/* Copyright (C) 2004 - 2008 rt2x00 SourceForge Project This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Module: rt2x00 Abstract: rt2x00 global information. */ #ifndef RT2X00_H #define RT2X00_H #include #include #include #include #include #include #include #include #include "rt2x00debug.h" #include "rt2x00leds.h" #include "rt2x00reg.h" #include "rt2x00queue.h" /* * Module information. */ #define DRV_VERSION "2.1.7" #define DRV_PROJECT "http://rt2x00.serialmonkey.com" /* * Debug definitions. * Debug output has to be enabled during compile time. */ #define DEBUG_PRINTK_MSG(__dev, __kernlvl, __lvl, __msg, __args...) \ printk(__kernlvl "%s -> %s: %s - " __msg, \ wiphy_name((__dev)->hw->wiphy), __FUNCTION__, __lvl, ##__args) #define DEBUG_PRINTK_PROBE(__kernlvl, __lvl, __msg, __args...) \ printk(__kernlvl "%s -> %s: %s - " __msg, \ KBUILD_MODNAME, __FUNCTION__, __lvl, ##__args) #ifdef CONFIG_RT2X00_DEBUG #define DEBUG_PRINTK(__dev, __kernlvl, __lvl, __msg, __args...) \ DEBUG_PRINTK_MSG(__dev, __kernlvl, __lvl, __msg, ##__args); #else #define DEBUG_PRINTK(__dev, __kernlvl, __lvl, __msg, __args...) \ do { } while (0) #endif /* CONFIG_RT2X00_DEBUG */ /* * Various debug levels. * The debug levels PANIC and ERROR both indicate serious problems, * for this reason they should never be ignored. * The special ERROR_PROBE message is for messages that are generated * when the rt2x00_dev is not yet initialized. */ #define PANIC(__dev, __msg, __args...) \ DEBUG_PRINTK_MSG(__dev, KERN_CRIT, "Panic", __msg, ##__args) #define ERROR(__dev, __msg, __args...) \ DEBUG_PRINTK_MSG(__dev, KERN_ERR, "Error", __msg, ##__args) #define ERROR_PROBE(__msg, __args...) \ DEBUG_PRINTK_PROBE(KERN_ERR, "Error", __msg, ##__args) #define WARNING(__dev, __msg, __args...) \ DEBUG_PRINTK(__dev, KERN_WARNING, "Warning", __msg, ##__args) #define NOTICE(__dev, __msg, __args...) \ DEBUG_PRINTK(__dev, KERN_NOTICE, "Notice", __msg, ##__args) #define INFO(__dev, __msg, __args...) \ DEBUG_PRINTK(__dev, KERN_INFO, "Info", __msg, ##__args) #define DEBUG(__dev, __msg, __args...) \ DEBUG_PRINTK(__dev, KERN_DEBUG, "Debug", __msg, ##__args) #define EEPROM(__dev, __msg, __args...) \ DEBUG_PRINTK(__dev, KERN_DEBUG, "EEPROM recovery", __msg, ##__args) /* * Standard timing and size defines. * These values should follow the ieee80211 specifications. */ #define ACK_SIZE 14 #define IEEE80211_HEADER 24 #define PLCP 48 #define BEACON 100 #define PREAMBLE 144 #define SHORT_PREAMBLE 72 #define SLOT_TIME 20 #define SHORT_SLOT_TIME 9 #define SIFS 10 #define PIFS ( SIFS + SLOT_TIME ) #define SHORT_PIFS ( SIFS + SHORT_SLOT_TIME ) #define DIFS ( PIFS + SLOT_TIME ) #define SHORT_DIFS ( SHORT_PIFS + SHORT_SLOT_TIME ) #define EIFS ( SIFS + (8 * (IEEE80211_HEADER + ACK_SIZE)) ) /* * IEEE802.11 header defines */ static inline int is_rts_frame(u16 fc) { return (((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL) && ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_RTS)); } static inline int is_cts_frame(u16 fc) { return (((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL) && ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_CTS)); } static inline int is_probe_resp(u16 fc) { return (((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) && ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP)); } static inline int is_beacon(u16 fc) { return (((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) && ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BEACON)); } /* * Chipset identification * The chipset on the device is composed of a RT and RF chip. * The chipset combination is important for determining device capabilities. */ struct rt2x00_chip { u16 rt; #define