PMK material itself. */ struct cfg80211_pmksa { u8 *bssid; u8 *pmkid; }; /** * struct cfg80211_wowlan_trig_pkt_pattern - packet pattern * @mask: bitmask where to match pattern and where to ignore bytes, * one bit per byte, in same format as nl80211 * @pattern: bytes to match where bitmask is 1 * @pattern_len: length of pattern (in bytes) * * Internal note: @mask and @pattern are allocated in one chunk of * memory, free @mask only! */ struct cfg80211_wowlan_trig_pkt_pattern { u8 *mask, *pattern; int pattern_len; }; /** * struct cfg80211_wowlan - Wake on Wireless-LAN support info * * This structure defines the enabled WoWLAN triggers for the device. * @any: wake up on any activity -- special trigger if device continues * operating as normal during suspend * @disconnect: wake up if getting disconnected * @magic_pkt: wake up on receiving magic packet * @patterns: wake up on receiving packet matching a pattern * @n_patterns: number of patterns */ struct cfg80211_wowlan { bool any, disconnect, magic_pkt; struct cfg80211_wowlan_trig_pkt_pattern *patterns; int n_patterns; }; /** * struct cfg80211_ops - backend description for wireless configuration * * This struct is registered by fullmac card drivers and/or wireless stacks * in order to handle configuration requests on their interfaces. * * All callbacks except where otherwise noted should return 0 * on success or a negative error code. * * All operations are currently invoked under rtnl for consistency with the * wireless extensions but this is subject to reevaluation as soon as this * code is used more widely and we have a first user without wext. * * @suspend: wiphy device needs to be suspended. The variable @wow will * be %NULL or contain the enabled Wake-on-Wireless triggers that are * configured for the device. * @resume: wiphy device needs to be resumed * * @add_virtual_intf: create a new virtual interface with the given name, * must set the struct wireless_dev's iftype. Beware: You must create * the new netdev in the wiphy's network namespace! Returns the netdev, * or an ERR_PTR. * * @del_virtual_intf: remove the virtual interface determined by ifindex. * * @change_virtual_intf: change type/configuration of virtual interface, * keep the struct wireless_dev's iftype updated. * * @add_key: add a key with the given parameters. @mac_addr will be %NULL * when adding a group key. * * @get_key: get information about the key with the given parameters. * @mac_addr will be %NULL when requesting information for a group * key. All pointers given to the @callback function need not be valid * after it returns. This function should return an error if it is * not possible to retrieve the key, -ENOENT if it doesn't exist. * * @del_key: remove a key given the @mac_addr (%NULL for a group key) * and @key_index, return -ENOENT if the key doesn't exist. * * @set_default_key: set the default key on an interface * * @set_default_mgmt_key: set the default management frame key on an interface * * @add_beacon: Add a beacon with given parameters, @head, @interval * and @dtim_period will be valid, @tail is optional. * @set_beacon: Change the beacon parameters for an access point mode * interface. This should reject the call when no beacon has been * configured. * @del_beacon: Remove beacon configuration and stop sending the beacon. * * @add_station: Add a new station. * @del_station: Remove a station; @mac may be NULL to remove all stations. * @change_station: Modify a given station. * @get_station: get station information for the station identified by @mac * @dump_station: dump station callback -- resume dump at index @idx * * @add_mpath: add a fixed mesh path * @del_mpath: delete a given mesh path * @change_mpath: change a given mesh path * @get_mpath: get a mesh path for the given parameters * @dump_mpath: dump mesh path callback -- resume dump at index @idx * @join_mesh: join the mesh network with the specified parameters * @leave_mesh: leave the current mesh network * * @get_mesh_config: Get the current mesh configuration * * @update_mesh_config: Update mesh parameters on a running mesh. * The mask is a bitfield which tells us which parameters to * set, and which to leave alone. * * @change_bss: Modify parameters for a given BSS. * * @set_txq_params: Set TX queue parameters * * @set_channel: Set channel for a given wireless interface. Some devices * may support multi-channel operation (by channel hopping) so cfg80211 * doesn't verify much. Note, however, that the passed netdev may be * %NULL as well if the user requested changing the channel for the * device itself, or for a monitor interface. * * @scan: Request to do a scan. If returning zero, the scan request is given * the driver, and will be valid until passed to cfg80211_scan_done(). * For scan results, call cfg80211_inform_bss(); you can call this outside * the scan/scan_done bracket too. * * @auth: Request to authenticate with the specified peer * @assoc: Request to (re)associate with the specified peer * @deauth: Request to deauthenticate from the specified peer * @disassoc: Request to disassociate from the specified peer * * @connect: Connect to the ESS with the specified parameters. When connected, * call cfg80211_connect_result() with status code %WLAN_STATUS_SUCCESS. * If the connection fails for some reason, call cfg80211_connect_result() * with the status from the AP. * @disconnect: Disconnect from the BSS/ESS. * * @join_ibss: Join the specified IBSS (or create if necessary). Once done, call * cfg80211_ibss_joined(), also call that function when changing BSSID due * to a merge. * @leave_ibss: Leave the IBSS. * * @set_wiphy_params: Notify that wiphy parameters have changed; * @changed bitfield (see &enum wiphy_params_flags) describes which values * have changed. The actual parameter values are available in * struct wiphy. If returning an error, no value should be changed. * * @set_tx_power: set the transmit power according to the parameters * @get_tx_power: store the current TX power into the dbm variable; * return 0 if successful * * @set_wds_peer: set the WDS peer for a WDS interface * * @rfkill_poll: polls the hw rfkill line, use cfg80211 reporting * functions to adjust rfkill hw state * * @dump_survey: get site survey information. * * @remain_on_channel: Request the driver to remain awake on the specified * channel for the specified duration to complete an off-channel * operation (e.g., public action frame exchange). When the driver is * ready on the requested channel, it must indicate this with an event * notification by calling cfg80211_ready_on_channel(). * @cancel_remain_on_channel: Cancel an on-going remain-on-channel operation. * This allows the operation to be terminated prior to timeout based on * the duration value. * @mgmt_tx: Transmit a management frame. * @mgmt_tx_cancel_wait: Cancel the wait time from transmitting a management * frame on another channel * * @testmode_cmd: run a test mode command * * @set_bitrate_mask: set the bitrate mask configuration * * @set_pmksa: Cache a PMKID for a BSSID. This is mostly useful for fullmac * devices running firmwares capable of generating the (re) association * RSN IE. It allows for faster roaming between WPA2 BSSIDs. * @del_pmksa: Delete a cached PMKID. * @flush_pmksa: Flush all cached PMKIDs. * @set_power_mgmt: Configure WLAN power management. A timeout value of -1 * allows the driver to adjust the dynamic ps timeout value. * @set_cqm_rssi_config: Configure connection quality monitor RSSI threshold. * @sched_scan_start: Tell the driver to start a scheduled scan. * @sched_scan_stop: Tell the driver to stop an ongoing scheduled * scan. The driver_initiated flag specifies whether the driver * itself has informed that the scan has stopped. * * @mgmt_frame_register: Notify driver that a management frame type was * registered. Note that this callback may not sleep, and cannot run * concurrently with itself. * * @set_antenna: Set antenna configuration (tx_ant, rx_ant) on the device. * Parameters are bitmaps of allowed antennas to use for TX/RX. Drivers may * reject TX/RX mask combinations they cannot support by returning -EINVAL * (also see nl80211.h @NL80211_ATTR_WIPHY_ANTENNA_TX). * * @get_antenna: Get current antenna configuration from device (tx_ant, rx_ant). * * @set_ringparam: Set tx and rx ring sizes. * * @get_ringparam: Get tx and rx ring current and maximum sizes. */ struct cfg80211_ops { int (*suspend)(struct wiphy *wiphy, struct cfg80211_wowlan *wow); int (*resume)(struct