/* * tools/testing/selftests/kvm/lib/kvm_util.c * * Copyright (C) 2018, Google LLC. * * This work is licensed under the terms of the GNU GPL, version 2. */ #include "test_util.h" #include "kvm_util.h" #include "kvm_util_internal.h" #include #include #include #include #include #define KVM_UTIL_PGS_PER_HUGEPG 512 #define KVM_UTIL_MIN_PFN 2 /* Aligns x up to the next multiple of size. Size must be a power of 2. */ static void *align(void *x, size_t size) { size_t mask = size - 1; TEST_ASSERT(size != 0 && !(size & (size - 1)), "size not a power of 2: %lu", size); return (void *) (((size_t) x + mask) & ~mask); } /* * Capability * * Input Args: * cap - Capability * * Output Args: None * * Return: * On success, the Value corresponding to the capability (KVM_CAP_*) * specified by the value of cap. On failure a TEST_ASSERT failure * is produced. * * Looks up and returns the value corresponding to the capability * (KVM_CAP_*) given by cap. */ int kvm_check_cap(long cap) { int ret; int kvm_fd; kvm_fd = open(KVM_DEV_PATH, O_RDONLY); if (kvm_fd < 0) exit(KSFT_SKIP); ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap); TEST_ASSERT(ret != -1, "KVM_CHECK_EXTENSION IOCTL failed,\n" " rc: %i errno: %i", ret, errno); close(kvm_fd); return ret; } /* VM Enable Capability * * Input Args: * vm - Virtual Machine * cap - Capability * * Output Args: None * * Return: On success, 0. On failure a TEST_ASSERT failure is produced. * * Enables a capability (KVM_CAP_*) on the VM. */ int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap) { int ret; ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap); TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n" " rc: %i errno: %i", ret, errno); return ret; } static void vm_open(struct kvm_vm *vm, int perm) { vm->kvm_fd = open(KVM_DEV_PATH, perm); if (vm->kvm_fd < 0) exit(KSFT_SKIP); vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, NULL); TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, " "rc: %i errno: %i", vm->fd, errno); } const char * const vm_guest_mode_string[] = { "PA-bits:52, VA-bits:48, 4K pages", "PA-bits:52, VA-bits:48, 64K pages", "PA-bits:40, VA-bits:48, 4K pages", "PA-bits:40, VA-bits:48, 64K pages", }; /* * VM Create * * Input Args: * mode - VM Mode (e.g. VM_MODE_P52V48_4K) * phy_pages - Physical memory pages * perm - permission * * Output Args: None * * Return: * Pointer to opaque structure that describes the created VM. * * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K). * When phy_pages is non-zero, a memory region of phy_pages physical pages * is created and mapped starting at guest physical address 0. The file * descriptor to control the created VM is created with the permissions * given by perm (e.g. O_RDWR). */ struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm) { struct kvm_vm *vm; int kvm_fd; vm = calloc(1, sizeof(*vm)); TEST_ASSERT(vm != NULL, "Insufficient Memory"); vm->mode = mode; vm_open(vm, perm); /* Setup mode specific traits. */ switch (vm->mode) { case VM_MODE_P52V48_4K: vm->pgtable_levels = 4; vm->page_size = 0x1000; vm->page_shift = 12; vm->va_bits = 48; break; case VM_MODE_P52V48_64K: vm->pgtable_levels = 3; vm->pa_bits = 52; vm->page_size = 0x10000; vm->page_shift = 16; vm->va_bits = 48; break; case VM_MODE_P40V48_4K: vm->pgtable_levels = 4; vm->pa_bits = 40; vm->va_bits = 48; vm->page_size = 0x1000; vm->page_shift = 12; break; case VM_MODE_P40V48_64K: vm->pgtable_levels = 3; vm->pa_bits = 40; vm->va_bits = 48; vm->page_size = 0x10000; vm->page_shift = 16; break; default: TEST_ASSERT(false, "Unknown guest mode, mode: 0x%x", mode); } /* Limit to VA-bit canonical virtual addresses. */ vm->vpages_valid = sparsebit_alloc(); sparsebit_set_num(vm->vpages_valid, 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift); sparsebit_set_num(vm->vpages_valid, (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift, (1ULL << (vm->va_bits - 1)) >> vm->page_shift); /* Limit physical addresses to PA-bits. */ vm->max_gfn = ((1ULL << vm->pa_bits) >> vm->page_shift) - 1; /* Allocate and setup memory for guest. */ vm->vpages_mapped = sparsebit_alloc(); if (phy_pages != 0) vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, phy_pages, 0); return vm; } /* * VM Restart * * Input Args: * vm - VM that has been released before * perm - permission * * Output Args: None * * Reopens the file descriptors associated to the VM and reinstates the * global state, such as the irqchip and the memory regions that are mapped * into the guest. */ void kvm_vm_restart(struct kvm_vm *vmp, int perm) { struct userspace_mem_region *region; vm_open(vmp, perm); if (vmp->has_irqchip) vm_create_irqchip(vmp); for (region = vmp->userspace_mem_region_head; region; region = region->next) { int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" " rc: %i errno: %i\n" " slot: %u flags: 0x%x\n" " guest_phys_addr: 0x%lx size: 0x%lx", ret, errno, region->region.slot, region->region.flags, region->region.guest_phys_addr, region->region.memory_size); } } void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log) { struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot }; int ret; ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args); TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s", strerror(-ret)); } void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log, uint64_t first_page, uint32_t num_pages) { struct kvm_clear_dirty_log args = { .dirty_bitmap = log, .slot = slot, .first_page = first_page, .num_pages = num_pages }; int ret; ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args); TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s", strerror(-ret)); } /* * Userspace Memory Region Find * * Input Args: * vm - Virtual Machine * start - Starting VM physical address * end - Ending VM physical address, inclusive. * * Output Args: None * * Return: * Pointer to overlapping region, NULL if no such region. * * Searches for a region with any physical memory that overlaps with * any portion of the guest physical addresses from start to end * inclusive. If multiple overlapping regions exist, a pointer to any * of the regions is returned. Null is returned only when no overlapping * region exists. */ static struct userspace_mem_region * userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end) { struct userspace_mem_region *region; for (region = vm->userspace_mem_region_head; region; region = region->next) { uint64_t existing_start = region->region.guest_phys_addr; uint64_t existing_end = region->region.guest_phys_addr + region->region.memory_size - 1; if (start <= existing_end && end >= existing_start) return region; } return NULL; } /* * KVM Userspace Memory Region Find * * Input Args: * vm - Virtual Machine * start - Starting VM physical address * end - Ending VM physical address, inclusive. * * Output Args: None * * Return: * Pointer to overlapping region, NULL if no such region. * * Public interface to userspace_mem_region_find. Allows tests to look up * the memslot datastructure for a given range of guest physical memory. */ struct kvm_userspace_memory_region * kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end) { struct userspace_mem_region *region; region = userspace_mem_region_find(vm, start, end); if (!region) return NULL; return ®ion->region; } /* * VCPU Find * * Input Args: * vm - Virtual Machine * vcpuid - VCPU ID * * Output Args: None * * Return: * Pointer to VCPU structure * * Locates a vcpu structure that describes the VCPU specified by vcpuid and * returns a pointer to it. Returns NULL if the VM doesn't contain a VCPU * for the specified vcpuid. */ struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid) { struct vcpu *vcpup; for (vcpup = vm->vcpu_head; vcpup; vcpup = vcpup->next) { if (vcpup->id == vcpuid) return vcpup; } return NULL; } /* * VM VCPU Remove * * Input Args: * vm - Virtual Machine * vcpuid - VCPU ID * * Output Args: None * * Return: None, TEST_ASSERT failures for all error conditions * * Within the VM specified by vm, removes the VCPU given by vcpuid. */ static void vm_vcpu_rm(struct kvm_vm *vm, uint32_t vcpuid) { struct vcpu *vcpu = vcpu_find(vm, vcpuid); int ret; ret = munmap(vcpu->state, sizeof(*vcpu->state)); TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i " "errno: %i", ret, errno); close(vcpu->fd); TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i " "errno: %i", ret, errno); if (vcpu->next) vcpu->next->prev = vcpu->prev; if (vcpu->prev) vcpu->prev->next = vcpu->next; else vm->vcpu_head = vcpu->next; free(vcpu); } void kvm_vm_release(struct kvm_vm *vmp) { int ret; while (vmp->vcpu_head) vm_vcpu_rm(vmp, vmp->vcpu_head->id); ret = close(vmp->fd); TEST_ASSERT(ret == 0, "Close of vm fd failed,\n" " vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno); close(vmp->kvm_fd); TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n" " vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno); } /* * Destroys and frees the VM pointed to by vmp. */ void kvm_vm_free(struct kvm_vm *vmp) { int ret; if (vmp == NULL) return; /* Free userspace_mem_regions. */ while (vmp->userspace_mem_region_head) { struct userspace_mem_region *region = vmp->userspace_mem_region_head; region->region.memory_size = 0; ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, " "rc: %i errno: %i", ret, errno); vmp->userspace_mem_region_head = region->next; sparsebit_free(®ion->unused_phy_pages); ret = munmap(region->mmap_start, region->mmap_size); TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i", ret, errno); free(region); } /* Free sparsebit arrays. */ sparsebit_free(&vmp->vpages_valid); sparsebit_free(&vmp->vpages_mapped); kvm_vm_release(vmp); /* Free the structure describing the VM. */ free(vmp); } /* * Memory Compare, host virtual to guest virtual * * Input Args: * hva - Starting host virtual address * vm - Virtual Machine * gva - Starting guest virtual address * len - number of bytes to compare * * Output Args: None * * Input/Output Args: None * * Return: * Returns 0 if the bytes starting at hva for a length of len * are equal the guest virtual bytes starting at gva. Returns * a value < 0, if bytes at hva are less than those at gva. * Otherwise a value > 0 is returned. * * Compares the bytes starting at the host virtual address hva, for * a length of len, to the guest bytes starting at the guest virtual * address given by gva. */ int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len) { size_t amt; /* * Compare a batch of bytes until either a match is found * or all the bytes have been compared. */ for (uintptr_t offset = 0; offset < len; offset += amt) { uintptr_t ptr1 = (uintptr_t)hva + offset; /* * Determine host address for guest virtual address * at offset. */ uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset); /* * Determine amount to compare on this pass. * Don't allow the comparsion to cross a page boundary. */ amt = len - offset; if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift)) amt = vm->page_size - (ptr1 % vm->page_size); if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift)) amt = vm->page_size - (ptr2 % vm->page_size); assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift)); assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift)); /* * Perform the comparison. If there is a difference * return that result to the caller, otherwise need * to continue on looking for a mismatch. */ int ret = memcmp((void *)ptr1, (void *)ptr2, amt); if (ret != 0) return ret; } /* * No mismatch found. Let the caller know the two memory * areas are equal. */ return 0; } /* * VM Userspace Memory Region Add * * Input Args: * vm - Virtual Machine * backing_src - Storage source for this region. * NULL to use anonymous memory. * guest_paddr - Starting guest physical address * slot - KVM region slot * npages - Number of physical pages * flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES) * * Output Args: None * * Return: None * * Allocates a memory area of the number of pages specified by npages * and maps it to the VM specified by vm, at a starting physical address * given by guest_paddr. The region is created with a KVM region slot * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM. The * region is created with the flags given by flags. */ void vm_userspace_mem_region_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type, uint64_t guest_paddr, uint32_t slot, uint64_t npages, uint32_t flags) { int ret; unsigned long pmem_size = 0; struct userspace_mem_region *region; size_t huge_page_size = KVM_UTIL_PGS_PER_HUGEPG * vm->page_size; TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical " "address not on a page boundary.\n" " guest_paddr: 0x%lx vm->page_size: 0x%x", guest_paddr, vm->page_size); TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1) <= vm->max_gfn, "Physical range beyond maximum " "supported physical address,\n" " guest_paddr: 0x%lx npages: 0x%lx\n" " vm->max_gfn: 0x%lx vm->page_size: 0x%x", guest_paddr, npages, vm->max_gfn, vm->page_size); /* * Confirm a mem region with an overlapping address doesn't * already exist. */ region = (struct userspace_mem_region *) userspace_mem_region_find( vm, guest_paddr, guest_paddr + npages * vm->page_size); if (region != NULL) TEST_ASSERT(false, "overlapping userspace_mem_region already " "exists\n" " requested guest_paddr: 0x%lx npages: 0x%lx " "page_size: 0x%x\n" " existing guest_paddr: 0x%lx size: 0x%lx", guest_paddr, npages, vm->page_size, (uint64_t) region->region.guest_phys_addr, (uint64_t) region->region.memory_size); /* Confirm no region with the requested slot already exists. */ for (region = vm->userspace_mem_region_head; region; region = region->next) { if (region->region.slot == slot) break; if ((guest_paddr <= (region->region.guest_phys_addr + region->region.memory_size)) && ((guest_paddr + npages * vm->page_size) >= region->region.guest_phys_addr)) break; } if (region != NULL) TEST_ASSERT(false, "A mem region with the requested slot " "or overlapping physical memory range already exists.