#ifndef _HFI1_SDMA_H #define _HFI1_SDMA_H /* * Copyright(c) 2015, 2016 Intel Corporation. * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include #include #include #include "hfi.h" #include "verbs.h" #include "sdma_txreq.h" /* Hardware limit */ #define MAX_DESC 64 /* Hardware limit for SDMA packet size */ #define MAX_SDMA_PKT_SIZE ((16 * 1024) - 1) #define SDMA_MAP_NONE 0 #define SDMA_MAP_SINGLE 1 #define SDMA_MAP_PAGE 2 #define SDMA_AHG_VALUE_MASK 0xffff #define SDMA_AHG_VALUE_SHIFT 0 #define SDMA_AHG_INDEX_MASK 0xf #define SDMA_AHG_INDEX_SHIFT 16 #define SDMA_AHG_FIELD_LEN_MASK 0xf #define SDMA_AHG_FIELD_LEN_SHIFT 20 #define SDMA_AHG_FIELD_START_MASK 0x1f #define SDMA_AHG_FIELD_START_SHIFT 24 #define SDMA_AHG_UPDATE_ENABLE_MASK 0x1 #define SDMA_AHG_UPDATE_ENABLE_SHIFT 31 /* AHG modes */ /* * Be aware the ordering and values * for SDMA_AHG_APPLY_UPDATE[123] * are assumed in generating a skip * count in submit_tx() in sdma.c */ #define SDMA_AHG_NO_AHG 0 #define SDMA_AHG_COPY 1 #define SDMA_AHG_APPLY_UPDATE1 2 #define SDMA_AHG_APPLY_UPDATE2 3 #define SDMA_AHG_APPLY_UPDATE3 4 /* * Bits defined in the send DMA descriptor. */ #define SDMA_DESC0_FIRST_DESC_FLAG BIT_ULL(63) #define SDMA_DESC0_LAST_DESC_FLAG BIT_ULL(62) #define SDMA_DESC0_BYTE_COUNT_SHIFT 48 #define SDMA_DESC0_BYTE_COUNT_WIDTH 14 #define SDMA_DESC0_BYTE_COUNT_MASK \ ((1ULL << SDMA_DESC0_BYTE_COUNT_WIDTH) - 1) #define SDMA_DESC0_BYTE_COUNT_SMASK \ (SDMA_DESC0_BYTE_COUNT_MASK << SDMA_DESC0_BYTE_COUNT_SHIFT) #define SDMA_DESC0_PHY_ADDR_SHIFT 0 #define SDMA_DESC0_PHY_ADDR_WIDTH 48 #define SDMA_DESC0_PHY_ADDR_MASK \ ((1ULL << SDMA_DESC0_PHY_ADDR_WIDTH) - 1) #define SDMA_DESC0_PHY_ADDR_SMASK \ (SDMA_DESC0_PHY_ADDR_MASK << SDMA_DESC0_PHY_ADDR_SHIFT) #define SDMA_DESC1_HEADER_UPDATE1_SHIFT 32 #define SDMA_DESC1_HEADER_UPDATE1_WIDTH 32 #define SDMA_DESC1_HEADER_UPDATE1_MASK \ ((1ULL << SDMA_DESC1_HEADER_UPDATE1_WIDTH) - 1) #define SDMA_DESC1_HEADER_UPDATE1_SMASK \ (SDMA_DESC1_HEADER_UPDATE1_MASK << SDMA_DESC1_HEADER_UPDATE1_SHIFT) #define SDMA_DESC1_HEADER_MODE_SHIFT 13 #define SDMA_DESC1_HEADER_MODE_WIDTH 3 #define SDMA_DESC1_HEADER_MODE_MASK \ ((1ULL << SDMA_DESC1_HEADER_MODE_WIDTH) - 1) #define SDMA_DESC1_HEADER_MODE_SMASK \ (SDMA_DESC1_HEADER_MODE_MASK << SDMA_DESC1_HEADER_MODE_SHIFT) #define SDMA_DESC1_HEADER_INDEX_SHIFT 8 #define SDMA_DESC1_HEADER_INDEX_WIDTH 5 #define SDMA_DESC1_HEADER_INDEX_MASK \ ((1ULL << SDMA_DESC1_HEADER_INDEX_WIDTH) - 1) #define SDMA_DESC1_HEADER_INDEX_SMASK \ (SDMA_DESC1_HEADER_INDEX_MASK << SDMA_DESC1_HEADER_INDEX_SHIFT) #define SDMA_DESC1_HEADER_DWS_SHIFT 4 #define SDMA_DESC1_HEADER_DWS_WIDTH 4 #define SDMA_DESC1_HEADER_DWS_MASK \ ((1ULL << SDMA_DESC1_HEADER_DWS_WIDTH) - 1) #define SDMA_DESC1_HEADER_DWS_SMASK \ (SDMA_DESC1_HEADER_DWS_MASK << SDMA_DESC1_HEADER_DWS_SHIFT) #define SDMA_DESC1_GENERATION_SHIFT 2 #define SDMA_DESC1_GENERATION_WIDTH 2 #define SDMA_DESC1_GENERATION_MASK \ ((1ULL << SDMA_DESC1_GENERATION_WIDTH) - 1) #define SDMA_DESC1_GENERATION_SMASK \ (SDMA_DESC1_GENERATION_MASK << SDMA_DESC1_GENERATION_SHIFT) #define SDMA_DESC1_INT_REQ_FLAG BIT_ULL(1) #define SDMA_DESC1_HEAD_TO_HOST_FLAG BIT_ULL(0) enum sdma_states { sdma_state_s00_hw_down, sdma_state_s10_hw_start_up_halt_wait, sdma_state_s15_hw_start_up_clean_wait, sdma_state_s20_idle, sdma_state_s30_sw_clean_up_wait, sdma_state_s40_hw_clean_up_wait, sdma_state_s50_hw_halt_wait, sdma_state_s60_idle_halt_wait, sdma_state_s80_hw_freeze, sdma_state_s82_freeze_sw_clean, sdma_state_s99_running, }; enum