// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2020, Intel Corporation */ #include #include #include #include "dwmac-intel.h" #include "dwmac4.h" #include "stmmac.h" #define INTEL_MGBE_ADHOC_ADDR 0x15 #define INTEL_MGBE_XPCS_ADDR 0x16 struct intel_priv_data { int mdio_adhoc_addr; /* mdio address for serdes & etc */ }; /* This struct is used to associate PCI Function of MAC controller on a board, * discovered via DMI, with the address of PHY connected to the MAC. The * negative value of the address means that MAC controller is not connected * with PHY. */ struct stmmac_pci_func_data { unsigned int func; int phy_addr; }; struct stmmac_pci_dmi_data { const struct stmmac_pci_func_data *func; size_t nfuncs; }; struct stmmac_pci_info { int (*setup)(struct pci_dev *pdev, struct plat_stmmacenet_data *plat); }; static int stmmac_pci_find_phy_addr(struct pci_dev *pdev, const struct dmi_system_id *dmi_list) { const struct stmmac_pci_func_data *func_data; const struct stmmac_pci_dmi_data *dmi_data; const struct dmi_system_id *dmi_id; int func = PCI_FUNC(pdev->devfn); size_t n; dmi_id = dmi_first_match(dmi_list); if (!dmi_id) return -ENODEV; dmi_data = dmi_id->driver_data; func_data = dmi_data->func; for (n = 0; n < dmi_data->nfuncs; n++, func_data++) if (func_data->func == func) return func_data->phy_addr; return -ENODEV; } static int serdes_status_poll(struct stmmac_priv *priv, int phyaddr, int phyreg, u32 mask, u32 val) { unsigned int retries = 10; int val_rd; do { val_rd = mdiobus_read(priv->mii, phyaddr, phyreg); if ((val_rd & mask) == (val & mask)) return 0; udelay(POLL_DELAY_US); } while (--retries); return -ETIMEDOUT; } static int intel_serdes_powerup(struct net_device *ndev, void *priv_data) { struct intel_priv_data *intel_priv = priv_data; struct stmmac_priv *priv = netdev_priv(ndev); int serdes_phy_addr = 0; u32 data = 0; if (!intel_priv->mdio_adhoc_addr) return 0; serdes_phy_addr = intel_priv->mdio_adhoc_addr; /* assert clk_req */ data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0); data |= SERDES_PLL_CLK; mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data); /* check for clk_ack assertion */ data = serdes_status_poll(priv, serdes_phy_addr, SERDES_GSR0, SERDES_PLL_CLK, SERDES_PLL_CLK); if (data) { dev_err(priv->device, "Serdes PLL clk request timeout\n"); return data; } /* assert lane reset */ data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0); data |= SERDES_RST; mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data); /* check for assert lane reset reflection */ data = serdes_status_poll(priv, serdes_phy_addr, SERDES_GSR0, SERDES_RST, SERDES_RST); if (data) { dev_err(priv->device, "Serdes assert lane reset timeout\n"); return data; } /* move power state to P0 */ data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0); data &= ~SERDES_PWR_ST_MASK; data |= SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT; mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data); /* Check for P0 state */ data = serdes_status_poll(priv, serdes_phy_addr, SERDES_GSR0, SERDES_PWR_ST_MASK, SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT); if (data) { dev_err(priv->device, "Serdes power state P0 timeout.