RT2460 0x0101 #define RT2560 0x0201 #define RT2570 0x1201 #define RT2561s 0x0301 /* Turbo */ #define RT2561 0x0302 #define RT2661 0x0401 #define RT2571 0x1300 u16 rf; u32 rev; }; /* * RF register values that belong to a particular channel. */ struct rf_channel { int channel; u32 rf1; u32 rf2; u32 rf3; u32 rf4; }; /* * Antenna setup values. */ struct antenna_setup { enum antenna rx; enum antenna tx; }; /* * Quality statistics about the currently active link. */ struct link_qual { /* * Statistics required for Link tuning. * For the average RSSI value we use the "Walking average" approach. * When adding RSSI to the average value the following calculation * is needed: * * avg_rssi = ((avg_rssi * 7) + rssi) / 8; * * The advantage of this approach is that we only need 1 variable * to store the average in (No need for a count and a total). * But more importantly, normal average values will over time * move less and less towards newly added values this results * that with link tuning, the device can have a very good RSSI * for a few minutes but when the device is moved away from the AP * the average will not decrease fast enough to compensate. * The walking average compensates this and will move towards * the new values correctly allowing a effective link tuning. */ int avg_rssi; int false_cca; /* * Statistics required for Signal quality calculation. * For calculating the Signal quality we have to determine * the total number of success and failed RX and TX frames. * After that we also use the average RSSI value to help * determining the signal quality. * For the calculation we will use the following algorithm: * * rssi_percentage = (avg_rssi * 100) / rssi_offset * rx_percentage = (rx_success * 100) / rx_total * tx_percentage = (tx_success * 100) / tx_total * avg_signal = ((WEIGHT_RSSI * avg_rssi) + * (WEIGHT_TX * tx_percentage) + * (WEIGHT_RX * rx_percentage)) / 100 * * This value should then be checked to not be greated then 100. */ int rx_percentage; int rx_success; int rx_failed; int tx_percentage; int tx_success; int tx_failed; #define WEIGHT_RSSI 20 #define WEIGHT_RX 40 #define WEIGHT_TX 40 }; /* * Antenna settings about the currently active link. */ struct link_ant { /* * Antenna flags */ unsigned int flags; #define ANTENNA_RX_DIVERSITY 0x00000001 #define ANTENNA_TX_DIVERSITY 0x00000002 #define ANTENNA_MODE_SAMPLE 0x00000004 /* * Currently active TX/RX antenna setup. * When software diversity is used, this will indicate * which antenna is actually used at this time. */ struct antenna_setup active; /* * RSSI information for the different antenna's. * These statistics are used to determine when * to switch antenna when using software diversity. * * rssi[0] -> Antenna A RSSI * rssi[1] -> Antenna B RSSI */ int rssi_history[2]; /* * Current RSSI average of the currently active antenna. * Similar to the avg_rssi in the link_qual structure * this value is updated by using the walking average. */ int rssi_ant; }; /* * To optimize the quality of the link we need to store * the quality of received frames and periodically * optimize the link. */ struct link { /* * Link tuner counter * The number of times the link has been tuned * since the radio has been switched on. */ u32 count; /* * Quality measurement values. */ struct link_qual qual; /* * TX/RX antenna setup. */ struct link_ant ant; /* * Active VGC level */ int vgc_level; /* * Work structure for scheduling periodic link tuning. */ struct delayed_work work; }; /* * Small helper macro to work with moving/walking averages. */ #define MOVING_AVERAGE(__avg, __val, __samples) \ ( (((__avg) * ((__samples) - 1)) + (__val)) / (__samples) ) /* * When we lack RSSI information return