sdma_events { sdma_event_e00_go_hw_down, sdma_event_e10_go_hw_start, sdma_event_e15_hw_halt_done, sdma_event_e25_hw_clean_up_done, sdma_event_e30_go_running, sdma_event_e40_sw_cleaned, sdma_event_e50_hw_cleaned, sdma_event_e60_hw_halted, sdma_event_e70_go_idle, sdma_event_e80_hw_freeze, sdma_event_e81_hw_frozen, sdma_event_e82_hw_unfreeze, sdma_event_e85_link_down, sdma_event_e90_sw_halted, }; struct sdma_set_state_action { unsigned op_enable:1; unsigned op_intenable:1; unsigned op_halt:1; unsigned op_cleanup:1; unsigned go_s99_running_tofalse:1; unsigned go_s99_running_totrue:1; }; struct sdma_state { struct kref kref; struct completion comp; enum sdma_states current_state; unsigned current_op; unsigned go_s99_running; /* debugging/development */ enum sdma_states previous_state; unsigned previous_op; enum sdma_events last_event; }; /** * DOC: sdma exported routines * * These sdma routines fit into three categories: * - The SDMA API for building and submitting packets * to the ring * * - Initialization and tear down routines to buildup * and tear down SDMA * * - ISR entrances to handle interrupts, state changes * and errors */ /** * DOC: sdma PSM/verbs API * * The sdma API is designed to be used by both PSM * and verbs to supply packets to the SDMA ring. * * The usage of the API is as follows: * * Embed a struct iowait in the QP or * PQ. The iowait should be initialized with a * call to iowait_init(). * * The user of the API should create an allocation method * for their version of the txreq. slabs, pre-allocated lists, * and dma pools can be used. Once the user's overload of * the sdma_txreq has been allocated, the sdma_txreq member * must be initialized with sdma_txinit() or sdma_txinit_ahg(). * * The txreq must be declared with the sdma_txreq first. * * The tx request, once initialized, is manipulated with calls to * sdma_txadd_daddr(), sdma_txadd_page(), or sdma_txadd_kvaddr() * for each disjoint memory location. It is the user's responsibility * to understand the packet boundaries and page boundaries to do the * appropriate number of sdma_txadd_* calls.. The user * must be prepared to deal with failures from these routines due to * either memory allocation or dma_mapping failures. * * The mapping specifics for each memory location are recorded * in the tx. Memory locations added with sdma_txadd_page() * and sdma_txadd_kvaddr() are automatically mapped when added * to the tx and nmapped as part of the progress processing in the * SDMA interrupt handling. * * sdma_txadd_daddr() is used to add an dma_addr_t memory to the * tx. An example of a use case would be a pre-allocated * set of headers allocated via dma_pool_alloc() or * dma_alloc_coherent(). For these memory locations, it * is the responsibility of the user to handle that unmapping. * (This would usually be at an unload or job termination.) * * The routine sdma_send_txreq() is used to submit * a tx to the ring after the appropriate number of * sdma_txadd_* have been done. * * If it is desired to send a burst of sdma_txreqs, sdma_send_txlist() * can be used to submit a list of packets. * * The user is free to use the link overhead in the struct sdma_txreq as * long as the tx isn't in flight. * * The extreme degenerate case of the number of descriptors * exceeding the ring size is automatically handled as * memory locations are added. An overflow of the descriptor * array that is part of the sdma_txreq is also automatically * handled. * */ /** * DOC: Infrastructure