\n"); return data; } return 0; } static void intel_serdes_powerdown(struct net_device *ndev, void *intel_data) { struct intel_priv_data *intel_priv = intel_data; struct stmmac_priv *priv = netdev_priv(ndev); int serdes_phy_addr = 0; u32 data = 0; if (!intel_priv->mdio_adhoc_addr) return; serdes_phy_addr = intel_priv->mdio_adhoc_addr; /* move power state to P3 */ data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0); data &= ~SERDES_PWR_ST_MASK; data |= SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT; mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data); /* Check for P3 state */ data = serdes_status_poll(priv, serdes_phy_addr, SERDES_GSR0, SERDES_PWR_ST_MASK, SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT); if (data) { dev_err(priv->device, "Serdes power state P3 timeout\n"); return; } /* de-assert clk_req */ data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0); data &= ~SERDES_PLL_CLK; mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data); /* check for clk_ack de-assert */ data = serdes_status_poll(priv, serdes_phy_addr, SERDES_GSR0, SERDES_PLL_CLK, (u32)~SERDES_PLL_CLK); if (data) { dev_err(priv->device, "Serdes PLL clk de-assert timeout\n"); return; } /* de-assert lane reset */ data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0); data &= ~SERDES_RST; mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data); /* check for de-assert lane reset reflection */ data = serdes_status_poll(priv, serdes_phy_addr, SERDES_GSR0, SERDES_RST, (u32)~SERDES_RST); if (data) { dev_err(priv->device, "Serdes de-assert lane reset timeout\n"); return; } } static void common_default_data(struct plat_stmmacenet_data *plat) { plat->clk_csr = 2; /* clk_csr_i = 20-35MHz & MDC = clk_csr_i/16 */ plat->has_gmac = 1; plat->force_sf_dma_mode = 1; plat->mdio_bus_data->needs_reset = true; /* Set default value for multicast hash bins */ plat->multicast_filter_bins = HASH_TABLE_SIZE; /* Set default value for unicast filter entries */ plat->unicast_filter_entries = 1; /* Set the maxmtu to a default of JUMBO_LEN */ plat->maxmtu = JUMBO_LEN; /* Set default number of RX and TX queues to use */ plat->tx_queues_to_use = 1; plat->rx_queues_to_use = 1; /* Disable Priority config by default */ plat->tx_queues_cfg[0].use_prio = false; plat->rx_queues_cfg[0].use_prio = false; /* Disable RX queues routing by default */ plat->rx_queues_cfg[0].pkt_route = 0x0; } static int intel_mgbe_common_data(struct pci_dev *pdev, struct plat_stmmacenet_data *plat) { char clk_name[20]; int ret; int i; plat->pdev = pdev; plat->phy_addr = -1; plat->clk_csr = 5; plat->has_gmac = 0; plat->has_gmac4 = 1; plat->force_sf_dma_mode = 0; plat->tso_en = 1; plat->rx_sched_algorithm = MTL_RX_ALGORITHM_SP; for (i = 0; i < plat->rx_queues_to_use; i++) { plat->rx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB; plat->rx_queues_cfg[i].chan = i; /* Disable Priority config by default */ plat->rx_queues_cfg[i].use_prio = false; /* Disable RX queues routing by default */ plat->rx_queues_cfg[i].pkt_route = 0x0; } for (i = 0; i < plat->tx_queues_to_use; i++) { plat->tx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB; /* Disable Priority config by default */ plat->tx_queues_cfg[i].use_prio = false; } /* FIFO size is 4096 bytes for 1 tx/rx queue */ plat->tx_fifo_size = plat->tx_queues_to_use * 4096; plat->rx_fifo_size = plat->rx_queues_to_use * 4096; plat->tx_sched_algorithm = MTL_TX_ALGORITHM_WRR; plat->tx_queues_cfg[0].weight = 0x09; plat->tx_queues_cfg[1].weight = 0x0A; plat->tx_queues_cfg[2].weight = 0x0B; plat->tx_queues_cfg[3].weight = 0x0C; plat->tx_queues_cfg[4].weight = 0x0D; plat->tx_queues_cfg[5].weight = 0x0E; plat->tx_queues_cfg[6].weight = 0x0F; plat->tx_queues_cfg[7].weight = 0x10; plat->dma_cfg->pbl = 