\n" " requested slot: %u paddr: 0x%lx npages: 0x%lx\n" " existing slot: %u paddr: 0x%lx size: 0x%lx", slot, guest_paddr, npages, region->region.slot, (uint64_t) region->region.guest_phys_addr, (uint64_t) region->region.memory_size); /* Allocate and initialize new mem region structure. */ region = calloc(1, sizeof(*region)); TEST_ASSERT(region != NULL, "Insufficient Memory"); region->mmap_size = npages * vm->page_size; /* Enough memory to align up to a huge page. */ if (src_type == VM_MEM_SRC_ANONYMOUS_THP) region->mmap_size += huge_page_size; region->mmap_start = mmap(NULL, region->mmap_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | (src_type == VM_MEM_SRC_ANONYMOUS_HUGETLB ? MAP_HUGETLB : 0), -1, 0); TEST_ASSERT(region->mmap_start != MAP_FAILED, "test_malloc failed, mmap_start: %p errno: %i", region->mmap_start, errno); /* Align THP allocation up to start of a huge page. */ region->host_mem = align(region->mmap_start, src_type == VM_MEM_SRC_ANONYMOUS_THP ? huge_page_size : 1); /* As needed perform madvise */ if (src_type == VM_MEM_SRC_ANONYMOUS || src_type == VM_MEM_SRC_ANONYMOUS_THP) { ret = madvise(region->host_mem, npages * vm->page_size, src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE); TEST_ASSERT(ret == 0, "madvise failed,\n" " addr: %p\n" " length: 0x%lx\n" " src_type: %x", region->host_mem, npages * vm->page_size, src_type); } region->unused_phy_pages = sparsebit_alloc(); sparsebit_set_num(region->unused_phy_pages, guest_paddr >> vm->page_shift, npages); region->region.slot = slot; region->region.flags = flags; region->region.guest_phys_addr = guest_paddr; region->region.memory_size = npages * vm->page_size; region->region.userspace_addr = (uintptr_t) region->host_mem; ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" " rc: %i errno: %i\n" " slot: %u flags: 0x%x\n" " guest_phys_addr: 0x%lx size: 0x%lx", ret, errno, slot, flags, guest_paddr, (uint64_t) region->region.memory_size); /* Add to linked-list of memory regions. */ if (vm->userspace_mem_region_head) vm->userspace_mem_region_head->prev = region; region->next = vm->userspace_mem_region_head; vm->userspace_mem_region_head = region; } /* * Memslot to region * * Input Args: * vm - Virtual Machine * memslot - KVM memory slot ID * * Output Args: None * * Return: * Pointer to memory region structure that describe memory region * using kvm memory slot ID given by memslot. TEST_ASSERT failure * on error (e.g. currently no memory region using memslot as a KVM * memory slot ID). */ static struct userspace_mem_region * memslot2region(struct kvm_vm *vm, uint32_t memslot) { struct userspace_mem_region *region; for (region = vm->userspace_mem_region_head; region; region = region->next) { if (region->region.slot == memslot) break; } if (region == NULL) { fprintf(stderr, "No mem region with the requested slot found,\n" " requested slot: %u\n", memslot); fputs("---- vm dump ----\n", stderr); vm_dump(stderr, vm, 2); TEST_ASSERT(false, "Mem region not found"); } return region; } /* * VM Memory Region Flags Set * * Input Args: * vm - Virtual Machine * flags - Starting guest physical address * * Output Args: None * * Return: None * * Sets the flags of the memory region specified by the value of slot, * to the values given by flags. */ void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags) { int ret; struct userspace_mem_region *region; region = memslot2region(vm, slot); region->region.flags = flags; ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" " rc: %i errno: %i slot: %u flags: 0x%x", ret, errno, slot, flags); } /* * VCPU mmap Size * * Input Args: None * * Output Args: None * * Return: * Size of VCPU state * * Returns the size of the structure pointed to by the return value * of vcpu_state(). */ static int vcpu_mmap_sz(void) { int dev_fd, ret; dev_fd = open(KVM_DEV_PATH, O_RDONLY); if (dev_fd < 0) exit(KSFT_SKIP); ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL); TEST_ASSERT(ret >= sizeof(struct kvm_run), "%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i", __func__, ret, errno); close(dev_fd); return ret; } /* * VM VCPU Add * * Input Args: * vm - Virtual Machine * vcpuid - VCPU ID * * Output Args: None * * Return: None * * Creates and adds to the VM specified by vm and virtual CPU with * the ID given by vcpuid. */ void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid, int