calls * * sdma_init() is used to initialize data structures and * CSRs for the desired number of SDMA engines. * * sdma_start() is used to kick the SDMA engines initialized * with sdma_init(). Interrupts must be enabled at this * point since aspects of the state machine are interrupt * driven. * * sdma_engine_error() and sdma_engine_interrupt() are * entrances for interrupts. * * sdma_map_init() is for the management of the mapping * table when the number of vls is changed. * */ /* * struct hw_sdma_desc - raw 128 bit SDMA descriptor * * This is the raw descriptor in the SDMA ring */ struct hw_sdma_desc { /* private: don't use directly */ __le64 qw[2]; }; /** * struct sdma_engine - Data pertaining to each SDMA engine. * @dd: a back-pointer to the device data * @ppd: per port back-pointer * @imask: mask for irq manipulation * @idle_mask: mask for determining if an interrupt is due to sdma_idle * * This structure has the state for each sdma_engine. * * Accessing to non public fields are not supported * since the private members are subject to change. */ struct sdma_engine { /* read mostly */ struct hfi1_devdata *dd; struct hfi1_pportdata *ppd; /* private: */ void __iomem *tail_csr; u64 imask; /* clear interrupt mask */ u64 idle_mask; u64 progress_mask; u64 int_mask; /* private: */ volatile __le64 *head_dma; /* DMA'ed by chip */ /* private: */ dma_addr_t head_phys; /* private: */ struct hw_sdma_desc *descq; /* private: */ unsigned descq_full_count; struct sdma_txreq **tx_ring; /* private: */ dma_addr_t descq_phys; /* private */ u32 sdma_mask; /* private */ struct sdma_state state; /* private */ int cpu; /* private: */ u8 sdma_shift; /* private: */ u8 this_idx; /* zero relative engine */ /* protect changes to senddmactrl shadow */ spinlock_t senddmactrl_lock; /* private: */ u64 p_senddmactrl; /* shadow per-engine SendDmaCtrl */ /* read/write using tail_lock */ spinlock_t tail_lock ____cacheline_aligned_in_smp; #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER /* private: */ u64 tail_sn; #endif /* private: */ u32 descq_tail; /* private: */ unsigned long ahg_bits; /* private: */ u16 desc_avail; /* private: */ u16 tx_tail; /* private: */ u16 descq_cnt; /* read/write using head_lock */ /* private: */ seqlock_t head_lock ____cacheline_aligned_in_smp; #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER /* private: */ u64 head_sn; #endif /* private: */ u32 descq_head; /* private: */ u16 tx_head; /* private: */ u64 last_status; /* private */ u64 err_cnt; /* private */ u64 sdma_int_cnt; u64 idle_int_cnt; u64 progress_int_cnt; /* private: */ struct list_head dmawait; /* CONFIG SDMA for now, just blindly duplicate */ /* private: */ struct tasklet_struct sdma_hw_clean_up_task ____cacheline_aligned_in_smp; /* private: */ struct tasklet_struct sdma_sw_clean_up_task ____cacheline_aligned_in_smp; /* private: */ struct work_struct err_halt_worker; /* private */ struct timer_list err_progress_check_timer; u32 progress_check_head; /* private: */ struct work_struct flush_worker; /* protect flush list */ spinlock_t flushlist_lock; /* private: */ struct list_head flushlist; struct cpumask cpu_mask; struct kobject kobj; u32 msix_intr; }; int sdma_init(struct hfi1_devdata *dd, u8 port); void sdma_start(struct hfi1_devdata *dd); void sdma_exit(struct hfi1_devdata *dd); void sdma_clean(struct hfi1_devdata *dd, size_t num_engines); void sdma_all_running(struct hfi1_devdata *dd); void sdma_all_idle(struct hfi1_devdata *dd); void sdma_freeze_notify(struct