/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 03, 04 by Ralf Baechle * Copyright (C) 1999, 2000 Silicon Graphics, Inc. * Copyright (C) 2007 Maciej W. Rozycki * Copyright (C) 2014, Imagination Technologies Ltd. */ #ifndef _ASM_UACCESS_H #define _ASM_UACCESS_H #include #include #include #include /* * The fs value determines whether argument validity checking should be * performed or not. If get_fs() == USER_DS, checking is performed, with * get_fs() == KERNEL_DS, checking is bypassed. * * For historical reasons, these macros are grossly misnamed. */ #ifdef CONFIG_32BIT #ifdef CONFIG_KVM_GUEST #define __UA_LIMIT 0x40000000UL #else #define __UA_LIMIT 0x80000000UL #endif #define __UA_ADDR ".word" #define __UA_LA "la" #define __UA_ADDU "addu" #define __UA_t0 "$8" #define __UA_t1 "$9" #endif /* CONFIG_32BIT */ #ifdef CONFIG_64BIT extern u64 __ua_limit; #define __UA_LIMIT __ua_limit #define __UA_ADDR ".dword" #define __UA_LA "dla" #define __UA_ADDU "daddu" #define __UA_t0 "$12" #define __UA_t1 "$13" #endif /* CONFIG_64BIT */ /* * USER_DS is a bitmask that has the bits set that may not be set in a valid * userspace address. Note that we limit 32-bit userspace to 0x7fff8000 but * the arithmetic we're doing only works if the limit is a power of two, so * we use 0x80000000 here on 32-bit kernels. If a process passes an invalid * address in this range it's the process's problem, not ours :-) */ #ifdef CONFIG_KVM_GUEST #define KERNEL_DS ((mm_segment_t) { 0x80000000UL }) #define USER_DS ((mm_segment_t) { 0xC0000000UL }) #else #define KERNEL_DS ((mm_segment_t) { 0UL }) #define USER_DS ((mm_segment_t) { __UA_LIMIT }) #endif #define VERIFY_READ 0 #define VERIFY_WRITE 1 #define get_ds() (KERNEL_DS) #define get_fs() (current_thread_info()->addr_limit) #define set_fs(x) (current_thread_info()->addr_limit = (x)) #define segment_eq(a, b) ((a).seg == (b).seg) /* * eva_kernel_access() - determine whether kernel memory access on an EVA system * * Determines whether memory accesses should be performed to kernel memory * on a system using Extended Virtual Addressing (EVA). * * Return: true if a kernel memory access on an EVA system, else false. */ static inline bool eva_kernel_access(void) { if (!config_enabled(CONFIG_EVA)) return false; return segment_eq(get_fs(), get_ds()); } /* * Is a address valid? This does a straighforward calculation rather * than tests. * * Address valid if: * - "addr" doesn't have any high-bits set * - AND "size" doesn't have any high-bits set * - AND "addr+size" doesn't have any high-bits set * - OR we are in kernel mode. * * __ua_size() is a trick to avoid runtime checking of positive constant * sizes; for those we already know at compile time that the size is ok. */ #define __ua_size(size) \ ((__builtin_constant_p(size) && (signed long) (size) > 0) ? 0 : (size)) /* * access_ok: - Checks if a user space pointer is valid * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE. Note that * %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe * to write to a block, it is always safe to read from it. * @addr: User space pointer to start of block to check * @size: Size of block to check * * Context: User context only. This function may sleep if pagefaults are * enabled. * * Checks if a pointer to a block of memory in user space is valid. * * Returns true (nonzero) if the memory block may be valid, false (zero) * if it is definitely invalid. * * Note that, depending on architecture, this function probably just * checks that the pointer is in the user space range - after calling * this function, memory access functions may still return -EFAULT. */ #define __access_mask get_fs().seg #define __access_ok(addr, size, mask) \ ({ \ unsigned long __addr = (unsigned long) (addr); \ unsigned long __size = size; \ unsigned long __mask = mask; \ unsigned long __ok; \ \ __chk_user_ptr(addr); \ __ok = (signed long)(__mask & (__addr | (__addr + __size) | \ __ua_size(__size))); \ __ok == 0; \ }) #define access_ok(type, addr, size) \ likely(__access_ok((addr), (size), __access_mask)) /* * put_user: - Write a simple value into user space. * @x: Value to copy to user space. * @ptr: Destination address, in user space. * * Context: User context only. This function may sleep if pagefaults are * enabled. * * This macro copies a single simple value from kernel space to user * space. It supports simple types like char and int, but not larger * data types like structures or arrays. * * @ptr must have pointer-to-simple-variable type, and @x must be assignable * to the result of dereferencing @ptr. * * Returns zero on success, or -EFAULT on error. */ #define put_user(x,ptr) \ __put_user_check((x), (ptr), sizeof(*(ptr))) /* * get_user: - Get a simple