/* * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support * Copyright (c) 2008 Marvell Semiconductor * * Copyright (c) 2015 CMC Electronics, Inc. * Added support for VLAN Table Unit operations * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "mv88e6xxx.h" static void assert_smi_lock(struct dsa_switch *ds) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); if (unlikely(!mutex_is_locked(&ps->smi_mutex))) { dev_err(ds->master_dev, "SMI lock not held!\n"); dump_stack(); } } /* If the switch's ADDR[4:0] strap pins are strapped to zero, it will * use all 32 SMI bus addresses on its SMI bus, and all switch registers * will be directly accessible on some {device address,register address} * pair. If the ADDR[4:0] pins are not strapped to zero, the switch * will only respond to SMI transactions to that specific address, and * an indirect addressing mechanism needs to be used to access its * registers. */ static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr) { int ret; int i; for (i = 0; i < 16; i++) { ret = mdiobus_read_nested(bus, sw_addr, SMI_CMD); if (ret < 0) return ret; if ((ret & SMI_CMD_BUSY) == 0) return 0; } return -ETIMEDOUT; } static int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr, int reg) { int ret; if (sw_addr == 0) return mdiobus_read_nested(bus, addr, reg); /* Wait for the bus to become free. */ ret = mv88e6xxx_reg_wait_ready(bus, sw_addr); if (ret < 0) return ret; /* Transmit the read command. */ ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD, SMI_CMD_OP_22_READ | (addr << 5) | reg); if (ret < 0) return ret; /* Wait for the read command to complete. */ ret = mv88e6xxx_reg_wait_ready(bus, sw_addr); if (ret < 0) return ret; /* Read the data. */ ret = mdiobus_read_nested(bus, sw_addr, SMI_DATA); if (ret < 0) return ret; return ret & 0xffff; } static int _mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg) { struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev); int ret; assert_smi_lock(ds); if (bus == NULL) return -EINVAL; ret = __mv88e6xxx_reg_read(bus, ds->pd->sw_addr, addr, reg); if (ret < 0) return ret; dev_dbg(ds->master_dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n", addr, reg, ret); return ret; } int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int ret; mutex_lock(&ps->smi_mutex); ret = _mv88e6xxx_reg_read(ds, addr, reg); mutex_unlock(&ps->smi_mutex); return ret; } static int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr, int reg, u16 val) { int ret; if (sw_addr == 0) return mdiobus_write_nested(bus, addr, reg, val); /* Wait for the bus to become free. */ ret = mv88e6xxx_reg_wait_ready(bus, sw_addr); if (ret < 0) return ret; /* Transmit the data to write. */ ret = mdiobus_write_nested(bus, sw_addr, SMI_DATA, val); if (ret < 0) return ret; /* Transmit the write command. */ ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD, SMI_CMD_OP_22_WRITE | (addr << 5) | reg); if (ret < 0) return ret; /* Wait for the write command to complete. */ ret = mv88e6xxx_reg_wait_ready(bus, sw_addr); if (ret < 0) return ret; return 0; } static int _mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val) { struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev); assert_smi_lock(ds); if (bus == NULL) return -EINVAL; dev_dbg(ds->master_dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n", addr, reg, val); return __mv88e6xxx_reg_write(bus, ds->pd->sw_addr, addr, reg, val); } int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int ret; mutex_lock(&ps->smi_mutex); ret = _mv88e6xxx_reg_write(ds, addr, reg, val); mutex_unlock(&ps->smi_mutex); return ret; } int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr) { REG_WRITE(REG_GLOBAL, GLOBAL_MAC_01, (addr[0] << 8) | addr[1]); REG_WRITE(REG_GLOBAL, GLOBAL_MAC_23, (addr[2] << 8) | addr[3]); REG_WRITE(REG_GLOBAL, GLOBAL_MAC_45, (addr[4] << 8) | addr[5]); return 0; } int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr) { int i; int ret; for (i = 0; i < 6; i++) { int j; /* Write the MAC address byte. */ REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MAC, GLOBAL2_SWITCH_MAC_BUSY | (i << 8) | addr[i]); /* Wait for the write to complete. */ for (j = 0; j < 16; j++) { ret = REG_READ(REG_GLOBAL2, GLOBAL2_SWITCH_MAC); if ((ret & GLOBAL2_SWITCH_MAC_BUSY) == 0) break; } if (j == 16) return -ETIMEDOUT; } return 0; } static int _mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum) { if (addr >= 0) return _mv88e6xxx_reg_read(ds, addr, regnum); return 0xffff; } static int _mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum, u16 val) { if (addr >= 0) return _mv88e6xxx_reg_write(ds, addr, regnum, val); return 0; } #ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU static int mv88e6xxx_ppu_disable(struct dsa_switch *ds) { int ret; unsigned long timeout; ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL); REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL, ret & ~GLOBAL_CONTROL_PPU_ENABLE); timeout = jiffies + 1 * HZ; while (time_before(jiffies, timeout)) { ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS); usleep_range(1000, 2000); if ((ret & GLOBAL_STATUS_PPU_MASK) != GLOBAL_STATUS_PPU_POLLING) return 0; } return -ETIMEDOUT; } static int mv88e6xxx_ppu_enable(struct dsa_switch *ds) { int ret; unsigned long timeout; ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL); REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL, ret | GLOBAL_CONTROL_PPU_ENABLE); timeout = jiffies + 1 * HZ; while (time_before(jiffies, timeout)) { ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS); usleep_range(1000, 2000); if ((ret & GLOBAL_STATUS_PPU_MASK) == GLOBAL_STATUS_PPU_POLLING) return 0; } return -ETIMEDOUT; } static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly) { struct mv88e6xxx_priv_state *ps; ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work); if (mutex_trylock(&ps->ppu_mutex)) { struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1; if (mv88e6xxx_ppu_enable(ds) == 0) ps->ppu_disabled = 0; mutex_unlock(&ps->ppu_mutex); } } static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps) { struct mv88e6xxx_priv_state *ps = (void *)_ps; schedule_work(&ps->ppu_work); } static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int ret; mutex_lock(&ps->ppu_mutex); /* If the PHY polling unit is enabled, disable it so that * we can access the PHY registers. If it was already * disabled, cancel the timer that is going to re-enable * it. */ if (!ps->ppu_disabled) { ret = mv88e6xxx_ppu_disable(ds); if (ret < 0) { mutex_unlock(&ps->ppu_mutex); return ret; } ps->ppu_disabled = 1; } else { del_timer(&ps->ppu_timer); ret = 0; } return ret; } static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); /* Schedule a timer to re-enable the PHY polling unit. */ mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10)); mutex_unlock(&ps->ppu_mutex); } void mv88e6xxx_ppu_state_init(struct dsa_switch *ds) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); mutex_init(&ps->ppu_mutex); INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work); init_timer(&ps->ppu_timer); ps->ppu_timer.data = (unsigned long)ps; ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer; } int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum) { int ret; ret = mv88e6xxx_ppu_access_get(ds); if (ret >= 0) { ret = mv88e6xxx_reg_read(ds, addr, regnum); mv88e6xxx_ppu_access_put(ds); } return ret; } int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr, int regnum, u16 val) { int ret; ret = mv88e6xxx_ppu_access_get(ds); if (ret >= 0) { ret = mv88e6xxx_reg_write(ds, addr, regnum, val); mv88e6xxx_ppu_access_put(ds); } return ret; } #endif static bool mv88e6xxx_6065_family(struct dsa_switch *ds) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); switch (ps->id) { case PORT_SWITCH_ID_6031: case PORT_SWITCH_ID_6061: case PORT_SWITCH_ID_6035: case PORT_SWITCH_ID_6065: return true; } return false; } static bool mv88e6xxx_6095_family(struct dsa_switch *ds) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); switch (ps->id) { case PORT_SWITCH_ID_6092: case PORT_SWITCH_ID_6095: return true; } return false; } static bool mv88e6xxx_6097_family(struct dsa_switch *ds) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); switch (ps->id) { case PORT_SWITCH_ID_6046: case PORT_SWITCH_ID_6085: case PORT_SWITCH_ID_6096: case PORT_SWITCH_ID_6097: return true; } return false; } static bool mv88e6xxx_6165_family(struct dsa_switch *ds) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); switch (ps->id) { case PORT_SWITCH_ID_6123: case PORT_SWITCH_ID_6161: case PORT_SWITCH_ID_6165: return true; } return false; } static bool mv88e6xxx_6185_family(struct dsa_switch *ds) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); switch (ps->id) { case PORT_SWITCH_ID_6121: case PORT_SWITCH_ID_6122: case PORT_SWITCH_ID_6152: case PORT_SWITCH_ID_6155: case PORT_SWITCH_ID_6182: case PORT_SWITCH_ID_6185: case PORT_SWITCH_ID_6108: case PORT_SWITCH_ID_6131: return true; } return false; } static bool mv88e6xxx_6320_family(struct dsa_switch *ds) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); switch (ps->id) { case PORT_SWITCH_ID_6320: case PORT_SWITCH_ID_6321: return true; } return false; } static bool mv88e6xxx_6351_family(struct dsa_switch *ds) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); switch (ps->id) { case PORT_SWITCH_ID_6171: case PORT_SWITCH_ID_6175: case PORT_SWITCH_ID_6350: case PORT_SWITCH_ID_6351: return true; } return false; } static bool mv88e6xxx_6352_family(struct dsa_switch *ds) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); switch (ps->id) { case PORT_SWITCH_ID_6172: case PORT_SWITCH_ID_6176: case PORT_SWITCH_ID_6240: case PORT_SWITCH_ID_6352: return true; } return false; } /* We expect the switch to perform auto negotiation if there is a real * phy. However, in the case of a fixed link phy, we force the port * settings from the fixed link settings. */ void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port, struct phy_device *phydev) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); u32 reg; int ret; if (!phy_is_pseudo_fixed_link(phydev)) return; mutex_lock(&ps->smi_mutex); ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL); if (ret < 0) goto out; reg = ret & ~(PORT_PCS_CTRL_LINK_UP | PORT_PCS_CTRL_FORCE_LINK | PORT_PCS_CTRL_DUPLEX_FULL | PORT_PCS_CTRL_FORCE_DUPLEX | PORT_PCS_CTRL_UNFORCED); reg |= PORT_PCS_CTRL_FORCE_LINK; if (phydev->link) reg |= PORT_PCS_CTRL_LINK_UP; if (mv88e6xxx_6065_family(ds) && phydev->speed > SPEED_100) goto out; switch (phydev->speed) { case SPEED_1000: reg |= PORT_PCS_CTRL_1000; break; case SPEED_100: reg |= PORT_PCS_CTRL_100; break; case SPEED_10: reg |= PORT_PCS_CTRL_10; break; default: pr_info("Unknown speed"); goto out; } reg |= PORT_PCS_CTRL_FORCE_DUPLEX; if (phydev->duplex == DUPLEX_FULL) reg |= PORT_PCS_CTRL_DUPLEX_FULL; if ((mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds)) && (port >= ps->num_ports - 2)) { if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK; if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK; if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID) reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK | PORT_PCS_CTRL_RGMII_DELAY_TXCLK); } _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_PCS_CTRL, reg); out: mutex_unlock(&ps->smi_mutex); } static int _mv88e6xxx_stats_wait(struct dsa_switch *ds) { int ret; int i; for (i = 0; i < 10; i++) { ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_OP); if ((ret & GLOBAL_STATS_OP_BUSY) == 0) return 0; } return -ETIMEDOUT; } static int _mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port) { int ret; if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds)) port = (port + 1) << 5; /* Snapshot the hardware statistics counters for this port. */ ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP, GLOBAL_STATS_OP_CAPTURE_PORT | GLOBAL_STATS_OP_HIST_RX_TX | port); if (ret < 0) return ret; /* Wait for the snapshotting to complete. */ ret = _mv88e6xxx_stats_wait(ds); if (ret < 0) return ret; return 0; } static void _mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val) { u32 _val; int ret; *val = 0; ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP, GLOBAL_STATS_OP_READ_CAPTURED | GLOBAL_STATS_OP_HIST_RX_TX | stat); if (ret < 0) return; ret = _mv88e6xxx_stats_wait(ds); if (ret < 0) return; ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_32); if (ret < 0) return; _val = ret << 16; ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_01); if (ret < 0) return; *val = _val | ret; } static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = { { "in_good_octets", 8, 0x00, BANK0, }, { "in_bad_octets", 4, 0x02, BANK0, }, { "in_unicast", 4, 0x04, BANK0, }, { "in_broadcasts", 4, 0x06, BANK0, }, { "in_multicasts", 4, 0x07, BANK0, }, { "in_pause", 4, 0x16, BANK0, }, { "in_undersize", 4, 0x18, BANK0, }, { "in_fragments", 4, 0x19, BANK0, }, { "in_oversize", 4, 0x1a, BANK0, }, { "in_jabber", 4, 0x1b, BANK0, }, { "in_rx_error", 4, 0x1c, BANK0, }, { "in_fcs_error", 4, 0x1d, BANK0, }, { "out_octets", 8, 0x0e, BANK0, }, { "out_unicast", 4, 0x10, BANK0, }, { "out_broadcasts", 4, 0x13, BANK0, }, { "out_multicasts", 4, 0x12, BANK0, }, { "out_pause", 4, 0x15, BANK0, }, { "excessive", 4, 0x11, BANK0, }, { "collisions", 4, 0x1e, BANK0, }, { "deferred", 4, 0x05, BANK0, }, { "single", 4, 0x14, BANK0, }, { "multiple", 4, 0x17, BANK0, }, { "out_fcs_error", 4, 0x03, BANK0, }, { "late", 4, 0x1f, BANK0, }, { "hist_64bytes", 4, 0x08, BANK0, }, { "hist_65_127bytes", 4, 0x09, BANK0, }, { "hist_128_255bytes", 4, 0x0a, BANK0, }, { "hist_256_511bytes", 4, 0x0b, BANK0, }, { "hist_512_1023bytes", 4, 0x0c, BANK0, }, { "hist_1024_max_bytes", 4, 0x0d, BANK0, }, { "sw_in_discards", 4, 0x10, PORT, }, { "sw_in_filtered", 2, 0x12, PORT, }, { "sw_out_filtered", 2, 0x13, PORT, }, { "in_discards", 4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "in_filtered", 4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "in_accepted", 4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "in_bad_accepted", 4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "tcam_counter_0", 4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "tcam_counter_1", 4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "tcam_counter_2", 4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "tcam_counter_3", 4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "in_da_unknown", 4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "in_management", 4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "out_queue_0", 4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "out_queue_1", 4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "out_queue_2", 4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "out_queue_3", 4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "out_queue_4", 4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "out_queue_5", 4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "out_queue_6", 4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "out_queue_7", 4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "out_cut_through", 4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "out_octets_a", 4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "out_octets_b", 4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "out_management", 4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, }, }; static bool mv88e6xxx_has_stat(struct dsa_switch *ds, struct mv88e6xxx_hw_stat *stat) { switch (stat->type) { case BANK0: return true; case BANK1: return mv88e6xxx_6320_family(ds); case