hfi1_devdata *dd, int go_idle); void sdma_freeze(struct hfi1_devdata *dd); void sdma_unfreeze(struct hfi1_devdata *dd); void sdma_wait(struct hfi1_devdata *dd); /** * sdma_empty() - idle engine test * @engine: sdma engine * * Currently used by verbs as a latency optimization. * * Return: * 1 - empty, 0 - non-empty */ static inline int sdma_empty(struct sdma_engine *sde) { return sde->descq_tail == sde->descq_head; } static inline u16 sdma_descq_freecnt(struct sdma_engine *sde) { return sde->descq_cnt - (sde->descq_tail - READ_ONCE(sde->descq_head)) - 1; } static inline u16 sdma_descq_inprocess(struct sdma_engine *sde) { return sde->descq_cnt - sdma_descq_freecnt(sde); } /* * Either head_lock or tail lock required to see * a steady state. */ static inline int __sdma_running(struct sdma_engine *engine) { return engine->state.current_state == sdma_state_s99_running; } /** * sdma_running() - state suitability test * @engine: sdma engine * * sdma_running probes the internal state to determine if it is suitable * for submitting packets. * * Return: * 1 - ok to submit, 0 - not ok to submit * */ static inline int sdma_running(struct sdma_engine *engine) { unsigned long flags; int ret; spin_lock_irqsave(&engine->tail_lock, flags); ret = __sdma_running(engine); spin_unlock_irqrestore(&engine->tail_lock, flags); return ret; } void _sdma_txreq_ahgadd( struct sdma_txreq *tx, u8 num_ahg, u8 ahg_entry, u32 *ahg, u8 ahg_hlen); /** * sdma_txinit_ahg() - initialize an sdma_txreq struct with AHG * @tx: tx request to initialize * @flags: flags to key last descriptor additions * @tlen: total packet length (pbc + headers + data) * @ahg_entry: ahg entry to use (0 - 31) * @num_ahg: ahg descriptor for first descriptor (0 - 9) * @ahg: array of AHG descriptors (up to 9 entries) * @ahg_hlen: number of bytes from ASIC entry to use * @cb: callback * * The allocation of the sdma_txreq and it enclosing structure is user * dependent. This routine must be called to initialize the user independent * fields. * * The currently supported flags are SDMA_TXREQ_F_URGENT, * SDMA_TXREQ_F_AHG_COPY, and SDMA_TXREQ_F_USE_AHG. * * SDMA_TXREQ_F_URGENT is used for latency sensitive situations where the * completion is desired as soon as possible. * * SDMA_TXREQ_F_AHG_COPY causes the header in the first descriptor to be * copied to chip entry. SDMA_TXREQ_F_USE_AHG causes the code to add in * the AHG descriptors into the first 1 to 3 descriptors. * * Completions of submitted requests can be gotten on selected * txreqs by giving a completion routine callback to sdma_txinit() or * sdma_txinit_ahg(). The environment in which the callback runs * can be from an ISR, a tasklet, or a thread, so no sleeping * kernel routines can be used. Aspects of the sdma ring may * be locked so care should be taken with locking. * * The callback pointer can be NULL to avoid any callback for the packet * being submitted. The callback will be provided this tx, a status, and a flag. * * The status will be one of SDMA_TXREQ_S_OK, SDMA_TXREQ_S_SENDERROR, * SDMA_TXREQ_S_ABORTED, or SDMA_TXREQ_S_SHUTDOWN. * * The flag, if the is the iowait had been used, indicates the iowait * sdma_busy count has reached zero. * * user data portion of tlen should be precise. The sdma_txadd_* entrances * will pad with a descriptor references 1 - 3 bytes when the number of bytes * specified in tlen have been supplied to the sdma_txreq. * * ahg_hlen is used to determine the number of on-chip entry bytes to * use as the header. This is for