wiphy *wiphy); struct net_device * (*add_virtual_intf)(struct wiphy *wiphy, char *name, enum nl80211_iftype type, u32 *flags, struct vif_params *params); int (*del_virtual_intf)(struct wiphy *wiphy, struct net_device *dev); int (*change_virtual_intf)(struct wiphy *wiphy, struct net_device *dev, enum nl80211_iftype type, u32 *flags, struct vif_params *params); int (*add_key)(struct wiphy *wiphy, struct net_device *netdev, u8 key_index, bool pairwise, const u8 *mac_addr, struct key_params *params); int (*get_key)(struct wiphy *wiphy, struct net_device *netdev, u8 key_index, bool pairwise, const u8 *mac_addr, void *cookie, void (*callback)(void *cookie, struct key_params*)); int (*del_key)(struct wiphy *wiphy, struct net_device *netdev, u8 key_index, bool pairwise, const u8 *mac_addr); int (*set_default_key)(struct wiphy *wiphy, struct net_device *netdev, u8 key_index, bool unicast, bool multicast); int (*set_default_mgmt_key)(struct wiphy *wiphy, struct net_device *netdev, u8 key_index); int (*add_beacon)(struct wiphy *wiphy, struct net_device *dev, struct beacon_parameters *info); int (*set_beacon)(struct wiphy *wiphy, struct net_device *dev, struct beacon_parameters *info); int (*del_beacon)(struct wiphy *wiphy, struct net_device *dev); int (*add_station)(struct wiphy *wiphy, struct net_device *dev, u8 *mac, struct station_parameters *params); int (*del_station)(struct wiphy *wiphy, struct net_device *dev, u8 *mac); int (*change_station)(struct wiphy *wiphy, struct net_device *dev, u8 *mac, struct station_parameters *params); int (*get_station)(struct wiphy *wiphy, struct net_device *dev, u8 *mac, struct station_info *sinfo); int (*dump_station)(struct wiphy *wiphy, struct net_device *dev, int idx, u8 *mac, struct station_info *sinfo); int (*add_mpath)(struct wiphy *wiphy, struct net_device *dev, u8 *dst, u8 *next_hop); int (*del_mpath)(struct wiphy *wiphy, struct net_device *dev, u8 *dst); int (*change_mpath)(struct wiphy *wiphy, struct net_device *dev, u8 *dst, u8 *next_hop); int (*get_mpath)(struct wiphy *wiphy, struct net_device *dev, u8 *dst, u8 *next_hop, struct mpath_info *pinfo); int (*dump_mpath)(struct wiphy *wiphy, struct net_device *dev, int idx, u8 *dst, u8 *next_hop, struct mpath_info *pinfo); int (*get_mesh_config)(struct wiphy *wiphy, struct net_device *dev, struct mesh_config *conf); int (*update_mesh_config)(struct wiphy *wiphy, struct net_device *dev, u32 mask, const struct mesh_config *nconf); int (*join_mesh)(struct wiphy *wiphy, struct net_device *dev, const struct mesh_config *conf, const struct mesh_setup *setup); int (*leave_mesh)(struct wiphy *wiphy, struct net_device *dev); int (*change_bss)(struct wiphy *wiphy, struct net_device *dev, struct bss_parameters *params); int (*set_txq_params)(struct wiphy *wiphy, struct ieee80211_txq_params *params); int (*set_channel)(struct wiphy *wiphy, struct net_device *dev, struct ieee80211_channel *chan, enum nl80211_channel_type channel_type); int (*scan)(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_scan_request *request); int (*auth)(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_auth_request *req); int (*assoc)(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_assoc_request *req); int (*deauth)(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_deauth_request *req, void *cookie); int (*disassoc)(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_disassoc_request *req, void *cookie); int (*connect)(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_connect_params *sme); int (*disconnect)(struct wiphy *wiphy, struct net_device *dev, u16 reason_code); int (*join_ibss)(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_ibss_params *params); int (*leave_ibss)(struct wiphy *wiphy, struct net_device *dev); int (*set_wiphy_params)(struct wiphy *wiphy, u32 changed); int (*set_tx_power)(struct wiphy *wiphy, enum nl80211_tx_power_setting type, int mbm); int (*get_tx_power)(struct wiphy *wiphy, int *dbm); int (*set_wds_peer)(struct wiphy *wiphy, struct net_device *dev, const u8 *addr); void (*rfkill_poll)(struct wiphy *wiphy); #ifdef CONFIG_NL80211_TESTMODE int (*testmode_cmd)(struct wiphy *wiphy, void *data, int len); #endif int (*set_bitrate_mask)(struct wiphy *wiphy, struct net_device *dev, const u8 *peer, const struct cfg80211_bitrate_mask *mask); int (*dump_survey)(struct wiphy *wiphy, struct net_device *netdev, int idx, struct survey_info *info); int (*set_pmksa)(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_pmksa *pmksa); int (*del_pmksa)(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_pmksa *pmksa); int (*flush_pmksa)(struct wiphy *wiphy, struct net_device *netdev); int (*remain_on_channel)(struct wiphy *wiphy, struct net_device *dev, struct ieee80211_channel *chan, enum nl80211_channel_type channel_type, unsigned int duration, u64 *cookie); int (*cancel_remain_on_channel)(struct wiphy *wiphy, struct net_device *dev, u64 cookie); int (*mgmt_tx)(struct wiphy *wiphy, struct net_device *dev, struct ieee80211_channel *chan, bool offchan, enum nl80211_channel_type channel_type, bool channel_type_valid, unsigned int wait, const u8 *buf, size_t len, u64 *cookie); int (*mgmt_tx_cancel_wait)(struct wiphy *wiphy, struct net_device *dev, u64 cookie); int (*set_power_mgmt)(struct wiphy *wiphy, struct net_device *dev, bool enabled, int timeout); int (*set_cqm_rssi_config)(struct wiphy *wiphy, struct net_device *dev, s32 rssi_thold, u32 rssi_hyst); void (*mgmt_frame_register)(struct wiphy *wiphy, struct net_device *dev, u16 frame_type, bool reg); int (*set_antenna)(struct wiphy *wiphy, u32 tx_ant, u32 rx_ant); int (*get_antenna)(struct wiphy *wiphy, u32 *tx_ant, u32 *rx_ant); int (*set_ringparam)(struct wiphy *wiphy, u32 tx, u32 rx); void (*get_ringparam)(struct wiphy *wiphy, u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max); int (*sched_scan_start)(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_sched_scan_request *request); int (*sched_scan_stop)(struct wiphy *wiphy, struct net_device *dev); }; /* * wireless hardware and networking interfaces structures * and registration/helper functions */ /** * enum wiphy_flags - wiphy capability flags * * @WIPHY_FLAG_CUSTOM_REGULATORY: tells us the driver for this device * has its own custom regulatory domain and cannot identify the * ISO / IEC 3166 alpha2 it belongs to. When this is enabled * we will disregard the first regulatory hint (when the * initiator is %REGDOM_SET_BY_CORE). * @WIPHY_FLAG_STRICT_REGULATORY: tells us the driver for this device will * ignore regulatory domain settings until it gets its own regulatory * domain via its regulatory_hint() unless the regulatory hint is * from a country IE. After its gets its own regulatory domain it will * only allow further regulatory domain settings to further enhance * compliance. For example if channel 13 and 14 are disabled by this * regulatory domain no user regulatory domain can enable these channels * at a later time. This can be used for devices which do not have * calibration information guaranteed for frequencies or settings * outside of its regulatory domain. * @WIPHY_FLAG_DISABLE_BEACON_HINTS: enable this if your driver needs to ensure * that passive scan flags and beaconing flags may not be lifted by * cfg80211 due to regulatory beacon hints. For more information on beacon * hints read the documenation for regulatory_hint_found_beacon() * @WIPHY_FLAG_NETNS_OK: if not set, do not allow changing the netns of this * wiphy at all * @WIPHY_FLAG_ENFORCE_COMBINATIONS: Set this flag to enforce interface * combinations for this device. This flag is used for backward * compatibility only until all drivers advertise combinations and * they will always be enforced. * @WIPHY_FLAG_PS_ON_BY_DEFAULT: if set to true, powersave will be enabled * by default -- this flag will be set depending on the kernel's default * on wiphy_new(), but can be changed by the driver if it has a good * reason to override the default * @WIPHY_FLAG_4ADDR_AP: supports 4addr mode even on AP (with a single station * on a VLAN interface) * @WIPHY_FLAG_4ADDR_STATION: supports 4addr mode even as a station * @WIPHY_FLAG_CONTROL_PORT_PROTOCOL: This device supports setting the * control port protocol ethertype. The device also honours the * control_port_no_encrypt flag. * @WIPHY_FLAG_IBSS_RSN: The device supports IBSS RSN. * @WIPHY_FLAG_MESH_AUTH: The device supports mesh authentication by routing * auth frames to userspace. See @NL80211_MESH_SETUP_USERSPACE_AUTH. * @WIPHY_FLAG_SCHED_SCAN: The device supports scheduled scans. */ enum wiphy_flags { WIPHY_FLAG_CUSTOM_REGULATORY = BIT(0), WIPHY_FLAG_STRICT_REGULATORY = BIT(1), WIPHY_FLAG_DISABLE_BEACON_HINTS = BIT(2), WIPHY_FLAG_NETNS_OK = BIT(3), WIPHY_FLAG_PS_ON_BY_DEFAULT = BIT(4), WIPHY_FLAG_4ADDR_AP = BIT(5), WIPHY_FLAG_4ADDR_STATION = BIT(6), WIPHY_FLAG_CONTROL_PORT_PROTOCOL = BIT(7), WIPHY_FLAG_IBSS_RSN = BIT(8), WIPHY_FLAG_MESH_AUTH = BIT(10), WIPHY_FLAG_SUPPORTS_SCHED_SCAN = BIT(11), WIPHY_FLAG_ENFORCE_COMBINATIONS = BIT(12), }; /** * struct ieee80211_iface_limit - limit on certain interface types * @max: maximum number of interfaces of these types * @types: interface types (bits) */ struct ieee80211_iface_limit { u16 max; u16 types; }; /** * struct ieee80211_iface_combination - possible interface combination * @limits: limits for the given interface types * @n_limits: number of limitations * @num_different_channels: can use up to this many different channels * @max_interfaces: maximum number of interfaces in total allowed in this * group * @beacon_int_infra_match: In this combination, the beacon intervals * between infrastructure and AP types must match. This is required * only in special cases. * * These examples can be expressed as follows: * * Allow #STA <= 1, #AP <= 1, matching BI, channels = 1, 2 total: * * struct ieee80211_iface_limit limits1[] = { * { .max = 1, .types = BIT(NL80211_IFTYPE_STATION), }, * { .max = 1, .types = BIT(NL80211_IFTYPE_AP}, }, * }; * struct ieee80211_iface_combination combination1 = { * .limits = limits1, * .n_limits = ARRAY_SIZE(limits1), * .max_interfaces = 2, * .beacon_int_infra_match = true, * }; * * * Allow #{AP, P2P-GO} <= 8, channels = 1, 8 total: * * struct ieee80211_iface_limit limits2[] = { * { .max = 8, .types = BIT(NL80211_IFTYPE_AP) | * BIT(NL80211_IFTYPE_P2P_GO), }, * }; * struct ieee80211_iface_combination combination2 = { * .limits = limits2, * .n_limits = ARRAY_SIZE(limits2), * .max_interfaces = 8, * .num_different_channels = 1, * }; * * * Allow #STA <= 1, #{P2P-client,P2P-GO} <= 3 on two channels, 4 total. * This allows for an infrastructure connection and three P2P connections. * * struct ieee80211_iface_limit limits3[] = { * { .max = 1, .types = BIT(NL80211_IFTYPE_STATION), }, * { .max = 3, .types = BIT(NL80211_IFTYPE_P2P_GO) | * BIT(NL80211_IFTYPE_P2P_CLIENT), }, * }; * struct ieee80211_iface_combination combination3 = { * .limits = limits3, * .n_limits = ARRAY_SIZE(limits3), * .max_interfaces = 4, * .num_different_channels = 2, * }; */ struct ieee80211_iface_combination { const struct ieee80211_iface_limit *limits; u32 num_different_channels; u16 max_interfaces; u8 n_limits; bool beacon_int_infra_match; }; struct mac_address { u8 addr[ETH_ALEN]; }; struct ieee80211_txrx_stypes { u16 tx, rx; }; /** * enum wiphy_wowlan_support_flags - WoWLAN support flags * @WIPHY_WOWLAN_ANY: supports wakeup for the special "any" * trigger that keeps the device operating as-is and * wakes up the host on any activity, for example a * received packet that passed filtering; note that the * packet should be preserved in that case * @WIPHY_WOWLAN_MAGIC_PKT: supports wakeup on magic packet * (see nl80211.h) * @WIPHY_WOWLAN_DISCONNECT: supports wakeup on disconnect */ enum wiphy_wowlan_support_flags { WIPHY_WOWLAN_ANY = BIT(0), WIPHY_WOWLAN_MAGIC_PKT = BIT(1), WIPHY_WOWLAN_DISCONNECT = BIT(2), }; /** * struct wiphy_wowlan_support - WoWLAN support data * @flags: see &enum wiphy_wowlan_support_flags * @n_patterns: number of supported wakeup patterns * (see nl80211.h for the pattern definition) * @pattern_max_len: maximum length of each pattern * @pattern_min_len: minimum length of each pattern */ struct wiphy_wowlan_support { u32 flags; int n_patterns; int pattern_max_len; int pattern_min_len; }; /** * struct wiphy - wireless hardware description * @reg_notifier: the driver's regulatory notification callback, * note that if your driver uses wiphy_apply_custom_regulatory() * the reg_notifier's request can be passed as NULL * @regd: the driver's regulatory domain, if one was requested via * the regulatory_hint() API. This can be used by the driver * on the reg_notifier() if it chooses to ignore future * regulatory domain changes caused by other drivers. * @signal_type: signal type reported in &struct cfg80211_bss. * @cipher_suites: supported cipher suites * @n_cipher_suites: number of supported cipher suites * @retry_short: Retry limit for short frames (dot11ShortRetryLimit) * @retry_long: Retry limit for long frames (dot11LongRetryLimit) * @frag_threshold: Fragmentation threshold (dot11FragmentationThreshold); * -1 = fragmentation disabled, only odd values >= 256 used * @rts_threshold: RTS threshold (dot11RTSThreshold); -1 = RTS/CTS disabled * @_net: the network namespace this wiphy currently lives in * @perm_addr: permanent MAC address of this device * @addr_mask: If the device supports multiple MAC addresses by masking, * set this to a mask with variable bits set to 1, e.g. if the last * four bits are variable then set it to 00:...:00:0f. The actual * variable bits shall be determined by the interfaces added, with * interfaces not matching the mask being rejected to be brought up. * @n_addresses: number of addresses in @addresses. * @addresses: If the device has more than one address, set this pointer * to a list of addresses (6 bytes each). The first one will be used * by default for perm_addr. In this case, the mask should be set to * all-zeroes. In this case it is assumed that the device can handle * the same number of arbitrary MAC addresses. * @debugfsdir: debugfs directory used for this wiphy, will be renamed * automatically on wiphy renames * @dev: (virtual) struct device for this wiphy * @wext: wireless extension handlers * @priv: driver private data (sized according to wiphy_new() parameter) * @interface_modes: bitmask of interfaces types valid for this wiphy, * must be set by driver * @iface_combinations: Valid interface combinations array, should not * list single interface types. * @n_iface_combinations: number of entries in @iface_combinations array. * @software_iftypes: bitmask of software interface types, these are not * subject to any restrictions since they are purely managed in SW. * @flags: wiphy flags, see &enum wiphy_flags * @bss_priv_size: each BSS struct has private data allocated with it, * this variable determines its size * @max_scan_ssids: maximum number of SSIDs the device can scan for in * any given scan * @max_scan_ie_len: maximum length of user-controlled IEs device can * add to probe request frames transmitted during a scan, must not * include fixed IEs like supported rates * @coverage_class: current coverage class * @fw_version: firmware version for ethtool reporting * @hw_version: hardware version for ethtool reporting * @max_num_pmkids: maximum number of PMKIDs supported by device * @privid: a pointer that drivers can use to identify if an arbitrary * wiphy is theirs, e.g. in global notifiers * @bands: information about bands/channels supported by this device * * @mgmt_stypes: bitmasks of frame subtypes that can be subscribed to or * transmitted through nl80211, points to an array indexed by interface * type * * @available_antennas_tx: bitmap of antennas which are available to be * configured as TX antennas. Antenna configuration commands will be * rejected unless this or @available_antennas_rx is set. * * @available_antennas_rx: bitmap of antennas which are available to be * configured as RX antennas. Antenna configuration commands will be * rejected unless this or @available_antennas_tx is set. * * @max_remain_on_channel_duration: Maximum time a remain-on-channel operation * may request, if implemented. * * @wowlan: WoWLAN support information */ struct wiphy { /* assign these fields before you register the wiphy */ /* permanent MAC address(es) */ u8 perm_addr[ETH_ALEN]; u8 addr_mask[ETH_ALEN]; struct mac_address *addresses; const struct ieee80211_txrx_stypes *mgmt_stypes; const struct ieee80211_iface_combination *iface_combinations; int n_iface_combinations; u16 software_iftypes; u16 n_addresses; /* Supported interface modes, OR together BIT(NL80211_IFTYPE_...) */ u16 interface_modes; u32 flags; enum cfg80211_signal_type signal_type; int bss_priv_size; u8 max_scan_ssids; u16 max_scan_ie_len; int n_cipher_suites; const u32 *cipher_suites; u8 retry_short; u8 retry_long; u32 frag_threshold; u32 rts_threshold; u8 coverage_class; char