32; plat->dma_cfg->pblx8 = true; plat->dma_cfg->fixed_burst = 0; plat->dma_cfg->mixed_burst = 0; plat->dma_cfg->aal = 0; plat->axi = devm_kzalloc(&pdev->dev, sizeof(*plat->axi), GFP_KERNEL); if (!plat->axi) return -ENOMEM; plat->axi->axi_lpi_en = 0; plat->axi->axi_xit_frm = 0; plat->axi->axi_wr_osr_lmt = 1; plat->axi->axi_rd_osr_lmt = 1; plat->axi->axi_blen[0] = 4; plat->axi->axi_blen[1] = 8; plat->axi->axi_blen[2] = 16; plat->ptp_max_adj = plat->clk_ptp_rate; plat->eee_usecs_rate = plat->clk_ptp_rate; /* Set system clock */ sprintf(clk_name, "%s-%s", "stmmac", pci_name(pdev)); plat->stmmac_clk = clk_register_fixed_rate(&pdev->dev, clk_name, NULL, 0, plat->clk_ptp_rate); if (IS_ERR(plat->stmmac_clk)) { dev_warn(&pdev->dev, "Fail to register stmmac-clk\n"); plat->stmmac_clk = NULL; } ret = clk_prepare_enable(plat->stmmac_clk); if (ret) { clk_unregister_fixed_rate(plat->stmmac_clk); return ret; } /* Set default value for multicast hash bins */ plat->multicast_filter_bins = HASH_TABLE_SIZE; /* Set default value for unicast filter entries */ plat->unicast_filter_entries = 1; /* Set the maxmtu to a default of JUMBO_LEN */ plat->maxmtu = JUMBO_LEN; plat->vlan_fail_q_en = true; /* Use the last Rx queue */ plat->vlan_fail_q = plat->rx_queues_to_use - 1; /* Intel mgbe SGMII interface uses pcs-xcps */ if (plat->phy_interface == PHY_INTERFACE_MODE_SGMII) { plat->mdio_bus_data->has_xpcs = true; plat->mdio_bus_data->xpcs_an_inband = true; } /* Ensure mdio bus scan skips intel serdes and pcs-xpcs */ plat->mdio_bus_data->phy_mask = 1 << INTEL_MGBE_ADHOC_ADDR; plat->mdio_bus_data->phy_mask |= 1 << INTEL_MGBE_XPCS_ADDR; return 0; } static int ehl_common_data(struct pci_dev *pdev, struct plat_stmmacenet_data *plat) { plat->rx_queues_to_use = 8; plat->tx_queues_to_use = 8; plat->clk_ptp_rate = 200000000; return intel_mgbe_common_data(pdev, plat); } static int ehl_sgmii_data(struct pci_dev *pdev, struct plat_stmmacenet_data *plat) { plat->bus_id = 1; plat->phy_interface = PHY_INTERFACE_MODE_SGMII; plat->serdes_powerup = intel_serdes_powerup; plat->serdes_powerdown = intel_serdes_powerdown; return ehl_common_data(pdev, plat); } static struct stmmac_pci_info ehl_sgmii1g_info = { .setup = ehl_sgmii_data, }; static int ehl_rgmii_data(struct pci_dev *pdev, struct plat_stmmacenet_data *plat) { plat->bus_id = 1; plat->phy_interface = PHY_INTERFACE_MODE_RGMII; return ehl_common_data(pdev, plat); } static struct stmmac_pci_info ehl_rgmii1g_info = { .setup = ehl_rgmii_data, }; static int ehl_pse0_common_data(struct pci_dev *pdev, struct plat_stmmacenet_data *plat) { plat->bus_id = 2; plat->addr64 = 32; return ehl_common_data(pdev, plat); } static int ehl_pse0_rgmii1g_data(struct pci_dev *pdev, struct plat_stmmacenet_data *plat) { plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID; return ehl_pse0_common_data(pdev, plat); } static struct stmmac_pci_info ehl_pse0_rgmii1g_info = { .setup = ehl_pse0_rgmii1g_data, }; static int ehl_pse0_sgmii1g_data(struct pci_dev *pdev, struct plat_stmmacenet_data *plat) { plat->phy_interface = PHY_INTERFACE_MODE_SGMII; plat->serdes_powerup = intel_serdes_powerup; plat->serdes_powerdown = intel_serdes_powerdown; return ehl_pse0_common_data(pdev, plat); } static struct stmmac_pci_info ehl_pse0_sgmii1g_info = { .setup = ehl_pse0_sgmii1g_data, }; static int ehl_pse1_common_data(struct pci_dev *pdev, struct plat_stmmacenet_data *plat) { plat->bus_id = 3; plat->addr64 = 32; return ehl_common_data(pdev, plat); } static int