PORT: return mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds) || mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) || mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds); } return false; } static uint64_t _mv88e6xxx_get_ethtool_stat(struct dsa_switch *ds, struct mv88e6xxx_hw_stat *s, int port) { u32 low; u32 high = 0; int ret; u64 value; switch (s->type) { case PORT: ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), s->reg); if (ret < 0) return UINT64_MAX; low = ret; if (s->sizeof_stat == 4) { ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), s->reg + 1); if (ret < 0) return UINT64_MAX; high = ret; } break; case BANK0: case BANK1: _mv88e6xxx_stats_read(ds, s->reg, &low); if (s->sizeof_stat == 8) _mv88e6xxx_stats_read(ds, s->reg + 1, &high); } value = (((u64)high) << 16) | low; return value; } void mv88e6xxx_get_strings(struct dsa_switch *ds, int port, uint8_t *data) { struct mv88e6xxx_hw_stat *stat; int i, j; for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) { stat = &mv88e6xxx_hw_stats[i]; if (mv88e6xxx_has_stat(ds, stat)) { memcpy(data + j * ETH_GSTRING_LEN, stat->string, ETH_GSTRING_LEN); j++; } } } int mv88e6xxx_get_sset_count(struct dsa_switch *ds) { struct mv88e6xxx_hw_stat *stat; int i, j; for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) { stat = &mv88e6xxx_hw_stats[i]; if (mv88e6xxx_has_stat(ds, stat)) j++; } return j; } void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, int port, uint64_t *data) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); struct mv88e6xxx_hw_stat *stat; int ret; int i, j; mutex_lock(&ps->smi_mutex); ret = _mv88e6xxx_stats_snapshot(ds, port); if (ret < 0) { mutex_unlock(&ps->smi_mutex); return; } for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) { stat = &mv88e6xxx_hw_stats[i]; if (mv88e6xxx_has_stat(ds, stat)) { data[j] = _mv88e6xxx_get_ethtool_stat(ds, stat, port); j++; } } mutex_unlock(&ps->smi_mutex); } int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port) { return 32 * sizeof(u16); } void mv88e6xxx_get_regs(struct dsa_switch *ds, int port, struct ethtool_regs *regs, void *_p) { u16 *p = _p; int i; regs->version = 0; memset(p, 0xff, 32 * sizeof(u16)); for (i = 0; i < 32; i++) { int ret; ret = mv88e6xxx_reg_read(ds, REG_PORT(port), i); if (ret >= 0) p[i] = ret; } } static int _mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask) { unsigned long timeout = jiffies + HZ / 10; while (time_before(jiffies, timeout)) { int ret; ret = _mv88e6xxx_reg_read(ds, reg, offset); if (ret < 0) return ret; if (!(ret & mask)) return 0; usleep_range(1000, 2000); } return -ETIMEDOUT; } static int mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int ret; mutex_lock(&ps->smi_mutex); ret = _mv88e6xxx_wait(ds, reg, offset, mask); mutex_unlock(&ps->smi_mutex); return ret; } static int _mv88e6xxx_phy_wait(struct dsa_switch *ds) { return _mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_SMI_OP, GLOBAL2_SMI_OP_BUSY); } int mv88e6xxx_eeprom_load_wait(struct dsa_switch *ds) { return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP, GLOBAL2_EEPROM_OP_LOAD); } int mv88e6xxx_eeprom_busy_wait(struct dsa_switch *ds) { return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP, GLOBAL2_EEPROM_OP_BUSY); } static int _mv88e6xxx_atu_wait(struct dsa_switch *ds) { return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_ATU_OP, GLOBAL_ATU_OP_BUSY); } static int _mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int addr, int regnum) { int ret; ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP, GLOBAL2_SMI_OP_22_READ | (addr << 5) | regnum); if (ret < 0) return ret; ret = _mv88e6xxx_phy_wait(ds); if (ret < 0) return ret; return _mv88e6xxx_reg_read(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA); } static int _mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int addr, int regnum, u16 val) { int ret; ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA, val); if (ret < 0) return ret; ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP, GLOBAL2_SMI_OP_22_WRITE | (addr << 5) | regnum); return _mv88e6xxx_phy_wait(ds); } int mv88e6xxx_get_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int reg; mutex_lock(&ps->smi_mutex); reg = _mv88e6xxx_phy_read_indirect(ds, port, 16); if (reg < 0) goto out; e->eee_enabled = !!(reg & 0x0200); e->tx_lpi_enabled = !!(reg & 0x0100); reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_STATUS); if (reg < 0) goto out; e->eee_active = !!(reg & PORT_STATUS_EEE); reg = 0; out: mutex_unlock(&ps->smi_mutex); return reg; } int mv88e6xxx_set_eee(struct dsa_switch *ds, int port, struct phy_device *phydev, struct ethtool_eee *e) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int reg; int ret; mutex_lock(&ps->smi_mutex); ret = _mv88e6xxx_phy_read_indirect(ds, port, 16); if (ret < 0) goto out; reg = ret & ~0x0300; if (e->eee_enabled) reg |= 0x0200; if (e->tx_lpi_enabled) reg |= 0x0100; ret = _mv88e6xxx_phy_write_indirect(ds, port, 16, reg); out: mutex_unlock(&ps->smi_mutex); return ret; } static int _mv88e6xxx_atu_cmd(struct dsa_switch *ds, u16 cmd) { int ret; ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_OP, cmd); if (ret < 0) return ret; return _mv88e6xxx_atu_wait(ds); } static int _mv88e6xxx_atu_data_write(struct dsa_switch *ds, struct mv88e6xxx_atu_entry *entry) { u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK; if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) { unsigned int mask, shift; if (entry->trunk) { data |= GLOBAL_ATU_DATA_TRUNK; mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK; shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT; } else { mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK; shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT; } data |= (entry->portv_trunkid << shift) & mask; } return _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_DATA, data); } static int _mv88e6xxx_atu_flush_move(struct dsa_switch *ds, struct mv88e6xxx_atu_entry *entry, bool static_too) { int op; int err; err = _mv88e6xxx_atu_wait(ds); if (err) return err; err = _mv88e6xxx_atu_data_write(ds, entry); if (err) return err; if (entry->fid) { err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID, entry->fid); if (err) return err; op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB : GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB; } else { op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL : GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC; } return _mv88e6xxx_atu_cmd(ds, op); } static int _mv88e6xxx_atu_flush(struct dsa_switch *ds, u16 fid, bool static_too) { struct mv88e6xxx_atu_entry entry = { .fid = fid, .state = 0, /* EntryState bits must be 0 */ }; return _mv88e6xxx_atu_flush_move(ds, &entry, static_too); } static int _mv88e6xxx_atu_move(struct dsa_switch *ds, u16 fid, int from_port, int to_port, bool static_too) { struct mv88e6xxx_atu_entry entry = { .trunk = false, .fid = fid, }; /* EntryState bits must be 0xF */ entry.state = GLOBAL_ATU_DATA_STATE_MASK; /* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */ entry.portv_trunkid = (to_port & 0x0f) << 4; entry.portv_trunkid |= from_port & 0x0f; return _mv88e6xxx_atu_flush_move(ds, &entry, static_too); } static int _mv88e6xxx_atu_remove(struct dsa_switch *ds, u16 fid, int port, bool static_too) { /* Destination port 0xF means remove the entries */ return _mv88e6xxx_atu_move(ds, fid, port, 0x0f, static_too); } static int mv88e6xxx_set_port_state(struct dsa_switch *ds, int port, u8 state) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int reg, ret = 0; u8 oldstate; mutex_lock(&ps->smi_mutex); reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL); if (reg < 0) { ret = reg; goto abort; } oldstate = reg & PORT_CONTROL_STATE_MASK; if (oldstate != state) { /* Flush forwarding database if we're moving a port * from Learning or Forwarding state to Disabled or * Blocking or Listening state. */ if (oldstate >= PORT_CONTROL_STATE_LEARNING && state <= PORT_CONTROL_STATE_BLOCKING) { ret = _mv88e6xxx_atu_remove(ds, 0, port, false); if (ret) goto abort; } reg = (reg & ~PORT_CONTROL_STATE_MASK) | state; ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL, reg); } abort: mutex_unlock(&ps->smi_mutex); return ret; } static int _mv88e6xxx_port_vlan_map_set(struct dsa_switch *ds, int port, u16 output_ports) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); const u16 mask = (1 << ps->num_ports) - 1; int reg; reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_BASE_VLAN); if (reg < 0) return reg; reg &= ~mask; reg |= output_ports & mask; return _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_BASE_VLAN, reg); } int mv88e6xxx_port_stp_update(struct dsa_switch *ds, int port, u8 state) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int stp_state; switch (state) { case BR_STATE_DISABLED: stp_state = PORT_CONTROL_STATE_DISABLED; break; case BR_STATE_BLOCKING: case BR_STATE_LISTENING: stp_state = PORT_CONTROL_STATE_BLOCKING; break; case BR_STATE_LEARNING: stp_state = PORT_CONTROL_STATE_LEARNING; break; case BR_STATE_FORWARDING: default: stp_state = PORT_CONTROL_STATE_FORWARDING; break; } netdev_dbg(ds->ports[port], "port state %d [%d]\n", state, stp_state); /* mv88e6xxx_port_stp_update may be called with softirqs disabled, * so we can not update the port state directly but need to schedule it. */ ps->ports[port].state = stp_state; set_bit(port, &ps->port_state_update_mask); schedule_work(&ps->bridge_work); return 0; } static int _mv88e6xxx_port_pvid_get(struct dsa_switch *ds, int port, u16 *pvid) { int ret; ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_DEFAULT_VLAN); if (ret < 0) return ret; *pvid = ret & PORT_DEFAULT_VLAN_MASK; return 0; } static int _mv88e6xxx_port_pvid_set(struct dsa_switch *ds, int port, u16 pvid) { return _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN, pvid & PORT_DEFAULT_VLAN_MASK); } static int _mv88e6xxx_vtu_wait(struct dsa_switch *ds) { return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_VTU_OP, GLOBAL_VTU_OP_BUSY); } static int _mv88e6xxx_vtu_cmd(struct dsa_switch *ds, u16 op) { int ret; ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_OP, op); if (ret < 0) return ret; return _mv88e6xxx_vtu_wait(ds); } static int _mv88e6xxx_vtu_stu_flush(struct dsa_switch *ds) { int ret; ret = _mv88e6xxx_vtu_wait(ds); if (ret < 0) return ret; return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_FLUSH_ALL); } static int _mv88e6xxx_vtu_stu_data_read(struct dsa_switch *ds, struct mv88e6xxx_vtu_stu_entry *entry, unsigned int nibble_offset) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); u16 regs[3]; int i; int ret; for (i = 0; i < 3; ++i) { ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_DATA_0_3 + i); if (ret < 0) return ret; regs[i] = ret; } for (i = 0; i < ps->num_ports; ++i) { unsigned int shift = (i % 4) * 4 + nibble_offset; u16 reg = regs[i / 4]; entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK; } return 0; } static int _mv88e6xxx_vtu_stu_data_write(struct dsa_switch *ds, struct mv88e6xxx_vtu_stu_entry *entry, unsigned int nibble_offset) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); u16 regs[3] = { 0 }; int i; int ret; for (i = 0; i < ps->num_ports; ++i) { unsigned int shift = (i % 4) * 4 + nibble_offset; u8 data = entry->data[i]; regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift; } for (i = 0; i < 3; ++i) { ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_DATA_0_3 + i, regs[i]); if (ret < 0) return ret; } return 0; } static int _mv88e6xxx_vtu_vid_write(struct dsa_switch *ds, u16 vid) { return _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, vid & GLOBAL_VTU_VID_MASK); } static int _mv88e6xxx_vtu_getnext(struct dsa_switch *ds, struct mv88e6xxx_vtu_stu_entry *entry) { struct mv88e6xxx_vtu_stu_entry next = { 0 }; int ret; ret = _mv88e6xxx_vtu_wait(ds); if (ret < 0) return ret; ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_VTU_GET_NEXT); if (ret < 0) return ret; ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID); if (ret < 0) return ret; next.vid = ret & GLOBAL_VTU_VID_MASK; next.valid = !!(ret & GLOBAL_VTU_VID_VALID); if (next.valid) { ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 0); if (ret < 0) return ret; if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) || mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) { ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_FID); if (ret < 0) return ret; next.fid = ret & GLOBAL_VTU_FID_MASK; ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_SID); if (ret < 0) return ret; next.sid = ret & GLOBAL_VTU_SID_MASK; } } *entry = next; return 0; } int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port, struct switchdev_obj_port_vlan *vlan, int (*cb)(struct switchdev_obj *obj)) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); struct mv88e6xxx_vtu_stu_entry next; u16 pvid; int err; mutex_lock(&ps->smi_mutex); err = _mv88e6xxx_port_pvid_get(ds, port, &pvid); if (err) goto unlock; err = _mv88e6xxx_vtu_vid_write(ds, GLOBAL_VTU_VID_MASK); if (err) goto unlock; do { err = _mv88e6xxx_vtu_getnext(ds, &next); if (err) break; if (!next.valid) break; if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) continue; /* reinit and dump this VLAN obj */ vlan->vid_begin = vlan->vid_end = next.vid; vlan->flags = 0; if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED) vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED; if (next.vid == pvid) vlan->flags |= BRIDGE_VLAN_INFO_PVID; err = cb(&vlan->obj); if (err) break; } while (next.vid < GLOBAL_VTU_VID_MASK); unlock: mutex_unlock(&ps->smi_mutex); return err; } static int _mv88e6xxx_vtu_loadpurge(struct dsa_switch *ds, struct mv88e6xxx_vtu_stu_entry *entry) { u16 reg = 0; int ret; ret = _mv88e6xxx_vtu_wait(ds); if (ret < 0) return ret; if (!entry->valid) goto loadpurge; /* Write port member tags */ ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 0); if (ret < 0) return ret; if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) || mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) { reg = entry->sid & GLOBAL_VTU_SID_MASK; ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg); if (ret < 0) return ret; reg = entry->fid & GLOBAL_VTU_FID_MASK; ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_FID, reg); if (ret < 0) return ret; } reg = GLOBAL_VTU_VID_VALID; loadpurge: reg |= entry->vid & GLOBAL_VTU_VID_MASK; ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg); if (ret < 0) return ret; return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_VTU_LOAD_PURGE); } static int _mv88e6xxx_stu_getnext(struct dsa_switch *ds, u8 sid, struct mv88e6xxx_vtu_stu_entry *entry) { struct mv88e6xxx_vtu_stu_entry next = { 0 }; int ret; ret = _mv88e6xxx_vtu_wait(ds); if (ret < 0) return ret; ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, sid & GLOBAL_VTU_SID_MASK); if (ret < 0) return ret; ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_GET_NEXT); if (ret < 0) return ret; ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_SID); if (ret < 0) return ret; next.sid = ret & GLOBAL_VTU_SID_MASK; ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID); if (ret < 0) return ret; next.valid = !!