fw_version[ETHTOOL_BUSINFO_LEN]; u32 hw_version; struct wiphy_wowlan_support wowlan; u16 max_remain_on_channel_duration; u8 max_num_pmkids; u32 available_antennas_tx; u32 available_antennas_rx; /* If multiple wiphys are registered and you're handed e.g. * a regular netdev with assigned ieee80211_ptr, you won't * know whether it points to a wiphy your driver has registered * or not. Assign this to something global to your driver to * help determine whether you own this wiphy or not. */ const void *privid; struct ieee80211_supported_band *bands[IEEE80211_NUM_BANDS]; /* Lets us get back the wiphy on the callback */ int (*reg_notifier)(struct wiphy *wiphy, struct regulatory_request *request); /* fields below are read-only, assigned by cfg80211 */ const struct ieee80211_regdomain *regd; /* the item in /sys/class/ieee80211/ points to this, * you need use set_wiphy_dev() (see below) */ struct device dev; /* dir in debugfs: ieee80211/ */ struct dentry *debugfsdir; #ifdef CONFIG_NET_NS /* the network namespace this phy lives in currently */ struct net *_net; #endif #ifdef CONFIG_CFG80211_WEXT const struct iw_handler_def *wext; #endif char priv[0] __attribute__((__aligned__(NETDEV_ALIGN))); }; static inline struct net *wiphy_net(struct wiphy *wiphy) { return read_pnet(&wiphy->_net); } static inline void wiphy_net_set(struct wiphy *wiphy, struct net *net) { write_pnet(&wiphy->_net, net); } /** * wiphy_priv - return priv from wiphy * * @wiphy: the wiphy whose priv pointer to return */ static inline void *wiphy_priv(struct wiphy *wiphy) { BUG_ON(!wiphy); return &wiphy->priv; } /** * priv_to_wiphy - return the wiphy containing the priv * * @priv: a pointer previously returned by wiphy_priv */ static inline struct wiphy *priv_to_wiphy(void *priv) { BUG_ON(!priv); return container_of(priv, struct wiphy, priv); } /** * set_wiphy_dev - set device pointer for wiphy * * @wiphy: The wiphy whose device to bind * @dev: The device to parent it to */ static inline void set_wiphy_dev(struct wiphy *wiphy, struct device *dev) { wiphy->dev.parent = dev; } /** * wiphy_dev - get wiphy dev pointer * * @wiphy: The wiphy whose device struct to look up */ static inline struct device *wiphy_dev(struct wiphy *wiphy) { return wiphy->dev.parent; } /** * wiphy_name - get wiphy name * * @wiphy: The wiphy whose name to return */ static inline const char *wiphy_name(const struct wiphy *wiphy) { return dev_name(&wiphy->dev); } /** * wiphy_new - create a new wiphy for use with cfg80211 * * @ops: The configuration operations for this device * @sizeof_priv: The size of the private area to allocate * * Create a new wiphy and associate the given operations with it. * @sizeof_priv bytes are allocated for private use. * * The returned pointer must be assigned to each netdev's * ieee80211_ptr for proper operation. */ struct wiphy *wiphy_new(const struct cfg80211_ops *ops, int sizeof_priv); /** * wiphy_register - register a wiphy with cfg80211 * * @wiphy: The wiphy to register. * * Returns a non-negative wiphy index or a negative error code. */ extern int wiphy_register(struct wiphy *wiphy); /** * wiphy_unregister - deregister a wiphy from cfg80211 * * @wiphy: The wiphy to unregister. * * After this call, no more requests can be made with this priv * pointer, but the call may sleep to wait for an outstanding * request that is being handled. */ extern void wiphy_unregister(struct wiphy *wiphy); /** * wiphy_free - free wiphy * * @wiphy: The wiphy to free */ extern void wiphy_free(struct wiphy *wiphy); /* internal structs */ struct cfg80211_conn; struct cfg80211_internal_bss; struct cfg80211_cached_keys; #define MAX_AUTH_BSSES 4 /** * struct wireless_dev - wireless per-netdev state * * This structure must be allocated by the driver/stack * that uses the ieee80211_ptr field in struct net_device * (this is intentional so it can be allocated along with * the netdev.) * * @wiphy: pointer to hardware description * @iftype: interface type * @list: (private) Used to collect the interfaces * @netdev: (private) Used to reference back to the netdev * @current_bss: (private) Used by the internal configuration code * @channel: (private) Used by the internal configuration code to track * user-set AP, monitor and WDS channels for wireless extensions * @bssid: (private) Used by the internal configuration code * @ssid: (private) Used by the internal configuration code * @ssid_len: (private) Used by the internal configuration code * @mesh_id_len: (private) Used by the internal configuration code * @mesh_id_up_len: (private) Used by the internal configuration code * @wext: (private) Used by the internal wireless extensions compat code * @use_4addr: indicates 4addr mode is used on this interface, must be * set by driver (if supported) on add_interface BEFORE registering the * netdev and may otherwise be used by driver read-only, will be update * by cfg80211 on change_interface * @mgmt_registrations: list of registrations for management frames * @mgmt_registrations_lock: lock for the list * @mtx: mutex used to lock data in this struct * @cleanup_work: work struct used for cleanup that can't be done directly * @beacon_interval: beacon interval used on this device for transmitting * beacons, 0 when not valid */ struct wireless_dev { struct wiphy *wiphy; enum nl80211_iftype iftype; /* the remainder of this struct should be private to cfg80211 */ struct list_head list; struct net_device *netdev; struct list_head mgmt_registrations; spinlock_t mgmt_registrations_lock; struct mutex mtx; struct work_struct cleanup_work; bool use_4addr; /* currently used for IBSS and SME - might be rearranged later */ u8 ssid[IEEE80211_MAX_SSID_LEN]; u8 ssid_len, mesh_id_len, mesh_id_up_len; enum { CFG80211_SME_IDLE, CFG80211_SME_CONNECTING, CFG80211_SME_CONNECTED, } sme_state; struct cfg80211_conn *conn; struct cfg80211_cached_keys *connect_keys; struct list_head event_list; spinlock_t event_lock; struct cfg80211_internal_bss *authtry_bsses[MAX_AUTH_BSSES]; struct cfg80211_internal_bss *auth_bsses[MAX_AUTH_BSSES]; struct cfg80211_internal_bss *current_bss; /* associated / joined */ struct ieee80211_channel *channel; bool ps; int ps_timeout; int beacon_interval; #ifdef CONFIG_CFG80211_WEXT /* wext data */ struct { struct cfg80211_ibss_params ibss; struct cfg80211_connect_params connect; struct cfg80211_cached_keys *keys; u8 *ie; size_t ie_len; u8 bssid[ETH_ALEN], prev_bssid[ETH_ALEN]; u8 ssid[IEEE80211_MAX_SSID_LEN]; s8 default_key, default_mgmt_key; bool prev_bssid_valid; } wext; #endif }; /** * wdev_priv - return wiphy priv from wireless_dev * * @wdev: The wireless device whose wiphy's priv pointer to return */ static inline void *wdev_priv(struct wireless_dev *wdev) { BUG_ON(!wdev); return wiphy_priv(wdev->wiphy); } /** * DOC: Utility functions * * cfg80211 offers a number of utility functions that can be useful. */ /** * ieee80211_channel_to_frequency - convert channel number to frequency * @chan: channel number * @band: band, necessary due to channel number overlap */ extern int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band); /** * ieee80211_frequency_to_channel - convert frequency to channel number * @freq: center frequency */ extern int ieee80211_frequency_to_channel(int freq); /* * Name indirection necessary because the ieee80211 code also has * a function named "ieee80211_get_channel", so if you include * cfg80211's header file you get cfg80211's version, if you try * to include both header files you'll (rightfully!) get a symbol * clash. */ extern struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy, int freq); /** * ieee80211_get_channel - get channel struct from wiphy for specified frequency * @wiphy: the struct wiphy to get the channel for * @freq: the center frequency of the channel */ static inline struct ieee80211_channel * ieee80211_get_channel(struct wiphy *wiphy, int freq) { return __ieee80211_get_channel(wiphy, freq); } /** * ieee80211_get_response_rate - get basic rate for a given rate * * @sband: the band to look for rates in * @basic_rates: bitmap of basic rates * @bitrate: the bitrate for which to find the basic rate * * This function returns the basic rate corresponding to a given * bitrate, that is the next lower bitrate contained in the basic * rate map, which is, for this function, given as a bitmap of * indices of rates in the band's bitrate table. */ struct ieee80211_rate * ieee80211_get_response_rate(struct ieee80211_supported_band *sband, u32 basic_rates, int bitrate); /* * Radiotap