something less then -80 to * tell the driver to tune the device to maximum sensitivity. */ #define DEFAULT_RSSI ( -128 ) /* * Link quality access functions. */ static inline int rt2x00_get_link_rssi(struct link *link) { if (link->qual.avg_rssi && link->qual.rx_success) return link->qual.avg_rssi; return DEFAULT_RSSI; } static inline int rt2x00_get_link_ant_rssi(struct link *link) { if (link->ant.rssi_ant && link->qual.rx_success) return link->ant.rssi_ant; return DEFAULT_RSSI; } static inline void rt2x00_reset_link_ant_rssi(struct link *link) { link->ant.rssi_ant = 0; } static inline int rt2x00_get_link_ant_rssi_history(struct link *link, enum antenna ant) { if (link->ant.rssi_history[ant - ANTENNA_A]) return link->ant.rssi_history[ant - ANTENNA_A]; return DEFAULT_RSSI; } static inline int rt2x00_update_ant_rssi(struct link *link, int rssi) { int old_rssi = link->ant.rssi_history[link->ant.active.rx - ANTENNA_A]; link->ant.rssi_history[link->ant.active.rx - ANTENNA_A] = rssi; return old_rssi; } /* * Interface structure * Per interface configuration details, this structure * is allocated as the private data for ieee80211_vif. */ struct rt2x00_intf { /* * All fields within the rt2x00_intf structure * must be protected with a spinlock. */ spinlock_t lock; /* * BSS configuration. Copied from the structure * passed to us through the bss_info_changed() * callback funtion. */ struct ieee80211_bss_conf conf; /* * MAC of the device. */ u8 mac[ETH_ALEN]; /* * BBSID of the AP to associate with. */ u8 bssid[ETH_ALEN]; /* * Entry in the beacon queue which belongs to * this interface. Each interface has its own * dedicated beacon entry. */ struct queue_entry *beacon; /* * Actions that needed rescheduling. */ unsigned int delayed_flags; #define DELAYED_UPDATE_BEACON 0x00000001 #define DELAYED_CONFIG_ERP 0x00000002 #define DELAYED_LED_ASSOC 0x00000004 }; static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif) { return (struct rt2x00_intf *)vif->drv_priv; } /** * struct hw_mode_spec: Hardware specifications structure * * Details about the supported modes, rates and channels * of a particular chipset. This is used by rt2x00lib * to build the ieee80211_hw_mode array for mac80211. * * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz). * @supported_rates: Rate types which are supported (CCK, OFDM). * @num_channels: Number of supported channels. This is used as array size * for @tx_power_a, @tx_power_bg and @channels. * @channels: Device/chipset specific channel values (See &struct rf_channel). * @tx_power_a: TX power values for all 5.2GHz channels (may be NULL). * @tx_power_bg: TX power values for all 2.4GHz channels (may be NULL). * @tx_power_default: Default TX power value to use when either * @tx_power_a or @tx_power_bg is missing. */ struct hw_mode_spec { unsigned int supported_bands; #define SUPPORT_BAND_2GHZ 0x00000001 #define SUPPORT_BAND_5GHZ 0x00000002 unsigned int supported_rates; #define SUPPORT_RATE_CCK 0x00000001 #define SUPPORT_RATE_OFDM 0x00000002 unsigned int num_channels; const struct rf_channel *channels; const u8 *tx_power_a; const u8 *tx_power_bg; u8 tx_power_default; }; /* * Configuration structure wrapper around the * mac80211 configuration structure. * When mac80211 configures the driver, rt2x00lib * can precalculate values which are equal for all * rt2x00 drivers. Those values can be stored in here. */ struct rt2x00lib_conf { struct ieee80211_conf *conf; struct rf_channel rf; struct antenna_setup ant; enum ieee80211_band band; u32 basic_rates; u32 slot_time; short sifs; short pifs; short difs; short eifs; }; /* * Configuration structure for erp settings. */ struct rt2x00lib_erp { int short_preamble; int