pgd_memslot, int gdt_memslot) { struct vcpu *vcpu; /* Confirm a vcpu with the specified id doesn't already exist. */ vcpu = vcpu_find(vm, vcpuid); if (vcpu != NULL) TEST_ASSERT(false, "vcpu with the specified id " "already exists,\n" " requested vcpuid: %u\n" " existing vcpuid: %u state: %p", vcpuid, vcpu->id, vcpu->state); /* Allocate and initialize new vcpu structure. */ vcpu = calloc(1, sizeof(*vcpu)); TEST_ASSERT(vcpu != NULL, "Insufficient Memory"); vcpu->id = vcpuid; vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid); TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i", vcpu->fd, errno); TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size " "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi", vcpu_mmap_sz(), sizeof(*vcpu->state)); vcpu->state = (struct kvm_run *) mmap(NULL, sizeof(*vcpu->state), PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0); TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, " "vcpu id: %u errno: %i", vcpuid, errno); /* Add to linked-list of VCPUs. */ if (vm->vcpu_head) vm->vcpu_head->prev = vcpu; vcpu->next = vm->vcpu_head; vm->vcpu_head = vcpu; vcpu_setup(vm, vcpuid, pgd_memslot, gdt_memslot); } /* * VM Virtual Address Unused Gap * * Input Args: * vm - Virtual Machine * sz - Size (bytes) * vaddr_min - Minimum Virtual Address * * Output Args: None * * Return: * Lowest virtual address at or below vaddr_min, with at least * sz unused bytes. TEST_ASSERT failure if no area of at least * size sz is available. * * Within the VM specified by vm, locates the lowest starting virtual * address >= vaddr_min, that has at least sz unallocated bytes. A * TEST_ASSERT failure occurs for invalid input or no area of at least * sz unallocated bytes >= vaddr_min is available. */ static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min) { uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift; /* Determine lowest permitted virtual page index. */ uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift; if ((pgidx_start * vm->page_size) < vaddr_min) goto no_va_found; /* Loop over section with enough valid virtual page indexes. */ if (!sparsebit_is_set_num(vm->vpages_valid, pgidx_start, pages)) pgidx_start = sparsebit_next_set_num(vm->vpages_valid, pgidx_start, pages); do { /* * Are there enough unused virtual pages available at * the currently proposed starting virtual page index. * If not, adjust proposed starting index to next * possible. */ if (sparsebit_is_clear_num(vm->vpages_mapped, pgidx_start, pages)) goto va_found; pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped, pgidx_start, pages); if (pgidx_start == 0) goto no_va_found; /* * If needed, adjust proposed starting virtual address, * to next range of valid virtual addresses. */ if (!sparsebit_is_set_num(vm->vpages_valid, pgidx_start, pages)) { pgidx_start = sparsebit_next_set_num( vm->vpages_valid, pgidx_start, pages); if (pgidx_start == 0) goto no_va_found; } } while (pgidx_start != 0); no_va_found: TEST_ASSERT(false, "No vaddr of specified pages available, " "pages: 0x%lx", pages); /* NOT REACHED */ return -1; va_found: TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid, pgidx_start, pages), "Unexpected, invalid virtual page index range,\n" " pgidx_start: 0x%lx\n" " pages: 0x%lx", pgidx_start, pages); TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped, pgidx_start, pages), "Unexpected, pages already mapped,\n" " pgidx_start: 0x%lx\n" " pages: 0x%lx", pgidx_start, pages); return pgidx_start * vm->page_size; } /* * VM Virtual Address Allocate * * Input Args: * vm - Virtual Machine * sz - Size in bytes * vaddr_min - Minimum starting virtual address * data_memslot - Memory region slot for data pages * pgd_memslot - Memory region slot for new virtual translation tables * * Output Args: None * * Return: * Starting guest virtual address * * Allocates at least sz bytes within the virtual address space of the vm * given by vm. The allocated bytes are mapped to a virtual address >= * the address given by vaddr_min. Note that each allocation uses a * a unique set of pages, with the minimum real allocation being at least * a page. */ vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, uint32_t data_memslot, uint32_t pgd_memslot) { uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0); virt_pgd_alloc(vm, pgd_memslot); /* * Find an unused range of virtual page addresses of at least * pages in length. */ vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min); /* Map the virtual pages. */ for (vm_vaddr_t vaddr = vaddr_start; pages > 0; pages--, vaddr += vm->page_size) { vm_paddr_t