variable from user space. * @x: Variable to store result. * @ptr: Source address, in user space. * * Context: User context only. This function may sleep if pagefaults are * enabled. * * This macro copies a single simple variable from user space to kernel * space. It supports simple types like char and int, but not larger * data types like structures or arrays. * * @ptr must have pointer-to-simple-variable type, and the result of * dereferencing @ptr must be assignable to @x without a cast. * * Returns zero on success, or -EFAULT on error. * On error, the variable @x is set to zero. */ #define get_user(x,ptr) \ __get_user_check((x), (ptr), sizeof(*(ptr))) /* * __put_user: - Write a simple value into user space, with less checking. * @x: Value to copy to user space. * @ptr: Destination address, in user space. * * Context: User context only. This function may sleep if pagefaults are * enabled. * * This macro copies a single simple value from kernel space to user * space. It supports simple types like char and int, but not larger * data types like structures or arrays. * * @ptr must have pointer-to-simple-variable type, and @x must be assignable * to the result of dereferencing @ptr. * * Caller must check the pointer with access_ok() before calling this * function. * * Returns zero on success, or -EFAULT on error. */ #define __put_user(x,ptr) \ __put_user_nocheck((x), (ptr), sizeof(*(ptr))) /* * __get_user: - Get a simple variable from user space, with less checking. * @x: Variable to store result. * @ptr: Source address, in user space. * * Context: User context only. This function may sleep if pagefaults are * enabled. * * This macro copies a single simple variable from user space to kernel * space. It supports simple types like char and int, but not larger * data types like structures or arrays. * * @ptr must have pointer-to-simple-variable type, and the result of * dereferencing @ptr must be assignable to @x without a cast. * * Caller must check the pointer with access_ok() before calling this * function. * * Returns zero on success, or -EFAULT on error. * On error, the variable @x is set to zero. */ #define __get_user(x,ptr) \ __get_user_nocheck((x), (ptr), sizeof(*(ptr))) struct __large_struct { unsigned long buf[100]; }; #define __m(x) (*(struct __large_struct __user *)(x)) /* * Yuck. We need two variants, one for 64bit operation and one * for 32 bit mode and old iron. */ #ifndef CONFIG_EVA #define __get_kernel_common(val, size, ptr) __get_user_common(val, size, ptr) #else /* * Kernel specific functions for EVA. We need to use normal load instructions * to read data from kernel when operating in EVA mode. We use these macros to * avoid redefining __get_user_asm for EVA. */ #undef _loadd #undef _loadw #undef _loadh #undef _loadb #ifdef CONFIG_32BIT #define _loadd _loadw #else #define _loadd(reg, addr) "ld " reg ", " addr #endif #define _loadw(reg, addr) "lw " reg ", " addr #define _loadh(reg, addr) "lh " reg ", " addr #define _loadb(reg, addr) "lb " reg ", " addr #define __get_kernel_common(val, size, ptr) \ do { \ switch (size) { \ case 1: __get_data_asm(val, _loadb, ptr); break; \ case 2: __get_data_asm(val, _loadh, ptr); break; \ case 4: __get_data_asm(val, _loadw, ptr); break; \ case 8: __GET_DW(val, _loadd, ptr); break; \ default: __get_user_unknown(); break; \ } \ } while (0) #endif #ifdef CONFIG_32BIT #define __GET_DW(val, insn, ptr) __get_data_asm_ll32(val, insn, ptr) #endif #ifdef CONFIG_64BIT #define __GET_DW(val, insn, ptr) __get_data_asm(val, insn, ptr) #endif extern void __get_user_unknown(void); #define __get_user_common(val, size, ptr) \ do { \ switch (size) { \ case 1: __get_data_asm(val, user_lb, ptr); break; \ case 2: __get_data_asm(val, user_lh, ptr); break; \ case 4: __get_data_asm(val, user_lw, ptr); break; \ case 8: __GET_DW(val, user_ld, ptr); break; \ default: __get_user_unknown(); break; \ } \ } while (0) #define __get_user_nocheck(x, ptr, size) \ ({ \ int __gu_err; \ \ if (eva_kernel_access()) { \ __get_kernel_common((x), size, ptr); \ } else { \ __chk_user_ptr(ptr); \ __get_user_common((x), size, ptr); \ } \ __gu_err; \ }) #define __get_user_check(x, ptr, size) \ ({ \ int __gu_err = -EFAULT; \ const __typeof__(*(ptr)) __user * __gu_ptr = (ptr); \ \ might_fault(); \ if (likely(access_ok(VERIFY_READ, __gu_ptr, size))) { \ if (eva_kernel_access()) \ __get_kernel_common((x), size, __gu_ptr); \ else \ __get_user_common((x), size, __gu_ptr); \ } else \ (x) = 0; \ \ __gu_err; \ }) #define __get_data_asm(val, insn, addr) \ { \ long __gu_tmp; \ \ __asm__ __volatile__( \ "1: "insn("%1", "%3")" \n" \ "2: \n" \ " .insn \n" \ " .section .fixup,\"ax\" \n" \ "3: li %0, %4 \n" \ " move %1, $0 \n" \ " j 2b \n" \ " .previous \n" \ " .section __ex_table,\"a\" \n" \ " "__UA_ADDR "\t1b, 3b \n" \ " .previous \n" \ : "=r" (__gu_err), "=r" (__gu_tmp) \ : "0" (0), "o" (__m(addr)), "i" (-EFAULT)); \ \ (val) = (__typeof__(*(addr))) __gu_tmp; \ } /* * Get a long long 64 using 32 bit registers. */ #define __get_data_asm_ll32(val, insn, addr) \ { \ union { \ unsigned long long l; \ __typeof__(*(addr)) t; \ } __gu_tmp; \ \ __asm__ __volatile__( \ "1: " insn("%1", "(%3)")" \n" \ "2: " insn("%D1", "4(%3)")" \n" \ "3: \n" \ " .insn \n" \ " .section .fixup,\"ax\" \n" \ "4: li %0, %4 \n" \ " move %1, $0 \n" \ " move %D1, $0 \n" \ " j 3b \n" \ " .previous \n" \ " .section __ex_table,\"a\" \n" \ " " __UA_ADDR " 1b, 4b \n" \ " " __UA_ADDR " 2b, 4b \n" \ " .previous \n" \ : "=r" (__gu_err), "=&r" (__gu_tmp.l) \ : "0" (0), "r" (addr), "i" (-EFAULT)); \ \ (val) = __gu_tmp.t; \ } #ifndef CONFIG_EVA #define __put_kernel_common(ptr, size) __put_user_common(ptr, size) #else /* * Kernel specific functions for EVA. We need to use normal load instructions * to read data from kernel when operating in EVA mode. We use these macros to * avoid redefining __get_data_asm for EVA. */ #undef _stored #undef _storew #undef _storeh #undef _storeb #ifdef CONFIG_32BIT #define _stored _storew #else #define _stored(reg, addr) "ld " reg ", " addr #endif #define _storew(reg, addr) "sw " reg ", " addr #define _storeh(reg, addr) "sh " reg ", " addr #define _storeb(reg, addr) "sb " reg ", " addr #define __put_kernel_common(ptr, size) \ do { \ switch (size) { \ case 1: __put_data_asm(_storeb, ptr); break; \ case 2: __put_data_asm(_storeh, ptr); break; \ case 4: __put_data_asm(_storew, ptr); break; \ case 8: __PUT_DW(_stored, ptr); break; \ default: __put_user_unknown(); break; \ } \ } while(0) #endif /* * Yuck. We need two variants, one for 64bit operation and one * for 32 bit mode and old iron. */ #ifdef CONFIG_32BIT #define __PUT_DW(insn, ptr) __put_data_asm_ll32(insn, ptr) #endif #ifdef CONFIG_64BIT #define __PUT_DW(insn, ptr) __put_data_asm(insn, ptr) #endif #define __put_user_common(ptr, size) \ do { \ switch (size) { \ case 1: __put_data_asm(user_sb, ptr); break; \ case 2: __put_data_asm(user_sh, ptr); break; \ case 4: __put_data_asm(user_sw, ptr); break; \ case 8: __PUT_DW(user_sd, ptr); break; \ default: __put_user_unknown(); break; \ } \ } while (0) #define __put_user_nocheck(x, ptr, size) \ ({ \ __typeof__(*(ptr)) __pu_val; \ int __pu_err = 0; \ \ __pu_val = (x); \ if (eva_kernel_access()) { \ __put_kernel_common(ptr, size); \ } else { \ __chk_user_ptr(ptr); \ __put_user_common(ptr, size); \ } \ __pu_err; \ }) #define __put_user_check(x, ptr, size) \ ({ \ __typeof__(*(ptr)) __user *__pu_addr = (ptr); \ __typeof__(*(ptr)) __pu_val = (x); \ int __pu_err = -EFAULT; \ \ might_fault(); \ if (likely(access_ok(VERIFY_WRITE, __pu_addr, size))) { \ if (eva_kernel_access()) \ __put_kernel_common(__pu_addr, size); \ else \ __put_user_common(__pu_addr, size); \ } \ \ __pu_err; \ }) #define __put_data_asm(insn, ptr) \ { \ __asm__ __volatile__( \ "1: "insn("%z2", "%3")" # __put_data_asm \n" \ "2: \n" \ " .insn \n" \ " .section .fixup,\"ax\" \n" \ "3: li %0, %4 \n" \ " j 2b \n" \ " .previous \n" \ " .section __ex_table,\"a\" \n" \ " " __UA_ADDR " 1b, 3b \n" \ " .previous \n" \ : "=r" (__pu_err) \ : "0" (0), "Jr" (__pu_val), "o" (__m(ptr)), \ "i" (-EFAULT)); \ } #define __put_data_asm_ll32(insn, ptr) \ { \ __asm__ __volatile__( \ "1: "insn("%2", "(%3)")" # __put_data_asm_ll32 \n" \ "2: "insn("%D2", "4(%3)")" \n" \ "3: \n" \ " .insn \n" \ " .section .fixup,\"ax\" \n" \ "4: li %0, %4 \n" \ " j 3b \n" \ " .previous \n" \ " .section __ex_table,\"a\" \n" \ " " __UA_ADDR " 1b, 4b \n" \ " " __UA_ADDR " 2b, 4b \n" \ " .previous" \ : "=r" (__pu_err) \ : "0" (0), "r" (__pu_val), "r" (ptr), \ "i" (-EFAULT)); \ } extern void __put_user_unknown(void); /* * ul{b,h,w} are macros and there are no equivalent macros for EVA. * EVA unaligned access is handled in the ADE exception handler. */ #ifndef CONFIG_EVA /* * put_user_unaligned: - Write a simple value into user space. * @x: Value to copy to user space. * @ptr: Destination address, in user space. * * Context: User context only. This function may sleep if pagefaults are * enabled. * * This macro copies a single simple value from kernel space to user * space. It supports simple types like char and int, but not larger * data types like structures or arrays. * * @ptr must have pointer-to-simple-variable type, and @x must be assignable * to the result of dereferencing @ptr. * * Returns zero on success, or -EFAULT on error. */ #define put_user_unaligned(x,ptr) \ __put_user_unaligned_check((x),(ptr),sizeof(*(ptr))) /* * get_user_unaligned: - Get a simple variable