ack_timeout; int ack_consume_time; }; /* * Configuration structure wrapper around the * rt2x00 interface configuration handler. */ struct rt2x00intf_conf { /* * Interface type */ enum ieee80211_if_types type; /* * TSF sync value, this is dependant on the operation type. */ enum tsf_sync sync; /* * The MAC and BSSID addressess are simple array of bytes, * these arrays are little endian, so when sending the addressess * to the drivers, copy the it into a endian-signed variable. * * Note that all devices (except rt2500usb) have 32 bits * register word sizes. This means that whatever variable we * pass _must_ be a multiple of 32 bits. Otherwise the device * might not accept what we are sending to it. * This will also make it easier for the driver to write * the data to the device. */ __le32 mac[2]; __le32 bssid[2]; }; /* * rt2x00lib callback functions. */ struct rt2x00lib_ops { /* * Interrupt handlers. */ irq_handler_t irq_handler; /* * Device init handlers. */ int (*probe_hw) (struct rt2x00_dev *rt2x00dev); char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev); u16 (*get_firmware_crc) (void *data, const size_t len); int (*load_firmware) (struct rt2x00_dev *rt2x00dev, void *data, const size_t len); /* * Device initialization/deinitialization handlers. */ int (*initialize) (struct rt2x00_dev *rt2x00dev); void (*uninitialize) (struct rt2x00_dev *rt2x00dev); /* * queue initialization handlers */ void (*init_rxentry) (struct rt2x00_dev *rt2x00dev, struct queue_entry *entry); void (*init_txentry) (struct rt2x00_dev *rt2x00dev, struct queue_entry *entry); /* * Radio control handlers. */ int (*set_device_state) (struct rt2x00_dev *rt2x00dev, enum dev_state state); int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev); void (*link_stats) (struct rt2x00_dev *rt2x00dev, struct link_qual *qual); void (*reset_tuner) (struct rt2x00_dev *rt2x00dev); void (*link_tuner) (struct rt2x00_dev *rt2x00dev); /* * TX control handlers */ void (*write_tx_desc) (struct rt2x00_dev *rt2x00dev, struct sk_buff *skb, struct txentry_desc *txdesc); int (*write_tx_data) (struct queue_entry *entry); int (*get_tx_data_len) (struct rt2x00_dev *rt2x00dev, struct sk_buff *skb); void (*kick_tx_queue) (struct rt2x00_dev *rt2x00dev, const enum data_queue_qid queue); /* * RX control handlers */ void (*fill_rxdone) (struct queue_entry *entry, struct rxdone_entry_desc *rxdesc); /* * Configuration handlers. */ void (*config_filter) (struct rt2x00_dev *rt2x00dev, const unsigned int filter_flags); void (*config_intf) (struct rt2x00_dev *rt2x00dev, struct rt2x00_intf *intf, struct rt2x00intf_conf *conf, const unsigned int flags); #define CONFIG_UPDATE_TYPE ( 1 << 1 ) #define CONFIG_UPDATE_MAC ( 1 << 2 ) #define CONFIG_UPDATE_BSSID ( 1 << 3 ) void (*config_erp) (struct rt2x00_dev *rt2x00dev, struct rt2x00lib_erp *erp); void (*config) (struct rt2x00_dev *rt2x00dev, struct rt2x00lib_conf *libconf, const unsigned int flags); #define CONFIG_UPDATE_PHYMODE ( 1 << 1 ) #define CONFIG_UPDATE_CHANNEL ( 1 << 2 ) #define CONFIG_UPDATE_TXPOWER ( 1 << 3 ) #define CONFIG_UPDATE_ANTENNA ( 1 << 4 ) #define CONFIG_UPDATE_SLOT_TIME ( 1 << 5 ) #define CONFIG_UPDATE_BEACON_INT ( 1 << 6 ) #define CONFIG_UPDATE_ALL 0xffff }; /* * rt2x00 driver callback operation structure. */ struct rt2x00_ops { const char *name; const unsigned int max_sta_intf; const unsigned int max_ap_intf; const unsigned int eeprom_size; const unsigned int rf_size; const unsigned int tx_queues; const struct data_queue_desc *rx; const struct data_queue_desc *tx; const struct data_queue_desc *bcn; const struct data_queue_desc *atim; const struct rt2x00lib_ops *lib; const struct ieee80211_ops *hw; #ifdef CONFIG_RT2X00_LIB_DEBUGFS