(ret & GLOBAL_VTU_VID_VALID); if (next.valid) { ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 2); if (ret < 0) return ret; } *entry = next; return 0; } static int _mv88e6xxx_stu_loadpurge(struct dsa_switch *ds, struct mv88e6xxx_vtu_stu_entry *entry) { u16 reg = 0; int ret; ret = _mv88e6xxx_vtu_wait(ds); if (ret < 0) return ret; if (!entry->valid) goto loadpurge; /* Write port states */ ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 2); if (ret < 0) return ret; reg = GLOBAL_VTU_VID_VALID; loadpurge: ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg); if (ret < 0) return ret; reg = entry->sid & GLOBAL_VTU_SID_MASK; ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg); if (ret < 0) return ret; return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_LOAD_PURGE); } static int _mv88e6xxx_vtu_new(struct dsa_switch *ds, u16 vid, struct mv88e6xxx_vtu_stu_entry *entry) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); struct mv88e6xxx_vtu_stu_entry vlan = { .valid = true, .vid = vid, .fid = vid, /* We use one FID per VLAN */ }; int i; /* exclude all ports except the CPU and DSA ports */ for (i = 0; i < ps->num_ports; ++i) vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i) ? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED : GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER; if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) || mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) { struct mv88e6xxx_vtu_stu_entry vstp; int err; /* Adding a VTU entry requires a valid STU entry. As VSTP is not * implemented, only one STU entry is needed to cover all VTU * entries. Thus, validate the SID 0. */ vlan.sid = 0; err = _mv88e6xxx_stu_getnext(ds, GLOBAL_VTU_SID_MASK, &vstp); if (err) return err; if (vstp.sid != vlan.sid || !vstp.valid) { memset(&vstp, 0, sizeof(vstp)); vstp.valid = true; vstp.sid = vlan.sid; err = _mv88e6xxx_stu_loadpurge(ds, &vstp); if (err) return err; } /* Clear all MAC addresses from the new database */ err = _mv88e6xxx_atu_flush(ds, vlan.fid, true); if (err) return err; } *entry = vlan; return 0; } static int _mv88e6xxx_vtu_get(struct dsa_switch *ds, u16 vid, struct mv88e6xxx_vtu_stu_entry *entry, bool creat) { int err; if (!vid) return -EINVAL; err = _mv88e6xxx_vtu_vid_write(ds, vid - 1); if (err) return err; err = _mv88e6xxx_vtu_getnext(ds, entry); if (err) return err; if (entry->vid != vid || !entry->valid) { if (!creat) return -EOPNOTSUPP; /* -ENOENT would've been more appropriate, but switchdev expects * -EOPNOTSUPP to inform bridge about an eventual software VLAN. */ err = _mv88e6xxx_vtu_new(ds, vid, entry); } return err; } static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port, u16 vid_begin, u16 vid_end) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); struct mv88e6xxx_vtu_stu_entry vlan; int i, err; if (!vid_begin) return -EOPNOTSUPP; mutex_lock(&ps->smi_mutex); err = _mv88e6xxx_vtu_vid_write(ds, vid_begin - 1); if (err) goto unlock; do { err = _mv88e6xxx_vtu_getnext(ds, &vlan); if (err) goto unlock; if (!vlan.valid) break; if (vlan.vid > vid_end) break; for (i = 0; i < ps->num_ports; ++i) { if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i)) continue; if (vlan.data[i] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) continue; if (ps->ports[i].bridge_dev == ps->ports[port].bridge_dev) break; /* same bridge, check next VLAN */ netdev_warn(ds->ports[port], "hardware VLAN %d already used by %s\n", vlan.vid, netdev_name(ps->ports[i].bridge_dev)); err = -EOPNOTSUPP; goto unlock; } } while (vlan.vid < vid_end); unlock: mutex_unlock(&ps->smi_mutex); return err; } int mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan, struct switchdev_trans *trans) { int err; /* We reserve a few VLANs to isolate unbridged ports */ if (vlan->vid_end >= 4000) return -EOPNOTSUPP; /* If the requested port doesn't belong to the same bridge as the VLAN * members, do not support it (yet) and fallback to software VLAN. */ err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin, vlan->vid_end); if (err) return err; /* We don't need any dynamic resource from the kernel (yet), * so skip the prepare phase. */ return 0; } static int _mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port, u16 vid, bool untagged) { struct mv88e6xxx_vtu_stu_entry vlan; int err; err = _mv88e6xxx_vtu_get(ds, vid, &vlan, true); if (err) return err; vlan.data[port] = untagged ? GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED : GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED; return _mv88e6xxx_vtu_loadpurge(ds, &vlan); } int mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan, struct switchdev_trans *trans) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID; u16 vid; int err = 0; mutex_lock(&ps->smi_mutex); for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) { err = _mv88e6xxx_port_vlan_add(ds, port, vid, untagged); if (err) goto unlock; } /* no PVID with ranges, otherwise it's a bug */ if (pvid) err = _mv88e6xxx_port_pvid_set(ds, port, vlan->vid_end); unlock: mutex_unlock(&ps->smi_mutex); return err; } static int _mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port, u16 vid) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); struct mv88e6xxx_vtu_stu_entry vlan; int i, err; err = _mv88e6xxx_vtu_get(ds, vid, &vlan, false); if (err) return err; /* Tell switchdev if this VLAN is handled in software */ if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) return -EOPNOTSUPP; vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER; /* keep the VLAN unless all ports are excluded */ vlan.valid = false; for (i = 0; i < ps->num_ports; ++i) { if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)) continue; if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) { vlan.valid = true; break; } } err = _mv88e6xxx_vtu_loadpurge(ds, &vlan); if (err) return err; return _mv88e6xxx_atu_remove(ds, vlan.fid, port, false); } int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); const u16 defpvid = 4000 + ds->index * DSA_MAX_PORTS + port; u16 pvid, vid; int err = 0; mutex_lock(&ps->smi_mutex); err = _mv88e6xxx_port_pvid_get(ds, port, &pvid); if (err) goto unlock; for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) { err = _mv88e6xxx_port_vlan_del(ds, port, vid); if (err) goto unlock; if (vid == pvid) { /* restore reserved VLAN ID */ err = _mv88e6xxx_port_pvid_set(ds, port, defpvid); if (err) goto unlock; } } unlock: mutex_unlock(&ps->smi_mutex); return err; } static int _mv88e6xxx_atu_mac_write(struct dsa_switch *ds, const unsigned char *addr) { int i, ret; for (i = 0; i < 3; i++) { ret = _mv88e6xxx_reg_write( ds, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i, (addr[i * 2] << 8) | addr[i * 2 + 1]); if (ret < 0) return ret; } return 0; } static int _mv88e6xxx_atu_mac_read(struct dsa_switch *ds, unsigned char *addr) { int i, ret; for (i = 0; i < 3; i++) { ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i); if (ret < 0) return ret; addr[i * 2] = ret >> 8; addr[i * 2 + 1] = ret & 0xff; } return 0; } static int _mv88e6xxx_atu_load(struct dsa_switch *ds, struct mv88e6xxx_atu_entry *entry) { int ret; ret = _mv88e6xxx_atu_wait(ds); if (ret < 0) return ret; ret = _mv88e6xxx_atu_mac_write(ds, entry->mac); if (ret < 0) return ret; ret = _mv88e6xxx_atu_data_write(ds, entry); if (ret < 0) return ret; ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID, entry->fid); if (ret < 0) return ret; return _mv88e6xxx_atu_cmd(ds, GLOBAL_ATU_OP_LOAD_DB); } static int _mv88e6xxx_port_fdb_load(struct dsa_switch *ds, int port, const unsigned char *addr, u16 vid, u8 state) { struct mv88e6xxx_atu_entry entry = { 0 }; entry.fid = vid; /* We use one FID per VLAN */ entry.state = state; ether_addr_copy(entry.mac, addr); if (state != GLOBAL_ATU_DATA_STATE_UNUSED) { entry.trunk = false; entry.portv_trunkid = BIT(port); } return _mv88e6xxx_atu_load(ds, &entry); } int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port, const struct switchdev_obj_port_fdb *fdb, struct switchdev_trans *trans) { /* We don't use per-port FDB */ if (fdb->vid == 0) return -EOPNOTSUPP; /* We don't need any dynamic resource