// SPDX-License-Identifier: (GPL-2.0 OR MIT) /* * Microsemi Ocelot Switch driver * * Copyright (c) 2017 Microsemi Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ocelot.h" /* MAC table entry types. * ENTRYTYPE_NORMAL is subject to aging. * ENTRYTYPE_LOCKED is not subject to aging. * ENTRYTYPE_MACv4 is not subject to aging. For IPv4 multicast. * ENTRYTYPE_MACv6 is not subject to aging. For IPv6 multicast. */ enum macaccess_entry_type { ENTRYTYPE_NORMAL = 0, ENTRYTYPE_LOCKED, ENTRYTYPE_MACv4, ENTRYTYPE_MACv6, }; struct ocelot_mact_entry { u8 mac[ETH_ALEN]; u16 vid; enum macaccess_entry_type type; }; static inline int ocelot_mact_wait_for_completion(struct ocelot *ocelot) { unsigned int val, timeout = 10; /* Wait for the issued mac table command to be completed, or timeout. * When the command read from ANA_TABLES_MACACCESS is * MACACCESS_CMD_IDLE, the issued command completed successfully. */ do { val = ocelot_read(ocelot, ANA_TABLES_MACACCESS); val &= ANA_TABLES_MACACCESS_MAC_TABLE_CMD_M; } while (val != MACACCESS_CMD_IDLE && timeout--); if (!timeout) return -ETIMEDOUT; return 0; } static void ocelot_mact_select(struct ocelot *ocelot, const unsigned char mac[ETH_ALEN], unsigned int vid) { u32 macl = 0, mach = 0; /* Set the MAC address to handle and the vlan associated in a format * understood by the hardware. */ mach |= vid << 16; mach |= mac[0] << 8; mach |= mac[1] << 0; macl |= mac[2] << 24; macl |= mac[3] << 16; macl |= mac[4] << 8; macl |= mac[5] << 0; ocelot_write(ocelot, macl, ANA_TABLES_MACLDATA); ocelot_write(ocelot, mach, ANA_TABLES_MACHDATA); } static int ocelot_mact_learn(struct ocelot *ocelot, int port, const unsigned char mac[ETH_ALEN], unsigned int vid, enum macaccess_entry_type type) { ocelot_mact_select(ocelot, mac, vid); /* Issue a write command */ ocelot_write(ocelot, ANA_TABLES_MACACCESS_VALID | ANA_TABLES_MACACCESS_DEST_IDX(port) | ANA_TABLES_MACACCESS_ENTRYTYPE(type) | ANA_TABLES_MACACCESS_MAC_TABLE_CMD(MACACCESS_CMD_LEARN), ANA_TABLES_MACACCESS); return ocelot_mact_wait_for_completion(ocelot); } static int ocelot_mact_forget(struct ocelot *ocelot, const unsigned char mac[ETH_ALEN], unsigned int vid) { ocelot_mact_select(ocelot, mac, vid); /* Issue a forget command */ ocelot_write(ocelot, ANA_TABLES_MACACCESS_MAC_TABLE_CMD(MACACCESS_CMD_FORGET), ANA_TABLES_MACACCESS); return ocelot_mact_wait_for_completion(ocelot); } static void ocelot_mact_init(struct ocelot *ocelot) { /* Configure the learning mode entries attributes: * - Do not copy the frame to the CPU extraction queues. * - Use the vlan and mac_cpoy for dmac lookup. */ ocelot_rmw(ocelot, 0, ANA_AGENCTRL_LEARN_CPU_COPY | ANA_AGENCTRL_IGNORE_DMAC_FLAGS | ANA_AGENCTRL_LEARN_FWD_KILL | ANA_AGENCTRL_LEARN_IGNORE_VLAN, ANA_AGENCTRL); /* Clear the MAC table */ ocelot_write(ocelot, MACACCESS_CMD_INIT, ANA_TABLES_MACACCESS); } static inline int ocelot_vlant_wait_for_completion(struct ocelot *ocelot) { unsigned int val, timeout = 10; /* Wait for the issued mac table command to be completed, or timeout. * When the command read from ANA_TABLES_MACACCESS is * MACACCESS_CMD_IDLE, the issued command completed successfully. */ do { val = ocelot_read(ocelot, ANA_TABLES_VLANACCESS); val &= ANA_TABLES_VLANACCESS_VLAN_TBL_CMD_M; } while (val != ANA_TABLES_VLANACCESS_CMD_IDLE && timeout--); if (!timeout) return -ETIMEDOUT; return 0; } static int ocelot_vlant_set_mask(struct ocelot *ocelot, u16 vid, u32 mask) { /* Select the VID to configure */ ocelot_write(ocelot, ANA_TABLES_VLANTIDX_V_INDEX(vid), ANA_TABLES_VLANTIDX); /* Set the vlan port members mask and issue a write command */ ocelot_write(ocelot, ANA_TABLES_VLANACCESS_VLAN_PORT_MASK(mask) | ANA_TABLES_VLANACCESS_CMD_WRITE, ANA_TABLES_VLANACCESS); return ocelot_vlant_wait_for_completion(ocelot); } static void ocelot_vlan_mode(struct ocelot_port *port, netdev_features_t features) { struct ocelot *ocelot = port->ocelot; u8 p = port->chip_port; u32 val; /* Filtering */ val = ocelot_read(ocelot, ANA_VLANMASK); if (features & NETIF_F_HW_VLAN_CTAG_FILTER) val |= BIT(p); else val &= ~BIT(p); ocelot_write(ocelot, val, ANA_VLANMASK); } static void ocelot_vlan_port_apply(struct ocelot *ocelot, struct ocelot_port *port) { u32 val; /* Ingress clasification (ANA_PORT_VLAN_CFG) */ /* Default vlan to clasify for untagged frames (may be zero) */ val = ANA_PORT_VLAN_CFG_VLAN_VID(port->pvid); if (port->vlan_aware) val |= ANA_PORT_VLAN_CFG_VLAN_AWARE_ENA | ANA_PORT_VLAN_CFG_VLAN_POP_CNT(1); ocelot_rmw_gix(ocelot, val, ANA_PORT_VLAN_CFG_VLAN_VID_M | ANA_PORT_VLAN_CFG_VLAN_AWARE_ENA | ANA_PORT_VLAN_CFG_VLAN_POP_CNT_M, ANA_PORT_VLAN_CFG, port->chip_port); /* Drop frames with multicast source address */ val = ANA_PORT_DROP_CFG_DROP_MC_SMAC_ENA; if (port->vlan_aware && !port->vid) /* If port is vlan-aware and tagged, drop untagged and priority * tagged frames. */ val |= ANA_PORT_DROP_CFG_DROP_UNTAGGED_ENA | ANA_PORT_DROP_CFG_DROP_PRIO_S_TAGGED_ENA | ANA_PORT_DROP_CFG_DROP_PRIO_C_TAGGED_ENA; ocelot_write_gix(ocelot, val, ANA_PORT_DROP_CFG, port->chip_port); /* Egress configuration (REW_TAG_CFG): VLAN tag type to 8021Q. */ val = REW_TAG_CFG_TAG_TPID_CFG(0); if (port->vlan_aware) { if (port->vid) /* Tag all frames except when VID == DEFAULT_VLAN */ val |= REW_TAG_CFG_TAG_CFG(1); else /* Tag all frames */ val |= REW_TAG_CFG_TAG_CFG(3); } ocelot_rmw_gix(ocelot, val, REW_TAG_CFG_TAG_TPID_CFG_M | REW_TAG_CFG_TAG_CFG_M, REW_TAG_CFG, port->chip_port); /* Set default VLAN and tag type to 8021Q. */ val = REW_PORT_VLAN_CFG_PORT_TPID(ETH_P_8021Q) | REW_PORT_VLAN_CFG_PORT_VID(port->vid); ocelot_rmw_gix(ocelot, val, REW_PORT_VLAN_CFG_PORT_TPID_M | REW_PORT_VLAN_CFG_PORT_VID_M, REW_PORT_VLAN_CFG, port->chip_port); } static int ocelot_vlan_vid_add(struct net_device *dev, u16 vid, bool pvid, bool untagged) { struct ocelot_port *port = netdev_priv(dev); struct ocelot *ocelot = port->ocelot; int ret; /* Add the port MAC address to with the right VLAN information */ ocelot_mact_learn(ocelot, PGID_CPU, dev->dev_addr, vid, ENTRYTYPE_LOCKED); /* Make the port a member of the VLAN */ ocelot->vlan_mask[vid] |= BIT(port->chip_port); ret = ocelot_vlant_set_mask(ocelot, vid, ocelot->vlan_mask[vid]); if (ret) return ret; /* Default ingress vlan classification */ if (pvid) port->pvid = vid; /* Untagged egress vlan clasification */ if (untagged) port->vid = vid; ocelot_vlan_port_apply(ocelot, port); return 0; } static int ocelot_vlan_vid_del(struct net_device *dev, u16 vid) { struct ocelot_port *port = netdev_priv(dev); struct ocelot *ocelot = port->ocelot; int ret; /* 8021q removes VID 0 on module unload for all interfaces * with VLAN filtering feature. We need to keep it to receive * untagged traffic. */ if (vid == 0) return 0; /* Del the port MAC address to with the right VLAN information */ ocelot_mact_forget(ocelot, dev->dev_addr, vid); /* Stop the port from being a member of the vlan */ ocelot->vlan_mask[vid] &= ~BIT(port->chip_port); ret = ocelot_vlant_set_mask(ocelot, vid, ocelot->vlan_mask[vid]); if (ret) return ret; /* Ingress */ if (port->pvid == vid) port->pvid = 0; /* Egress */ if (port->vid == vid) port->vid = 0; ocelot_vlan_port_apply(ocelot, port); return 0; } static void ocelot_vlan_init(struct ocelot *ocelot) { u16 port, vid; /* Clear VLAN table, by default all ports are members of all VLANs */ ocelot_write(ocelot, ANA_TABLES_VLANACCESS_CMD_INIT, ANA_TABLES_VLANACCESS); ocelot_vlant_wait_for_completion(ocelot); /* Configure the port VLAN memberships */ for (vid = 1; vid < VLAN_N_VID; vid++) { ocelot->vlan_mask[vid] = 0; ocelot_vlant_set_mask(ocelot, vid, ocelot->vlan_mask[vid]); } /* Because VLAN filtering is enabled, we need VID 0 to get untagged * traffic. It is added automatically if 8021q module is loaded, but * we can't rely on it since module may be not loaded. */ ocelot->vlan_mask[0] = GENMASK(ocelot->num_phys_ports - 1, 0); ocelot_vlant_set_mask(ocelot, 0, ocelot->vlan_mask[0]); /* Configure the CPU port to be VLAN aware */ ocelot_write_gix(ocelot, ANA_PORT_VLAN_CFG_VLAN_VID(0) | ANA_PORT_VLAN_CFG_VLAN_AWARE_ENA | ANA_PORT_VLAN_CFG_VLAN_POP_CNT(1), ANA_PORT_VLAN_CFG, ocelot->num_phys_ports); /* Set vlan ingress filter mask to all ports but the CPU port by * default. */ ocelot_write(ocelot, GENMASK(9, 0), ANA_VLANMASK); for (port = 0; port < ocelot->num_phys_ports; port++) { ocelot_write_gix(ocelot, 0, REW_PORT_VLAN_CFG, port); ocelot_write_gix(ocelot, 0, REW_TAG_CFG, port); } } /* Watermark encode * Bit 8: Unit; 0:1, 1:16 * Bit 7-0: Value to be multiplied with unit */ static u16 ocelot_wm_enc(u16 value) { if (value >= BIT(8)) return BIT(8) | (value / 16); return value; } static void ocelot_port_adjust_link(struct net_device *dev) { struct ocelot_port *port = netdev_priv(dev); struct ocelot *ocelot = port->ocelot; u8 p = port->chip_port; int speed, atop_wm, mode = 0; switch (dev->phydev->speed) { case SPEED_10: speed = OCELOT_SPEED_10; break; case SPEED_100: speed = OCELOT_SPEED_100; break; case SPEED_1000: speed = OCELOT_SPEED_1000; mode = DEV_MAC_MODE_CFG_GIGA_MODE_ENA; break; case SPEED_2500: speed = OCELOT_SPEED_2500; mode = DEV_MAC_MODE_CFG_GIGA_MODE_ENA; break; default: netdev_err(dev, "Unsupported PHY speed: %d\n", dev->phydev->speed); return; } phy_print_status(dev->phydev); if (!dev->phydev->link) return; /* Only full duplex supported for now */ ocelot_port_writel(port, DEV_MAC_MODE_CFG_FDX_ENA | mode, DEV_MAC_MODE_CFG); /* Set MAC IFG Gaps * FDX: TX_IFG = 5, RX_IFG1 = RX_IFG2 = 0 * !FDX: TX_IFG = 5, RX_IFG1 = RX_IFG2 = 5 */ ocelot_port_writel(port, DEV_MAC_IFG_CFG_TX_IFG(5), DEV_MAC_IFG_CFG); /* Load seed (0) and set MAC HDX late collision */ ocelot_port_writel(port, DEV_MAC_HDX_CFG_LATE_COL_POS(67) | DEV_MAC_HDX_CFG_SEED_LOAD, DEV_MAC_HDX_CFG); mdelay(1); ocelot_port_writel(port, DEV_MAC_HDX_CFG_LATE_COL_POS(67), DEV_MAC_HDX_CFG); /* Disable HDX fast control */ ocelot_port_writel(port, DEV_PORT_MISC_HDX_FAST_DIS, DEV_PORT_MISC); /* SGMII only for now */ ocelot_port_writel(port, PCS1G_MODE_CFG_SGMII_MODE_ENA, PCS1G_MODE_CFG); ocelot_port_writel(port, PCS1G_SD_CFG_SD_SEL, PCS1G_SD_CFG); /* Enable PCS */ ocelot_port_writel(port, PCS1G_CFG_PCS_ENA, PCS1G_CFG); /* No aneg on SGMII */ ocelot_port_writel(port, 0, PCS1G_ANEG_CFG); /* No loopback */ ocelot_port_writel(port, 0, PCS1G_LB_CFG); /* Set Max Length and maximum tags allowed */ ocelot_port_writel(port, VLAN_ETH_FRAME_LEN, DEV_MAC_MAXLEN_CFG); ocelot_port_writel(port, DEV_MAC_TAGS_CFG_TAG_ID(ETH_P_8021AD) | DEV_MAC_TAGS_CFG_VLAN_AWR_ENA | DEV_MAC_TAGS_CFG_VLAN_LEN_AWR_ENA, DEV_MAC_TAGS_CFG); /* Enable MAC module */ ocelot_port_writel(port, DEV_MAC_ENA_CFG_RX_ENA | DEV_MAC_ENA_CFG_TX_ENA, DEV_MAC_ENA_CFG); /* Take MAC, Port, Phy (intern) and PCS (SGMII/Serdes) clock out of * reset */ ocelot_port_writel(port, DEV_CLOCK_CFG_LINK_SPEED(speed), DEV_CLOCK_CFG); /* Set SMAC of Pause frame (00:00:00:00:00:00) */ ocelot_port_writel(port, 0, DEV_MAC_FC_MAC_HIGH_CFG); ocelot_port_writel(port, 0, DEV_MAC_FC_MAC_LOW_CFG); /* No PFC */ ocelot_write_gix(ocelot, ANA_PFC_PFC_CFG_FC_LINK_SPEED(speed), ANA_PFC_PFC_CFG, p); /* Set Pause WM hysteresis * 152 = 6 * VLAN_ETH_FRAME_LEN / OCELOT_BUFFER_CELL_SZ * 101 = 4 * VLAN_ETH_FRAME_LEN / OCELOT_BUFFER_CELL_SZ */ ocelot_write_rix(ocelot, SYS_PAUSE_CFG_PAUSE_ENA | SYS_PAUSE_CFG_PAUSE_STOP(101) | SYS_PAUSE_CFG_PAUSE_START(152), SYS_PAUSE_CFG, p); /* Core: Enable port for frame transfer */ ocelot_write_rix(ocelot, QSYS_SWITCH_PORT_MODE_INGRESS_DROP_MODE | QSYS_SWITCH_PORT_MODE_SCH_NEXT_CFG(1) | QSYS_SWITCH_PORT_MODE_PORT_ENA, QSYS_SWITCH_PORT_MODE, p); /* Flow control */ ocelot_write_rix(ocelot, SYS_MAC_FC_CFG_PAUSE_VAL_CFG(0xffff) | SYS_MAC_FC_CFG_RX_FC_ENA | SYS_MAC_FC_CFG_TX_FC_ENA | SYS_MAC_FC_CFG_ZERO_PAUSE_ENA | SYS_MAC_FC_CFG_FC_LATENCY_CFG(0x7) | SYS_MAC_FC_CFG_FC_LINK_SPEED(speed), SYS_MAC_FC_CFG, p); ocelot_write_rix(ocelot, 0, ANA_POL_FLOWC, p); /* Tail dropping watermark */ atop_wm = (ocelot->shared_queue_sz - 9 * VLAN_ETH_FRAME_LEN) / OCELOT_BUFFER_CELL_SZ; ocelot_write_rix(ocelot, ocelot_wm_enc(9 * VLAN_ETH_FRAME_LEN), SYS_ATOP, p); ocelot_write(ocelot, ocelot_wm_enc(atop_wm), SYS_ATOP_TOT_CFG); } static int ocelot_port_open(struct net_device *dev) { struct ocelot_port *port = netdev_priv(dev); struct ocelot *ocelot = port->ocelot; enum phy_mode phy_mode; int err; /* Enable receiving frames on the port, and activate auto-learning of * MAC addresses. */ ocelot_write_gix(ocelot, ANA_PORT_PORT_CFG_LEARNAUTO | ANA_PORT_PORT_CFG_RECV_ENA | ANA_PORT_PORT_CFG_PORTID_VAL(port->chip_port), ANA_PORT_PORT_CFG, port->chip_port); if (port->serdes) { if (port->phy_mode == PHY_INTERFACE_MODE_SGMII) phy_mode = PHY_MODE_SGMII; else phy_mode = PHY_MODE_QSGMII; err = phy_set_mode(port->serdes, phy_mode); if (err) { netdev_err(dev, "Could not set mode of SerDes\n"); return err; } } err = phy_connect_direct(dev, port->phy, &ocelot_port_adjust_link, port->phy_mode); if (err) { netdev_err(dev, "Could not attach to PHY\n"); return err; } dev->phydev = port->phy; phy_attached_info(port->phy); phy_start(port->phy); return 0; } static int ocelot_port_stop(struct net_device *dev) { struct ocelot_port *port = netdev_priv(dev); phy_disconnect(port->phy); dev->phydev = NULL; ocelot_port_writel(port, 0, DEV_MAC_ENA_CFG); ocelot_rmw_rix(port->ocelot, 0, QSYS_SWITCH_PORT_MODE_PORT_ENA, QSYS_SWITCH_PORT_MODE, port->chip_port); return 0; } /* Generate the IFH for frame injection * * The IFH is a 128bit-value * bit 127: bypass the analyzer processing * bit 56-67: destination mask * bit 28-29: pop_cnt: 3 disables all rewriting of the frame * bit 20-27: cpu extraction queue mask * bit 16: tag type 0: C-tag, 1: S-tag * bit 0-11: VID */ static int ocelot_gen_ifh(u32 *ifh, struct frame_info *info) { ifh[0] = IFH_INJ_BYPASS; ifh[1] = (0xf00 & info->port) >> 8; ifh[2] = (0xff & info->port) << 24; ifh[3] = (info->tag_type << 16) | info->vid; return 0; } static int ocelot_port_xmit(struct sk_buff *skb, struct net_device *dev) { struct ocelot_port *port = netdev_priv(dev); struct ocelot *ocelot = port->ocelot; u32 val, ifh[IFH_LEN]; struct frame_info info = {}; u8 grp = 0; /* Send everything on CPU group 0 */ unsigned int i, count, last; val = ocelot_read(ocelot, QS_INJ_STATUS); if (!(val & QS_INJ_STATUS_FIFO_RDY(BIT(grp))) || (val & QS_INJ_STATUS_WMARK_REACHED(BIT(grp)))) return NETDEV_TX_BUSY; ocelot_write_rix(ocelot, QS_INJ_CTRL_GAP_SIZE(1) | QS_INJ_CTRL_SOF, QS_INJ_CTRL, grp); info.port = BIT(port->chip_port); info.tag_type = IFH_TAG_TYPE_C; info.vid = skb_vlan_tag_get(skb); ocelot_gen_ifh(ifh, &info); for (i = 0; i < IFH_LEN; i++) ocelot_write_rix(ocelot, (__force u32)cpu_to_be32(ifh[i]), QS_INJ_WR, grp); count = (skb->len + 3) / 4; last = skb->len % 4; for (i = 0; i < count; i++) { ocelot_write_rix(ocelot, ((u32 *)skb->data)[i], QS_INJ_WR, grp); } /* Add padding */ while (i < (OCELOT_BUFFER_CELL_SZ / 4)) { ocelot_write_rix(ocelot, 0, QS_INJ_WR, grp); i++; } /* Indicate EOF and valid bytes in last word */ ocelot_write_rix(ocelot, QS_INJ_CTRL_GAP_SIZE(1) | QS_INJ_CTRL_VLD_BYTES(skb->len < OCELOT_BUFFER_CELL_SZ ? 0 : last) | QS_INJ_CTRL_EOF, QS_INJ_CTRL, grp); /* Add dummy CRC */ ocelot_write_rix(ocelot, 0, QS_INJ_WR, grp); skb_tx_timestamp(skb); dev->stats.tx_packets++; dev->stats.tx_bytes += skb->len; dev_kfree_skb_any(skb); return NETDEV_TX_OK; } static void ocelot_mact_mc_reset(struct ocelot_port *port) { struct ocelot *ocelot = port->ocelot; struct netdev_hw_addr *ha, *n; /* Free and forget all the MAC addresses stored in the port private mc * list. These are mc addresses that were previously added by calling * ocelot_mact_mc_add(). */ list_for_each_entry_safe(ha, n, &port->mc, list) { ocelot_mact_forget(ocelot, ha->addr, port->pvid); list_del(&ha->list); kfree(ha); } } static int ocelot_mact_mc_add(struct ocelot_port *port, struct netdev_hw_addr *hw_addr) { struct ocelot *ocelot = port->ocelot; struct netdev_hw_addr *ha = kzalloc(sizeof(*ha), GFP_KERNEL); if (!ha) return -ENOMEM; memcpy(ha, hw_addr, sizeof(*ha)); list_add_tail(&ha->list, &port->mc); ocelot_mact_learn(ocelot, PGID_CPU, ha->addr, port->pvid, ENTRYTYPE_LOCKED); return 0; } static void ocelot_set_rx_mode(struct net_device *dev) { struct ocelot_port *port = netdev_priv(dev); struct ocelot *ocelot = port->ocelot; struct netdev_hw_addr *ha; int i; u32 val; /* This doesn't handle promiscuous mode because the bridge core is * setting IFF_PROMISC on all slave interfaces and all frames would be * forwarded to the CPU port. */ val = GENMASK(ocelot->num_phys_ports - 1, 0); for (i = ocelot->num_phys_ports + 1; i < PGID_CPU; i++) ocelot_write_rix(ocelot, val, ANA_PGID_PGID, i); /* Handle the device multicast addresses. First remove all the * previously installed addresses and then add the latest ones to the * mac table. */ ocelot_mact_mc_reset(port); netdev_for_each_mc_addr(ha, dev) ocelot_mact_mc_add(port, ha); } static int ocelot_port_get_phys_port_name(struct net_device *dev, char *buf, size_t len) { struct ocelot_port *port = netdev_priv(dev); int ret; ret = snprintf(buf, len, "p%d", port->chip_port); if (ret >= len) return -EINVAL; return 0; } static int ocelot_port_set_mac_address(struct net_device *dev, void *p) { struct ocelot_port *port = netdev_priv(dev); struct ocelot *ocelot = port->ocelot; const struct sockaddr *addr = p; /* Learn the new net device MAC address in the mac table. */ ocelot_mact_learn(ocelot, PGID_CPU, addr->sa_data, port->pvid, ENTRYTYPE_LOCKED); /* Then forget the previous one. */ ocelot_mact_forget(ocelot, dev->dev_addr, port->pvid); ether_addr_copy(dev->dev_addr, addr->sa_data); return 0; } static void ocelot_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) { struct ocelot_port *port = netdev_priv(dev); struct ocelot *ocelot = port->ocelot; /* Configure the port to read the stats from */ ocelot_write(ocelot, SYS_STAT_CFG_STAT_VIEW(port->chip_port), SYS_STAT_CFG); /* Get Rx stats */ stats->rx_bytes = ocelot_read(ocelot, SYS_COUNT_RX_OCTETS); stats->rx_packets = ocelot_read(ocelot, SYS_COUNT_RX_SHORTS) + ocelot_read(ocelot, SYS_COUNT_RX_FRAGMENTS) + ocelot_read(ocelot, SYS_COUNT_RX_JABBERS) + ocelot_read(ocelot, SYS_COUNT_RX_LONGS) + ocelot_read(ocelot, SYS_COUNT_RX_64) + ocelot_read(ocelot, SYS_COUNT_RX_65_127) + ocelot_read(ocelot, SYS_COUNT_RX_128_255) + ocelot_read(ocelot, SYS_COUNT_RX_256_1023) + ocelot_read(ocelot, SYS_COUNT_RX_1024_1526) + ocelot_read(ocelot, SYS_COUNT_RX_1527_MAX); stats->multicast = ocelot_read(ocelot, SYS_COUNT_RX_MULTICAST); stats->rx_dropped = dev->stats.rx_dropped; /* Get Tx stats */ stats->tx_bytes = ocelot_read(ocelot, SYS_COUNT_TX_OCTETS); stats->tx_packets = ocelot_read(ocelot, SYS_COUNT_TX_64) + ocelot_read(ocelot, SYS_COUNT_TX_65_127) + ocelot_read(ocelot, SYS_COUNT_TX_128_511) + ocelot_read(ocelot, SYS_COUNT_TX_512_1023) + ocelot_read(ocelot, SYS_COUNT_TX_1024_1526) + ocelot_read(ocelot, SYS_COUNT_TX_1527_MAX); stats->tx_dropped = ocelot_read(ocelot, SYS_COUNT_TX_DROPS) + ocelot_read(ocelot, SYS_COUNT_TX_AGING); stats->collisions = ocelot_read(ocelot, SYS_COUNT_TX_COLLISION); } static int ocelot_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], struct net_device *dev, const unsigned char *addr, u16 vid, u16 flags) { struct ocelot_port *port = netdev_priv(dev); struct ocelot *ocelot = port->ocelot; if (!vid) { if (!port->vlan_aware) /* If the bridge is not VLAN aware and no VID was * provided, set it to pvid to ensure the MAC entry * matches incoming untagged packets */ vid = port->pvid; else /* If the bridge is VLAN aware a VID must be provided as * otherwise the learnt entry wouldn't match any frame. */ return -EINVAL; } return ocelot_mact_learn(ocelot, port->chip_port, addr, vid, ENTRYTYPE_NORMAL); } static int ocelot_fdb_del(struct ndmsg *ndm, struct nlattr *tb[], struct net_device *dev, const unsigned char *addr, u16 vid) { struct ocelot_port *port = netdev_priv(dev); struct ocelot *ocelot = port->ocelot; return ocelot_mact_forget(ocelot, addr, vid); } struct ocelot_dump_ctx { struct net_device *dev; struct sk_buff *skb; struct netlink_callback *cb; int idx; }; static int ocelot_fdb_do_dump(struct ocelot_mact_entry *entry, struct ocelot_dump_ctx *dump) { u32 portid = NETLINK_CB(dump->cb->skb).portid; u32 seq = dump->cb->nlh->nlmsg_seq; struct nlmsghdr *nlh; struct ndmsg *ndm; if (dump->idx < dump->cb->args[2]) goto skip; nlh = nlmsg_put(dump->skb, portid, seq, RTM_NEWNEIGH, sizeof(*ndm), NLM_F_MULTI); if (!nlh) return -EMSGSIZE; ndm = nlmsg_data(nlh); ndm->ndm_family = AF_BRIDGE; ndm->ndm_pad1 = 0; ndm->ndm_pad2 = 0; ndm->ndm_flags = NTF_SELF; ndm->ndm_type = 0; ndm->ndm_ifindex = dump->dev->ifindex; ndm->ndm_state = NUD_REACHABLE; if (nla_put(dump->skb, NDA_LLADDR, ETH_ALEN, entry->mac)) goto nla_put_failure; if (entry->vid && nla_put_u16(dump->skb, NDA_VLAN, entry->vid)) goto nla_put_failure; nlmsg_end(dump->skb, nlh); skip: dump->idx++; return 0; nla_put_failure: nlmsg_cancel(dump->skb, nlh); return -EMSGSIZE; } static inline int ocelot_mact_read(struct ocelot_port *port, int row, int col, struct ocelot_mact_entry *entry) { struct ocelot *ocelot = port->ocelot; char mac[ETH_ALEN]; u32 val, dst, macl, mach; /* Set row and column to read from */ ocelot_field_write(ocelot, ANA_TABLES_MACTINDX_M_INDEX, row); ocelot_field_write(ocelot, ANA_TABLES_MACTINDX_BUCKET, col); /* Issue a read command */ ocelot_write(ocelot, ANA_TABLES_MACACCESS_MAC_TABLE_CMD(MACACCESS_CMD_READ), ANA_TABLES_MACACCESS); if (ocelot_mact_wait_for_completion(ocelot)) return -ETIMEDOUT; /* Read the entry flags */ val = ocelot_read(ocelot, ANA_TABLES_MACACCESS); if (!(val & ANA_TABLES_MACACCESS_VALID)) return -EINVAL; /* If the entry read has another port configured as its destination, * do not report it. */ dst = (val & ANA_TABLES_MACACCESS_DEST_IDX_M) >> 3; if (dst != port->chip_port) return -EINVAL; /* Get the entry's MAC address and VLAN id */ macl = ocelot_read(ocelot, ANA_TABLES_MACLDATA); mach = ocelot_read(ocelot, ANA_TABLES_MACHDATA); mac[0] = (mach >> 8) & 0xff; mac[1] = (mach >> 0) & 0xff; mac[2] = (macl >> 24) & 0xff; mac[3] = (macl >> 16) & 0xff; mac[4] = (macl >> 8) & 0xff; mac[5] = (macl >> 0) & 0xff; entry->vid = (mach >> 16) & 0xfff; ether_addr_copy(entry->mac, mac); return 0; } static int ocelot_fdb_dump(struct sk_buff *skb, struct netlink_callback *cb, struct net_device *dev, struct net_device *filter_dev, int *idx) { struct ocelot_port *port = netdev_priv(dev); int i, j, ret = 0; struct ocelot_dump_ctx dump = { .dev = dev, .skb = skb, .cb = cb, .idx = *idx, }; struct ocelot_mact_entry entry; /* Loop through all the mac tables entries. There are 1024 rows of 4 * entries. */ for (i = 0; i < 1024; i++) { for (j = 0; j < 4; j++) { ret = ocelot_mact_read(port, i, j, &entry); /* If the entry is invalid (wrong port, invalid...), * skip it. */ if (ret == -EINVAL) continue; else if (ret) goto end; ret = ocelot_fdb_do_dump(&entry, &dump); if (ret) goto end; } } end: *idx = dump.idx; return ret; } static int ocelot_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid) { return ocelot_vlan_vid_add(dev, vid, false, true); } static int ocelot_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid) { return ocelot_vlan_vid_del(dev, vid); } static int ocelot_set_features(struct net_device *dev, netdev_features_t features) { struct ocelot_port *port = netdev_priv(dev); netdev_features_t changed = dev->features ^ features; if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) ocelot_vlan_mode(port, features); return 0; } static const struct net_device_ops ocelot_port_netdev_ops = { .ndo_open = ocelot_port_open, .ndo_stop = ocelot_port_stop, .ndo_start_xmit = ocelot_port_xmit, .ndo_set_rx_mode = ocelot_set_rx_mode, .ndo_get_phys_port_name = ocelot_port_get_phys_port_name, .ndo_set_mac_address = ocelot_port_set_mac_address, .ndo_get_stats64 = ocelot_get_stats64, .ndo_fdb_add = ocelot_fdb_add, .ndo_fdb_del = ocelot_fdb_del, .ndo_fdb_dump = ocelot_fdb_dump, .ndo_vlan_rx_add_vid = ocelot_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = ocelot_vlan_rx_kill_vid, .ndo_set_features = ocelot_set_features, }; static void ocelot_get_strings(struct net_device *netdev, u32 sset, u8 *data) { struct ocelot_port *port = netdev_priv(netdev); struct ocelot *ocelot = port->ocelot; int i; if (sset != ETH_SS_STATS) return; for (i = 0; i < ocelot->num_stats; i++) memcpy(data + i * ETH_GSTRING_LEN, ocelot->stats_layout[i].name, ETH_GSTRING_LEN); } static void ocelot_check_stats(struct work_struct *work) { struct delayed_work *del_work = to_delayed_work(work); struct ocelot *ocelot = container_of(del_work, struct ocelot, stats_work); int i, j; mutex_lock(&ocelot->stats_lock); for (i = 0; i < ocelot->num_phys_ports; i++) { /* Configure the port to read the stats from */ ocelot_write(ocelot, SYS_STAT_CFG_STAT_VIEW(i), SYS_STAT_CFG); for (j = 0; j < ocelot->num_stats; j++) { u32 val; unsigned int idx = i * ocelot->num_stats + j; val = ocelot_read_rix(ocelot, SYS_COUNT_RX_OCTETS, ocelot->stats_layout[j].offset); if (val < (ocelot->stats[idx] & U32_MAX)) ocelot->stats[idx] += (u64)1 << 32; ocelot->stats[idx] = (ocelot->stats[idx] & ~(u64)U32_MAX) + val; } } cancel_delayed_work(&ocelot->stats_work); queue_delayed_work(ocelot->stats_queue, &ocelot->stats_work, OCELOT_STATS_CHECK_DELAY); mutex_unlock(&ocelot->stats_lock); } static void ocelot_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct ocelot_port *port = netdev_priv(dev); struct ocelot *ocelot = port->ocelot; int i; /* check and update now */ ocelot_check_stats(&ocelot->stats_work.work); /* Copy all counters */ for (i = 0; i < ocelot->num_stats; i++) *data++ = ocelot->stats[port->chip_port * ocelot->num_stats + i]; } static int ocelot_get_sset_count(struct net_device *dev, int sset) { struct ocelot_port *port = netdev_priv(dev); struct ocelot *ocelot = port->ocelot; if (sset != ETH_SS_STATS) return -EOPNOTSUPP; return ocelot->num_stats; } static const struct ethtool_ops ocelot_ethtool_ops = { .get_strings = ocelot_get_strings, .get_ethtool_stats = ocelot_get_ethtool_stats, .get_sset_count = ocelot_get_sset_count, .get_link_ksettings = phy_ethtool_get_link_ksettings, .set_link_ksettings = phy_ethtool_set_link_ksettings, }; static int ocelot_port_attr_get(struct net_device *dev, struct switchdev_attr *attr) { struct ocelot_port *ocelot_port = netdev_priv(dev); struct ocelot *ocelot = ocelot_port->ocelot; switch (attr->id) { case SWITCHDEV_ATTR_ID_PORT_PARENT_ID: attr->u.ppid.id_len = sizeof(ocelot->base_mac); memcpy(&attr->u.ppid.id, &ocelot->base_mac, attr->u.ppid.id_len); break; default: return -EOPNOTSUPP; } return 0; } static int ocelot_port_attr_stp_state_set(struct ocelot_port *ocelot_port, struct switchdev_trans *trans, u8 state) { struct ocelot *ocelot = ocelot_port->ocelot; u32 port_cfg; int port, i; if (switchdev_trans_ph_prepare(trans)) return 0; if (!(BIT(ocelot_port->chip_port) & ocelot->bridge_mask)) return 0; port_cfg = ocelot_read_gix(ocelot, ANA_PORT_PORT_CFG, ocelot_port->chip_port); switch (state) { case BR_STATE_FORWARDING: ocelot->bridge_fwd_mask |= BIT(ocelot_port->chip_port); /* Fallthrough */ case BR_STATE_LEARNING: port_cfg |= ANA_PORT_PORT_CFG_LEARN_ENA; break; default: port_cfg &= ~ANA_PORT_PORT_CFG_LEARN_ENA; ocelot->bridge_fwd_mask &= ~BIT(ocelot_port->chip_port); break; } ocelot_write_gix(ocelot, port_cfg, ANA_PORT_PORT_CFG, ocelot_port->chip_port); /* Apply FWD mask. The loop is needed to add/remove the current port as * a source for the other ports. */ for (port = 0; port < ocelot->num_phys_ports; port++) { if (ocelot->bridge_fwd_mask & BIT(port)) { unsigned long mask = ocelot->bridge_fwd_mask & ~BIT(port); for (i = 0; i < ocelot->num_phys_ports; i++) { unsigned long bond_mask = ocelot->lags[i]; if (!bond_mask) continue; if (bond_mask & BIT(port)) { mask &= ~bond_mask; break; } } ocelot_write_rix(ocelot, BIT(ocelot->num_phys_ports) | mask, ANA_PGID_PGID, PGID_SRC + port); } else { /* Only the CPU port, this is compatible with link * aggregation. */ ocelot_write_rix(ocelot, BIT(ocelot->num_phys_ports), ANA_PGID_PGID, PGID_SRC + port); } } return 0; } static void ocelot_port_attr_ageing_set(struct ocelot_port *ocelot_port, unsigned long ageing_clock_t) { struct ocelot *ocelot = ocelot_port->ocelot; unsigned long ageing_jiffies = clock_t_to_jiffies(ageing_clock_t); u32 ageing_time = jiffies_to_msecs(ageing_jiffies) / 1000; ocelot_write(ocelot, ANA_AUTOAGE_AGE_PERIOD(ageing_time / 2), ANA_AUTOAGE); } static void ocelot_port_attr_mc_set(struct ocelot_port *port, bool mc) { struct ocelot *ocelot = port->ocelot; u32 val = ocelot_read_gix(ocelot, ANA_PORT_CPU_FWD_CFG, port->chip_port); if (mc) val |= ANA_PORT_CPU_FWD_CFG_CPU_IGMP_REDIR_ENA | ANA_PORT_CPU_FWD_CFG_CPU_MLD_REDIR_ENA | ANA_PORT_CPU_FWD_CFG_CPU_IPMC_CTRL_COPY_ENA; else val &= ~(ANA_PORT_CPU_FWD_CFG_CPU_IGMP_REDIR_ENA | ANA_PORT_CPU_FWD_CFG_CPU_MLD_REDIR_ENA | ANA_PORT_CPU_FWD_CFG_CPU_IPMC_CTRL_COPY_ENA); ocelot_write_gix(ocelot, val, ANA_PORT_CPU_FWD_CFG, port->chip_port); } static int ocelot_port_attr_set(struct net_device *dev, const struct switchdev_attr *attr, struct switchdev_trans *trans) { struct ocelot_port *ocelot_port = netdev_priv(dev); int err = 0; switch (attr->id) { case SWITCHDEV_ATTR_ID_PORT_STP_STATE: ocelot_port_attr_stp_state_set(ocelot_port, trans, attr->u.stp_state); break; case SWITCHDEV_ATTR_ID_BRIDGE_AGEING_TIME: ocelot_port_attr_ageing_set(ocelot_port, attr->u.ageing_time); break; case SWITCHDEV_ATTR_ID_BRIDGE_VLAN_FILTERING: ocelot_port->vlan_aware = attr->u.vlan_filtering; ocelot_vlan_port_apply(ocelot_port->ocelot, ocelot_port); break; case SWITCHDEV_ATTR_ID_BRIDGE_MC_DISABLED: ocelot_port_attr_mc_set(ocelot_port, !attr->u.mc_disabled); break; default: err = -EOPNOTSUPP; break; } return err; } static int ocelot_port_obj_add_vlan(struct net_device *dev, const struct switchdev_obj_port_vlan *vlan, struct switchdev_trans *trans) { int ret; u16 vid; for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) { ret = ocelot_vlan_vid_add(dev, vid, vlan->flags & BRIDGE_VLAN_INFO_PVID, vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED); if (ret) return ret; } return 0; } static int ocelot_port_vlan_del_vlan(struct net_device *dev, const struct switchdev_obj_port_vlan *vlan) { int ret; u16 vid; for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) { ret = ocelot_vlan_vid_del(dev, vid); if (ret) return ret; } return 0; } static struct ocelot_multicast *ocelot_multicast_get(struct ocelot *ocelot, const unsigned char *addr, u16 vid) { struct ocelot_multicast *mc; list_for_each_entry(mc, &ocelot->multicast, list) { if (ether_addr_equal(mc->addr, addr) && mc->vid == vid) return mc; } return NULL; } static int ocelot_port_obj_add_mdb(struct net_device *dev, const struct switchdev_obj_port_mdb *mdb, struct switchdev_trans *trans) { struct ocelot_port *port = netdev_priv(dev); struct ocelot *ocelot = port->ocelot; struct ocelot_multicast *mc; unsigned char addr[ETH_ALEN]; u16 vid = mdb->vid; bool new = false; if (!vid) vid = port->pvid; mc = ocelot_multicast_get(ocelot, mdb->addr, vid); if (!mc) { mc = devm_kzalloc(ocelot->dev, sizeof(*mc), GFP_KERNEL); if (!mc) return -ENOMEM; memcpy(mc->addr, mdb->addr, ETH_ALEN); mc->vid = vid; list_add_tail(&mc->list, &ocelot->multicast); new = true; } memcpy(addr, mc->addr, ETH_ALEN); addr[0] = 0; if (!new) { addr[2] = mc->ports << 0; addr[1] = mc->ports << 8; ocelot_mact_forget(ocelot, addr, vid); } mc->ports |= BIT(port->chip_port); addr[2] = mc->ports << 0; addr[1] = mc->ports << 8; return ocelot_mact_learn(ocelot, 0, addr, vid, ENTRYTYPE_MACv4); } static int ocelot_port_obj_del_mdb(struct net_device *dev, const struct switchdev_obj_port_mdb *mdb) { struct ocelot_port *port = netdev_priv(dev); struct ocelot *ocelot = port->ocelot; struct ocelot_multicast *mc; unsigned char addr[ETH_ALEN]; u16 vid = mdb->vid; if (!vid) vid = port->pvid; mc = ocelot_multicast_get(ocelot, mdb->addr, vid); if (!mc) return -ENOENT; memcpy(addr, mc->addr, ETH_ALEN); addr[2] = mc->ports << 0; addr[1] = mc->ports << 8; addr[0] = 0; ocelot_mact_forget(ocelot, addr, vid); mc->ports &= ~BIT(port->chip_port); if (!mc->ports) { list_del(&mc->list); devm_kfree(ocelot->dev, mc); return 0; } addr[2] = mc->ports << 0; addr[1] = mc->ports << 8; return ocelot_mact_learn(ocelot, 0, addr, vid, ENTRYTYPE_MACv4); } static int ocelot_port_obj_add(struct net_device *dev, const struct switchdev_obj *obj, struct switchdev_trans *trans) { int ret = 0; switch (obj->id) { case SWITCHDEV_OBJ_ID_PORT_VLAN: ret = ocelot_port_obj_add_vlan(dev, SWITCHDEV_OBJ_PORT_VLAN(obj), trans); break; case SWITCHDEV_OBJ_ID_PORT_MDB: ret = ocelot_port_obj_add_mdb(dev, SWITCHDEV_OBJ_PORT_MDB(obj), trans); break; default: return -EOPNOTSUPP; } return ret; } static int ocelot_port_obj_del(struct net_device *dev, const struct switchdev_obj *obj) { int ret = 0; switch (obj->id) { case SWITCHDEV_OBJ_ID_PORT_VLAN: ret = ocelot_port_vlan_del_vlan(dev, SWITCHDEV_OBJ_PORT_VLAN(obj)); break; case SWITCHDEV_OBJ_ID_PORT_MDB: ret = ocelot_port_obj_del_mdb(dev, SWITCHDEV_OBJ_PORT_MDB(obj)); break; default: return -EOPNOTSUPP; } return ret; } static const struct switchdev_ops ocelot_port_switchdev_ops = { .switchdev_port_attr_get = ocelot_port_attr_get, .switchdev_port_attr_set = ocelot_port_attr_set, .switchdev_port_obj_add = ocelot_port_obj_add, .switchdev_port_obj_del = ocelot_port_obj_del, }; static int ocelot_port_bridge_join(struct ocelot_port *ocelot_port, struct net_device *bridge) { struct ocelot *ocelot = ocelot_port->ocelot; if (!ocelot->bridge_mask) { ocelot->hw_bridge_dev = bridge; } else { if (ocelot->hw_bridge_dev != bridge) /* This