// SPDX-License-Identifier: GPL-2.0 /* Multipath TCP * * Copyright (c) 2020, Red Hat, Inc. */ #define pr_fmt(fmt) "MPTCP: " fmt #include #include #include #include #include #include #include #include "protocol.h" #include "mib.h" /* forward declaration */ static struct genl_family mptcp_genl_family; static int pm_nl_pernet_id; struct mptcp_pm_addr_entry { struct list_head list; struct mptcp_addr_info addr; struct rcu_head rcu; }; struct mptcp_pm_add_entry { struct list_head list; struct mptcp_addr_info addr; struct timer_list add_timer; struct mptcp_sock *sock; u8 retrans_times; }; struct pm_nl_pernet { /* protects pernet updates */ spinlock_t lock; struct list_head local_addr_list; unsigned int addrs; unsigned int add_addr_signal_max; unsigned int add_addr_accept_max; unsigned int local_addr_max; unsigned int subflows_max; unsigned int next_id; }; #define MPTCP_PM_ADDR_MAX 8 #define ADD_ADDR_RETRANS_MAX 3 static bool addresses_equal(const struct mptcp_addr_info *a, struct mptcp_addr_info *b, bool use_port) { bool addr_equals = false; if (a->family != b->family) return false; if (a->family == AF_INET) addr_equals = a->addr.s_addr == b->addr.s_addr; #if IS_ENABLED(CONFIG_MPTCP_IPV6) else addr_equals = !ipv6_addr_cmp(&a->addr6, &b->addr6); #endif if (!addr_equals) return false; if (!use_port) return true; return a->port == b->port; } static bool address_zero(const struct mptcp_addr_info *addr) { struct mptcp_addr_info zero; memset(&zero, 0, sizeof(zero)); zero.family = addr->family; return addresses_equal(addr, &zero, false); } static void local_address(const struct sock_common *skc, struct mptcp_addr_info *addr) { addr->port = 0; addr->family = skc->skc_family; if (addr->family == AF_INET) addr->addr.s_addr = skc->skc_rcv_saddr; #if IS_ENABLED(CONFIG_MPTCP_IPV6) else if (addr->family == AF_INET6) addr->addr6 = skc->skc_v6_rcv_saddr; #endif } static void remote_address(const struct sock_common *skc, struct mptcp_addr_info *addr) { addr->family = skc->skc_family; addr->port = skc->skc_dport; if (addr->family == AF_INET) addr->addr.s_addr = skc->skc_daddr; #if IS_ENABLED(CONFIG_MPTCP_IPV6) else if (addr->family == AF_INET6) addr->addr6 = skc->skc_v6_daddr; #endif } static bool lookup_subflow_by_saddr(const struct list_head *list, struct mptcp_addr_info *saddr) { struct mptcp_subflow_context *subflow; struct mptcp_addr_info cur; struct sock_common *skc; list_for_each_entry(subflow, list, node) { skc = (struct sock_common *)mptcp_subflow_tcp_sock(subflow); local_address(skc, &cur); if (addresses_equal(&cur, saddr, false)) return true; } return false; } static struct mptcp_pm_addr_entry * select_local_address(const struct pm_nl_pernet *pernet, struct mptcp_sock *msk) { struct mptcp_pm_addr_entry *entry, *ret = NULL; rcu_read_lock(); spin_lock_bh(&msk->join_list_lock); list_for_each_entry_rcu(entry, &pernet->local_addr_list, list) { if (!