cases where the stored header is * larger than the header to be used in a packet. This is typical * for verbs where an RDMA_WRITE_FIRST is larger than the packet in * and RDMA_WRITE_MIDDLE. * */ static inline int sdma_txinit_ahg( struct sdma_txreq *tx, u16 flags, u16 tlen, u8 ahg_entry, u8 num_ahg, u32 *ahg, u8 ahg_hlen, void (*cb)(struct sdma_txreq *, int)) { if (tlen == 0) return -ENODATA; if (tlen > MAX_SDMA_PKT_SIZE) return -EMSGSIZE; tx->desc_limit = ARRAY_SIZE(tx->descs); tx->descp = &tx->descs[0]; INIT_LIST_HEAD(&tx->list); tx->num_desc = 0; tx->flags = flags; tx->complete = cb; tx->coalesce_buf = NULL; tx->wait = NULL; tx->packet_len = tlen; tx->tlen = tx->packet_len; tx->descs[0].qw[0] = SDMA_DESC0_FIRST_DESC_FLAG; tx->descs[0].qw[1] = 0; if (flags & SDMA_TXREQ_F_AHG_COPY) tx->descs[0].qw[1] |= (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK) << SDMA_DESC1_HEADER_INDEX_SHIFT) | (((u64)SDMA_AHG_COPY & SDMA_DESC1_HEADER_MODE_MASK) << SDMA_DESC1_HEADER_MODE_SHIFT); else if (flags & SDMA_TXREQ_F_USE_AHG && num_ahg) _sdma_txreq_ahgadd(tx, num_ahg, ahg_entry, ahg, ahg_hlen); return 0; } /** * sdma_txinit() - initialize an sdma_txreq struct (no AHG) * @tx: tx request to initialize * @flags: flags to key last descriptor additions * @tlen: total packet length (pbc + headers + data) * @cb: callback pointer * * The allocation of the sdma_txreq and it enclosing structure is user * dependent. This routine must be called to initialize the user * independent fields. * * The currently supported flags is SDMA_TXREQ_F_URGENT. * * SDMA_TXREQ_F_URGENT is used for latency sensitive situations where the * completion is desired as soon as possible. * * Completions of submitted requests can be gotten on selected * txreqs by giving a completion routine callback to sdma_txinit() or * sdma_txinit_ahg(). The environment in which the callback runs * can be from an ISR, a tasklet, or a thread, so no sleeping * kernel routines can be used. The head size of the sdma ring may * be locked so care should be taken with locking. * * The callback pointer can be NULL to avoid any callback for the packet * being submitted. * * The callback, if non-NULL, will be provided this tx and a status. The * status will be one of SDMA_TXREQ_S_OK, SDMA_TXREQ_S_SENDERROR, * SDMA_TXREQ_S_ABORTED, or SDMA_TXREQ_S_SHUTDOWN. * */ static inline int sdma_txinit( struct sdma_txreq *tx, u16 flags, u16 tlen, void (*cb)(struct sdma_txreq *, int)) { return sdma_txinit_ahg(tx, flags, tlen, 0, 0, NULL, 0, cb); } /* helpers - don't use */ static inline int sdma_mapping_type(struct sdma_desc *d) { return (d->qw[1] & SDMA_DESC1_GENERATION_SMASK) >> SDMA_DESC1_GENERATION_SHIFT; } static inline size_t sdma_mapping_len(struct sdma_desc *d) { return (d->qw[0] & SDMA_DESC0_BYTE_COUNT_SMASK) >> SDMA_DESC0_BYTE_COUNT_SHIFT; } static inline dma_addr_t sdma_mapping_addr(struct sdma_desc *d) { return (d->qw[0] & SDMA_DESC0_PHY_ADDR_SMASK) >> SDMA_DESC0_PHY_ADDR_SHIFT; } static inline void make_tx_sdma_desc( struct sdma_txreq *tx, int type, dma_addr_t addr, size_t len) { struct sdma_desc *desc = &tx->descp[tx->num_desc]; if (!tx->num_desc) { /* qw[0] zero; qw[1] first, ahg mode already in from init */ desc->qw[1] |= ((u64)type & SDMA_DESC1_GENERATION_MASK) << SDMA_DESC1_GENERATION_SHIFT; } else { desc->qw[0] = 0; desc->qw[1] = ((u64)type & SDMA_DESC1_GENERATION_MASK) << SDMA_DESC1_GENERATION_SHIFT; } desc->qw[0] |= (((u64)addr & SDMA_DESC0_PHY_ADDR_MASK) << SDMA_DESC0_PHY_ADDR_SHIFT) | (((u64)len & SDMA_DESC0_BYTE_COUNT_MASK) << SDMA_DESC0_BYTE_COUNT_SHIFT); } /* helper to extend txreq */ int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx, int type, void *kvaddr, struct page *page, unsigned long offset, u16 len); int _pad_sdma_tx_descs(struct hfi1_devdata *, struct sdma_txreq *); void __sdma_txclean(struct hfi1_devdata *, struct sdma_txreq *); static inline void sdma_txclean(struct hfi1_devdata *dd, struct sdma_txreq *tx) { if (tx->num_desc) __sdma_txclean(dd, tx); } /* helpers used by public routines */ static inline void _sdma_close_tx(struct hfi1_devdata *dd, struct sdma_txreq *tx) { tx->descp[tx->num_desc].qw[0] |= SDMA_DESC0_LAST_DESC_FLAG; tx->descp[tx->num_desc].qw[1] |= dd->default_desc1; if (tx->flags & SDMA_TXREQ_F_URGENT) tx->descp[tx->num_desc].qw[1] |= (SDMA_DESC1_HEAD_TO_HOST_FLAG | SDMA_DESC1_INT_REQ_FLAG); } static inline int _sdma_txadd_daddr( struct hfi1_devdata *dd, int type, struct sdma_txreq *tx, dma_addr_t addr, u16 len) { int rval = 0; make_tx_sdma_desc( tx, type, addr, len); WARN_ON(len > tx->tlen); tx->tlen -= len; /* special cases for last */ if (!tx->tlen) { if (tx->packet_len & (sizeof(u32) - 1)) { rval = _pad_sdma_tx_descs(dd, tx); if (rval) return rval; } else { _sdma_close_tx(dd, tx); } } tx->num_desc++; return rval; } /** * sdma_txadd_page() - add a page to the sdma_txreq * @dd: the device to use for mapping * @tx: tx request to which the page is added * @page: page to map * @offset: offset within the page * @len: length in bytes * * This is used to add a page/offset/length descriptor. * * The mapping/unmapping of the page/offset/len is automatically handled. * * Return: * 0 - success, -ENOSPC - mapping fail, -ENOMEM - couldn't * extend/coalesce descriptor array */ static inline int sdma_txadd_page( struct hfi1_devdata *dd, struct sdma_txreq *tx, struct page *page, unsigned long offset, u16 len) { dma_addr_t addr; int rval; if ((unlikely(tx->num_desc == tx->desc_limit))) { rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_PAGE, NULL, page, offset, len); if (rval <= 0) return rval; } addr = dma_map_page( &dd->pcidev->dev, page, offset, len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) { __sdma_txclean(dd, tx); return -ENOSPC; } return _sdma_txadd_daddr( dd, SDMA_MAP_PAGE, tx, addr, len); } /** * sdma_txadd_daddr() - add a dma address to the sdma_txreq * @dd: the device to use for mapping * @tx: sdma_txreq to which the page is added * @addr: dma address mapped by caller * @len: length in bytes * * This is used to add a descriptor for memory that is already dma mapped. * * In this case, there is no unmapping as part of the progress processing for * this memory location. * * Return: * 0 - success, -ENOMEM - couldn't extend descriptor array */ static inline int sdma_txadd_daddr( struct hfi1_devdata *dd, struct sdma_txreq *tx, dma_addr_t addr, u16 len) { int rval; if ((unlikely(tx->num_desc == tx->desc_limit))) { rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_NONE, NULL, NULL, 0, 0); if (rval <= 0) return rval; } return _sdma_txadd_daddr(dd, SDMA_MAP_NONE, tx, addr, len); } /** * sdma_txadd_kvaddr() - add a kernel virtual address to sdma_txreq * @dd: the device to use for mapping * @tx: sdma_txreq to which the page is added * @kvaddr: the kernel virtual address * @len: length in bytes * * This is used to add a descriptor referenced by the indicated kvaddr and * len. * * The mapping/unmapping of the kvaddr and len is automatically handled. * * Return: * 0 - success, -ENOSPC - mapping