from user space. * @x: Variable to store result. * @ptr: Source address, in user space. * * Context: User context only. This function may sleep if pagefaults are * enabled. * * This macro copies a single simple variable from user space to kernel * space. It supports simple types like char and int, but not larger * data types like structures or arrays. * * @ptr must have pointer-to-simple-variable type, and the result of * dereferencing @ptr must be assignable to @x without a cast. * * Returns zero on success, or -EFAULT on error. * On error, the variable @x is set to zero. */ #define get_user_unaligned(x,ptr) \ __get_user_unaligned_check((x),(ptr),sizeof(*(ptr))) /* * __put_user_unaligned: - Write a simple value into user space, with less checking. * @x: Value to copy to user space. * @ptr: Destination address, in user space. * * Context: User context only. This function may sleep if pagefaults are * enabled. * * This macro copies a single simple value from kernel space to user * space. It supports simple types like char and int, but not larger * data types like structures or arrays. * * @ptr must have pointer-to-simple-variable type, and @x must be assignable * to the result of dereferencing @ptr. * * Caller must check the pointer with access_ok() before calling this * function. * * Returns zero on success, or -EFAULT on error. */ #define __put_user_unaligned(x,ptr) \ __put_user_unaligned_nocheck((x),(ptr),sizeof(*(ptr))) /* * __get_user_unaligned: - Get a simple variable from user space, with less checking. * @x: Variable to store result. * @ptr: Source address, in user space. * * Context: User context only. This function may sleep if pagefaults are * enabled. * * This macro copies a single simple variable from user space to kernel * space. It supports simple types like char and int, but not larger * data types like structures or arrays. * * @ptr must have pointer-to-simple-variable type, and the result of * dereferencing @ptr must be assignable to @x without a cast. * * Caller must check the pointer with access_ok() before calling this * function. * * Returns zero on success, or -EFAULT on error. * On error, the variable @x is set to zero. */ #define __get_user_unaligned(x,ptr) \ __get_user__unalignednocheck((x),(ptr),sizeof(*(ptr))) /* * Yuck. We need two variants, one for 64bit operation and one * for 32 bit mode and old iron. */ #ifdef CONFIG_32BIT #define __GET_USER_UNALIGNED_DW(val, ptr) \ __get_user_unaligned_asm_ll32(val, ptr) #endif #ifdef CONFIG_64BIT #define __GET_USER_UNALIGNED_DW(val, ptr) \ __get_user_unaligned_asm(val, "uld", ptr) #endif extern void __get_user_unaligned_unknown(void); #define __get_user_unaligned_common(val, size, ptr) \ do { \ switch (size) { \ case 1: __get_data_asm(val, "lb", ptr); break; \ case 2: __get_user_unaligned_asm(val, "ulh", ptr); break; \ case 4: __get_user_unaligned_asm(val, "ulw", ptr); break; \ case 8: __GET_USER_UNALIGNED_DW(val, ptr); break; \ default: __get_user_unaligned_unknown(); break; \ } \ } while (0) #define __get_user_unaligned_nocheck(x,ptr,size) \ ({ \ int __gu_err; \ \ __get_user_unaligned_common((x), size, ptr); \ __gu_err; \ }) #define __get_user_unaligned_check(x,ptr,size) \ ({ \ int __gu_err = -EFAULT; \ const __typeof__(*(ptr)) __user * __gu_ptr = (ptr); \ \ if (likely(access_ok(VERIFY_READ, __gu_ptr, size))) \ __get_user_unaligned_common((x), size, __gu_ptr); \ \ __gu_err; \ }) #define __get_data_unaligned_asm(val, insn, addr) \ { \ long __gu_tmp; \ \ __asm__ __volatile__( \ "1: " insn " %1, %3 \n" \ "2: \n" \ " .insn \n" \ " .section .fixup,\"ax\" \n" \ "3: li %0, %4 \n" \ " move %1, $0 \n" \ " j 2b \n" \ " .previous \n" \ " .section __ex_table,\"a\" \n" \ " "__UA_ADDR "\t1b, 3b \n" \ " "__UA_ADDR "\t1b + 4, 3b \n" \ " .previous \n" \ : "=r" (__gu_err), "=r" (__gu_tmp) \ : "0" (0), "o" (__m(addr)), "i" (-EFAULT)); \ \ (val) = (__typeof__(*(addr))) __gu_tmp; \ } /* * Get a long long 64 using 32 bit registers. */ #define __get_user_unaligned_asm_ll32(val, addr) \ { \ unsigned long long __gu_tmp; \ \ __asm__ __volatile__( \ "1: ulw %1, (%3) \n" \ "2: ulw %D1, 4(%3) \n" \ " move %0, $0 \n" \ "3: \n" \ " .insn \n" \ " .section .fixup,\"ax\" \n" \ "4: li %0, %4 \n" \ " move %1, $0 \n" \ " move %D1, $0 \n" \ " j 3b \n" \ " .previous \n" \ " .section __ex_table,\"a\" \n" \ " " __UA_ADDR " 1b, 4b \n" \ " " __UA_ADDR " 1b + 4, 4b \n" \ " " __UA_ADDR " 2b, 4b \n" \ " " __UA_ADDR " 2b + 4, 4b \n" \ " .previous \n" \ : "=r" (__gu_err), "=&r" (__gu_tmp) \ : "0" (0), "r" (addr), "i" (-EFAULT)); \ (val) = (__typeof__(*(addr))) __gu_tmp; \ } /* * Yuck. We need two variants, one for 64bit operation and one * for 32 bit mode and old iron. */ #ifdef CONFIG_32BIT #define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm_ll32(ptr) #endif #ifdef CONFIG_64BIT #define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm("usd", ptr) #endif #define __put_user_unaligned_common(ptr, size) \ do { \ switch (size) { \ case 1: __put_data_asm("sb", ptr); break; \ case 2: __put_user_unaligned_asm("ush", ptr); break; \ case 4: __put_user_unaligned_asm("usw", ptr); break; \ case 8: __PUT_USER_UNALIGNED_DW(ptr); break; \ default: __put_user_unaligned_unknown(); break; \ } while (0) #define __put_user_unaligned_nocheck(x,ptr,size) \ ({ \ __typeof__(*(ptr)) __pu_val; \ int __pu_err = 0; \ \ __pu_val = (x); \ __put_user_unaligned_common(ptr, size); \ __pu_err; \ }) #define __put_user_unaligned_check(x,ptr,size) \ ({ \ __typeof__(*(ptr)) __user *__pu_addr = (ptr); \ __typeof__(*(ptr)) __pu_val = (x); \ int __pu_err = -EFAULT; \ \ if (likely(access_ok(VERIFY_WRITE, __pu_addr, size))) \ __put_user_unaligned_common(__pu_addr, size); \ \ __pu_err; \ }) #define __put_user_unaligned_asm(insn, ptr) \ { \ __asm__ __volatile__( \ "1: " insn " %z2, %3 # __put_user_unaligned_asm\n" \ "2: \n" \ " .insn \n" \ " .section .fixup,\"ax\" \n" \ "3: li %0, %4 \n" \ " j 2b \n" \ " .previous \n" \ " .section __ex_table,\"a\" \n" \ " " __UA_ADDR " 1b, 3b \n" \ " .previous \n" \ : "=r" (__pu_err) \ : "0" (0), "Jr" (__pu_val), "o" (__m(ptr)), \ "i" (-EFAULT)); \ } #define __put_user_unaligned_asm_ll32(ptr) \ { \ __asm__ __volatile__( \ "1: sw %2, (%3) # __put_user_unaligned_asm_ll32 \n" \ "2: sw %D2, 4(%3) \n" \ "3: \n" \ " .insn \n" \ " .section .fixup,\"ax\" \n" \ "4: li %0, %4 \n" \ " j 3b \n" \ " .previous \n" \ " .section __ex_table,\"a\" \n" \ " " __UA_ADDR " 1b, 4b \n" \ " " __UA_ADDR " 1b + 4, 4b \n" \ " " __UA_ADDR " 2b, 4b \n" \ " " __UA_ADDR " 2b + 4, 4b \n" \ " .previous" \ : "=r" (__pu_err) \ : "0" (0), "r" (__pu_val), "r" (ptr), \ "i" (-EFAULT)); \ } extern void __put_user_unaligned_unknown(void); #endif /* * We're generating jump to subroutines which will be outside the range of * jump instructions */ #ifdef MODULE #define __MODULE_JAL(destination) \ ".set\tnoat\n\t" \ __UA_LA "\t$1, " #destination "\n\t" \ "jalr\t$1\n\t" \ ".set\tat\n\t" #else #define __MODULE_JAL(destination) \ "jal\t" #destination "\n\t" #endif #if defined(CONFIG_CPU_DADDI_WORKAROUNDS) || (defined(CONFIG_EVA) && \ defined(CONFIG_CPU_HAS_PREFETCH)) #define DADDI_SCRATCH "$3" #else #define DADDI_SCRATCH "$0" #endif extern size_t __copy_user(void *__to, const void *__from, size_t __n); #ifndef CONFIG_EVA #define __invoke_copy_to_user(to, from, n) \ ({ \ register void __user *__cu_to_r __asm__("$4"); \ register const void *__cu_from_r __asm__("$5"); \ register long __cu_len_r __asm__("$6"); \ \ __cu_to_r = (to); \ __cu_from_r = (from); \ __cu_len_r = (n); \ __asm__ __volatile__( \ __MODULE_JAL(__copy_user) \ : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \ : \ : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \ DADDI_SCRATCH, "memory"); \ __cu_len_r; \ }) #define __invoke_copy_to_kernel(to, from, n) \ __invoke_copy_to_user(to, from, n) #endif /* * __copy_to_user: - Copy a block of data into user space, with less checking. * @to: Destination address, in user space. * @from: Source address, in kernel space. * @n: Number of bytes to copy. * * Context: User context only. This function may sleep if pagefaults are * enabled. * * Copy data from kernel space to user space. Caller must check * the specified block with access_ok() before calling this function. * * Returns number of bytes that could not be copied. * On success, this will be zero. */ #define __copy_to_user(to, from, n) \ ({ \ void __user *__cu_to; \ const void *__cu_from; \ long __cu_len; \ \ __cu_to = (to); \ __cu_from = (from); \ __cu_len = (n); \ might_fault(); \ if (eva_kernel_access()) \ __cu_len = __invoke_copy_to_kernel(__cu_to, __cu_from, \ __cu_len); \ else \ __cu_len = __invoke_copy_to_user(__cu_to, __cu_from, \ __cu_len); \ __cu_len; \ }) extern size_t __copy_user_inatomic(void *__to, const void *__from, size_t __n); #define __copy_to_user_inatomic(to, from, n) \ ({ \ void __user *__cu_to; \ const void *__cu_from; \ long __cu_len; \ \ __cu_to = (to); \ __cu_from = (from); \ __cu_len = (n); \ if (eva_kernel_access()) \ __cu_len = __invoke_copy_to_kernel(__cu_to, __cu_from, \ __cu_len); \ else \ __cu_len = __invoke_copy_to_user(__cu_to, __cu_from, \ __cu_len); \ __cu_len; \ }) #define __copy_from_user_inatomic(to, from, n) \ ({ \ void *__cu_to; \ const void __user *__cu_from; \ long __cu_len; \ \ __cu_to = (to); \ __cu_from = (from); \ __cu_len = (n); \ if (eva_kernel_access()) \ __cu_len = __invoke_copy_from_kernel_inatomic(__cu_to, \ __cu_from,\ __cu_len);\ else \ __cu_len = __invoke_copy_from_user_inatomic(__cu_to, \ __cu_from, \ __cu_len); \ __cu_len; \ }) /* * copy_to_user: - Copy a block of data into user space. * @to: Destination address, in user space. * @from: Source address, in kernel space. * @n: Number of bytes to copy. * * Context: User context only. This function may sleep if pagefaults are * enabled. * * Copy data from kernel space to user space. * * Returns number of bytes that could not be copied. * On success, this will be zero. */ #define copy_to_user(to, from, n) \ ({ \ void __user *__cu_to; \ const void *__cu_from; \ long __cu_len; \ \ __cu_to = (to); \ __cu_from = (from); \ __cu_len = (n); \ if (eva_kernel_access()) { \ __cu_len = __invoke_copy_to_kernel(__cu_to, \ __cu_from, \ __cu_len); \ } else { \ if (access_ok(VERIFY_WRITE, __cu_to, __cu_len)) { \ might_fault(); \ __cu_len = __invoke_copy_to_user(__cu_to, \ __cu_from, \ __cu_len); \ } \ } \ __cu_len; \ }) #ifndef CONFIG_EVA #define __invoke_copy_from_user(to, from, n) \ ({ \ register void *__cu_to_r __asm__("$4"); \ register const void __user *__cu_from_r __asm__("$5"); \ register long __cu_len_r __asm__("$6"); \ \ __cu_to_r = (to); \ __cu_from_r = (from); \ __cu_len_r = (n); \ __asm__ __volatile__( \ ".set\tnoreorder\n\t" \ __MODULE_JAL(__copy_user) \ ".set\tnoat\n\t" \ __UA_ADDU "\t$1, %1, %2\n\t" \ ".set\tat\n\t" \ ".set\treorder" \ : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \ : \ : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \ DADDI_SCRATCH, "memory"); \ __cu_len_r; \ }) #define __invoke_copy_from_kernel(to, from, n) \ __invoke_copy_from_user(to, from, n) /* For userland <-> userland operations */ #define ___invoke_copy_in_user(to, from, n) \ __invoke_copy_from_user(to, from, n) /* For kernel <-> kernel operations */ #define ___invoke_copy_in_kernel(to, from, n) \ __invoke_copy_from_user(to, from, n) #define __invoke_copy_from_user_inatomic(to, from, n) \ ({ \ register void *__cu_to_r __asm__("$4"); \ register const void __user *__cu_from_r __asm__("$5"); \ register long __cu_len_r __asm__("$6"); \ \ __cu_to_r = (to); \ __cu_from_r = (from); \ __cu_len_r = (n); \ __asm__ __volatile__( \ ".set\tnoreorder\n\t" \ __MODULE_JAL(__copy_user_inatomic) \ ".set\tnoat\n\t" \ __UA_ADDU "\t$1, %1, %2\n\t" \ ".set\tat\n\t" \ ".set\treorder" \ : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \ : \ : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \ DADDI_SCRATCH, "memory"); \ __cu_len_r; \ }) #define __invoke_copy_from_kernel_inatomic(to, from, n) \ __invoke_copy_from_user_inatomic(to, from, n) \ #else /* EVA specific functions */ extern size_t __copy_user_inatomic_eva(void *__to, const void *__from, size_t __n); extern size_t __copy_from_user_eva(void *__to, const void *__from, size_t __n); extern size_t __copy_to_user_eva(void *__to, const void *__from, size_t __n); extern size_t __copy_in_user_eva(void *__to, const void *__from, size_t __n); #define __invoke_copy_from_user_eva_generic(to, from, n, func_ptr) \ ({ \ register void *__cu_to_r __asm__("$4"); \ register const void __user *__cu_from_r __asm__("$5"); \ register long __cu_len_r __asm__("$6"); \ \ __cu_to_r = (to); \ __cu_from_r = (from); \ __cu_len_r = (n); \ __asm__ __volatile__( \ ".set\tnoreorder\n\t" \ __MODULE_JAL(func_ptr) \ ".set\tnoat\n\t" \ __UA_ADDU "\t$1, %1, %2\n\t" \ ".set\tat\n\t" \ ".set\treorder" \ : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \ : \ : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \ DADDI_SCRATCH, "memory"); \ __cu_len_r; \ }) #define __invoke_copy_to_user_eva_generic(to, from, n, func_ptr) \ ({ \ register void *__cu_to_r __asm__("$4"); \ register const void __user *__cu_from_r __asm__("$5"); \ register long __cu_len_r __asm__("$6"); \ \ __cu_to_r = (to); \ __cu_from_r = (from); \ __cu_len_r = (n); \ __asm__ __volatile__( \ __MODULE_JAL(func_ptr) \ : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \ : \ : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \ DADDI_SCRATCH, "memory"); \ __cu_len_r; \ }) /* * Source or destination address is in userland. We need to go through * the TLB */ #define __invoke_copy_from_user(to, from, n) \ __invoke_copy_from_user_eva_generic(to, from, n, __copy_from_user_eva) #define __invoke_copy_from_user_inatomic(to, from, n) \ __invoke_copy_from_user_eva_generic(to, from, n, \ __copy_user_inatomic_eva) #define __invoke_copy_to_user(to, from, n) \ __invoke_copy_to_user_eva_generic(to, from, n, __copy_to_user_eva) #define ___invoke_copy_in_user(to, from, n) \ __invoke_copy_from_user_eva_generic(to, from, n, __copy_in_user_eva) /* * Source or destination address in the kernel. We are not going through * the TLB */ #define __invoke_copy_from_kernel(to, from, n) \ __invoke_copy_from_user_eva_generic(to, from, n, __copy_user) #define __invoke_copy_from_kernel_inatomic(to, from, n) \ __invoke_copy_from_user_eva_generic(to, from, n, __copy_user_inatomic) #define __invoke_copy_to_kernel(to, from, n) \ __invoke_copy_to_user_eva_generic(to, from, n, __copy_user) #define ___invoke_copy_in_kernel(to, from, n) \ __invoke_copy_from_user_eva_generic(to, from, n, __copy_user) #endif /* CONFIG_EVA */ /* * __copy_from_user: - Copy a block of data from user space, with less checking. * @to: Destination address, in kernel space. * @from: Source address, in user space. * @n: Number of bytes to copy. * * Context: User context only. This function may sleep if pagefaults are * enabled. * * Copy data from user space to kernel space. Caller must check * the specified block with access_ok() before calling this function. * * Returns number of bytes that could not be copied. * On success, this will be zero. * * If some data could not be copied, this function will pad the copied * data to the requested size using zero bytes. */ #define __copy_from_user(to, from, n) \ ({ \ void *__cu_to; \ const void __user *__cu_from; \ long __cu_len; \ \ __cu_to = (to); \ __cu_from = (from); \ __cu_len = (n); \ if (eva_kernel_access()) { \ __cu_len = __invoke_copy_from_kernel(__cu_to, \ __cu_from, \ __cu_len); \ } else { \ might_fault(); \ __cu_len = __invoke_copy_from_user(__cu_to, __cu_from, \ __cu_len); \ } \ __cu_len; \ }) /* * copy_from_user: - Copy a block of data from user space. * @to: Destination address, in kernel space. * @from: Source address, in user space. * @n: Number of bytes to copy. * * Context: User context only. This function may sleep if pagefaults are * enabled. * * Copy data from user space to kernel space. * * Returns number of bytes that could not be copied. * On success, this will be zero. * * If some data could not be copied, this function will pad the copied * data to the requested size using zero bytes. */ #define copy_from_user(to, from, n) \ ({ \ void *__cu_to; \ const void __user *__cu_from; \ long __cu_len; \ \ __cu_to = (to); \ __cu_from = (from); \ __cu_len = (n); \ if (eva_kernel_access()) { \ __cu_len = __invoke_copy_from_kernel(__cu_to, \ __cu_from, \ __cu_len); \ } else { \ if (access_ok(VERIFY_READ, __cu_from, __cu_len)) { \ might_fault(); \ __cu_len = __invoke_copy_from_user(__cu_to, \ __cu_from, \ __cu_len); \ } \ } \ __cu_len; \ }) #define __copy_in_user(to, from, n) \ ({ \ void __user *__cu_to; \ const void __user *__cu_from; \ long __cu_len; \ \ __cu_to = (to); \ __cu_from = (from); \ __cu_len = (n); \ if (eva_kernel_access()) { \ __cu_len = ___invoke_copy_in_kernel(__cu_to, __cu_from, \ __cu_len); \ } else { \ might_fault(); \ __cu_len = ___invoke_copy_in_user(__cu_to, __cu_from, \ __cu_len); \ } \ __cu_len; \ }) #define copy_in_user(to, from, n) \ ({ \ void __user *__cu_to; \ const void __user *__cu_from; \ long __cu_len; \ \ __cu_to = (to); \ __cu_from = (from); \ __cu_len = (n); \ if (eva_kernel_access()) { \ __cu_len = ___invoke_copy_in_kernel(__cu_to,__cu_from, \ __cu_len); \ } else { \ if (likely(access_ok(VERIFY_READ, __cu_from, __cu_len) &&\ access_ok(VERIFY_WRITE, __cu_to, __cu_len))) {\ might_fault(); \ __cu_len = ___invoke_copy_in_user(__cu_to, \ __cu_from, \ __cu_len); \ } \ } \ __cu_len; \ }) /* * __clear_user: - Zero a block of memory in user space, with less checking. * @to: Destination address, in user space. * @n: Number of bytes to zero. * * Zero a block of memory in user space. Caller must check * the specified block with access_ok() before calling this function. * * Returns number of bytes that could not be cleared. * On success, this will be zero. */ static inline __kernel_size_t __clear_user(void __user *addr, __kernel_size_t size) { __kernel_size_t res; might_fault(); __asm__ __volatile__( "move\t$4, %1\n\t" "move\t$5, $0\n\t" "move\t$6, %2\n\t" __MODULE_JAL(__bzero) "move\t%0, $6" : "=r" (res) : "r" (addr), "r" (size) : "$4", "$5", "$6", __UA_t0, __UA_t1, "$31"); return res; } #define clear_user(addr,n) \ ({ \ void __user * __cl_addr = (addr); \ unsigned long __cl_size = (n); \ if (__cl_size && access_ok(VERIFY_WRITE, \ __cl_addr, __cl_size)) \ __cl_size = __clear_user(__cl_addr, __cl_size); \ __cl_size; \ }) /* * __strncpy_from_user: - Copy a NUL terminated string from userspace, with less checking. * @dst: Destination address, in kernel space. This buffer must be at * least @count bytes long. * @src: Source address, in user space. * @count: Maximum number of bytes to copy, including the trailing NUL. * * Copies a NUL-terminated string from userspace to kernel space. * Caller must check the specified block with access_ok() before calling * this function. * * On