const struct rt2x00debug *debugfs; #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ }; /* * rt2x00 device flags */ enum rt2x00_flags { /* * Device state flags */ DEVICE_PRESENT, DEVICE_REGISTERED_HW, DEVICE_INITIALIZED, DEVICE_STARTED, DEVICE_STARTED_SUSPEND, DEVICE_ENABLED_RADIO, DEVICE_DISABLED_RADIO_HW, /* * Driver features */ DRIVER_REQUIRE_FIRMWARE, DRIVER_REQUIRE_BEACON_GUARD, DRIVER_REQUIRE_ATIM_QUEUE, DRIVER_REQUIRE_SCHEDULED, /* * Driver configuration */ CONFIG_SUPPORT_HW_BUTTON, CONFIG_FRAME_TYPE, CONFIG_RF_SEQUENCE, CONFIG_EXTERNAL_LNA_A, CONFIG_EXTERNAL_LNA_BG, CONFIG_DOUBLE_ANTENNA, CONFIG_DISABLE_LINK_TUNING, }; /* * rt2x00 device structure. */ struct rt2x00_dev { /* * Device structure. * The structure stored in here depends on the * system bus (PCI or USB). * When accessing this variable, the rt2x00dev_{pci,usb} * macro's should be used for correct typecasting. */ void *dev; #define rt2x00dev_pci(__dev) ( (struct pci_dev *)(__dev)->dev ) #define rt2x00dev_usb(__dev) ( (struct usb_interface *)(__dev)->dev ) #define rt2x00dev_usb_dev(__dev)\ ( (struct usb_device *)interface_to_usbdev(rt2x00dev_usb(__dev)) ) /* * Callback functions. */ const struct rt2x00_ops *ops; /* * IEEE80211 control structure. */ struct ieee80211_hw *hw; struct ieee80211_supported_band bands[IEEE80211_NUM_BANDS]; enum ieee80211_band curr_band; /* * rfkill structure for RF state switching support. * This will only be compiled in when required. */ #ifdef CONFIG_RT2X00_LIB_RFKILL unsigned long rfkill_state; #define RFKILL_STATE_ALLOCATED 1 #define RFKILL_STATE_REGISTERED 2 struct rfkill *rfkill; struct input_polled_dev *poll_dev; #endif /* CONFIG_RT2X00_LIB_RFKILL */ /* * If enabled, the debugfs interface structures * required for deregistration of debugfs. */ #ifdef CONFIG_RT2X00_LIB_DEBUGFS struct rt2x00debug_intf *debugfs_intf; #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ /* * LED structure for changing the LED status * by mac8011 or the kernel. */ #ifdef CONFIG_RT2X00_LIB_LEDS struct rt2x00_led led_radio; struct rt2x00_led led_assoc; struct rt2x00_led led_qual; u16 led_mcu_reg; #endif /* CONFIG_RT2X00_LIB_LEDS */ /* * Device flags. * In these flags the current status and some * of the device capabilities are stored. */ unsigned long flags; /* * Chipset identification. */ struct rt2x00_chip chip; /* * hw capability specifications. */ struct hw_mode_spec spec; /* * This is the default TX/RX antenna setup as indicated * by the device's EEPROM. When mac80211 sets its * antenna value to 0 we should be using these values. */ struct antenna_setup default_ant; /* * Register pointers * csr.base: CSR base register address. (PCI) * csr.cache: CSR cache for usb_control_msg. (USB) */ union csr { void __iomem *base; void *cache; } csr; /* * Mutex to protect register accesses on USB devices. * There are 2 reasons this is needed, one is to ensure * use of the csr_cache (for USB devices) by one thread * isn't corrupted by another thread trying to access it. * The other is that access to BBP and RF registers * require multiple BUS transactions and if another thread * attempted to access one of those registers at the same * time one of the writes could silently fail. */ struct mutex usb_cache_mutex; /* * Current packet filter configuration for the device. * This contains all currently active FIF_* flags send * to us by mac80211 during configure_filter(). */ unsigned int packet_filter; /* * Interface details: * - Open ap interface count. * - Open sta interface count. * - Association count. */ unsigned int intf_ap_count; unsigned int intf_sta_count; unsigned int intf_associated; /* * Link quality */ struct link link; /* * EEPROM