is adding the port to a second bridge, this is * unsupported */ return -ENODEV; } ocelot->bridge_mask |= BIT(ocelot_port->chip_port); return 0; } static void ocelot_port_bridge_leave(struct ocelot_port *ocelot_port, struct net_device *bridge) { struct ocelot *ocelot = ocelot_port->ocelot; ocelot->bridge_mask &= ~BIT(ocelot_port->chip_port); if (!ocelot->bridge_mask) ocelot->hw_bridge_dev = NULL; /* Clear bridge vlan settings before calling ocelot_vlan_port_apply */ ocelot_port->vlan_aware = 0; ocelot_port->pvid = 0; ocelot_port->vid = 0; } static void ocelot_set_aggr_pgids(struct ocelot *ocelot) { int i, port, lag; /* Reset destination and aggregation PGIDS */ for (port = 0; port < ocelot->num_phys_ports; port++) ocelot_write_rix(ocelot, BIT(port), ANA_PGID_PGID, port); for (i = PGID_AGGR; i < PGID_SRC; i++) ocelot_write_rix(ocelot, GENMASK(ocelot->num_phys_ports - 1, 0), ANA_PGID_PGID, i); /* Now, set PGIDs for each LAG */ for (lag = 0; lag < ocelot->num_phys_ports; lag++) { unsigned long bond_mask; int aggr_count = 0; u8 aggr_idx[16]; bond_mask = ocelot->lags[lag]; if (!bond_mask) continue; for_each_set_bit(port, &bond_mask, ocelot->num_phys_ports) { // Destination mask ocelot_write_rix(ocelot, bond_mask, ANA_PGID_PGID, port); aggr_idx[aggr_count] = port; aggr_count++; } for (i = PGID_AGGR; i < PGID_SRC; i++) { u32 ac; ac = ocelot_read_rix(ocelot, ANA_PGID_PGID, i); ac &= ~bond_mask; ac |= BIT(aggr_idx[i % aggr_count]); ocelot_write_rix(ocelot, ac, ANA_PGID_PGID, i); } } } static void ocelot_setup_lag(struct ocelot *ocelot, int lag) { unsigned long bond_mask = ocelot->lags[lag]; unsigned int p; for_each_set_bit(p, &bond_mask, ocelot->num_phys_ports) { u32 port_cfg = ocelot_read_gix(ocelot, ANA_PORT_PORT_CFG, p); port_cfg &= ~ANA_PORT_PORT_CFG_PORTID_VAL_M; /* Use lag port as logical port for port i */ ocelot_write_gix(ocelot, port_cfg | ANA_PORT_PORT_CFG_PORTID_VAL(lag), ANA_PORT_PORT_CFG, p); } } static int ocelot_port_lag_join(struct ocelot_port *ocelot_port, struct net_device *bond) { struct ocelot *ocelot = ocelot_port->ocelot; int p = ocelot_port->chip_port; int lag, lp; struct net_device *ndev; u32 bond_mask = 0; rcu_read_lock(); for_each_netdev_in_bond_rcu(bond, ndev) { struct ocelot_port *port = netdev_priv(ndev); bond_mask |= BIT(port->chip_port); } rcu_read_unlock(); lp = __ffs(bond_mask); /* If the new port is the lowest one, use it as the logical port from * now on */ if (p == lp) { lag = p; ocelot->lags[p] = bond_mask; bond_mask &= ~BIT(p); if (bond_mask) { lp = __ffs(bond_mask); ocelot->lags[lp] = 0; } } else { lag = lp; ocelot->lags[lp] |= BIT(p); } ocelot_setup_lag(ocelot, lag); ocelot_set_aggr_pgids(ocelot); return 0; } static void ocelot_port_lag_leave(struct ocelot_port *ocelot_port, struct net_device *bond) { struct ocelot *ocelot = ocelot_port->ocelot; int p = ocelot_port->chip_port; u32 port_cfg; int i; /* Remove port from any lag */ for (i = 0; i < ocelot->num_phys_ports; i++) ocelot->lags[i] &= ~BIT(ocelot_port->chip_port); /* if it was the logical port of the lag, move the lag config to the * next port */ if (ocelot->lags[p]) { int n = __ffs(ocelot->lags[p]); ocelot->lags[n] = ocelot->lags[p]; ocelot->lags[p] = 0; ocelot_setup_lag(ocelot, n); } port_cfg = ocelot_read_gix(ocelot, ANA_PORT_PORT_CFG, p); port_cfg &= ~ANA_PORT_PORT_CFG_PORTID_VAL_M; ocelot_write_gix(ocelot, port_cfg | ANA_PORT_PORT_CFG_PORTID_VAL(p), ANA_PORT_PORT_CFG, p); ocelot_set_aggr_pgids(ocelot); } /* Checks if the net_device instance given to us originate from our driver. */ static bool ocelot_netdevice_dev_check(const struct net_device *dev) { return dev->netdev_ops == &ocelot_port_netdev_ops; } static int ocelot_netdevice_port_event(struct net_device *dev, unsigned long event, struct netdev_notifier_changeupper_info *info) { struct ocelot_port *ocelot_port = netdev_priv(dev); int err = 0; if (!ocelot_netdevice_dev_check(dev)) return 0; switch (event) { case NETDEV_CHANGEUPPER: if (netif_is_bridge_master(info->upper_dev)) { if (info->linking) err = ocelot_port_bridge_join(ocelot_port, info->upper_dev); else ocelot_port_bridge_leave(ocelot_port, info->upper_dev); ocelot_vlan_port_apply(ocelot_port->ocelot, ocelot_port); } if (netif_is_lag_master(info->upper_dev)) { if (info->linking) err = ocelot_port_lag_join(ocelot_port, info->upper_dev); else ocelot_port_lag_leave(ocelot_port, info->upper_dev); } break; default: break; } return err; } static int ocelot_netdevice_event(struct notifier_block *unused, unsigned long event, void *ptr) { struct netdev_notifier_changeupper_info *info = ptr; struct net_device *dev = netdev_notifier_info_to_dev(ptr); int ret = 0; if (event == NETDEV_PRECHANGEUPPER && netif_is_lag_master(info->upper_dev)) { struct netdev_lag_upper_info *lag_upper_info = info->upper_info; struct netlink_ext_ack *extack; if (lag_upper_info->tx_type != NETDEV_LAG_TX_TYPE_HASH) { extack = netdev_notifier_info_to_extack(&info->info); NL_SET_ERR_MSG_MOD(extack, "LAG device using unsupported Tx type"); ret = -EINVAL; goto notify; } } if (netif_is_lag_master(dev)) { struct net_device *slave; struct list_head *iter; netdev_for_each_lower_dev(dev, slave, iter) { ret = ocelot_netdevice_port_event(slave, event, info); if (ret) goto notify; } } else { ret = ocelot_netdevice_port_event(dev, event, info); } notify: return notifier_from_errno(ret); } struct notifier_block ocelot_netdevice_nb __read_mostly = { .notifier_call = ocelot_netdevice_event, }; EXPORT_SYMBOL(ocelot_netdevice_nb); int ocelot_probe_port(struct ocelot *ocelot, u8 port, void __iomem *regs, struct phy_device *phy) { struct