parsing functions -- for controlled injection support * * Implemented in net/wireless/radiotap.c * Documentation in Documentation/networking/radiotap-headers.txt */ struct radiotap_align_size { uint8_t align:4, size:4; }; struct ieee80211_radiotap_namespace { const struct radiotap_align_size *align_size; int n_bits; uint32_t oui; uint8_t subns; }; struct ieee80211_radiotap_vendor_namespaces { const struct ieee80211_radiotap_namespace *ns; int n_ns; }; /** * struct ieee80211_radiotap_iterator - tracks walk thru present radiotap args * @this_arg_index: index of current arg, valid after each successful call * to ieee80211_radiotap_iterator_next() * @this_arg: pointer to current radiotap arg; it is valid after each * call to ieee80211_radiotap_iterator_next() but also after * ieee80211_radiotap_iterator_init() where it will point to * the beginning of the actual data portion * @this_arg_size: length of the current arg, for convenience * @current_namespace: pointer to the current namespace definition * (or internally %NULL if the current namespace is unknown) * @is_radiotap_ns: indicates whether the current namespace is the default * radiotap namespace or not * * @_rtheader: pointer to the radiotap header we are walking through * @_max_length: length of radiotap header in cpu byte ordering * @_arg_index: next argument index * @_arg: next argument pointer * @_next_bitmap: internal pointer to next present u32 * @_bitmap_shifter: internal shifter for curr u32 bitmap, b0 set == arg present * @_vns: vendor namespace definitions * @_next_ns_data: beginning of the next namespace's data * @_reset_on_ext: internal; reset the arg index to 0 when going to the * next bitmap word * * Describes the radiotap parser state. Fields prefixed with an underscore * must not be used by users of the parser, only by the parser internally. */ struct ieee80211_radiotap_iterator { struct ieee80211_radiotap_header *_rtheader; const struct ieee80211_radiotap_vendor_namespaces *_vns; const struct ieee80211_radiotap_namespace *current_namespace; unsigned char *_arg, *_next_ns_data; __le32 *_next_bitmap; unsigned char *this_arg; int this_arg_index; int this_arg_size; int is_radiotap_ns; int _max_length; int _arg_index; uint32_t _bitmap_shifter; int _reset_on_ext; }; extern int ieee80211_radiotap_iterator_init( struct ieee80211_radiotap_iterator *iterator, struct ieee80211_radiotap_header *radiotap_header, int max_length, const struct ieee80211_radiotap_vendor_namespaces *vns); extern int ieee80211_radiotap_iterator_next( struct ieee80211_radiotap_iterator *iterator); extern const unsigned char rfc1042_header[6]; extern const unsigned char bridge_tunnel_header[6]; /** * ieee80211_get_hdrlen_from_skb - get header length from data * * Given an skb with a raw 802.11 header at the data pointer this function * returns the 802.11 header length in bytes (not including encryption * headers). If the data in the sk_buff is too short to contain a valid 802.11 * header the function returns 0. * * @skb: the frame */ unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb); /** * ieee80211_hdrlen - get header length in bytes from frame control * @fc: frame control field in little-endian format */ unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc); /** * DOC: Data path helpers * * In addition to generic utilities, cfg80211 also offers * functions that help implement the data path for devices * that do not do the 802.11/802.3 conversion on the device. */ /** * ieee80211_data_to_8023 - convert an 802.11 data frame to 802.3 * @skb: the 802.11 data frame * @addr: the device MAC address * @iftype: the virtual interface type */ int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr, enum nl80211_iftype iftype); /** * ieee80211_data_from_8023 - convert an 802.3 frame to 802.11 * @skb: the 802.3 frame * @addr: the device MAC address * @iftype: the virtual interface type * @bssid: the network bssid (used only for iftype STATION and ADHOC) * @qos: build 802.11 QoS data frame */ int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr, enum nl80211_iftype iftype, u8 *bssid, bool qos); /** * ieee80211_amsdu_to_8023s - decode an IEEE 802.11n A-MSDU frame * * Decode an IEEE 802.11n A-MSDU frame and convert it to a list of * 802.3 frames. The @list will be empty if the decode fails. The * @skb is consumed after the function returns. * * @skb: The input IEEE 802.11n A-MSDU frame. * @list: The output list of 802.3 frames. It must be allocated and * initialized by by the caller. * @addr: The device MAC address. * @iftype: The device interface type. * @extra_headroom: The hardware extra headroom for SKBs in the @list. */ void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, const u8 *addr, enum nl80211_iftype iftype, const unsigned int extra_headroom); /** * cfg80211_classify8021d - determine the 802.1p/1d tag for a data frame * @skb: the data frame */ unsigned int cfg80211_classify8021d(struct sk_buff *skb); /** * cfg80211_find_ie - find information element in data * * @eid: element ID * @ies: data consisting of IEs * @len: length of data * * This function will return %NULL if the element ID could * not be found or if the element is invalid (claims to be * longer than the given data), or a pointer to the first byte * of the requested element, that is the byte containing the * element ID. There are no checks on the element length * other than having to fit into the given data. */ const u8 *cfg80211_find_ie(u8 eid, const u8 *ies, int len); /** * DOC: Regulatory enforcement infrastructure * * TODO */ /** * regulatory_hint - driver hint to the wireless core a regulatory domain * @wiphy: the wireless device giving the hint (used only for reporting * conflicts) * @alpha2: the ISO/IEC 3166 alpha2 the driver claims its regulatory domain * should be in. If @rd is set this should be NULL. Note that if you * set this to NULL you should still set rd->alpha2 to some accepted * alpha2. * * Wireless drivers can use this function to hint to the wireless core * what it believes should be the current regulatory domain by * giving it an ISO/IEC 3166 alpha2 country code it knows its regulatory * domain should be in or by providing a completely build regulatory domain. * If the driver provides an ISO/IEC 3166 alpha2 userspace will be queried * for a regulatory domain structure for the respective country. * * The wiphy must have been registered to cfg80211 prior to this call. * For cfg80211 drivers this means you must first use wiphy_register(), * for mac80211 drivers you must first use ieee80211_register_hw(). * * Drivers should check the return value, its possible you can get * an -ENOMEM. */ extern int regulatory_hint(struct wiphy *wiphy, const char *alpha2); /** * wiphy_apply_custom_regulatory - apply a custom driver regulatory domain * @wiphy: the wireless device we want to process the regulatory domain on * @regd: the custom regulatory domain to use for this wiphy * * Drivers can sometimes have custom regulatory domains which do not apply * to a specific country. Drivers can use this to apply such custom regulatory * domains. This routine must be called prior to wiphy registration. The * custom regulatory domain will be trusted completely and as such previous * default channel settings will be disregarded. If no rule is found for a * channel on the regulatory domain the channel will be disabled. */ extern void wiphy_apply_custom_regulatory( struct wiphy *wiphy, const struct ieee80211_regdomain *regd); /** * freq_reg_info - get regulatory information for the given frequency * @wiphy: the wiphy for which we want to process this rule for * @center_freq: Frequency in KHz for which we want regulatory information for * @desired_bw_khz: the desired max bandwidth you want to use per * channel. Note that this is still 20 MHz if you want to use HT40 * as HT40 makes use of two channels for its 40 MHz width bandwidth. * If set to 0 we'll assume you want the standard 20 MHz. * @reg_rule: the regulatory rule which we have for this frequency * * Use this function to get the regulatory rule for a specific frequency on * a given wireless device. If the device has a specific regulatory domain * it wants to follow we respect that unless a country IE has been received * and processed already. * * Returns 0 if it was able to find a valid regulatory rule which does * apply to the given center_freq otherwise it returns non-zero. It will * also return -ERANGE if we determine the given center_freq does not even