data. */ __le16 *eeprom; /* * Active RF register values. * These are stored here so we don't need * to read the rf registers and can directly * use this value instead. * This field should be accessed by using * rt2x00_rf_read() and rt2x00_rf_write(). */ u32 *rf; /* * USB Max frame size (for rt2500usb & rt73usb). */ u16 usb_maxpacket; /* * Current TX power value. */ u16 tx_power; /* * Rssi <-> Dbm offset */ u8 rssi_offset; /* * Frequency offset (for rt61pci & rt73usb). */ u8 freq_offset; /* * Low level statistics which will have * to be kept up to date while device is running. */ struct ieee80211_low_level_stats low_level_stats; /* * RX configuration information. */ struct ieee80211_rx_status rx_status; /* * Scheduled work. */ struct work_struct intf_work; struct work_struct filter_work; /* * Data queue arrays for RX, TX and Beacon. * The Beacon array also contains the Atim queue * if that is supported by the device. */ int data_queues; struct data_queue *rx; struct data_queue *tx; struct data_queue *bcn; /* * Firmware image. */ const struct firmware *fw; }; /* * Generic RF access. * The RF is being accessed by word index. */ static inline void rt2x00_rf_read(struct rt2x00_dev *rt2x00dev, const unsigned int word, u32 *data) { *data = rt2x00dev->rf[word]; } static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev, const unsigned int word, u32 data) { rt2x00dev->rf[word] = data; } /* * Generic EEPROM access. * The EEPROM is being accessed by word index. */ static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev, const unsigned int word) { return (void *)&rt2x00dev->eeprom[word]; } static inline void rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev, const unsigned int word, u16 *data) { *data = le16_to_cpu(rt2x00dev->eeprom[word]); } static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev, const unsigned int word, u16 data) { rt2x00dev->eeprom[word] = cpu_to_le16(data); } /* * Chipset handlers */ static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev, const u16 rt, const u16 rf, const u32 rev) { INFO(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %08x.\n", rt, rf, rev); rt2x00dev->chip.rt = rt; rt2x00dev->chip.rf = rf; rt2x00dev->chip.rev = rev; } static inline char rt2x00_rt(const struct rt2x00_chip *chipset, const u16 chip) { return (chipset->rt == chip); } static inline char rt2x00_rf(const struct rt2x00_chip *chipset, const u16 chip) { return (chipset->rf == chip); } static inline u16 rt2x00_rev(const struct rt2x00_chip *chipset) { return chipset->rev; } static inline u16 rt2x00_check_rev(const struct rt2x00_chip *chipset, const u32 rev) { return (((chipset->rev & 0xffff0) == rev) && !!(chipset->rev & 0x0000f)); } /* * Duration calculations * The rate variable passed is: 100kbs. * To convert from bytes to bits we multiply size with 8, * then the size is multiplied with 10 to make the * real rate -> rate argument correction. */ static inline u16 get_duration(const unsigned int size, const u8 rate) { return ((size * 8 * 10) / rate); } static inline u16 get_duration_res(const unsigned int size, const u8 rate) { return ((size * 8 * 10) % rate); } /** * rt2x00queue_create_tx_descriptor - Create TX descriptor from mac80211 input * @entry: The entry which will be used to transfer the TX frame. * @txdesc: rt2x00 TX descriptor which will be initialized by this function. * * This function will initialize the &struct txentry_desc based on information * from mac80211. This descriptor can then be used by rt2x00lib and the drivers * to correctly initialize the hardware descriptor. * Note that before calling this function the skb->cb array must be untouched * by rt2x00lib. Only after this function