from the kernel (yet), * so skip the prepare phase. */ return 0; } int mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port, const struct switchdev_obj_port_fdb *fdb, struct switchdev_trans *trans) { int state = is_multicast_ether_addr(fdb->addr) ? GLOBAL_ATU_DATA_STATE_MC_STATIC : GLOBAL_ATU_DATA_STATE_UC_STATIC; struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int ret; mutex_lock(&ps->smi_mutex); ret = _mv88e6xxx_port_fdb_load(ds, port, fdb->addr, fdb->vid, state); mutex_unlock(&ps->smi_mutex); return ret; } int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port, const struct switchdev_obj_port_fdb *fdb) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int ret; mutex_lock(&ps->smi_mutex); ret = _mv88e6xxx_port_fdb_load(ds, port, fdb->addr, fdb->vid, GLOBAL_ATU_DATA_STATE_UNUSED); mutex_unlock(&ps->smi_mutex); return ret; } static int _mv88e6xxx_atu_getnext(struct dsa_switch *ds, u16 fid, struct mv88e6xxx_atu_entry *entry) { struct mv88e6xxx_atu_entry next = { 0 }; int ret; next.fid = fid; ret = _mv88e6xxx_atu_wait(ds); if (ret < 0) return ret; ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID, fid); if (ret < 0) return ret; ret = _mv88e6xxx_atu_cmd(ds, GLOBAL_ATU_OP_GET_NEXT_DB); if (ret < 0) return ret; ret = _mv88e6xxx_atu_mac_read(ds, next.mac); if (ret < 0) return ret; ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_DATA); if (ret < 0) return ret; next.state = ret & GLOBAL_ATU_DATA_STATE_MASK; if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) { unsigned int mask, shift; if (ret & GLOBAL_ATU_DATA_TRUNK) { next.trunk = true; mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK; shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT; } else { next.trunk = false; mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK; shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT; } next.portv_trunkid = (ret & mask) >> shift; } *entry = next; return 0; } static int _mv88e6xxx_port_fdb_dump_one(struct dsa_switch *ds, u16 fid, u16 vid, int port, struct switchdev_obj_port_fdb *fdb, int (*cb)(struct switchdev_obj *obj)) { struct mv88e6xxx_atu_entry addr = { .mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, }; int err; err = _mv88e6xxx_atu_mac_write(ds, addr.mac); if (err) return err; do { err = _mv88e6xxx_atu_getnext(ds, fid, &addr); if (err) break; if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED) break; if (!addr.trunk && addr.portv_trunkid & BIT(port)) { bool is_static = addr.state == (is_multicast_ether_addr(addr.mac) ? GLOBAL_ATU_DATA_STATE_MC_STATIC : GLOBAL_ATU_DATA_STATE_UC_STATIC); fdb->vid = vid; ether_addr_copy(fdb->addr, addr.mac); fdb->ndm_state = is_static ? NUD_NOARP : NUD_REACHABLE; err = cb(&fdb->obj); if (err) break; } } while (!is_broadcast_ether_addr(addr.mac)); return err; } int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port, struct switchdev_obj_port_fdb *fdb, int (*cb)(struct switchdev_obj *obj)) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); struct mv88e6xxx_vtu_stu_entry vlan = { .vid = GLOBAL_VTU_VID_MASK, /* all ones */ }; int err; mutex_lock(&ps->smi_mutex); /* Dump VLANs' Filtering Information Databases */ err = _mv88e6xxx_vtu_vid_write(ds, vlan.vid); if (err) goto unlock; do { err = _mv88e6xxx_vtu_getnext(ds, &vlan); if (err) break; if (!vlan.valid) break; err = _mv88e6xxx_port_fdb_dump_one(ds, vlan.fid, vlan.vid, port, fdb, cb); if (err) break; } while (vlan.vid < GLOBAL_VTU_VID_MASK); unlock: mutex_unlock(&ps->smi_mutex); return err; } int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port, struct net_device *bridge) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); ps->ports[port].bridge_dev = bridge; return 0; } int mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); ps->ports[port].bridge_dev = NULL; return 0; } static int mv88e6xxx_setup_port_default_vlan(struct dsa_switch *ds, int port) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); const u16 pvid = 4000 + ds->index * DSA_MAX_PORTS + port; int err; mutex_lock(&ps->smi_mutex); err = _mv88e6xxx_port_vlan_add(ds, port, pvid, true); if (!err) err = _mv88e6xxx_port_pvid_set(ds, port, pvid); mutex_unlock(&ps->smi_mutex); return err; } static void mv88e6xxx_bridge_work(struct work_struct *work) { struct mv88e6xxx_priv_state *ps; struct dsa_switch *ds; int port; ps = container_of(work, struct mv88e6xxx_priv_state, bridge_work); ds = ((struct dsa_switch *)ps) - 1; while (ps->port_state_update_mask) { port = __ffs(ps->port_state_update_mask); clear_bit(port, &ps->port_state_update_mask); mv88e6xxx_set_port_state(ds, port, ps->ports[port].state); } } static int mv88e6xxx_setup_port(struct dsa_switch *ds, int port) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int ret; u16 reg; mutex_lock(&ps->smi_mutex); if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) || mv88e6xxx_6320_family(ds)) { /* MAC Forcing register: don't force link, speed, * duplex or flow control state to any particular * values on physical ports, but force the CPU port * and all DSA ports to their maximum bandwidth and * full duplex. */ reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL); if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) { reg &= ~PORT_PCS_CTRL_UNFORCED; reg |= PORT_PCS_CTRL_FORCE_LINK | PORT_PCS_CTRL_LINK_UP | PORT_PCS_CTRL_DUPLEX_FULL | PORT_PCS_CTRL_FORCE_DUPLEX; if (mv88e6xxx_6065_family(ds)) reg |= PORT_PCS_CTRL_100; else reg |= PORT_PCS_CTRL_1000; } else { reg |= PORT_PCS_CTRL_UNFORCED; } ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_PCS_CTRL, reg); if (ret) goto abort; } /* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock, * disable Header mode, enable IGMP/MLD snooping, disable VLAN * tunneling, determine priority by looking at 802.1p and IP * priority fields (IP prio has precedence), and set STP state * to Forwarding. * * If this is the CPU link, use DSA or EDSA tagging depending * on which tagging mode was configured. * * If this is a link to another switch, use DSA tagging mode. * * If this is the upstream port for this switch, enable * forwarding of unknown unicasts and multicasts. */ reg = 0; if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) || mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds)) reg = PORT_CONTROL_IGMP_MLD_SNOOP | PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP | PORT_CONTROL_STATE_FORWARDING; if (dsa_is_cpu_port(ds, port)) { if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds)) reg |= PORT_CONTROL_DSA_TAG; if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || mv88e6xxx_6320_family(ds)) { if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA) reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA; else reg |= PORT_CONTROL_FRAME_MODE_DSA; reg |= PORT_CONTROL_FORWARD_UNKNOWN | PORT_CONTROL_FORWARD_UNKNOWN_MC; } if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) || mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds)) { if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA) reg |= PORT_CONTROL_EGRESS_ADD_TAG; } } if (dsa_is_dsa_port(ds, port)) { if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds)) reg |= PORT_CONTROL_DSA_TAG; if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || mv88e6xxx_6320_family(ds)) { reg |= PORT_CONTROL_FRAME_MODE_DSA; } if (port == dsa_upstream_port(ds)) reg |= PORT_CONTROL_FORWARD_UNKNOWN | PORT_CONTROL_FORWARD_UNKNOWN_MC; } if (reg) { ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL, reg); if (ret) goto abort; } /* Port Control 2: don't force a good FCS, set the maximum frame size to * 10240 bytes, enable secure 802.1q tags, don't discard tagged or * untagged frames on this port, do a destination address lookup on all * received packets as usual, disable ARP mirroring and don't send a * copy of all transmitted/received