paddr; paddr = vm_phy_page_alloc(vm, KVM_UTIL_MIN_PFN * vm->page_size, data_memslot); virt_pg_map(vm, vaddr, paddr, pgd_memslot); sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift); } return vaddr_start; } /* * Map a range of VM virtual address to the VM's physical address * * Input Args: * vm - Virtual Machine * vaddr - Virtuall address to map * paddr - VM Physical Address * size - The size of the range to map * pgd_memslot - Memory region slot for new virtual translation tables * * Output Args: None * * Return: None * * Within the VM given by vm, creates a virtual translation for the * page range starting at vaddr to the page range starting at paddr. */ void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, size_t size, uint32_t pgd_memslot) { size_t page_size = vm->page_size; size_t npages = size / page_size; TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow"); TEST_ASSERT(paddr + size > paddr, "Paddr overflow"); while (npages--) { virt_pg_map(vm, vaddr, paddr, pgd_memslot); vaddr += page_size; paddr += page_size; } } /* * Address VM Physical to Host Virtual * * Input Args: * vm - Virtual Machine * gpa - VM physical address * * Output Args: None * * Return: * Equivalent host virtual address * * Locates the memory region containing the VM physical address given * by gpa, within the VM given by vm. When found, the host virtual * address providing the memory to the vm physical address is returned. * A TEST_ASSERT failure occurs if no region containing gpa exists. */ void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa) { struct userspace_mem_region *region; for (region = vm->userspace_mem_region_head; region; region = region->next) { if ((gpa >= region->region.guest_phys_addr) && (gpa <= (region->region.guest_phys_addr + region->region.memory_size - 1))) return (void *) ((uintptr_t) region->host_mem + (gpa - region->region.guest_phys_addr)); } TEST_ASSERT(false, "No vm physical memory at 0x%lx", gpa); return NULL; } /* * Address Host Virtual to VM Physical * * Input Args: * vm - Virtual Machine * hva - Host virtual address * * Output Args: None * * Return: * Equivalent VM physical address * * Locates the memory region containing the host virtual address given * by hva, within the VM given by vm. When found, the equivalent * VM physical address is returned. A TEST_ASSERT failure occurs if no * region containing hva exists. */ vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva) { struct userspace_mem_region *region; for (region = vm->userspace_mem_region_head; region; region = region->next) { if ((hva >= region->host_mem) && (hva <= (region->host_mem + region->region.memory_size - 1))) return (vm_paddr_t) ((uintptr_t) region->region.guest_phys_addr + (hva - (uintptr_t) region->host_mem)); } TEST_ASSERT(false, "No mapping to a guest physical address, " "hva: %p", hva); return -1; } /* * VM Create IRQ Chip * * Input Args: * vm - Virtual Machine * * Output Args: None * * Return: None * * Creates an interrupt controller chip for the VM specified by vm. */ void vm_create_irqchip(struct kvm_vm *vm) { int ret; ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0); TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, " "rc: %i errno: %i", ret, errno); vm->has_irqchip = true; } /* * VM VCPU State * * Input Args: * vm - Virtual Machine * vcpuid - VCPU ID * * Output Args: None * * Return: * Pointer to structure that describes the state of the VCPU. * * Locates and returns a pointer to a structure that describes the * state of the VCPU with the given vcpuid. */ struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid) { struct vcpu *vcpu = vcpu_find(vm, vcpuid); TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); return vcpu->state; } /* * VM VCPU Run * * Input Args: * vm - Virtual Machine * vcpuid - VCPU ID * * Output Args: None * * Return: None * * Switch to executing the code for the VCPU given by vcpuid, within the VM * given by vm. */ void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid) { int ret = _vcpu_run(vm, vcpuid); TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, " "rc: %i errno: %i", ret, errno); } int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid) { struct vcpu *vcpu = vcpu_find(vm, vcpuid); int rc; TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); do { rc = ioctl(vcpu->fd, KVM_RUN, NULL); } while (rc == -1 && errno == EINTR); return rc; } /* * VM VCPU Set MP State * * Input Args: * vm - Virtual Machine * vcpuid - VCPU ID * mp_state - mp_state to be set * * Output Args: None * * Return: None * * Sets the MP state of