completes will it be save to * overwrite the skb->cb information. * The reason for this is that mac80211 writes its own tx information into * the skb->cb array, and this function will use that information to initialize * the &struct txentry_desc structure. */ void rt2x00queue_create_tx_descriptor(struct queue_entry *entry, struct txentry_desc *txdesc); /** * rt2x00queue_write_tx_descriptor - Write TX descriptor to hardware * @entry: The entry which will be used to transfer the TX frame. * @txdesc: TX descriptor which will be used to write hardware descriptor * * This function will write a TX descriptor initialized by * &rt2x00queue_create_tx_descriptor to the hardware. After this call * has completed the frame is now owned by the hardware, the hardware * queue will have automatically be kicked unless this frame was generated * by rt2x00lib, in which case the frame is "special" and must be kicked * by the caller. */ void rt2x00queue_write_tx_descriptor(struct queue_entry *entry, struct txentry_desc *txdesc); /** * rt2x00queue_get_queue - Convert queue index to queue pointer * @rt2x00dev: Pointer to &struct rt2x00_dev. * @queue: rt2x00 queue index (see &enum data_queue_qid). */ struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev, const enum data_queue_qid queue); /** * rt2x00queue_get_entry - Get queue entry where the given index points to. * @queue: Pointer to &struct data_queue from where we obtain the entry. * @index: Index identifier for obtaining the correct index. */ struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue, enum queue_index index); /** * rt2x00queue_index_inc - Index incrementation function * @queue: Queue (&struct data_queue) to perform the action on. * @index: Index type (&enum queue_index) to perform the action on. * * This function will increase the requested index on the queue, * it will grab the appropriate locks and handle queue overflow events by * resetting the index to the start of the queue. */ void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index); /* * Interrupt context handlers. */ void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev); void rt2x00lib_txdone(struct queue_entry *entry, struct txdone_entry_desc *txdesc); void rt2x00lib_rxdone(struct queue_entry *entry, struct rxdone_entry_desc *rxdesc); /* * mac80211 handlers. */ int rt2x00mac_tx(struct ieee80211_hw *hw, struct sk_buff *skb); int rt2x00mac_start(struct ieee80211_hw *hw); void rt2x00mac_stop(struct ieee80211_hw *hw); int rt2x00mac_add_interface(struct ieee80211_hw *hw, struct ieee80211_if_init_conf *conf); void rt2x00mac_remove_interface(struct ieee80211_hw *hw, struct ieee80211_if_init_conf *conf); int rt2x00mac_config(struct ieee80211_hw *hw, struct ieee80211_conf *conf); int rt2x00mac_config_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_if_conf *conf); void rt2x00mac_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *total_flags, int mc_count, struct dev_addr_list *mc_list); int rt2x00mac_get_stats(struct ieee80211_hw *hw, struct ieee80211_low_level_stats *stats); int rt2x00mac_get_tx_stats(struct ieee80211_hw *hw, struct ieee80211_tx_queue_stats *stats); void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *bss_conf, u32 changes); int rt2x00mac_conf_tx(struct ieee80211_hw *hw, u16 queue, const struct ieee80211_tx_queue_params *params); /* * Driver allocation handlers. */ int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev); void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev); #ifdef CONFIG_PM int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state); int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev); #endif /* CONFIG_PM */ #endif /* RT2X00_H */