frames on this port to the CPU. */ reg = 0; if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || mv88e6xxx_6095_family(ds) || mv88e6xxx_6320_family(ds)) reg = PORT_CONTROL_2_MAP_DA; if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || mv88e6xxx_6165_family(ds) || mv88e6xxx_6320_family(ds)) reg |= PORT_CONTROL_2_JUMBO_10240; if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds)) { /* Set the upstream port this port should use */ reg |= dsa_upstream_port(ds); /* enable forwarding of unknown multicast addresses to * the upstream port */ if (port == dsa_upstream_port(ds)) reg |= PORT_CONTROL_2_FORWARD_UNKNOWN; } reg |= PORT_CONTROL_2_8021Q_SECURE; if (reg) { ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_2, reg); if (ret) goto abort; } /* Port Association Vector: when learning source addresses * of packets, add the address to the address database using * a port bitmap that has only the bit for this port set and * the other bits clear. */ reg = 1 << port; /* Disable learning for DSA and CPU ports */ if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) reg = PORT_ASSOC_VECTOR_LOCKED_PORT; ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_ASSOC_VECTOR, reg); if (ret) goto abort; /* Egress rate control 2: disable egress rate control. */ ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_RATE_CONTROL_2, 0x0000); if (ret) goto abort; if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || mv88e6xxx_6320_family(ds)) { /* Do not limit the period of time that this port can * be paused for by the remote end or the period of * time that this port can pause the remote end. */ ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_PAUSE_CTRL, 0x0000); if (ret) goto abort; /* Port ATU control: disable limiting the number of * address database entries that this port is allowed * to use. */ ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_ATU_CONTROL, 0x0000); /* Priority Override: disable DA, SA and VTU priority * override. */ ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_PRI_OVERRIDE, 0x0000); if (ret) goto abort; /* Port Ethertype: use the Ethertype DSA Ethertype * value. */ ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_ETH_TYPE, ETH_P_EDSA); if (ret) goto abort; /* Tag Remap: use an identity 802.1p prio -> switch * prio mapping. */ ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_TAG_REGMAP_0123, 0x3210); if (ret) goto abort; /* Tag Remap 2: use an identity 802.1p prio -> switch * prio mapping. */ ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_TAG_REGMAP_4567, 0x7654); if (ret) goto abort; } if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) || mv88e6xxx_6320_family(ds)) { /* Rate Control: disable ingress rate limiting. */ ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_RATE_CONTROL, 0x0001); if (ret) goto abort; } /* Port Control 1: disable trunking, disable sending * learning messages to this port. */ ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_1, 0x0000); if (ret) goto abort; /* Port based VLAN map: do not give each port its own address * database, and allow every port to egress frames on all other ports. */ reg = BIT(ps->num_ports) - 1; /* all ports */ reg &= ~BIT(port); /* except itself */ ret = _mv88e6xxx_port_vlan_map_set(ds, port, reg); if (ret) goto abort; /* Default VLAN ID and priority: don't set a default VLAN * ID, and set the default packet priority to zero. */ ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN, 0x0000); abort: mutex_unlock(&ps->smi_mutex); return ret; } int mv88e6xxx_setup_ports(struct dsa_switch *ds) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int ret; int i; for (i = 0; i < ps->num_ports; i++) { ret = mv88e6xxx_setup_port(ds, i); if (ret < 0) return ret; if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)) continue; ret = mv88e6xxx_setup_port_default_vlan(ds, i); if (ret < 0) return ret; } return 0; } int mv88e6xxx_setup_common(struct dsa_switch *ds) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); mutex_init(&ps->smi_mutex); ps->id = REG_READ(REG_PORT(0), PORT_SWITCH_ID) & 0xfff0; INIT_WORK(&ps->bridge_work, mv88e6xxx_bridge_work); return 0; } int mv88e6xxx_setup_global(struct dsa_switch *ds) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int ret; int i; /* Set the default address aging time to 5 minutes, and * enable address learn messages to be sent to all message * ports. */ REG_WRITE(REG_GLOBAL, GLOBAL_ATU_CONTROL, 0x0140 | GLOBAL_ATU_CONTROL_LEARN2ALL); /* Configure the IP ToS mapping registers. */ REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000); REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000); REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555); REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555); REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa); REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa); REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff); REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff); /* Configure the IEEE 802.1p priority mapping register. */ REG_WRITE(REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41); /* Send all frames with destination addresses matching * 01:80:c2:00:00:0x to the CPU port. */ REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_0X, 0xffff); /* Ignore removed tag data on doubly tagged packets, disable * flow control messages, force flow control priority to the * highest, and send all special multicast frames to the CPU * port at the highest priority. */ REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MGMT, 0x7 | GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x70 | GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI); /* Program the DSA routing table. */ for (i = 0; i < 32; i++) { int nexthop = 0x1f; if (ds->pd->rtable && i != ds->index && i < ds->dst->pd->nr_chips) nexthop = ds->pd->rtable[i] & 0x1f; REG_WRITE(REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING, GLOBAL2_DEVICE_MAPPING_UPDATE | (i << GLOBAL2_DEVICE_MAPPING_TARGET_SHIFT) | nexthop); } /* Clear all trunk masks. */ for (i = 0; i < 8; i++) REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MASK, 0x8000 | (i << GLOBAL2_TRUNK_MASK_NUM_SHIFT) | ((1 << ps->num_ports) - 1)); /* Clear all trunk mappings. */ for (i = 0; i < 16; i++) REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING, GLOBAL2_TRUNK_MAPPING_UPDATE | (i << GLOBAL2_TRUNK_MAPPING_ID_SHIFT)); if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || mv88e6xxx_6320_family(ds)) { /* Send all frames with destination addresses matching * 01:80:c2:00:00:2x to the CPU port. */ REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_2X, 0xffff); /* Initialise cross-chip port VLAN table to reset * defaults. */ REG_WRITE(REG_GLOBAL2, GLOBAL2_PVT_ADDR, 0x9000); /* Clear the priority override table. */ for (i = 0; i < 16; i++) REG_WRITE(REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE, 0x8000 | (i << 8)); } if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) || mv88e6xxx_6320_family(ds)) { /* Disable ingress rate limiting by resetting all * ingress rate limit registers to their initial * state. */ for (i = 0; i < ps->num_ports; i++) REG_WRITE(REG_GLOBAL2, GLOBAL2_INGRESS_OP, 0x9000 | (i << 8)); } /* Clear the statistics counters for all ports */ REG_WRITE(REG_GLOBAL, GLOBAL_STATS_OP, GLOBAL_STATS_OP_FLUSH_ALL); /* Wait for the flush to complete. */ mutex_lock(&ps->smi_mutex); ret = _mv88e6xxx_stats_wait(ds); if (ret < 0) goto unlock; /* Clear all ATU entries */ ret = _mv88e6xxx_atu_flush(ds, 0, true); if (ret < 0) goto unlock; /* Clear all the VTU and STU entries */ ret = _mv88e6xxx_vtu_stu_flush(ds); unlock: mutex_unlock(&ps->smi_mutex); return ret; } int mv88e6xxx_switch_reset(struct dsa_switch *ds, bool ppu_active) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); u16 is_reset = (ppu_active ? 