fail, -ENOMEM - couldn't extend/coalesce * descriptor array */ static inline int sdma_txadd_kvaddr( struct hfi1_devdata *dd, struct sdma_txreq *tx, void *kvaddr, u16 len) { dma_addr_t addr; int rval; if ((unlikely(tx->num_desc == tx->desc_limit))) { rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_SINGLE, kvaddr, NULL, 0, len); if (rval <= 0) return rval; } addr = dma_map_single( &dd->pcidev->dev, kvaddr, len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) { __sdma_txclean(dd, tx); return -ENOSPC; } return _sdma_txadd_daddr( dd, SDMA_MAP_SINGLE, tx, addr, len); } struct iowait; int sdma_send_txreq(struct sdma_engine *sde, struct iowait *wait, struct sdma_txreq *tx, bool pkts_sent); int sdma_send_txlist(struct sdma_engine *sde, struct iowait *wait, struct list_head *tx_list, u32 *count); int sdma_ahg_alloc(struct sdma_engine *sde); void sdma_ahg_free(struct sdma_engine *sde, int ahg_index); /** * sdma_build_ahg - build ahg descriptor * @data * @dwindex * @startbit * @bits * * Build and return a 32 bit descriptor. */ static inline u32 sdma_build_ahg_descriptor( u16 data, u8 dwindex, u8 startbit, u8 bits) { return (u32)(1UL << SDMA_AHG_UPDATE_ENABLE_SHIFT | ((startbit & SDMA_AHG_FIELD_START_MASK) << SDMA_AHG_FIELD_START_SHIFT) | ((bits & SDMA_AHG_FIELD_LEN_MASK) << SDMA_AHG_FIELD_LEN_SHIFT) | ((dwindex & SDMA_AHG_INDEX_MASK) << SDMA_AHG_INDEX_SHIFT) | ((data & SDMA_AHG_VALUE_MASK) << SDMA_AHG_VALUE_SHIFT)); } /** * sdma_progress - use seq number of detect head progress * @sde: sdma_engine to check * @seq: base seq count * @tx: txreq for which we need to check descriptor availability * * This is used in the appropriate spot in the sleep routine * to check for potential ring progress. This routine gets the * seqcount before queuing the iowait structure for progress. * * If the seqcount indicates that progress needs to be checked, * re-submission is detected by checking whether the descriptor * queue has enough descriptor for the txreq. */ static inline unsigned sdma_progress(struct sdma_engine *sde, unsigned seq, struct sdma_txreq *tx) { if (read_seqretry(&sde->head_lock, seq)) { sde->desc_avail = sdma_descq_freecnt(sde); if (tx->num_desc > sde->desc_avail) return 0; return 1; } return 0; } /** * sdma_iowait_schedule() - initialize wait structure * @sde: sdma_engine to schedule * @wait: wait struct to schedule * * This function initializes the iowait * structure embedded in the QP or PQ. * */ static inline void sdma_iowait_schedule( struct sdma_engine *sde, struct iowait *wait) { struct hfi1_pportdata *ppd = sde->dd->pport; iowait_schedule(wait, ppd->hfi1_wq, sde->cpu); } /* for use by interrupt handling */ void sdma_engine_error(struct sdma_engine *sde, u64 status); void sdma_engine_interrupt(struct sdma_engine *sde, u64 status); /* * * The diagram below details the relationship of the mapping structures * * Since the mapping now allows for non-uniform engines per vl, the * number of engines for a vl is either the vl_engines[vl] or * a computation based on num_sdma/num_vls: * * For example: * nactual = vl_engines ? vl_engines[vl] : num_sdma/num_vls * * n = roundup to next highest power of 2 using nactual * * In the case where there are num_sdma/num_vls doesn't divide * evenly, the extras are added from the last vl downward. * * For the case where n > nactual, the engines are assigned * in a round robin fashion wrapping back to the first engine * for a particular vl. * * dd->sdma_map * | sdma_map_elem[0] * | +--------------------+ * v | mask | * sdma_vl_map |--------------------| * +--------------------------+ | sde[0] -> eng 1 | * | list (RCU) | |--------------------| * |--------------------------| ->| sde[1] -> eng 2 | * | mask | --/ |--------------------| * |--------------------------| -/ | * | * | actual_vls (max 8) | -/ |--------------------| * |--------------------------| --/ | sde[n-1] -> eng n | * | vls (max 8) | -/ +--------------------+ * |--------------------------| --/ * | map[0] |-/ * |--------------------------| +---------------------+ * | map[1] |--- | mask | * |--------------------------| \---- |---------------------| * | * | \-- | sde[0] -> eng 1+n | * | * | \---- |---------------------| * | * | \->| sde[1] -> eng 2+n | * |--------------------------| |---------------------| * | map[vls - 1] |- | * | * +--------------------------+ \- |---------------------| * \- | sde[m-1] -> eng m+n | * \ +---------------------+ * \- * \ * \- +----------------------+ * \- | mask | * \ |----------------------| * \- | sde[0] -> eng 1+m+n | * \- |----------------------| * >| sde[1] -> eng 2+m+n | * |----------------------| * | * | * |----------------------| * | sde[o-1] -> eng o+m+n| * +----------------------+ * */ /** * struct sdma_map_elem - mapping for a vl * @mask - selector mask * @sde - array of engines for this vl * * The mask is used to "mod" the selector * to produce index into the trailing * array of sdes. */ struct sdma_map_elem { u32 mask; struct sdma_engine *sde[0]; }; /** * struct sdma_map_el - mapping for a vl * @engine_to_vl - map of an engine to a vl * @list - rcu head for free callback * @mask - vl mask to "mod" the vl to produce an index to map array * @actual_vls - number of vls * @vls - number of vls rounded to next power of 2 * @map - array of sdma_map_elem entries * * This is the parent mapping structure. The trailing * members of the struct point to sdma_map_elem entries, which * in turn point to an array of sde's for that vl. */ struct sdma_vl_map { s8 engine_to_vl[TXE_NUM_SDMA_ENGINES]; struct rcu_head list; u32 mask; u8 actual_vls; u8 vls; struct sdma_map_elem *map[0]; }; int sdma_map_init( struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines); /* slow path */ void _sdma_engine_progress_schedule(struct sdma_engine *sde); /** * sdma_engine_progress_schedule() - schedule progress on engine * @sde: sdma_engine to schedule progress * * This is the fast path. * */ static inline void sdma_engine_progress_schedule( struct sdma_engine *sde) { if (!sde || sdma_descq_inprocess(sde) < (sde->descq_cnt / 8)) return; _sdma_engine_progress_schedule(sde); } struct sdma_engine *sdma_select_engine_sc( struct hfi1_devdata *dd, u32 selector, u8 sc5); struct sdma_engine *sdma_select_engine_vl( struct hfi1_devdata *dd, u32 selector, u8 vl); struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd, u32 selector, u8 vl); ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf); ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf, size_t count); int sdma_engine_get_vl(struct sdma_engine *sde); void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *); void sdma_seqfile_dump_cpu_list(struct seq_file *s, struct hfi1_devdata *dd, unsigned long cpuid); #ifdef CONFIG_SDMA_VERBOSITY void sdma_dumpstate(struct sdma_engine *); #endif static inline char *slashstrip(char *s) { char *r = s; while (*s) if (*s++ == '/') r = s; return r; } u16 sdma_get_descq_cnt(void); extern uint mod_num_sdma; void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid); #endif