(entry->addr.flags & MPTCP_PM_ADDR_FLAG_SUBFLOW)) continue; /* avoid any address already in use by subflows and * pending join */ if (entry->addr.family == ((struct sock *)msk)->sk_family && !lookup_subflow_by_saddr(&msk->conn_list, &entry->addr) && !lookup_subflow_by_saddr(&msk->join_list, &entry->addr)) { ret = entry; break; } } spin_unlock_bh(&msk->join_list_lock); rcu_read_unlock(); return ret; } static struct mptcp_pm_addr_entry * select_signal_address(struct pm_nl_pernet *pernet, unsigned int pos) { struct mptcp_pm_addr_entry *entry, *ret = NULL; int i = 0; rcu_read_lock(); /* do not keep any additional per socket state, just signal * the address list in order. * Note: removal from the local address list during the msk life-cycle * can lead to additional addresses not being announced. */ list_for_each_entry_rcu(entry, &pernet->local_addr_list, list) { if (!(entry->addr.flags & MPTCP_PM_ADDR_FLAG_SIGNAL)) continue; if (i++ == pos) { ret = entry; break; } } rcu_read_unlock(); return ret; } static void check_work_pending(struct mptcp_sock *msk) { if (msk->pm.add_addr_signaled == msk->pm.add_addr_signal_max && (msk->pm.local_addr_used == msk->pm.local_addr_max || msk->pm.subflows == msk->pm.subflows_max)) WRITE_ONCE(msk->pm.work_pending, false); } static struct mptcp_pm_add_entry * lookup_anno_list_by_saddr(struct mptcp_sock *msk, struct mptcp_addr_info *addr) { struct mptcp_pm_add_entry *entry; list_for_each_entry(entry, &msk->pm.anno_list, list) { if (addresses_equal(&entry->addr, addr, false)) return entry; } return NULL; } static void mptcp_pm_add_timer(struct timer_list *timer) { struct mptcp_pm_add_entry *entry = from_timer(entry, timer, add_timer); struct mptcp_sock *msk = entry->sock; struct sock *sk = (struct sock *)msk; pr_debug("msk=%p", msk); if (!msk) return; if (inet_sk_state_load(sk) == TCP_CLOSE) return; if (!entry->addr.id) return; if (mptcp_pm_should_add_signal(msk)) { sk_reset_timer(sk, timer, jiffies + TCP_RTO_MAX / 8); goto out; } spin_lock_bh(&msk->pm.lock); if (!mptcp_pm_should_add_signal(msk)) { pr_debug("retransmit ADD_ADDR id=%d", entry->addr.id); mptcp_pm_announce_addr(msk, &entry->addr, false); entry->retrans_times++; } if (entry->retrans_times < ADD_ADDR_RETRANS_MAX) sk_reset_timer(sk, timer, jiffies + mptcp_get_add_addr_timeout(sock_net(sk))); spin_unlock_bh(&msk->pm.lock); out: __sock_put(sk); } struct mptcp_pm_add_entry * mptcp_pm_del_add_timer(struct mptcp_sock *msk, struct mptcp_addr_info *addr) { struct mptcp_pm_add_entry *entry; struct sock *sk = (struct sock *)msk; spin_lock_bh(&msk->pm.lock); entry = lookup_anno_list_by_saddr(msk, addr); if (entry) entry->retrans_times = ADD_ADDR_RETRANS_MAX; spin_unlock_bh(&msk->pm.lock); if (entry) sk_stop_timer_sync(sk, &entry->add_timer); return entry; } static bool mptcp_pm_alloc_anno_list(struct mptcp_sock *msk, struct mptcp_pm_addr_entry *entry) { struct mptcp_pm_add_entry *add_entry = NULL; struct sock *sk = (struct sock *)msk; struct net *net = sock_net(sk); if (lookup_anno_list_by_saddr(msk, &entry->addr)) return false; add_entry = kmalloc(sizeof(*add_entry), GFP_ATOMIC); if (!add_entry) return false; list_add(&add_entry->list, &msk->pm.anno_list); add_entry->addr = entry->addr; add_entry->sock = msk; add_entry->retrans_times = 0; timer_setup(&add_entry->add_timer, mptcp_pm_add_timer, 0); sk_reset_timer(sk, &add_entry->add_timer, jiffies + mptcp_get_add_addr_timeout(net)); return true; } void mptcp_pm_free_anno_list(struct mptcp_sock *msk) { struct mptcp_pm_add_entry *entry, *tmp; struct sock *sk = (struct sock *)msk; LIST_HEAD(free_list); pr_debug("msk=%p", msk); spin_lock_bh(&msk->pm.lock); list_splice_init(&msk->pm.anno_list, &free_list); spin_unlock_bh(&msk->pm.lock); list_for_each_entry_safe(entry, tmp, &free_list, list) { sk_stop_timer_sync(sk, &entry->add_timer); kfree(entry); } } static