0x8800 : 0xc800); struct gpio_desc *gpiod = ds->pd->reset; unsigned long timeout; int ret; int i; /* Set all ports to the disabled state. */ for (i = 0; i < ps->num_ports; i++) { ret = REG_READ(REG_PORT(i), PORT_CONTROL); REG_WRITE(REG_PORT(i), PORT_CONTROL, ret & 0xfffc); } /* Wait for transmit queues to drain. */ usleep_range(2000, 4000); /* If there is a gpio connected to the reset pin, toggle it */ if (gpiod) { gpiod_set_value_cansleep(gpiod, 1); usleep_range(10000, 20000); gpiod_set_value_cansleep(gpiod, 0); usleep_range(10000, 20000); } /* Reset the switch. Keep the PPU active if requested. The PPU * needs to be active to support indirect phy register access * through global registers 0x18 and 0x19. */ if (ppu_active) REG_WRITE(REG_GLOBAL, 0x04, 0xc000); else REG_WRITE(REG_GLOBAL, 0x04, 0xc400); /* Wait up to one second for reset to complete. */ timeout = jiffies + 1 * HZ; while (time_before(jiffies, timeout)) { ret = REG_READ(REG_GLOBAL, 0x00); if ((ret & is_reset) == is_reset) break; usleep_range(1000, 2000); } if (time_after(jiffies, timeout)) return -ETIMEDOUT; return 0; } int mv88e6xxx_phy_page_read(struct dsa_switch *ds, int port, int page, int reg) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int ret; mutex_lock(&ps->smi_mutex); ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page); if (ret < 0) goto error; ret = _mv88e6xxx_phy_read_indirect(ds, port, reg); error: _mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0); mutex_unlock(&ps->smi_mutex); return ret; } int mv88e6xxx_phy_page_write(struct dsa_switch *ds, int port, int page, int reg, int val) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int ret; mutex_lock(&ps->smi_mutex); ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page); if (ret < 0) goto error; ret = _mv88e6xxx_phy_write_indirect(ds, port, reg, val); error: _mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0); mutex_unlock(&ps->smi_mutex); return ret; } static int mv88e6xxx_port_to_phy_addr(struct dsa_switch *ds, int port) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); if (port >= 0 && port < ps->num_ports) return port; return -EINVAL; } int mv88e6xxx_phy_read(struct dsa_switch *ds, int port, int regnum) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int addr = mv88e6xxx_port_to_phy_addr(ds, port); int ret; if (addr < 0) return addr; mutex_lock(&ps->smi_mutex); ret = _mv88e6xxx_phy_read(ds, addr, regnum); mutex_unlock(&ps->smi_mutex); return ret; } int mv88e6xxx_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int addr = mv88e6xxx_port_to_phy_addr(ds, port); int ret; if (addr < 0) return addr; mutex_lock(&ps->smi_mutex); ret = _mv88e6xxx_phy_write(ds, addr, regnum, val); mutex_unlock(&ps->smi_mutex); return ret; } int mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int port, int regnum) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int addr = mv88e6xxx_port_to_phy_addr(ds, port); int ret; if (addr < 0) return addr; mutex_lock(&ps->smi_mutex); ret = _mv88e6xxx_phy_read_indirect(ds, addr, regnum); mutex_unlock(&ps->smi_mutex); return ret; } int mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int port, int regnum, u16 val) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int addr = mv88e6xxx_port_to_phy_addr(ds, port); int ret; if (addr < 0) return addr; mutex_lock(&ps->smi_mutex); ret = _mv88e6xxx_phy_write_indirect(ds, addr, regnum, val); mutex_unlock(&ps->smi_mutex); return ret; } #ifdef CONFIG_NET_DSA_HWMON static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int ret; int val; *temp = 0; mutex_lock(&ps->smi_mutex); ret = _mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x6); if (ret < 0) goto error; /* Enable temperature sensor */ ret = _mv88e6xxx_phy_read(ds, 0x0, 0x1a); if (ret < 0) goto error; ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret | (1 << 5)); if (ret < 0) goto error; /* Wait for temperature to stabilize */ usleep_range(10000, 12000); val = _mv88e6xxx_phy_read(ds, 0x0, 0x1a); if (val < 0) { ret = val; goto error; } /* Disable temperature sensor */ ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret & ~(1 << 5)); if (ret < 0) goto error; *temp = ((val & 0x1f) - 5) * 5; error: _mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x0); mutex_unlock(&ps->smi_mutex); return ret; } static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp) { int phy = mv88e6xxx_6320_family(ds) ? 3 : 0; int ret; *temp = 0; ret = mv88e6xxx_phy_page_read(ds, phy, 6, 27); if (ret < 0) return ret; *temp = (ret & 0xff) - 25; return 0; } int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp) { if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds)) return mv88e63xx_get_temp(ds, temp); return mv88e61xx_get_temp(ds, temp); } int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp) { int phy = mv88e6xxx_6320_family(ds) ? 3 : 0; int ret; if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds)) return -EOPNOTSUPP; *temp = 0; ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26); if (ret < 0) return ret; *temp = (((ret >> 8) & 0x1f) * 5) - 25; return 0; } int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp) { int phy = mv88e6xxx_6320_family(ds) ? 3 : 0; int ret; if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds)) return -EOPNOTSUPP; ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26); if (ret < 0) return ret; temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f); return mv88e6xxx_phy_page_write(ds, phy, 6, 26, (ret & 0xe0ff) | (temp << 8)); } int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm) { int phy = mv88e6xxx_6320_family(ds) ? 3 : 0; int ret; if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds)) return -EOPNOTSUPP; *alarm = false; ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26); if (ret < 0) return ret; *alarm = !!(ret & 0x40); return 0; } #endif /* CONFIG_NET_DSA_HWMON */ char *mv88e6xxx_lookup_name(struct device *host_dev, int sw_addr, const struct mv88e6xxx_switch_id *table, unsigned int num) { struct mii_bus *bus = dsa_host_dev_to_mii_bus(host_dev); int i, ret; if (!bus) return NULL; ret = __mv88e6xxx_reg_read(bus, sw_addr, REG_PORT(0), PORT_SWITCH_ID); if (ret < 0) return NULL; /* Look up the exact switch ID */ for (i = 0; i < num; ++i) if (table[i].id == ret) return table[i].name; /* Look up only the product number */ for (i = 0; i < num; ++i) { if (table[i].id == (ret & PORT_SWITCH_ID_PROD_NUM_MASK)) { dev_warn(host_dev, "unknown revision %d, using base switch 0x%x\n", ret & PORT_SWITCH_ID_REV_MASK, ret & PORT_SWITCH_ID_PROD_NUM_MASK); return table[i].name; } } return NULL; } static int __init mv88e6xxx_init(void) { #if IS_ENABLED(CONFIG_NET_DSA_MV88E6131) register_switch_driver(&mv88e6131_switch_driver); #endif #if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65) register_switch_driver(&mv88e6123_61_65_switch_driver); #endif #if IS_ENABLED(CONFIG_NET_DSA_MV88E6352) register_switch_driver(&mv88e6352_switch_driver); #endif #if IS_ENABLED(CONFIG_NET_DSA_MV88E6171) register_switch_driver(&mv88e6171_switch_driver); #endif return 0; } module_init(mv88e6xxx_init); static void __exit mv88e6xxx_cleanup(void) { #if IS_ENABLED(CONFIG_NET_DSA_MV88E6171) unregister_switch_driver(&mv88e6171_switch_driver); #endif #if IS_ENABLED(CONFIG_NET_DSA_MV88E6352) unregister_switch_driver(&mv88e6352_switch_driver); #endif #if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65) unregister_switch_driver(&mv88e6123_61_65_switch_driver); #endif #if IS_ENABLED(CONFIG_NET_DSA_MV88E6131) unregister_switch_driver(&mv88e6131_switch_driver); #endif } module_exit(mv88e6xxx_cleanup); MODULE_AUTHOR("Lennert Buytenhek "); MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips"); MODULE_LICENSE("GPL");