ocelot_port *ocelot_port; struct net_device *dev; int err; dev = alloc_etherdev(sizeof(struct ocelot_port)); if (!dev) return -ENOMEM; SET_NETDEV_DEV(dev, ocelot->dev); ocelot_port = netdev_priv(dev); ocelot_port->dev = dev; ocelot_port->ocelot = ocelot; ocelot_port->regs = regs; ocelot_port->chip_port = port; ocelot_port->phy = phy; INIT_LIST_HEAD(&ocelot_port->mc); ocelot->ports[port] = ocelot_port; dev->netdev_ops = &ocelot_port_netdev_ops; dev->ethtool_ops = &ocelot_ethtool_ops; dev->switchdev_ops = &ocelot_port_switchdev_ops; dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; memcpy(dev->dev_addr, ocelot->base_mac, ETH_ALEN); dev->dev_addr[ETH_ALEN - 1] += port; ocelot_mact_learn(ocelot, PGID_CPU, dev->dev_addr, ocelot_port->pvid, ENTRYTYPE_LOCKED); err = register_netdev(dev); if (err) { dev_err(ocelot->dev, "register_netdev failed\n"); goto err_register_netdev; } /* Basic L2 initialization */ ocelot_vlan_port_apply(ocelot, ocelot_port); return 0; err_register_netdev: free_netdev(dev); return err; } EXPORT_SYMBOL(ocelot_probe_port); int ocelot_init(struct ocelot *ocelot) { u32 port; int i, cpu = ocelot->num_phys_ports; char queue_name[32]; ocelot->lags = devm_kcalloc(ocelot->dev, ocelot->num_phys_ports, sizeof(u32), GFP_KERNEL); if (!ocelot->lags) return -ENOMEM; ocelot->stats = devm_kcalloc(ocelot->dev, ocelot->num_phys_ports * ocelot->num_stats, sizeof(u64), GFP_KERNEL); if (!ocelot->stats) return -ENOMEM; mutex_init(&ocelot->stats_lock); snprintf(queue_name, sizeof(queue_name), "%s-stats", dev_name(ocelot->dev)); ocelot->stats_queue = create_singlethread_workqueue(queue_name); if (!ocelot->stats_queue) return -ENOMEM; ocelot_mact_init(ocelot); ocelot_vlan_init(ocelot); for (port = 0; port < ocelot->num_phys_ports; port++) { /* Clear all counters (5 groups) */ ocelot_write(ocelot, SYS_STAT_CFG_STAT_VIEW(port) | SYS_STAT_CFG_STAT_CLEAR_SHOT(0x7f), SYS_STAT_CFG); } /* Only use S-Tag */ ocelot_write(ocelot, ETH_P_8021AD, SYS_VLAN_ETYPE_CFG); /* Aggregation mode */ ocelot_write(ocelot, ANA_AGGR_CFG_AC_SMAC_ENA | ANA_AGGR_CFG_AC_DMAC_ENA | ANA_AGGR_CFG_AC_IP4_SIPDIP_ENA | ANA_AGGR_CFG_AC_IP4_TCPUDP_ENA, ANA_AGGR_CFG); /* Set MAC age time to default value. The entry is aged after * 2*AGE_PERIOD */ ocelot_write(ocelot, ANA_AUTOAGE_AGE_PERIOD(BR_DEFAULT_AGEING_TIME / 2 / HZ), ANA_AUTOAGE); /* Disable learning for frames discarded by VLAN ingress filtering */ regmap_field_write(ocelot->regfields[ANA_ADVLEARN_VLAN_CHK], 1); /* Setup frame ageing - fixed value "2 sec" - in 6.5 us units */ ocelot_write(ocelot, SYS_FRM_AGING_AGE_TX_ENA | SYS_FRM_AGING_MAX_AGE(307692), SYS_FRM_AGING); /* Setup flooding PGIDs */ ocelot_write_rix(ocelot, ANA_FLOODING_FLD_MULTICAST(PGID_MC) | ANA_FLOODING_FLD_BROADCAST(PGID_MC) | ANA_FLOODING_FLD_UNICAST(PGID_UC), ANA_FLOODING, 0); ocelot_write(ocelot, ANA_FLOODING_IPMC_FLD_MC6_DATA(PGID_MCIPV6) | ANA_FLOODING_IPMC_FLD_MC6_CTRL(PGID_MC) | ANA_FLOODING_IPMC_FLD_MC4_DATA(PGID_MCIPV4) | ANA_FLOODING_IPMC_FLD_MC4_CTRL(PGID_MC), ANA_FLOODING_IPMC); for (port = 0; port < ocelot->num_phys_ports; port++) { /* Transmit the frame to the local port. */ ocelot_write_rix(ocelot, BIT(port), ANA_PGID_PGID, port); /* Do not forward BPDU frames to the front ports. */ ocelot_write_gix(ocelot, ANA_PORT_CPU_FWD_BPDU_CFG_BPDU_REDIR_ENA(0xffff), ANA_PORT_CPU_FWD_BPDU_CFG, port); /* Ensure bridging is disabled */ ocelot_write_rix(ocelot, 0, ANA_PGID_PGID, PGID_SRC + port); } /* Configure and enable the CPU port. */ ocelot_write_rix(ocelot, 0, ANA_PGID_PGID, cpu); ocelot_write_rix(ocelot, BIT(cpu), ANA_PGID_PGID, PGID_CPU); ocelot_write_gix(ocelot, ANA_PORT_PORT_CFG_RECV_ENA | ANA_PORT_PORT_CFG_PORTID_VAL(cpu), ANA_PORT_PORT_CFG, cpu); /* Allow broadcast MAC frames. */ for (i = ocelot->num_phys_ports + 1; i < PGID_CPU; i++) { u32 val = ANA_PGID_PGID_PGID(GENMASK(ocelot->num_phys_ports - 1, 0)); ocelot_write_rix(ocelot, val, ANA_PGID_PGID, i); } ocelot_write_rix(ocelot, ANA_PGID_PGID_PGID(GENMASK(ocelot->num_phys_ports, 0)), ANA_PGID_PGID, PGID_MC); ocelot_write_rix(ocelot, 0, ANA_PGID_PGID, PGID_MCIPV4); ocelot_write_rix(ocelot, 0, ANA_PGID_PGID, PGID_MCIPV6); /* CPU port Injection/Extraction configuration */ ocelot_write_rix(ocelot, QSYS_SWITCH_PORT_MODE_INGRESS_DROP_MODE | QSYS_SWITCH_PORT_MODE_SCH_NEXT_CFG(1) | QSYS_SWITCH_PORT_MODE_PORT_ENA, QSYS_SWITCH_PORT_MODE, cpu); ocelot_write_rix(ocelot, SYS_PORT_MODE_INCL_XTR_HDR(1) | SYS_PORT_MODE_INCL_INJ_HDR(1), SYS_PORT_MODE, cpu); /* Allow manual injection via DEVCPU_QS registers, and byte swap these * registers endianness. */ ocelot_write_rix(ocelot, QS_INJ_GRP_CFG_BYTE_SWAP | QS_INJ_GRP_CFG_MODE(1), QS_INJ_GRP_CFG, 0); ocelot_write_rix(ocelot, QS_XTR_GRP_CFG_BYTE_SWAP | QS_XTR_GRP_CFG_MODE(1), QS_XTR_GRP_CFG, 0); ocelot_write(ocelot, ANA_CPUQ_CFG_CPUQ_MIRROR(2) | ANA_CPUQ_CFG_CPUQ_LRN(2) | ANA_CPUQ_CFG_CPUQ_MAC_COPY(2) | ANA_CPUQ_CFG_CPUQ_SRC_COPY(2) | ANA_CPUQ_CFG_CPUQ_LOCKED_PORTMOVE(2) | ANA_CPUQ_CFG_CPUQ_ALLBRIDGE(6) | ANA_CPUQ_CFG_CPUQ_IPMC_CTRL(6) | ANA_CPUQ_CFG_CPUQ_IGMP(6) | ANA_CPUQ_CFG_CPUQ_MLD(6), ANA_CPUQ_CFG); for (i = 0; i < 16; i++) ocelot_write_rix(ocelot, ANA_CPUQ_8021_CFG_CPUQ_GARP_VAL(6) | ANA_CPUQ_8021_CFG_CPUQ_BPDU_VAL(6), ANA_CPUQ_8021_CFG, i); INIT_DELAYED_WORK(&ocelot->stats_work, ocelot_check_stats); queue_delayed_work(ocelot->stats_queue, &ocelot->stats_work, OCELOT_STATS_CHECK_DELAY); return 0; } EXPORT_SYMBOL(ocelot_init); void ocelot_deinit(struct ocelot *ocelot) { destroy_workqueue(ocelot->stats_queue); mutex_destroy(&ocelot->stats_lock); } EXPORT_SYMBOL(ocelot_deinit); MODULE_LICENSE("Dual MIT/GPL");