void mptcp_pm_create_subflow_or_signal_addr(struct mptcp_sock *msk) { struct mptcp_addr_info remote = { 0 }; struct sock *sk = (struct sock *)msk; struct mptcp_pm_addr_entry *local; struct pm_nl_pernet *pernet; pernet = net_generic(sock_net((struct sock *)msk), pm_nl_pernet_id); pr_debug("local %d:%d signal %d:%d subflows %d:%d\n", msk->pm.local_addr_used, msk->pm.local_addr_max, msk->pm.add_addr_signaled, msk->pm.add_addr_signal_max, msk->pm.subflows, msk->pm.subflows_max); /* check first for announce */ if (msk->pm.add_addr_signaled < msk->pm.add_addr_signal_max) { local = select_signal_address(pernet, msk->pm.add_addr_signaled); if (local) { if (mptcp_pm_alloc_anno_list(msk, local)) { msk->pm.add_addr_signaled++; mptcp_pm_announce_addr(msk, &local->addr, false); } } else { /* pick failed, avoid fourther attempts later */ msk->pm.local_addr_used = msk->pm.add_addr_signal_max; } check_work_pending(msk); } /* check if should create a new subflow */ if (msk->pm.local_addr_used < msk->pm.local_addr_max && msk->pm.subflows < msk->pm.subflows_max) { remote_address((struct sock_common *)sk, &remote); local = select_local_address(pernet, msk); if (local) { msk->pm.local_addr_used++; msk->pm.subflows++; check_work_pending(msk); spin_unlock_bh(&msk->pm.lock); __mptcp_subflow_connect(sk, &local->addr, &remote); spin_lock_bh(&msk->pm.lock); return; } /* lookup failed, avoid fourther attempts later */ msk->pm.local_addr_used = msk->pm.local_addr_max; check_work_pending(msk); } } void mptcp_pm_nl_fully_established(struct mptcp_sock *msk) { mptcp_pm_create_subflow_or_signal_addr(msk); } void mptcp_pm_nl_subflow_established(struct mptcp_sock *msk) { mptcp_pm_create_subflow_or_signal_addr(msk); } void mptcp_pm_nl_add_addr_received(struct mptcp_sock *msk) { struct sock *sk = (struct sock *)msk; struct mptcp_addr_info remote; struct mptcp_addr_info local; pr_debug("accepted %d:%d remote family %d", msk->pm.add_addr_accepted, msk->pm.add_addr_accept_max, msk->pm.remote.family); msk->pm.add_addr_accepted++; msk->pm.subflows++; if (msk->pm.add_addr_accepted >= msk->pm.add_addr_accept_max || msk->pm.subflows >= msk->pm.subflows_max) WRITE_ONCE(msk->pm.accept_addr, false); /* connect to the specified remote address, using whatever * local address the routing configuration will pick. */ remote = msk->pm.remote; if (!remote.port) remote.port = sk->sk_dport; memset(&local, 0, sizeof(local)); local.family = remote.family; spin_unlock_bh(&msk->pm.lock); __mptcp_subflow_connect((struct sock *)msk, &local, &remote); spin_lock_bh(&msk->pm.lock); mptcp_pm_announce_addr(msk, &remote, true); } void mptcp_pm_nl_rm_addr_received(struct mptcp_sock *msk) { struct mptcp_subflow_context *subflow, *tmp; struct sock *sk = (struct sock *)msk; pr_debug("address rm_id %d", msk->pm.rm_id); if (!msk->pm.rm_id) return; if (list_empty(&msk->conn_list)) return; list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) { struct sock *ssk = mptcp_subflow_tcp_sock(subflow); int how = RCV_SHUTDOWN | SEND_SHUTDOWN; if (msk->pm.rm_id != subflow->remote_id) continue; spin_unlock_bh(&msk->pm.lock); mptcp_subflow_shutdown(sk, ssk, how); __mptcp_close_ssk(sk, ssk, subflow); spin_lock_bh(&msk->pm.lock); msk->pm.add_addr_accepted--; msk->pm.subflows--; WRITE_ONCE(msk->pm.accept_addr, true); __MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RMADDR); break; } } void mptcp_pm_nl_rm_subflow_received(struct mptcp_sock *msk, u8 rm_id) { struct mptcp_subflow_context *subflow, *tmp; struct sock *sk = (struct sock *)msk; pr_debug("subflow rm_id %d", rm_id); if (!rm_id) return; if (list_empty(&msk->conn_list)) return; list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) { struct sock *ssk = mptcp_subflow_tcp_sock(subflow); int how = RCV_SHUTDOWN | SEND_SHUTDOWN; if (rm_id != subflow->local_id) continue; spin_unlock_bh(&msk->pm.lock); mptcp_subflow_shutdown(sk, ssk, how); __mptcp_close_ssk(sk, ssk, subflow); spin_lock_bh(&msk->pm.lock); msk->pm.local_addr_used--; msk->pm.subflows--; __MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RMSUBFLOW); break; } } static bool address_use_port(struct mptcp_pm_addr_entry *entry) { return (entry->addr.flags & (MPTCP_PM_ADDR_FLAG_SIGNAL | MPTCP_PM_ADDR_FLAG_SUBFLOW)) == MPTCP_PM_ADDR_FLAG_SIGNAL; } static int mptcp_pm_nl_append_new_local_addr(struct pm_nl_pernet *pernet, struct mptcp_pm_addr_entry *entry) { struct mptcp_pm_addr_entry *cur; int ret = -EINVAL; spin_lock_bh(&pernet->lock); /* to keep the code simple, don't do IDR-like allocation for address ID, * just bail when we exceed limits */ if (pernet->next_id > 255) goto out; if (pernet->addrs >= MPTCP_PM_ADDR_MAX) goto out; /* do not insert duplicate address, differentiate on port only * singled addresses */ list_for_each_entry(cur, &pernet->local_addr_list, list) { if (addresses_equal(&cur->addr, &entry->addr, address_use_port(entry) && address_use_port(cur))) goto out; } if (entry->addr.flags & MPTCP_PM_ADDR_FLAG_SIGNAL) pernet->add_addr_signal_max++; if (entry->addr.flags & MPTCP_PM_ADDR_FLAG_SUBFLOW) pernet->local_addr_max++; entry->addr.id = pernet->next_id++; pernet->addrs++; list_add_tail_rcu(&entry->list, &pernet->local_addr_list); ret = entry->addr.id; out: spin_unlock_bh(&pernet->lock); return ret; } int mptcp_pm_nl_get_local_id(struct mptcp_sock *msk, struct sock_common *skc) { struct mptcp_pm_addr_entry *entry; struct mptcp_addr_info skc_local; struct mptcp_addr_info msk_local; struct pm_nl_pernet *pernet; int ret = -1; if (WARN_ON_ONCE(!msk)) return -1; /* The 0 ID mapping is defined by the first subflow, copied into the msk * addr */ local_address((struct sock_common *)msk, &msk_local); local_address((struct sock_common *)skc, &skc_local); if (addresses_equal(&msk_local, &skc_local, false)) return 0; if (address_zero(&skc_local)) return 0; pernet = net_generic(sock_net((struct sock *)msk), pm_nl_pernet_id); rcu_read_lock(); list_for_each_entry_rcu(entry, &pernet->local_addr_list, list) { if (addresses_equal(&entry->addr, &skc_local, false)) { ret = entry->addr.id; break; } } rcu_read_unlock(); if (ret >= 0) return ret; /* address not found, add to local list */ entry = kmalloc(sizeof(*entry), GFP_ATOMIC); if (!entry) return -ENOMEM; entry->addr = skc_local; entry->addr.ifindex = 0; entry->addr.flags = 0; ret = mptcp_pm_nl_append_new_local_addr(pernet, entry); if (ret < 0) kfree(entry); return ret; } void mptcp_pm_nl_data_init(struct mptcp_sock *msk) { struct mptcp_pm_data *pm = &msk->pm; struct pm_nl_pernet *pernet; bool subflows; pernet = net_generic(sock_net((struct sock *)msk), pm_nl_pernet_id); pm->add_addr_signal_max = READ_ONCE(pernet->add_addr_signal_max); pm->add_addr_accept_max = READ_ONCE(pernet->add_addr_accept_max); pm->local_addr_max = READ_ONCE(pernet->local_addr_max); pm->subflows_max = READ_ONCE(pernet->subflows_max); subflows = !!pm->subflows_max; WRITE_ONCE(pm->work_pending, (!!pm->local_addr_max && subflows) || !!pm->add_addr_signal_max); WRITE_ONCE(pm->accept_addr, !!pm->add_addr_accept_max && subflows); WRITE_ONCE(pm->accept_subflow, subflows); } #define MPTCP_PM_CMD_GRP_OFFSET 0 static const struct genl_multicast_group mptcp_pm_mcgrps[] = { [MPTCP_PM_CMD_GRP_OFFSET] = { .name = MPTCP_PM_CMD_GRP_NAME, }, }; static const struct nla_policy mptcp_pm_addr_policy[MPTCP_PM_ADDR_ATTR_MAX + 1] = { [MPTCP_PM_ADDR_ATTR_FAMILY] = { .type = NLA_U16, }, [MPTCP_PM_ADDR_ATTR_ID] = { .type = NLA_U8, }, [MPTCP_PM_ADDR_ATTR_ADDR4] = { .type = NLA_U32, }, [MPTCP_PM_ADDR_ATTR_ADDR6] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)), [MPTCP_PM_ADDR_ATTR_PORT] = { .type = NLA_U16 }, [MPTCP_PM_ADDR_ATTR_FLAGS] = { .type = NLA_U32 }, [MPTCP_PM_ADDR_ATTR_IF_IDX] = { .type = NLA_S32 }, }; static const struct nla_policy mptcp_pm_policy[MPTCP_PM_ATTR_MAX + 1] = { [MPTCP_PM_ATTR_ADDR] = NLA_POLICY_NESTED(mptcp_pm_addr_policy), [MPTCP_PM_ATTR_RCV_ADD_ADDRS] = { .type = NLA_U32, }, [MPTCP_PM_ATTR_SUBFLOWS] = { .type = NLA_U32, }, }; static int mptcp_pm_family_to_addr(int family) { #if IS_ENABLED(CONFIG_MPTCP_IPV6) if (family == AF_INET6) return MPTCP_PM_ADDR_ATTR_ADDR6; #endif return MPTCP_PM_ADDR_ATTR_ADDR4; } static int mptcp_pm_parse_addr(struct nlattr *attr, struct genl_info *info, bool require_family, struct mptcp_pm_addr_entry *entry) { struct nlattr *tb[MPTCP_PM_ADDR_ATTR_MAX + 1]; int err, addr_addr; if (!attr) { GENL_SET_ERR_MSG(info, "missing address info"); return -EINVAL; } /* no validation needed - was already done via nested policy */ err = nla_parse_nested_deprecated(tb, MPTCP_PM_ADDR_ATTR_MAX, attr, mptcp_pm_addr_policy, info->extack); if (err) return err; memset(entry, 0, sizeof(*entry)); if (!tb[MPTCP_PM_ADDR_ATTR_FAMILY]) { if (!require_family) goto skip_family; NL_SET_ERR_MSG_ATTR(info->extack, attr, "missing family"); return -EINVAL; } entry->addr.family = nla_get_u16(tb[MPTCP_PM_ADDR_ATTR_FAMILY]); if (entry->addr.family != AF_INET #if IS_ENABLED(CONFIG_MPTCP_IPV6) && entry->addr.family != AF_INET6 #endif ) { NL_SET_ERR_MSG_ATTR(info->extack, attr, "unknown address family"); return -EINVAL; } addr_addr = mptcp_pm_family_to_addr(entry->addr.family); if (!tb[addr_addr]) { NL_SET_ERR_MSG_ATTR(info->extack, attr, "missing address data"); return -EINVAL; } #if IS_ENABLED(CONFIG_MPTCP_IPV6) if (entry->addr.family == AF_INET6) entry->addr.addr6 = nla_get_in6_addr(tb[addr_addr]); else #endif entry->addr.addr.s_addr = nla_get_in_addr(tb[addr_addr]); skip_family: if (tb[MPTCP_PM_ADDR_ATTR_IF_IDX]) { u32 val = nla_get_s32(tb[MPTCP_PM_ADDR_ATTR_IF_IDX]); entry->addr.ifindex = val; } if (tb[MPTCP_PM_ADDR_ATTR_ID]) entry->addr.id = nla_get_u8(tb[MPTCP_PM_ADDR_ATTR_ID]); if (tb[MPTCP_PM_ADDR_ATTR_FLAGS]) entry->addr.flags = nla_get_u32(tb[MPTCP_PM_ADDR_ATTR_FLAGS]); return 0; } static struct pm_nl_pernet *genl_info_pm_nl(struct genl_info *info) { return