ehl_pse1_rgmii1g_data(struct pci_dev *pdev, struct plat_stmmacenet_data *plat) { plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID; return ehl_pse1_common_data(pdev, plat); } static struct stmmac_pci_info ehl_pse1_rgmii1g_info = { .setup = ehl_pse1_rgmii1g_data, }; static int ehl_pse1_sgmii1g_data(struct pci_dev *pdev, struct plat_stmmacenet_data *plat) { plat->phy_interface = PHY_INTERFACE_MODE_SGMII; plat->serdes_powerup = intel_serdes_powerup; plat->serdes_powerdown = intel_serdes_powerdown; return ehl_pse1_common_data(pdev, plat); } static struct stmmac_pci_info ehl_pse1_sgmii1g_info = { .setup = ehl_pse1_sgmii1g_data, }; static int tgl_common_data(struct pci_dev *pdev, struct plat_stmmacenet_data *plat) { plat->rx_queues_to_use = 6; plat->tx_queues_to_use = 4; plat->clk_ptp_rate = 200000000; return intel_mgbe_common_data(pdev, plat); } static int tgl_sgmii_phy0_data(struct pci_dev *pdev, struct plat_stmmacenet_data *plat) { plat->bus_id = 1; plat->phy_interface = PHY_INTERFACE_MODE_SGMII; plat->serdes_powerup = intel_serdes_powerup; plat->serdes_powerdown = intel_serdes_powerdown; return tgl_common_data(pdev, plat); } static struct stmmac_pci_info tgl_sgmii1g_phy0_info = { .setup = tgl_sgmii_phy0_data, }; static int tgl_sgmii_phy1_data(struct pci_dev *pdev, struct plat_stmmacenet_data *plat) { plat->bus_id = 2; plat->phy_interface = PHY_INTERFACE_MODE_SGMII; plat->serdes_powerup = intel_serdes_powerup; plat->serdes_powerdown = intel_serdes_powerdown; return tgl_common_data(pdev, plat); } static struct stmmac_pci_info tgl_sgmii1g_phy1_info = { .setup = tgl_sgmii_phy1_data, }; static int adls_sgmii_phy0_data(struct pci_dev *pdev, struct plat_stmmacenet_data *plat) { plat->bus_id = 1; plat->phy_interface = PHY_INTERFACE_MODE_SGMII; /* SerDes power up and power down are done in BIOS for ADL */ return tgl_common_data(pdev, plat); } static struct stmmac_pci_info adls_sgmii1g_phy0_info = { .setup = adls_sgmii_phy0_data, }; static int adls_sgmii_phy1_data(struct pci_dev *pdev, struct plat_stmmacenet_data *plat) { plat->bus_id = 2; plat->phy_interface = PHY_INTERFACE_MODE_SGMII; /* SerDes power up and power down are done in BIOS for ADL */ return tgl_common_data(pdev, plat); } static struct stmmac_pci_info adls_sgmii1g_phy1_info = { .setup = adls_sgmii_phy1_data, }; static const struct stmmac_pci_func_data galileo_stmmac_func_data[] = { { .func = 6, .phy_addr = 1, }, }; static const struct stmmac_pci_dmi_data galileo_stmmac_dmi_data = { .func = galileo_stmmac_func_data, .nfuncs = ARRAY_SIZE(galileo_stmmac_func_data), }; static const struct stmmac_pci_func_data iot2040_stmmac_func_data[] = { { .func = 6, .phy_addr = 1, }, { .func = 7, .phy_addr = 1, }, }; static const struct stmmac_pci_dmi_data iot2040_stmmac_dmi_data = { .func = iot2040_stmmac_func_data, .nfuncs = ARRAY_SIZE(iot2040_stmmac_func_data), }; static const struct dmi_system_id quark_pci_dmi[] = { { .matches = { DMI_EXACT_MATCH(DMI_BOARD_NAME, "Galileo"), }, .driver_data = (void *)&galileo_stmmac_dmi_data, }, { .matches = { DMI_EXACT_MATCH(DMI_BOARD_NAME, "GalileoGen2"), }, .driver_data = (void *)&galileo_stmmac_dmi_data, }, /* There are 2 types of SIMATIC IOT2000: IOT2020 and IOT2040. * The asset tag "6ES7647-0AA00-0YA2" is only for IOT2020 which * has only one pci network device while other asset tags are * for IOT2040 which has two. */ { .matches = { DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"), DMI_EXACT_MATCH(DMI_BOARD_ASSET_TAG, "6ES7647-0AA00-0YA2"), }, .driver_data = (void *)&galileo_stmmac_dmi_data, }, { .matches = { DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"), }, .driver_data = (void *)&iot2040_stmmac_dmi_data, }, {} }; static int quark_default_data(struct pci_dev *pdev, struct plat_stmmacenet_data *plat) { int ret; /* Set common default data first */ common_default_data(plat); /* Refuse to load the driver and register net device if MAC controller * does not connect to any PHY interface. */ ret = stmmac_pci_find_phy_addr(pdev, quark_pci_dmi); if (ret < 0) { /* Return error to the caller on DMI enabled boards. */ if (dmi_get_system_info(DMI_BOARD_NAME)) return ret; /* Galileo boards with old firmware don't support DMI. We always * use 1 here as PHY address, so at least the first found MAC * controller would be probed. */ ret = 1; } plat->bus_id = pci_dev_id(pdev); plat->phy_addr = ret; plat->phy_interface = PHY_INTERFACE_MODE_RMII; plat->dma_cfg->pbl = 16; plat->dma_cfg->pblx8 = true; plat->dma_cfg->fixed_burst = 1; /* AXI (TODO) */ return 0; } static const struct stmmac_pci_info quark_info = { .setup = quark_default_data, }; /** * intel_eth_pci_probe * * @pdev: pci device pointer * @id: pointer to table of device id/id's. * * Description: This probing function gets called for all PCI devices which * match the ID table and are not "owned" by other driver yet. This function * gets passed a "struct pci_dev *" for each device whose entry in the ID table * matches the device. The probe functions returns zero when the driver choose * to take "ownership" of the device or an error code(-ve no) otherwise. */ static int intel_eth_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct stmmac_pci_info *info = (struct stmmac_pci_info *)id->driver_data; struct intel_priv_data *intel_priv; struct plat_stmmacenet_data *plat; struct stmmac_resources res; int ret; intel_priv = devm_kzalloc(&pdev->dev, sizeof(*intel_priv), GFP_KERNEL); if (!intel_priv) return -ENOMEM; plat = devm_kzalloc(&pdev->dev, sizeof(*plat), GFP_KERNEL); if (!plat) return -ENOMEM; plat->mdio_bus_data = devm_kzalloc(&pdev->dev, sizeof(*plat->mdio_bus_data), GFP_KERNEL); if (!plat->mdio_bus_data) return -ENOMEM; plat->dma_cfg = devm_kzalloc(&pdev->dev, sizeof(*plat->dma_cfg), GFP_KERNEL); if (!plat->dma_cfg) return -ENOMEM; /* Enable pci device */ ret = pci_enable_device(pdev); if (ret) { dev_err(&pdev->dev, "%s: ERROR: failed to enable device\n", __func__); return ret; } ret = pcim_iomap_regions(pdev, BIT(0), pci_name(pdev)); if (ret) return ret; pci_set_master(pdev); plat->bsp_priv = intel_priv; intel_priv->mdio_adhoc_addr = INTEL_MGBE_ADHOC_ADDR; ret = info->setup(pdev, plat); if (ret) return ret; ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); if (ret < 0) return ret; memset(&res, 0, sizeof(res)); res.addr = pcim_iomap_table(pdev)[0]; res.wol_irq = pci_irq_vector(pdev, 0); res.irq = pci_irq_vector(pdev, 0); if (plat->eee_usecs_rate > 0) { u32 tx_lpi_usec; tx_lpi_usec = (plat->eee_usecs_rate / 1000000) - 1; writel(tx_lpi_usec, res.addr + GMAC_1US_TIC_COUNTER); } ret = stmmac_dvr_probe(&pdev->dev, plat, &res); if (ret) { pci_free_irq_vectors(pdev); clk_disable_unprepare(plat->stmmac_clk); clk_unregister_fixed_rate(plat->stmmac_clk); } return ret; } /** * intel_eth_pci_remove * * @pdev: platform device pointer * Description: this function calls the main to free the net resources * and releases the PCI resources. */ static void intel_eth_pci_remove(struct pci_dev *pdev) { struct