have * a regulatory rule for a frequency range in the center_freq's band. See * freq_in_rule_band() for our current definition of a band -- this is purely * subjective and right now its 802.11 specific. */ extern int freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 desired_bw_khz, const struct ieee80211_reg_rule **reg_rule); /* * Temporary wext handlers & helper functions * * In the future cfg80211 will simply assign the entire wext handler * structure to netdevs it manages, but we're not there yet. */ int cfg80211_wext_giwname(struct net_device *dev, struct iw_request_info *info, char *name, char *extra); int cfg80211_wext_siwmode(struct net_device *dev, struct iw_request_info *info, u32 *mode, char *extra); int cfg80211_wext_giwmode(struct net_device *dev, struct iw_request_info *info, u32 *mode, char *extra); int cfg80211_wext_siwscan(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra); int cfg80211_wext_giwscan(struct net_device *dev, struct iw_request_info *info, struct iw_point *data, char *extra); int cfg80211_wext_siwmlme(struct net_device *dev, struct iw_request_info *info, struct iw_point *data, char *extra); int cfg80211_wext_giwrange(struct net_device *dev, struct iw_request_info *info, struct iw_point *data, char *extra); int cfg80211_wext_siwgenie(struct net_device *dev, struct iw_request_info *info, struct iw_point *data, char *extra); int cfg80211_wext_siwauth(struct net_device *dev, struct iw_request_info *info, struct iw_param *data, char *extra); int cfg80211_wext_giwauth(struct net_device *dev, struct iw_request_info *info, struct iw_param *data, char *extra); int cfg80211_wext_siwfreq(struct net_device *dev, struct iw_request_info *info, struct iw_freq *freq, char *extra); int cfg80211_wext_giwfreq(struct net_device *dev, struct iw_request_info *info, struct iw_freq *freq, char *extra); int cfg80211_wext_siwessid(struct net_device *dev, struct iw_request_info *info, struct iw_point *data, char *ssid); int cfg80211_wext_giwessid(struct net_device *dev, struct iw_request_info *info, struct iw_point *data, char *ssid); int cfg80211_wext_siwrate(struct net_device *dev, struct iw_request_info *info, struct iw_param *rate, char *extra); int cfg80211_wext_giwrate(struct net_device *dev, struct iw_request_info *info, struct iw_param *rate, char *extra); int cfg80211_wext_siwrts(struct net_device *dev, struct iw_request_info *info, struct iw_param *rts, char *extra); int cfg80211_wext_giwrts(struct net_device *dev, struct iw_request_info *info, struct iw_param *rts, char *extra); int cfg80211_wext_siwfrag(struct net_device *dev, struct iw_request_info *info, struct iw_param *frag, char *extra); int cfg80211_wext_giwfrag(struct net_device *dev, struct iw_request_info *info, struct iw_param *frag, char *extra); int cfg80211_wext_siwretry(struct net_device *dev, struct iw_request_info *info, struct iw_param *retry, char *extra); int cfg80211_wext_giwretry(struct net_device *dev, struct iw_request_info *info, struct iw_param *retry, char *extra); int cfg80211_wext_siwencodeext(struct net_device *dev, struct iw_request_info *info, struct iw_point *erq, char *extra); int cfg80211_wext_siwencode(struct net_device *dev, struct iw_request_info *info, struct iw_point *erq, char *keybuf); int cfg80211_wext_giwencode(struct net_device *dev, struct iw_request_info *info, struct iw_point *erq, char *keybuf); int cfg80211_wext_siwtxpower(struct net_device *dev, struct iw_request_info *info, union iwreq_data *data, char *keybuf); int cfg80211_wext_giwtxpower(struct net_device *dev, struct iw_request_info *info, union iwreq_data *data, char *keybuf); struct iw_statistics *cfg80211_wireless_stats(struct net_device *dev); int cfg80211_wext_siwpower(struct net_device *dev, struct iw_request_info *info, struct iw_param *wrq, char *extra); int cfg80211_wext_giwpower(struct net_device *dev, struct iw_request_info *info, struct iw_param *wrq, char *extra); int cfg80211_wext_siwap(struct net_device *dev, struct iw_request_info *info, struct sockaddr *ap_addr, char *extra); int cfg80211_wext_giwap(struct net_device *dev, struct iw_request_info *info, struct sockaddr *ap_addr, char *extra); int cfg80211_wext_siwpmksa(struct net_device *dev, struct iw_request_info *info, struct iw_point *data, char *extra); /* * callbacks for asynchronous cfg80211 methods, notification * functions and BSS handling helpers */ /** * cfg80211_scan_done - notify that scan finished * * @request: the corresponding scan request * @aborted: set to true if the scan was aborted for any reason, * userspace will be notified of that */ void cfg80211_scan_done(struct cfg80211_scan_request *request, bool aborted); /** * cfg80211_sched_scan_results - notify that new scan results are available * * @wiphy: the wiphy which got scheduled scan results */ void cfg80211_sched_scan_results(struct wiphy *wiphy); /** * cfg80211_sched_scan_stopped - notify that the scheduled scan has stopped * * @wiphy: the wiphy on which the scheduled scan stopped * * The driver can call this function to inform cfg80211 that the * scheduled scan had to be stopped, for whatever reason. The driver * is then called back via the sched_scan_stop operation when done. */ void cfg80211_sched_scan_stopped(struct wiphy *wiphy); /** * cfg80211_inform_bss_frame - inform cfg80211 of a received BSS frame * * @wiphy: the wiphy reporting the BSS * @channel: The channel the frame was received on * @mgmt: the management frame (probe response or beacon) * @len: length of the management frame * @signal: the signal strength, type depends on the wiphy's signal_type * @gfp: context flags * * This informs cfg80211 that BSS information was found and * the BSS should be updated/added. */ struct cfg80211_bss* cfg80211_inform_bss_frame(struct wiphy *wiphy, struct ieee80211_channel *channel, struct ieee80211_mgmt *mgmt, size_t len, s32 signal, gfp_t gfp); /** * cfg80211_inform_bss - inform cfg80211 of a new BSS * * @wiphy: the wiphy reporting the BSS * @channel: The channel the frame was received on * @bssid: the BSSID of the BSS * @timestamp: the TSF timestamp sent by the peer * @capability: the capability field sent by the peer * @beacon_interval: the beacon interval announced by the peer * @ie: additional IEs sent by the peer * @ielen: length of the additional IEs * @signal: the signal strength, type depends on the wiphy's signal_type * @gfp: context flags * * This informs cfg80211 that BSS information was found and * the BSS should be updated/added. */ struct cfg80211_bss* cfg80211_inform_bss(struct wiphy *wiphy, struct ieee80211_channel *channel, const u8 *bssid, u64 timestamp, u16 capability, u16 beacon_interval, const u8 *ie, size_t ielen, s32 signal, gfp_t gfp); struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy, struct ieee80211_channel *channel, const u8 *bssid, const u8 *ssid, size_t ssid_len, u16 capa_mask, u16 capa_val); static inline struct cfg80211_bss * cfg80211_get_ibss(struct wiphy *wiphy, struct ieee80211_channel *channel, const u8 *ssid, size_t ssid_len) { return cfg80211_get_bss(wiphy, channel, NULL, ssid, ssid_len, WLAN_CAPABILITY_IBSS, WLAN_CAPABILITY_IBSS); } struct cfg80211_bss *cfg80211_get_mesh(struct wiphy *wiphy, struct ieee80211_channel *channel, const u8 *meshid, size_t meshidlen, const u8 *meshcfg); void cfg80211_put_bss(struct cfg80211_bss *bss); /** * cfg80211_unlink_bss - unlink BSS from internal data structures * @wiphy: the wiphy * @bss: the bss to remove * * This function removes the given BSS from the internal data structures * thereby making it no longer show up in scan results etc. Use this * function when you detect a BSS is gone. Normally BSSes will also time * out, so it is not necessary to use this function at all. */ void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *bss); /** * cfg80211_send_rx_auth - notification of processed authentication * @dev: network device * @buf: authentication frame (header + body) * @len: length of the frame data * * This function is called whenever an authentication has been processed in * station mode. The driver is required to call either this function or * cfg80211_send_auth_timeout() to indicate the result of cfg80211_ops::auth() * call. This function may sleep. */ void cfg80211_send_rx_auth(struct net_device *dev, const u8 *buf, size_t len); /** * cfg80211_send_auth_timeout - notification of timed out authentication * @dev: network device * @addr: The MAC address of the device with which the authentication timed