net_generic(genl_info_net(info), pm_nl_pernet_id); } static int mptcp_nl_cmd_add_addr(struct sk_buff *skb, struct genl_info *info) { struct nlattr *attr = info->attrs[MPTCP_PM_ATTR_ADDR]; struct pm_nl_pernet *pernet = genl_info_pm_nl(info); struct mptcp_pm_addr_entry addr, *entry; int ret; ret = mptcp_pm_parse_addr(attr, info, true, &addr); if (ret < 0) return ret; entry = kmalloc(sizeof(*entry), GFP_KERNEL); if (!entry) { GENL_SET_ERR_MSG(info, "can't allocate addr"); return -ENOMEM; } *entry = addr; ret = mptcp_pm_nl_append_new_local_addr(pernet, entry); if (ret < 0) { GENL_SET_ERR_MSG(info, "too many addresses or duplicate one"); kfree(entry); return ret; } return 0; } static struct mptcp_pm_addr_entry * __lookup_addr_by_id(struct pm_nl_pernet *pernet, unsigned int id) { struct mptcp_pm_addr_entry *entry; list_for_each_entry(entry, &pernet->local_addr_list, list) { if (entry->addr.id == id) return entry; } return NULL; } static bool remove_anno_list_by_saddr(struct mptcp_sock *msk, struct mptcp_addr_info *addr) { struct mptcp_pm_add_entry *entry; entry = mptcp_pm_del_add_timer(msk, addr); if (entry) { list_del(&entry->list); kfree(entry); return true; } return false; } static bool mptcp_pm_remove_anno_addr(struct mptcp_sock *msk, struct mptcp_addr_info *addr, bool force) { bool ret; ret = remove_anno_list_by_saddr(msk, addr); if (ret || force) { spin_lock_bh(&msk->pm.lock); mptcp_pm_remove_addr(msk, addr->id); spin_unlock_bh(&msk->pm.lock); } return ret; } static int mptcp_nl_remove_subflow_and_signal_addr(struct net *net, struct mptcp_addr_info *addr) { struct mptcp_sock *msk; long s_slot = 0, s_num = 0; pr_debug("remove_id=%d", addr->id); while ((msk = mptcp_token_iter_next(net, &s_slot, &s_num)) != NULL) { struct sock *sk = (struct sock *)msk; bool remove_subflow; if (list_empty(&msk->conn_list)) { mptcp_pm_remove_anno_addr(msk, addr, false); goto next; } lock_sock(sk); remove_subflow = lookup_subflow_by_saddr(&msk->conn_list, addr); mptcp_pm_remove_anno_addr(msk, addr, remove_subflow); if (remove_subflow) mptcp_pm_remove_subflow(msk, addr->id); release_sock(sk); next: sock_put(sk); cond_resched(); } return 0; } static int mptcp_nl_cmd_del_addr(struct sk_buff *skb, struct genl_info *info) { struct nlattr *attr = info->attrs[MPTCP_PM_ATTR_ADDR]; struct pm_nl_pernet *pernet = genl_info_pm_nl(info); struct mptcp_pm_addr_entry addr, *entry; int ret; ret = mptcp_pm_parse_addr(attr, info, false, &addr); if (ret < 0) return ret; spin_lock_bh(&pernet->lock); entry = __lookup_addr_by_id(pernet, addr.addr.id); if (!entry) { GENL_SET_ERR_MSG(info, "address not found"); spin_unlock_bh(&pernet->lock); return -EINVAL; } if (entry->addr.flags & MPTCP_PM_ADDR_FLAG_SIGNAL) pernet->add_addr_signal_max--; if (entry->addr.flags & MPTCP_PM_ADDR_FLAG_SUBFLOW) pernet->local_addr_max--; pernet->addrs--; list_del_rcu(&entry->list); spin_unlock_bh(&pernet->lock); mptcp_nl_remove_subflow_and_signal_addr(sock_net(skb->sk), &entry->addr); kfree_rcu(entry, rcu); return ret; } static void __flush_addrs(struct pm_nl_pernet *pernet) { while (!list_empty(&pernet->local_addr_list)) { struct mptcp_pm_addr_entry *cur; cur = list_entry(pernet->local_addr_list.next, struct mptcp_pm_addr_entry, list); list_del_rcu(&cur->list); kfree_rcu(cur, rcu); } } static void __reset_counters(struct pm_nl_pernet *pernet) { pernet->add_addr_signal_max = 0; pernet->add_addr_accept_max = 0; pernet->local_addr_max = 0; pernet->addrs = 0; } static int mptcp_nl_cmd_flush_addrs(struct sk_buff *skb, struct genl_info *info) { struct pm_nl_pernet *pernet = genl_info_pm_nl(info); spin_lock_bh(&pernet->lock); __flush_addrs(pernet); __reset_counters(pernet); spin_unlock_bh(&pernet->lock); return 0; } static int mptcp_nl_fill_addr(struct sk_buff *skb, struct mptcp_pm_addr_entry *entry) { struct mptcp_addr_info *addr = &entry->addr; struct nlattr *attr; attr = nla_nest_start(skb, MPTCP_PM_ATTR_ADDR); if (!attr) return -EMSGSIZE; if (nla_put_u16(skb, MPTCP_PM_ADDR_ATTR_FAMILY, addr->family)) goto nla_put_failure; if (nla_put_u8(skb, MPTCP_PM_ADDR_ATTR_ID, addr->id)) goto nla_put_failure; if (nla_put_u32(skb, MPTCP_PM_ADDR_ATTR_FLAGS, entry->addr.flags)) goto nla_put_failure; if (entry->addr.ifindex && nla_put_s32(skb, MPTCP_PM_ADDR_ATTR_IF_IDX, entry->addr.ifindex)) goto nla_put_failure; if (addr->family == AF_INET && nla_put_in_addr(skb, MPTCP_PM_ADDR_ATTR_ADDR4, addr->addr.s_addr)) goto nla_put_failure; #if IS_ENABLED(CONFIG_MPTCP_IPV6) else if (addr->family == AF_INET6 && nla_put_in6_addr(skb, MPTCP_PM_ADDR_ATTR_ADDR6, &addr->addr6)) goto nla_put_failure; #endif nla_nest_end(skb, attr); return 0; nla_put_failure: nla_nest_cancel(skb, attr); return -EMSGSIZE; } static int mptcp_nl_cmd_get_addr(struct sk_buff *skb, struct genl_info *info) { struct nlattr *attr = info->attrs[MPTCP_PM_ATTR_ADDR]; struct pm_nl_pernet *pernet = genl_info_pm_nl(info); struct mptcp_pm_addr_entry addr, *entry; struct sk_buff *msg; void *reply; int ret; ret = mptcp_pm_parse_addr(attr, info, false, &addr); if (ret < 0) return ret; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; reply = genlmsg_put_reply(msg, info, &mptcp_genl_family, 0, info->genlhdr->cmd); if (!reply) { GENL_SET_ERR_MSG(info, "not enough space in Netlink message"); ret = -EMSGSIZE; goto fail; } spin_lock_bh(&pernet->lock); entry = __lookup_addr_by_id(pernet, addr.addr.id); if (!entry) { GENL_SET_ERR_MSG(info, "address not found"); ret = -EINVAL; goto unlock_fail; } ret = mptcp_nl_fill_addr(msg, entry); if (ret) goto unlock_fail; genlmsg_end(msg, reply); ret = genlmsg_reply(msg, info); spin_unlock_bh(&pernet->lock); return ret; unlock_fail: spin_unlock_bh(&pernet->lock); fail: nlmsg_free(msg); return ret; } static int mptcp_nl_cmd_dump_addrs(struct sk_buff *msg, struct netlink_callback *cb) { struct net *net = sock_net(msg->sk); struct mptcp_pm_addr_entry *entry; struct pm_nl_pernet *pernet; int id = cb->args[0]; void *hdr; pernet = net_generic(net, pm_nl_pernet_id); spin_lock_bh(&pernet->lock); list_for_each_entry(entry, &pernet->local_addr_list, list) { if (entry->addr.id <= id) continue; hdr = genlmsg_put(msg, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, &mptcp_genl_family, NLM_F_MULTI, MPTCP_PM_CMD_GET_ADDR); if (!hdr) break; if (mptcp_nl_fill_addr(msg, entry) < 0) { genlmsg_cancel(msg, hdr); break; } id = entry->addr.id; genlmsg_end(msg, hdr); } spin_unlock_bh(&pernet->lock); cb->args[0] = id; return msg->len; } static int parse_limit(struct genl_info *info, int id, unsigned int *limit) { struct nlattr *attr = info->attrs[id]; if (!attr) return 0; *limit = nla_get_u32(attr); if (*limit > MPTCP_PM_ADDR_MAX) { GENL_SET_ERR_MSG(info, "limit greater than maximum"); return -EINVAL; } return 0; } static int mptcp_nl_cmd_set_limits(struct sk_buff *skb, struct genl_info *info) { struct pm_nl_pernet *pernet = genl_info_pm_nl(info); unsigned int rcv_addrs, subflows; int ret; spin_lock_bh(&pernet->lock); rcv_addrs = pernet->add_addr_accept_max; ret = parse_limit(info, MPTCP_PM_ATTR_RCV_ADD_ADDRS, &rcv_addrs); if (ret) goto unlock; subflows = pernet->subflows_max; ret = parse_limit(info, MPTCP_PM_ATTR_SUBFLOWS, &subflows); if (ret) goto unlock; WRITE_ONCE(pernet->add_addr_accept_max, rcv_addrs); WRITE_ONCE(pernet->subflows_max, subflows); unlock: spin_unlock_bh(&pernet->lock); return ret; } static int mptcp_nl_cmd_get_limits(struct sk_buff *skb, struct genl_info *info) { struct pm_nl_pernet *pernet = genl_info_pm_nl(info); struct sk_buff *msg; void *reply; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; reply = genlmsg_put_reply(msg, info, &mptcp_genl_family, 0, MPTCP_PM_CMD_GET_LIMITS); if (!reply) goto fail; if (nla_put_u32(msg, MPTCP_PM_ATTR_RCV_ADD_ADDRS, READ_ONCE(pernet->add_addr_accept_max))) goto fail; if (nla_put_u32(msg, MPTCP_PM_ATTR_SUBFLOWS, READ_ONCE(pernet->subflows_max))) goto fail; genlmsg_end(msg, reply); return genlmsg_reply(msg, info); fail: GENL_SET_ERR_MSG(info, "not enough space in Netlink message"); nlmsg_free(msg); return -EMSGSIZE; } static const struct genl_small_ops mptcp_pm_ops[] = { { .cmd = MPTCP_PM_CMD_ADD_ADDR, .doit = mptcp_nl_cmd_add_addr, .flags = GENL_ADMIN_PERM, }, { .cmd = MPTCP_PM_CMD_DEL_ADDR, .doit = mptcp_nl_cmd_del_addr, .flags = GENL_ADMIN_PERM, }, { .cmd = MPTCP_PM_CMD_FLUSH_ADDRS, .doit = mptcp_nl_cmd_flush_addrs, .flags = GENL_ADMIN_PERM, }, { .cmd = MPTCP_PM_CMD_GET_ADDR, .doit = mptcp_nl_cmd_get_addr, .dumpit = mptcp_nl_cmd_dump_addrs, }, { .cmd = MPTCP_PM_CMD_SET_LIMITS, .doit = mptcp_nl_cmd_set_limits, .flags = GENL_ADMIN_PERM, }, { .cmd = MPTCP_PM_CMD_GET_LIMITS, .doit = mptcp_nl_cmd_get_limits, }, }; static struct genl_family mptcp_genl_family __ro_after_init = { .name = MPTCP_PM_NAME, .version = MPTCP_PM_VER, .maxattr = MPTCP_PM_ATTR_MAX, .policy = mptcp_pm_policy, .netnsok = true, .module = THIS_MODULE, .small_ops = mptcp_pm_ops, .n_small_ops = ARRAY_SIZE(mptcp_pm_ops), .mcgrps = mptcp_pm_mcgrps, .n_mcgrps = ARRAY_SIZE(mptcp_pm_mcgrps), }; static int __net_init pm_nl_init_net(struct net *net) { struct pm_nl_pernet *pernet = net_generic(net, pm_nl_pernet_id); INIT_LIST_HEAD_RCU(&pernet->local_addr_list); __reset_counters(pernet); pernet->next_id = 1; spin_lock_init(&pernet->lock); return 0; } static void __net_exit pm_nl_exit_net(struct list_head *net_list) { struct net *net; list_for_each_entry(net, net_list, exit_list) { /* net is removed from namespace list, can't race with * other modifiers */ __flush_addrs(net_generic(net, pm_nl_pernet_id)); } } static struct pernet_operations mptcp_pm_pernet_ops = { .init = pm_nl_init_net, .exit_batch = pm_nl_exit_net, .id = &pm_nl_pernet_id, .size = sizeof(struct pm_nl_pernet), }; void __init mptcp_pm_nl_init(void) { if (register_pernet_subsys(&mptcp_pm_pernet_ops) < 0) panic("Failed to register MPTCP PM pernet subsystem.\n"); if (genl_register_family(&mptcp_genl_family)) panic("Failed to register MPTCP PM netlink family\n"); }