success, returns the length of the string (not including the trailing * NUL). * * If access to userspace fails, returns -EFAULT (some data may have been * copied). * * If @count is smaller than the length of the string, copies @count bytes * and returns @count. */ static inline long __strncpy_from_user(char *__to, const char __user *__from, long __len) { long res; if (eva_kernel_access()) { __asm__ __volatile__( "move\t$4, %1\n\t" "move\t$5, %2\n\t" "move\t$6, %3\n\t" __MODULE_JAL(__strncpy_from_kernel_nocheck_asm) "move\t%0, $2" : "=r" (res) : "r" (__to), "r" (__from), "r" (__len) : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory"); } else { might_fault(); __asm__ __volatile__( "move\t$4, %1\n\t" "move\t$5, %2\n\t" "move\t$6, %3\n\t" __MODULE_JAL(__strncpy_from_user_nocheck_asm) "move\t%0, $2" : "=r" (res) : "r" (__to), "r" (__from), "r" (__len) : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory"); } return res; } /* * strncpy_from_user: - Copy a NUL terminated string from userspace. * @dst: Destination address, in kernel space. This buffer must be at * least @count bytes long. * @src: Source address, in user space. * @count: Maximum number of bytes to copy, including the trailing NUL. * * Copies a NUL-terminated string from userspace to kernel space. * * On success, returns the length of the string (not including the trailing * NUL). * * If access to userspace fails, returns -EFAULT (some data may have been * copied). * * If @count is smaller than the length of the string, copies @count bytes * and returns @count. */ static inline long strncpy_from_user(char *__to, const char __user *__from, long __len) { long res; if (eva_kernel_access()) { __asm__ __volatile__( "move\t$4, %1\n\t" "move\t$5, %2\n\t" "move\t$6, %3\n\t" __MODULE_JAL(__strncpy_from_kernel_asm) "move\t%0, $2" : "=r" (res) : "r" (__to), "r" (__from), "r" (__len) : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory"); } else { might_fault(); __asm__ __volatile__( "move\t$4, %1\n\t" "move\t$5, %2\n\t" "move\t$6, %3\n\t" __MODULE_JAL(__strncpy_from_user_asm) "move\t%0, $2" : "=r" (res) : "r" (__to), "r" (__from), "r" (__len) : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory"); } return res; } /* * strlen_user: - Get the size of a string in user space. * @str: The string to measure. * * Context: User context only. This function may sleep if pagefaults are * enabled. * * Get the size of a NUL-terminated string in user space. * * Returns the size of the string INCLUDING the terminating NUL. * On exception, returns 0. * * If there is a limit on the length of a valid string, you may wish to * consider using strnlen_user() instead. */ static inline long strlen_user(const char __user *s) { long res; if (eva_kernel_access()) { __asm__ __volatile__( "move\t$4, %1\n\t" __MODULE_JAL(__strlen_kernel_asm) "move\t%0, $2" : "=r" (res) : "r" (s) : "$2", "$4", __UA_t0, "$31"); } else { might_fault(); __asm__ __volatile__( "move\t$4, %1\n\t" __MODULE_JAL(__strlen_user_asm) "move\t%0, $2" : "=r" (res) : "r" (s) : "$2", "$4", __UA_t0, "$31"); } return res; } /* Returns: 0 if bad, string length+1 (memory size) of string if ok */ static inline long __strnlen_user(const char __user *s, long n) { long res; if (eva_kernel_access()) { __asm__ __volatile__( "move\t$4, %1\n\t" "move\t$5, %2\n\t" __MODULE_JAL(__strnlen_kernel_nocheck_asm) "move\t%0, $2" : "=r" (res) : "r" (s), "r" (n) : "$2", "$4", "$5", __UA_t0, "$31"); } else { might_fault(); __asm__ __volatile__( "move\t$4, %1\n\t" "move\t$5, %2\n\t" __MODULE_JAL(__strnlen_user_nocheck_asm) "move\t%0, $2" : "=r" (res) : "r" (s), "r" (n) : "$2", "$4", "$5", __UA_t0, "$31"); } return res; } /* * strnlen_user: - Get the size of a string in user space. * @str: The string to measure. * * Context: User context only. This function may sleep if pagefaults are * enabled. * * Get the size of a NUL-terminated string in user space. * * Returns the size of the string INCLUDING the terminating NUL. * On exception, returns 0. * If the string is too long, returns a value greater than @n. */ static inline long strnlen_user(const char __user *s, long n) { long res; might_fault(); if (eva_kernel_access()) { __asm__ __volatile__( "move\t$4, %1\n\t" "move\t$5, %2\n\t" __MODULE_JAL(__strnlen_kernel_asm) "move\t%0, $2" : "=r" (res) : "r" (s), "r" (n) : "$2", "$4", "$5", __UA_t0, "$31"); } else { __asm__ __volatile__( "move\t$4, %1\n\t" "move\t$5, %2\n\t" __MODULE_JAL(__strnlen_user_asm) "move\t%0, $2" : "=r" (res) : "r" (s), "r" (n) : "$2", "$4", "$5", __UA_t0, "$31"); } return res; } struct exception_table_entry { unsigned long insn; unsigned long nextinsn; }; extern int fixup_exception(struct pt_regs *regs); #endif /* _ASM_UACCESS_H */