out * * This function may sleep. */ void cfg80211_send_auth_timeout(struct net_device *dev, const u8 *addr); /** * __cfg80211_auth_canceled - notify cfg80211 that authentication was canceled * @dev: network device * @addr: The MAC address of the device with which the authentication timed out * * When a pending authentication had no action yet, the driver may decide * to not send a deauth frame, but in that case must calls this function * to tell cfg80211 about this decision. It is only valid to call this * function within the deauth() callback. */ void __cfg80211_auth_canceled(struct net_device *dev, const u8 *addr); /** * cfg80211_send_rx_assoc - notification of processed association * @dev: network device * @buf: (re)association response frame (header + body) * @len: length of the frame data * * This function is called whenever a (re)association response has been * processed in station mode. The driver is required to call either this * function or cfg80211_send_assoc_timeout() to indicate the result of * cfg80211_ops::assoc() call. This function may sleep. */ void cfg80211_send_rx_assoc(struct net_device *dev, const u8 *buf, size_t len); /** * cfg80211_send_assoc_timeout - notification of timed out association * @dev: network device * @addr: The MAC address of the device with which the association timed out * * This function may sleep. */ void cfg80211_send_assoc_timeout(struct net_device *dev, const u8 *addr); /** * cfg80211_send_deauth - notification of processed deauthentication * @dev: network device * @buf: deauthentication frame (header + body) * @len: length of the frame data * * This function is called whenever deauthentication has been processed in * station mode. This includes both received deauthentication frames and * locally generated ones. This function may sleep. */ void cfg80211_send_deauth(struct net_device *dev, const u8 *buf, size_t len); /** * __cfg80211_send_deauth - notification of processed deauthentication * @dev: network device * @buf: deauthentication frame (header + body) * @len: length of the frame data * * Like cfg80211_send_deauth(), but doesn't take the wdev lock. */ void __cfg80211_send_deauth(struct net_device *dev, const u8 *buf, size_t len); /** * cfg80211_send_disassoc - notification of processed disassociation * @dev: network device * @buf: disassociation response frame (header + body) * @len: length of the frame data * * This function is called whenever disassociation has been processed in * station mode. This includes both received disassociation frames and locally * generated ones. This function may sleep. */ void cfg80211_send_disassoc(struct net_device *dev, const u8 *buf, size_t len); /** * __cfg80211_send_disassoc - notification of processed disassociation * @dev: network device * @buf: disassociation response frame (header + body) * @len: length of the frame data * * Like cfg80211_send_disassoc(), but doesn't take the wdev lock. */ void __cfg80211_send_disassoc(struct net_device *dev, const u8 *buf, size_t len); /** * cfg80211_send_unprot_deauth - notification of unprotected deauthentication * @dev: network device * @buf: deauthentication frame (header + body) * @len: length of the frame data * * This function is called whenever a received Deauthentication frame has been * dropped in station mode because of MFP being used but the Deauthentication * frame was not protected. This function may sleep. */ void cfg80211_send_unprot_deauth(struct net_device *dev, const u8 *buf, size_t len); /** * cfg80211_send_unprot_disassoc - notification of unprotected disassociation * @dev: network device * @buf: disassociation frame (header + body) * @len: length of the frame data * * This function is called whenever a received Disassociation frame has been * dropped in station mode because of MFP being used but the Disassociation * frame was not protected. This function may sleep. */ void cfg80211_send_unprot_disassoc(struct net_device *dev, const u8 *buf, size_t len); /** * cfg80211_michael_mic_failure - notification of Michael MIC failure (TKIP) * @dev: network device * @addr: The source MAC address of the frame * @key_type: The key type that the received frame used * @key_id: Key identifier (0..3) * @tsc: The TSC value of the frame that generated the MIC failure (6 octets) * @gfp: allocation flags * * This function is called whenever the local MAC detects a MIC failure in a * received frame. This matches with MLME-MICHAELMICFAILURE.indication() * primitive. */ void cfg80211_michael_mic_failure(struct net_device *dev, const u8 *addr, enum nl80211_key_type key_type, int key_id, const u8 *tsc, gfp_t gfp); /** * cfg80211_ibss_joined - notify cfg80211 that device joined an IBSS * * @dev: network device * @bssid: the BSSID of the IBSS joined * @gfp: allocation flags * * This function notifies cfg80211 that the device joined an IBSS or * switched to a different BSSID. Before this function can be called, * either a beacon has to have been received from the IBSS, or one of * the cfg80211_inform_bss{,_frame} functions must have been called * with the locally generated beacon -- this guarantees that there is * always a scan result for this IBSS. cfg80211 will handle the rest. */ void cfg80211_ibss_joined(struct net_device *dev, const u8 *bssid, gfp_t gfp); /** * cfg80211_notify_new_candidate - notify cfg80211 of a new mesh peer candidate * * @dev: network device * @macaddr: the MAC address of the new candidate * @ie: information elements advertised by the peer candidate * @ie_len: lenght of the information elements buffer * @gfp: allocation flags * * This function notifies cfg80211 that the mesh peer candidate has been * detected, most likely via a beacon or, less likely, via a probe response. * cfg80211 then sends a notification to userspace. */ void cfg80211_notify_new_peer_candidate(struct net_device *dev, const u8 *macaddr, const u8 *ie, u8 ie_len, gfp_t gfp); /** * DOC: RFkill integration * * RFkill integration in cfg80211 is almost invisible to drivers, * as cfg80211 automatically registers an rfkill instance for each * wireless device it knows about. Soft kill is also translated * into disconnecting and turning all interfaces off, drivers are * expected to turn off the device when all interfaces are down. * * However, devices may have a hard RFkill line, in which case they * also need to interact with the rfkill subsystem, via cfg80211. * They can do this with a few helper functions documented here. */ /** * wiphy_rfkill_set_hw_state - notify cfg80211 about hw block state * @wiphy: the wiphy * @blocked: block status */ void wiphy_rfkill_set_hw_state(struct wiphy *wiphy, bool blocked); /** * wiphy_rfkill_start_polling - start polling rfkill * @wiphy: the wiphy */ void wiphy_rfkill_start_polling(struct wiphy *wiphy); /** * wiphy_rfkill_stop_polling - stop polling rfkill * @wiphy: the wiphy */ void wiphy_rfkill_stop_polling(struct wiphy *wiphy); #ifdef CONFIG_NL80211_TESTMODE /** * DOC: Test mode * * Test mode is a set of utility functions to allow drivers to * interact with driver-specific tools to aid, for instance, * factory programming. * * This chapter describes how drivers interact with it, for more * information see the nl80211 book's chapter on it. */ /** * cfg80211_testmode_alloc_reply_skb - allocate testmode reply * @wiphy: the wiphy * @approxlen: an upper bound of the length of the data that will * be put into the skb * * This function allocates and pre-fills an skb for a reply to * the testmode command. Since it is intended for a reply, calling * it outside of the @testmode_cmd operation is invalid. * * The returned skb (or %NULL if any errors happen) is pre-filled * with the wiphy index and set up in a way that any data that is * put into the skb (with skb_put(), nla_put() or similar) will end * up being within the %NL80211_ATTR_TESTDATA attribute, so all that * needs to be done with the skb is adding data for the corresponding * userspace tool which can then read that data out of the testdata * attribute. You must not modify the skb in any other way. * * When done, call cfg80211_testmode_reply() with the skb and return * its error code as the result of the @testmode_cmd operation. */ struct sk_buff *cfg80211_testmode_alloc_reply_skb(struct wiphy *wiphy, int approxlen); /** * cfg80211_testmode_reply - send the reply skb * @skb: The skb, must have been allocated with * cfg80211_testmode_alloc_reply_skb() * * Returns an error code or 0 on success, since calling this * function will