net_device *ndev = dev_get_drvdata(&pdev->dev); struct stmmac_priv *priv = netdev_priv(ndev); stmmac_dvr_remove(&pdev->dev); pci_free_irq_vectors(pdev); clk_unregister_fixed_rate(priv->plat->stmmac_clk); pcim_iounmap_regions(pdev, BIT(0)); pci_disable_device(pdev); } static int __maybe_unused intel_eth_pci_suspend(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); int ret; ret = stmmac_suspend(dev); if (ret) return ret; ret = pci_save_state(pdev); if (ret) return ret; pci_disable_device(pdev); pci_wake_from_d3(pdev, true); return 0; } static int __maybe_unused intel_eth_pci_resume(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); int ret; pci_restore_state(pdev); pci_set_power_state(pdev, PCI_D0); ret = pci_enable_device(pdev); if (ret) return ret; pci_set_master(pdev); return stmmac_resume(dev); } static SIMPLE_DEV_PM_OPS(intel_eth_pm_ops, intel_eth_pci_suspend, intel_eth_pci_resume); #define PCI_DEVICE_ID_INTEL_QUARK_ID 0x0937 #define PCI_DEVICE_ID_INTEL_EHL_RGMII1G_ID 0x4b30 #define PCI_DEVICE_ID_INTEL_EHL_SGMII1G_ID 0x4b31 #define PCI_DEVICE_ID_INTEL_EHL_SGMII2G5_ID 0x4b32 /* Intel(R) Programmable Services Engine (Intel(R) PSE) consist of 2 MAC * which are named PSE0 and PSE1 */ #define PCI_DEVICE_ID_INTEL_EHL_PSE0_RGMII1G_ID 0x4ba0 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII1G_ID 0x4ba1 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII2G5_ID 0x4ba2 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_RGMII1G_ID 0x4bb0 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII1G_ID 0x4bb1 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII2G5_ID 0x4bb2 #define PCI_DEVICE_ID_INTEL_TGLH_SGMII1G_0_ID 0x43ac #define PCI_DEVICE_ID_INTEL_TGLH_SGMII1G_1_ID 0x43a2 #define PCI_DEVICE_ID_INTEL_TGL_SGMII1G_ID 0xa0ac #define PCI_DEVICE_ID_INTEL_ADLS_SGMII1G_0_ID 0x7aac #define PCI_DEVICE_ID_INTEL_ADLS_SGMII1G_1_ID 0x7aad static const struct pci_device_id intel_eth_pci_id_table[] = { { PCI_DEVICE_DATA(INTEL, QUARK_ID, &quark_info) }, { PCI_DEVICE_DATA(INTEL, EHL_RGMII1G_ID, &ehl_rgmii1g_info) }, { PCI_DEVICE_DATA(INTEL, EHL_SGMII1G_ID, &ehl_sgmii1g_info) }, { PCI_DEVICE_DATA(INTEL, EHL_SGMII2G5_ID, &ehl_sgmii1g_info) }, { PCI_DEVICE_DATA(INTEL, EHL_PSE0_RGMII1G_ID, &ehl_pse0_rgmii1g_info) }, { PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII1G_ID, &ehl_pse0_sgmii1g_info) }, { PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII2G5_ID, &ehl_pse0_sgmii1g_info) }, { PCI_DEVICE_DATA(INTEL, EHL_PSE1_RGMII1G_ID, &ehl_pse1_rgmii1g_info) }, { PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII1G_ID, &ehl_pse1_sgmii1g_info) }, { PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII2G5_ID, &ehl_pse1_sgmii1g_info) }, { PCI_DEVICE_DATA(INTEL, TGL_SGMII1G_ID, &tgl_sgmii1g_phy0_info) }, { PCI_DEVICE_DATA(INTEL, TGLH_SGMII1G_0_ID, &tgl_sgmii1g_phy0_info) }, { PCI_DEVICE_DATA(INTEL, TGLH_SGMII1G_1_ID, &tgl_sgmii1g_phy1_info) }, { PCI_DEVICE_DATA(INTEL, ADLS_SGMII1G_0_ID, &adls_sgmii1g_phy0_info) }, { PCI_DEVICE_DATA(INTEL, ADLS_SGMII1G_1_ID, &adls_sgmii1g_phy1_info) }, {} }; MODULE_DEVICE_TABLE(pci, intel_eth_pci_id_table); static struct pci_driver intel_eth_pci_driver = { .name = "intel-eth-pci", .id_table = intel_eth_pci_id_table, .probe = intel_eth_pci_probe, .remove = intel_eth_pci_remove, .driver = { .pm = &intel_eth_pm_ops, }, }; module_pci_driver(intel_eth_pci_driver); MODULE_DESCRIPTION("INTEL 10/100/1000 Ethernet PCI driver"); MODULE_AUTHOR("Voon Weifeng "); MODULE_LICENSE("GPL v2");