the VCPU given by vcpuid, to the state given * by mp_state. */ void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_mp_state *mp_state) { struct vcpu *vcpu = vcpu_find(vm, vcpuid); int ret; TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state); TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, " "rc: %i errno: %i", ret, errno); } /* * VM VCPU Regs Get * * Input Args: * vm - Virtual Machine * vcpuid - VCPU ID * * Output Args: * regs - current state of VCPU regs * * Return: None * * Obtains the current register state for the VCPU specified by vcpuid * and stores it at the location given by regs. */ void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs) { struct vcpu *vcpu = vcpu_find(vm, vcpuid); int ret; TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); ret = ioctl(vcpu->fd, KVM_GET_REGS, regs); TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i", ret, errno); } /* * VM VCPU Regs Set * * Input Args: * vm - Virtual Machine * vcpuid - VCPU ID * regs - Values to set VCPU regs to * * Output Args: None * * Return: None * * Sets the regs of the VCPU specified by vcpuid to the values * given by regs. */ void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs) { struct vcpu *vcpu = vcpu_find(vm, vcpuid); int ret; TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); ret = ioctl(vcpu->fd, KVM_SET_REGS, regs); TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i", ret, errno); } void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_vcpu_events *events) { struct vcpu *vcpu = vcpu_find(vm, vcpuid); int ret; TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events); TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i", ret, errno); } void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_vcpu_events *events) { struct vcpu *vcpu = vcpu_find(vm, vcpuid); int ret; TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events); TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i", ret, errno); } /* * VM VCPU System Regs Get * * Input Args: * vm - Virtual Machine * vcpuid - VCPU ID * * Output Args: * sregs - current state of VCPU system regs * * Return: None * * Obtains the current system register state for the VCPU specified by * vcpuid and stores it at the location given by sregs. */ void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs) { struct vcpu *vcpu = vcpu_find(vm, vcpuid); int ret; TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs); TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i", ret, errno); } /* * VM VCPU System Regs Set * * Input Args: * vm - Virtual Machine * vcpuid - VCPU ID * sregs - Values to set VCPU system regs to * * Output Args: None * * Return: None * * Sets the system regs of the VCPU specified by vcpuid to the values * given by sregs. */ void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs) { int ret = _vcpu_sregs_set(vm, vcpuid, sregs); TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, " "rc: %i errno: %i", ret, errno); } int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs) { struct vcpu *vcpu = vcpu_find(vm, vcpuid); int ret; TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); return ioctl(vcpu->fd, KVM_SET_SREGS, sregs); } /* * VCPU Ioctl * * Input Args: * vm - Virtual Machine * vcpuid - VCPU ID * cmd - Ioctl number * arg - Argument to pass to the ioctl * * Return: None * * Issues an arbitrary ioctl on a VCPU fd. */ void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid, unsigned long cmd, void *arg) { int ret; ret = _vcpu_ioctl(vm, vcpuid, cmd, arg); TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)", cmd, ret, errno, strerror(errno)); } int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid, unsigned long cmd, void *arg) { struct vcpu *vcpu = vcpu_find(vm, vcpuid); int ret; TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); ret = ioctl(vcpu->fd, cmd, arg); return ret; } /* * VM Ioctl * * Input Args: * vm - Virtual Machine * cmd - Ioctl number * arg - Argument to pass to the ioctl * * Return: None * * Issues an arbitrary ioctl on a VM fd. */ void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg) { int ret; ret = ioctl(vm->fd, cmd, arg); TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)", cmd, ret, errno, strerror(errno)); } /* * VM Dump * * Input Args: * vm - Virtual Machine * indent - Left margin indent amount * * Output Args: * stream - Output FILE stream * * Return: None * * Dumps the current state of the VM given by vm, to the FILE stream * given by stream. */ void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) { struct userspace_mem_region *region; struct vcpu *vcpu; fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode); fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd); fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size); fprintf(stream, "%*sMem Regions:\n", indent, ""); for (region = vm->userspace_mem_region_head; region; region = region->next) { fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx " "host_virt: %p\n", indent + 2, "", (uint64_t) region->region.guest_phys_addr, (uint64_t) region->region.memory_size, region->host_mem); fprintf(stream, "%*sunused_phy_pages: ", indent + 2, ""); sparsebit_dump(stream, region->unused_phy_pages, 0); } fprintf(stream, "%*sMapped Virtual Pages:\n", indent, ""); sparsebit_dump(stream, vm->vpages_mapped, indent + 2); fprintf(stream, "%*spgd_created: %u\n", indent, "", vm->pgd_created); if (vm->pgd_created) { fprintf(stream, "%*sVirtual Translation Tables:\n", indent + 2, ""); virt_dump(stream, vm, indent + 4); } fprintf(stream, "%*sVCPUs:\n", indent, ""); for (vcpu = vm->vcpu_head; vcpu; vcpu = vcpu->next) vcpu_dump(stream, vm, vcpu->id, indent + 2); } /* Known KVM exit reasons */ static struct exit_reason { unsigned int reason; const char *name; } exit_reasons_known[] = { {KVM_EXIT_UNKNOWN, "UNKNOWN"}, {KVM_EXIT_EXCEPTION, "EXCEPTION"}, {KVM_EXIT_IO, "IO"}, {KVM_EXIT_HYPERCALL, "HYPERCALL"}, {KVM_EXIT_DEBUG, "DEBUG"}, {KVM_EXIT_HLT, "HLT"}, {KVM_EXIT_MMIO, "MMIO"}, {KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"}, {KVM_EXIT_SHUTDOWN, "SHUTDOWN"}, {KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"}, {KVM_EXIT_INTR, "INTR"}, {KVM_EXIT_SET_TPR, "SET_TPR"}, {KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"}, {KVM_EXIT_S390_SIEIC, "S390_SIEIC"}, {KVM_EXIT_S390_RESET, "S390_RESET"}, {KVM_EXIT_DCR, "DCR"}, {KVM_EXIT_NMI, "NMI"}, {KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"}, {KVM_EXIT_OSI, "OSI"}, {KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"}, #ifdef KVM_EXIT_MEMORY_NOT_PRESENT {KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"}, #endif }; /* * Exit Reason String * * Input Args: * exit_reason - Exit reason * * Output Args: None * * Return: * Constant string pointer describing the exit reason. * * Locates and returns a constant string that describes the KVM exit * reason given by exit_reason. If no such string is found, a constant * string of "Unknown" is returned. */ const char *exit_reason_str(unsigned int exit_reason) { unsigned int n1; for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) { if (exit_reason == exit_reasons_known[n1].reason) return exit_reasons_known[n1].name; } return "Unknown"; } /* * Physical Contiguous Page Allocator * * Input Args: * vm - Virtual Machine * num - number of pages * paddr_min - Physical address minimum * memslot - Memory region to allocate page from * * Output Args: None * * Return: * Starting physical address * * Within the VM specified by vm, locates a range of available physical * pages at or above paddr_min. If found, the pages are marked as in use * and thier base address is returned. A TEST_ASSERT failure occurs if * not enough pages are available at or above paddr_min. */ vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, vm_paddr_t paddr_min, uint32_t memslot) { struct userspace_mem_region *region; sparsebit_idx_t pg, base; TEST_ASSERT(num > 0, "Must allocate at least one page"); TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address " "not divisible by page size.\n" " paddr_min: 0x%lx page_size: 0x%x", paddr_min, vm->page_size); region = memslot2region(vm, memslot); base = pg = paddr_min >> vm->page_shift; do { for (; pg < base + num; ++pg) { if (!sparsebit_is_set(region->unused_phy_pages, pg)) { base = pg = sparsebit_next_set(region->unused_phy_pages, pg); break; } } } while (pg && pg != base + num); if (pg == 0) { fprintf(stderr, "No guest physical page available, " "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n", paddr_min, vm->page_size, memslot); fputs("---- vm dump ----\n", stderr); vm_dump(stderr, vm, 2); abort(); } for (pg = base; pg < base + num; ++pg) sparsebit_clear(region->unused_phy_pages, pg); return base * vm->page_size; } vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min, uint32_t memslot) { return vm_phy_pages_alloc(vm, 1, paddr_min, memslot); } /* * Address Guest Virtual to Host Virtual * * Input Args: * vm - Virtual Machine * gva - VM virtual address * * Output Args: None * * Return: * Equivalent host virtual address */ void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva) { return addr_gpa2hva(vm, addr_gva2gpa(vm, gva)); }