usually be the last thing before returning * from the @testmode_cmd you should return the error code. * Note that this function consumes the skb regardless of the * return value. */ int cfg80211_testmode_reply(struct sk_buff *skb); /** * cfg80211_testmode_alloc_event_skb - allocate testmode event * @wiphy: the wiphy * @approxlen: an upper bound of the length of the data that will * be put into the skb * @gfp: allocation flags * * This function allocates and pre-fills an skb for an event on the * testmode multicast group. * * The returned skb (or %NULL if any errors happen) is set up in the * same way as with cfg80211_testmode_alloc_reply_skb() but prepared * for an event. As there, you should simply add data to it that will * then end up in the %NL80211_ATTR_TESTDATA attribute. Again, you must * not modify the skb in any other way. * * When done filling the skb, call cfg80211_testmode_event() with the * skb to send the event. */ struct sk_buff *cfg80211_testmode_alloc_event_skb(struct wiphy *wiphy, int approxlen, gfp_t gfp); /** * cfg80211_testmode_event - send the event * @skb: The skb, must have been allocated with * cfg80211_testmode_alloc_event_skb() * @gfp: allocation flags * * This function sends the given @skb, which must have been allocated * by cfg80211_testmode_alloc_event_skb(), as an event. It always * consumes it. */ void cfg80211_testmode_event(struct sk_buff *skb, gfp_t gfp); #define CFG80211_TESTMODE_CMD(cmd) .testmode_cmd = (cmd), #else #define CFG80211_TESTMODE_CMD(cmd) #endif /** * cfg80211_connect_result - notify cfg80211 of connection result * * @dev: network device * @bssid: the BSSID of the AP * @req_ie: association request IEs (maybe be %NULL) * @req_ie_len: association request IEs length * @resp_ie: association response IEs (may be %NULL) * @resp_ie_len: assoc response IEs length * @status: status code, 0 for successful connection, use * %WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you * the real status code for failures. * @gfp: allocation flags * * It should be called by the underlying driver whenever connect() has * succeeded. */ void cfg80211_connect_result(struct net_device *dev, const u8 *bssid, const u8 *req_ie, size_t req_ie_len, const u8 *resp_ie, size_t resp_ie_len, u16 status, gfp_t gfp); /** * cfg80211_roamed - notify cfg80211 of roaming * * @dev: network device * @bssid: the BSSID of the new AP * @req_ie: association request IEs (maybe be %NULL) * @req_ie_len: association request IEs length * @resp_ie: association response IEs (may be %NULL) * @resp_ie_len: assoc response IEs length * @gfp: allocation flags * * It should be called by the underlying driver whenever it roamed * from one AP to another while connected. */ void cfg80211_roamed(struct net_device *dev, const u8 *bssid, const u8 *req_ie, size_t req_ie_len, const u8 *resp_ie, size_t resp_ie_len, gfp_t gfp); /** * cfg80211_disconnected - notify cfg80211 that connection was dropped * * @dev: network device * @ie: information elements of the deauth/disassoc frame (may be %NULL) * @ie_len: length of IEs * @reason: reason code for the disconnection, set it to 0 if unknown * @gfp: allocation flags * * After it calls this function, the driver should enter an idle state * and not try to connect to any AP any more. */ void cfg80211_disconnected(struct net_device *dev, u16 reason, u8 *ie, size_t ie_len, gfp_t gfp); /** * cfg80211_ready_on_channel - notification of remain_on_channel start * @dev: network device * @cookie: the request cookie * @chan: The current channel (from remain_on_channel request) * @channel_type: Channel type * @duration: Duration in milliseconds that the driver intents to remain on the * channel * @gfp: allocation flags */ void cfg80211_ready_on_channel(struct net_device *dev, u64 cookie, struct ieee80211_channel *chan, enum nl80211_channel_type channel_type, unsigned int duration, gfp_t gfp); /** * cfg80211_remain_on_channel_expired - remain_on_channel duration expired * @dev: network device * @cookie: the request cookie * @chan: The current channel (from remain_on_channel request) * @channel_type: Channel type * @gfp: allocation flags */ void cfg80211_remain_on_channel_expired(struct net_device *dev, u64 cookie, struct ieee80211_channel *chan, enum nl80211_channel_type channel_type, gfp_t gfp); /** * cfg80211_new_sta - notify userspace about station * * @dev: the netdev * @mac_addr: the station's address * @sinfo: the station information * @gfp: allocation flags */ void cfg80211_new_sta(struct net_device *dev, const u8 *mac_addr, struct station_info *sinfo, gfp_t gfp); /** * cfg80211_del_sta - notify userspace about deletion of a station * * @dev: the netdev * @mac_addr: the station's address * @gfp: allocation flags */ void cfg80211_del_sta(struct net_device *dev, const u8 *mac_addr, gfp_t gfp); /** * cfg80211_rx_mgmt - notification of received, unprocessed management frame * @dev: network device * @freq: Frequency on which the frame was received in MHz * @buf: Management frame (header + body) * @len: length of the frame data * @gfp: context flags * * Returns %true if a user space application has registered for this frame. * For action frames, that makes it responsible for rejecting unrecognized * action frames; %false otherwise, in which case for action frames the * driver is responsible for rejecting the frame. * * This function is called whenever an Action frame is received for a station * mode interface, but is not processed in kernel. */ bool cfg80211_rx_mgmt(struct net_device *dev, int freq, const u8 *buf, size_t len, gfp_t gfp); /** * cfg80211_mgmt_tx_status - notification of TX status for management frame * @dev: network device * @cookie: Cookie returned by cfg80211_ops::mgmt_tx() * @buf: Management frame (header + body) * @len: length of the frame data * @ack: Whether frame was acknowledged * @gfp: context flags * * This function is called whenever a management frame was requested to be * transmitted with cfg80211_ops::mgmt_tx() to report the TX status of the * transmission attempt. */ void cfg80211_mgmt_tx_status(struct net_device *dev, u64 cookie, const u8 *buf, size_t len, bool ack, gfp_t gfp); /** * cfg80211_cqm_rssi_notify - connection quality monitoring rssi event * @dev: network device * @rssi_event: the triggered RSSI event * @gfp: context flags * * This function is called when a configured connection quality monitoring * rssi threshold reached event occurs. */ void cfg80211_cqm_rssi_notify(struct net_device *dev, enum nl80211_cqm_rssi_threshold_event rssi_event, gfp_t gfp); /** * cfg80211_cqm_pktloss_notify - notify userspace about packetloss to peer * @dev: network device * @peer: peer's MAC address * @num_packets: how many packets were lost -- should be a fixed threshold * but probably no less than maybe 50, or maybe a throughput dependent * threshold (to account for temporary interference) * @gfp: context flags */ void cfg80211_cqm_pktloss_notify(struct net_device *dev, const u8 *peer, u32 num_packets, gfp_t gfp); /* Logging, debugging and troubleshooting/diagnostic helpers. */ /* wiphy_printk helpers, similar to dev_printk */ #define wiphy_printk(level, wiphy, format, args...) \ dev_printk(level, &(wiphy)->dev, format, ##args) #define wiphy_emerg(wiphy, format, args...) \ dev_emerg(&(wiphy)->dev, format, ##args) #define wiphy_alert(wiphy, format, args...) \ dev_alert(&(wiphy)->dev, format, ##args) #define wiphy_crit(wiphy, format, args...) \ dev_crit(&(wiphy)->dev, format, ##args) #define wiphy_err(wiphy, format, args...) \ dev_err(&(wiphy)->dev, format, ##args) #define wiphy_warn(wiphy, format, args...) \ dev_warn(&(wiphy)->dev, format, ##args) #define wiphy_notice(wiphy, format, args...) \ dev_notice(&(wiphy)->dev, format, ##args) #define wiphy_info(wiphy, format, args...) \ dev_info(&(wiphy)->dev, format, ##args) #define wiphy_debug(wiphy, format, args...) \ wiphy_printk(KERN_DEBUG, wiphy, format, ##args) #define wiphy_dbg(wiphy, format, args...) \ dev_dbg(&(wiphy)->dev, format, ##args) #if defined(VERBOSE_DEBUG) #define wiphy_vdbg wiphy_dbg #else #define wiphy_vdbg(wiphy, format, args...) \ ({ \ if (0) \ wiphy_printk(KERN_DEBUG, wiphy, format, ##args); \ 0; \ }) #endif /* * wiphy_WARN() acts like wiphy_printk(), but with the key difference * of using a WARN/WARN_ON to get the message out, including the * file/line information and a backtrace. */ #define wiphy_WARN(wiphy, format, args...) \ WARN(1, "wiphy: %s\n" format, wiphy_name(wiphy), ##args); #endif /* __NET_CFG80211_H */